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Résumé
La logique épistémique dynamique probabiliste (PDEL)
permet de raisonner sur les connaissances probabilistes
imbriquées des agents et sur les changements de
connaissances induits par l’occurrence d’événements.
Bien que PDEL a été étudiée de manière théorique,
elle n’a été appliquée qu’à des exemples jouets : en
effet, l’explosion combinatoire des structures de Kripke ne
permet pas d’utiliser directement le formalisme pour des
applications réelles, comme des jeux de cartes.
Le présent article constitue un premier pas vers
l’utilisation de PDEL en pratique : dans la continuité
des récents travaux sur la vérification de modèles de DEL
(non probabiliste), nous proposons une représentation
“symbolique” des structures de Kripke probabilistes avec
des fonctions pseudo-booléennes, représentables par des
structures de données de la famille des diagrammes de
décision, en particulier les diagrammes de décisions
algébriques (ADDs). Nous montrons que les ADDs passent
mieux à l’échelle que les structures de Kripke explicites,
et permettent une vérification symbolique de modèles
efficace, même sur un exemple réaliste du jeu de carte
Hanabi, ouvrant ainsi la voie à l’application pratique de
techniques de planification épistémique.
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Abstract
Probabilistic Dynamic Epistemic Logic (PDEL) is
a formalism for reasoning about the higher-order
probabilistic knowledge of agents, and about how this
knowledge changes when events occur. While PDEL has
been studied for its theoretical appeal, it was only ever
applied to toy examples: the combinatorial explosion
of probabilistic Kripke structures makes the PDEL
framework impractical for realistic applications, such as
card games.
This paper is a first step towards the use of PDEL in more
practical settings: in line with recent work applying ideas

from symbolic model checking to (non-probabilistic) DEL,
we propose a “symbolic” representation of probabilistic
Kripke structures as pseudo-Boolean functions, which
can be represented with several data structures of the
decision diagram family, in particular Algebraic Decision
Diagrams (ADDs). We show that ADDs scale much better
than explicit Kripke structures, and that they allow for
efficient symbolic model checking, even on the realistic
example of the Hanabi card game, thus paving the way
towards the practical application of epistemic planning
techniques.

Keywords
Symbolic model checking, Probabilistic dynamic
epistemic logic, PDEL, Kripke structures, Planification,
Hanabi

1 Introduction
The card game Hanabi Bauza [2010] has recently drawn
interest from the AI community Bard et al. [2020].
Hanabi is a multiplayer cooperative game with imperfect
information in which higher-order knowledge plays a
very important role, i.e., players need to make decisions
depending on what they know about what other players
know, and so on. With the ultimate goal of computing
strategies for games like Hanabi, our focus is on
approaches based on Dynamic Epistemic Logic (DEL)
Kooi [2003], a formalism allowing one to reason about
the higher-order knowledge of agents, and about how this
knowledge changes when events occur. DEL constructs
allow for an elegant approach to multi-agent epistemic
planning Bolander [2017], and more recently, to the
problems of controller and distributed strategy synthesis in
adversarial games Maubert et al. [2019].
However, in many realistic games, in particular with
imperfect or incomplete information, such as Hanabi, there
is clearly no winning strategy for any player; what one
usually wants in these cases is an optimal strategy, one
that maximizes the expectation of a victory. A natural
direction is to study an adaptation of epistemic planning
to Probabilistic Dynamic Epistemic Logic (PDEL), a
generalization of DEL which is interpreted on Kripke



structures augmented with probabilistic information.
Yet, while there has been effort lately to make DEL
useable in practice, by applying ideas from symbolic model
checking, thus avoiding the combinatorial explosion of
explicit Kripke structures Charrier and Schwarzentruber
[2017]; van Benthem et al. [2017]; Gattinger [2018];
Charrier et al. [2019], there has been no such work for
PDEL; to the best of our knowledge, it remains an entirely
theoretical framework, only ever applied on toy examples.
This paper is a first step towards the use of PDEL
in more practical settings: we propose a “symbolic”
representation of stochastic Kripke structures as pseudo-
Boolean functions, which can be represented with several
data structures of the decision diagram family. Our
experiments using Algebraic Decision Diagrams (ADDs)
on a modelization of Hanabi show that the size of these
representations scale much better than explicit Kripke
structures, while allowing for efficient symbolic model
checking, even for near-realistic game sizes. The next
step is to generalize epistemic planning to a probabilistic
setting, so as to study optimal strategy synthesis for games
with imperfect or incomplete information; our results
indicate that such a generalization would not only be of
theoretical interest, but could also be useful in practice.
After presenting some background, such as Hanabi or
PDEL (2), we introduce our symbolic representation
and model checking procedure (3), then report about
experimental results (4).

2 Background
2.1 Hanabi
Hanabi Bauza [2010] is a cooperative card game where
players must play their cards in order; the specificity is
that players can never look at their cards, although they
see those of other players and can give them information.
There are 5 card colors (red , blue , green , yellow

, white ) and 5 card values (numbers from 1 to 5 ,
with the following repartition: 3 × 1 , 2 × 2 3 4 , and
1 × 5 ) for each color. The goal is to play as many cards
as possible on the table, but the cards of each color must
be played in increasing order (an error costs one red token,
out of three in total). At their turn, each player can either
play a card on the table, give information to another player
(which costs one blue token), or discard a card (which gives
one blue token back). Giving information is limited to
announcing all cards of a given color or value in a the hand
of another player, by pointing to the cards. Figure 1 shows
a game situation. See han [2021] for the precise rules of
the game.
We will represent the “physical” state of the game
(independant from the knowledge acquired by the players)
using propositional variables, which basically describe
where each card is located. For example, variable cardap

cvi
describes the fact that player a has the card of color
c ∈ {W,R,B,Y,G} and value v ∈ {1..5} of id i (there are
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Figure 1: Presentation of a game situation as seen by player 1

several cards with the same color and value), at position
p in their hand. Variable cardz

cvi is the same, but with
z∈ {Draw,Discard,Table} and with no notion of position.
Still other propositional variables count the number of
tokens (Ri or Bi) and indicate which player is next (turna).
Clearly, this is not sufficient to represent the real state
of a game: the knowledge of each player about their
cards evolves during a game, and in order to reason about
how best to play, it is necessary to have a model of this
knowledge – we use epistemic logic for this.

2.2 Probabilistic epistemic logic
We fix a finite set A of agents and a countable set PS of
propositional symbols. We denote as WS the countable
subset of PS containing the symbols used to describe
possible worlds; for simplicity we consider it fixed, even
though it depends on the application (for example, in the
context of Hanabi, we consider that WS contains all and
only the necessary symbols of the form cardap

cvi, card
z
cvi, Ri,

Bi and turna).
First, we define probabilistic Kripke structures (also called
probabilistic Kripke/epistemic models; in the following
we simply call them “Kripke structures” for short), which
allows one to model the epistemic and probabilistic
knowledge of agents.

Definition 1 ((probabilistic) Kripke structure). A
(probabilistic) Kripke structure is a tuple M = 〈W,R,µ,V 〉
such that:

• W is a nonempty finite set of worlds,

• R associates to each agent a ∈ A an accessibility
relation Ra ⊆W ×W,

• µ associates to each agent a ∈ A and each world w ∈
W a probability function µa(w) over all worlds, i.e.,
a function W → [0,1] such that ∑w′∈W µa(w)(w′) = 1,
and

• V is a valuation function V : W → 2WS, indicating the
set of propositions that are true in each world.



Note that there are more general definitions of probabilistic
Kripke structures, using for example σ -algebras Fagin
and Halpern [1994]; in this paper we use the simplest
case of probability functions, but our approach would
not be hard to generalize to richer settings. Intuitively,
the accessibility relation of agent a links worlds that a
considers as undistinguishable, and µa(w)(w′) indicates
the probability a assigns to being in world w′ when it is
actually in world w.

Example 2. Let s and r be two propositions standing for
“sun” and “rain”; assume that at any time at least one of
the two propositions must be true. Figure 2 (left) displays
an example of a very simple Kripke structure, in which
there are two agents, whose accessibility relations are
consistent with the probability functions. The probabilities
associated with the arcs show that the black agent deems
that there is a greater chance of rain. World w1 is marked
with a double circle to indicate that it is the real world.
Black arcs show probabilities for agent a only, and orange
arcs for agents a and b.

Having both an accessibility relation and probability
functions may seem redundant, but it has two advantages:
(i) it allows one to model an unquantified uncertainty
between possible worlds, which is not the same as
assigning them a uniform probability, and (ii) it allows one
to distinguish between having probability 0 to be true and
being truly impossible. See Fagin and Halpern [1994] for
an in-depth discussion.

Definition 3 (Probabilistic epistemic language LPEL). The
language LPEL of probabilistic epistemic logic is defined
by the following Backus-Naur form :

φ ::= p | ¬φ | φ1∧φ2 |Kaφ |α1 Pra(φ1)+· · ·+αk Pra(φk)≥ β

where p ∈WS, a ∈ A, α1, . . . ,αk,β are rational numbers,
and k ≥ 1.

We also use parentheses in formulas for disambiguation,
and we recall the usual abbreviations: p∨q (or) is ¬(¬p∧
q), p→ q (implication) is ¬p∨q and p↔ q (equivalence)
is (p → q) ∧ (q → p). This language allows higher-
order formulas so that we can write : Ki(Pr j(φ) ≥ β ) or
Pr j(Kiφ) ≥ β . For example, in the first formula, agent i
knows that agent j estimates the probability that φ holds to
be greater than or equal to β . Next, we explain how one
decides whether a formula in LPEL holds in a given state
of epistemic and probabilistic knowledge:

Definition 4 (semantics of PEL). Let M be a Kripke
structure and w a world of M . We define the semantics of
PEL inductively as follows, where p∈WS, φ ,ψ,φ1, . . .φk ∈
LPEL, and a ∈ A :
M ,w |= p iff V (w)(p) =>, with p ∈WS
M ,w |= ¬φ iff M ,w 2 φ

M ,w |= φ ∧ψ iff M ,w |= φ and M ,w |= ψ

M ,w |= Kaφ iff M ,w′ |= φ for all w′ s.t. (w,w′) ∈ Ra
and M ,w |= α1 Pra(φ1)+ · · ·+αk Pra(φk)≥ β

iff ∑
k
i=1 αiµa(M ,w)(φi) ≥ β , with µa(M ,w)(φi) :=

∑
w′ : M ,w′|=φi

µa(w)(w′).

In our weather example, formulas Prb(r) ≥ 0.5 and
Kb(Pra(s ∨ r) ≥ 0.8) are true. Now, Kripke structures,
probabilistic or not, only represent a static state of
knowledge. In order to take changes into account, e.g.
due to player actions, they have to be coupled with other
structures called update models.

2.3 Updating knowledge
Note that we use LWS to refer to the propositional
language.

Definition 5 ((probabilistic) update model). An
(probabilistic) update model is a tuple E =
〈E,RE , pre, post,µE〉, where

• E is nonempty set of events,

• RE associates to each agent a ∈ A an accessibility
relation RE

a ⊆ E×E,

• pre is a precondition function pre : E→LEL,

• post is a postcondition function post : E×WS→LWS
(with LWS the language of propositional formulas),

• µE associates to each agent a ∈ A and each event e ∈
E a probability function µa(e) over all events.

Example 6. The update model in Figure 2 (middle) (in
which we suppose that probability functions are the same
for all agents) contains an event e0 with precondition s∧ r
which assigns true to the variable b (“rainbow”). If the
precondition is true, there is a 60% chance that there is
a rainbow. Nevertheless, this event is confused by agents
with the event e1, with precondition r. Would this second
event occur, there would be an 80% chance that it be
considered to occur.

Note that using this definition, probabilistic update models
are actually very close to the classical update models of
DEL van Benthem et al. [2006b] – the only difference
being the added probability functions. This makes them
different from probabilistic update models as defined by
van Benthem et al. [2009], for two reasons. First, they
feature postconditions, which allow them to have ontic
effects, i.e., to change the state of the world and not only
the knowledge state of agents; this is indeed crucial if
we want to use PDEL to reason about games such as
Hanabi. By fixing post(e,x) = x for all e ∈ E et all
x ∈WS, we get a purely epistemic update model, with no
ontic effect. The other difference is that in the update
models of van Benthem et al. [2009], preconditions are
not directly tied to events. They are defined as a set Φ of
pairwise inconsistent sentences, together with a probability
distribution pre(φ ,e) over E for each sentence φ ∈ Φ

and each event e ∈ E. As the authors argue, this allows
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Figure 2: Examples of a probabilistic Kripke structure (left) and of an update model (middle), and their product update (right)

one to independantly consider observation probabilities,
given by µE – quantifying the distinguishability of events
– and occurrence probabilities, given by Φ and pre –
indicating the probability with which each event can occur
in each situation. Even though these “full update models”
are more flexible, they are actually not more expressive
than our simpler version (without postconditions). As
remarked by the authors in a prepublished extended version
of their work van Benthem et al. [2006a], any full update
model has an equivalent so-called “observation model”,
which corresponds to our definition (again, ignoring ontic
effects). Moreover, our choice of a conceptually simpler
definition is harmless in practice, because transforming a
full update model into an observation model can be done
in quadratic time. However, it is important to remark that
the converse is not true – it can be shown that the following
observation model has no polynomial representation as a
full update model: a clique of |WS| events, with uniform
probabilities, each event having a distinct variable x ∈
WS as precondition. The problem is that full update
models require pairwise inconsistent preconditions, so we
need one for each valuation in 2WS. This is a strong
motivation for our choice of limiting update models to
“observation models” because, although update models
of this form do not seem very useful semantically, they
become essential as soon as we add postconditions to them
– such combinatorial, probabilistically uniform updates are
frequent in the context of card games.
Now that we have update models to represent events that
can occur in the real world (either by a voluntary action
of an agent, or not), and how these events are perceived
by the agents, we will explain how we can use them. The
mechanism used in PDEL to compute the new knowledge
state of agents after an event took place is called product
update; it is more or less a simple Cartesian product of the
Kripke structure representing the previous knowledge state
and of the update model representing the event.

Definition 7 (probabilistic product update). Let M be a
Kripke structure and E be an update model.
The product update of M by E is the Kripke structure M ⊗
E = 〈W⊗,R⊗,µ⊗,V⊗〉 defined as follows:

• W⊗ = {(w,e) ∈W ×E |M ,w |= pre(e)}

• (w,e)R⊗a (w
′,e′) iff (w,w′) ∈ Ra and (e,e′) ∈ RE

a

• µ⊗a ((w,e))((w′,e′)) = µa(w)(w′)·µE
a (e)(e′)

∑

(w′′ ,e′′)∈W⊗
µa(w)(w′′)·µE

a (e)(e′′) if

the denominator is nonzero, and 0 otherwise

• V⊗((w,e)) = {p ∈WS |M ,w |= post(e, p)}

Example 8. Fig. 2 (right) shows the product update of the
Kripke structure and update model. We can see that after
the application of the event, agent a (in black) knows that
it is raining: Kar, but also that considers that there may be
a rainbow with probability more than 45% : Prab≥ 0.45.

Thanks to the product update, it is then possible to do
model checking by using a new operator that means "after
the application of such event, will this formula be true?"
This is how the logic becomes "dynamic".

Definition 9 (PDEL). The probabilistic dynamic epistemic
language LPDEL is defined by the BNF of LPEL (Def. 3)
augmented with the following production rule:

φ ::= [E ,e]φ

where E is a probabilistic update model and e an event. We
denote by L 0

PDEL the language in which all update models
have propositional preconditions. The semantics of this
additional operator is defined as follows: M ,w |= [E ,e]φ
iff

M ,w |= pre(e) =⇒ M ⊗E ,(w,e) |= φ

We are interested in the model checking problem, which
consists in deciding, given a pointed Kripke structure
(M ,w) and a formula φ in LPEL or LPDEL, whether
M ,w |= φ .

3 Symbolic representation
Because of the combinatorial nature of Kripke structures,
the size of such representations quickly becomes huge in
practical examples, even moderately realistic. To avoid
this problem, an idea is to use a “symbolic” representation
of Kripke structures, in which redundancies are factored
out, so that knowledge states remain scalable, while still
allowing for reasonably efficient model checking. The



idea of symbolic model checking McMillan [1993] has
recently been applied to dynamic epistemic logic, the
symbolic representation of Kripke structures being either
accessibility programs Charrier and Schwarzentruber
[2017]; Charrier et al. [2019] or Binary Decision Diagrams
(BDDs) van Benthem et al. [2017]; Gattinger [2018],
BDDs being a well-known efficient representation of
Boolean formulas Bryant [1986].
We now show how these concepts apply to probabilistic
dynamic epistemic logic; contrary to Shirazi and Amir
[2008], who also represent probabilistic Kripke structures
in a factored way (using Bayesian networks), we are
not only interested in static structures. In order to
represent probabilities, we have to go beyond Boolean
formulas, and use pseudo-Boolean functions. Given X =
{x1, . . . ,xn} ⊆ PS a finite set of propositional symbols,
we call pseudo-Boolean function (PBF) on variables
X a total function of the kind f : 2X → R. There
are several ways to represent pseudo-Boolean functions,
notably generalizations of BDDs; let us mention Algebraic
Decision Diagrams (ADDs) Bahar et al. [1997], Semiring-
Labelled Decision Diagrams (SLDDs) Wilson [2005];
Fargier et al. [2013], Affine Algebraic Decision Diagrams
(AADDs) Sanner and McAllester [2005], and Probabilistic
Sentential Decision Diagrams (PSDDs) Kisa et al. [2014].
These languages are of varying succinctness (i.e., some
are able to represent PBFs more compactly than others)
and do not have the same efficiency for operations (such
as summing PBFs or “forgetting” variables). There is
a tradeoff to be found, depending on the application;
systematically studying and quantifying such tradeoffs is
the goal of the literature about the knowledge compilation
map Darwiche and Marquis [2002]; Fargier et al. [2014].
In this paper, we remain as general as possible and only talk
about PBFs; it should be implicitly understood that they are
represented in some efficient language, such as ADD, the
language we used in our experiments.
Before going on, we need to introduce some conventions
and notations. We consider that Boolean functions, i.e.,
functions of the form f : 2X → B, are particular pseudo-
Boolean functions, and for simplicity we often identify
propositional formulas φ over X with the Boolean function
they represent; i.e., we see φ as the Boolean function

v ∈ 2X 7→

{
1 if v |= φ ,
0 otherwise

.

For a PBF f on X ⊆ PS and a real number β , we denote
Cut≥β ( f ) the Boolean function associating a valuation v ∈
2X to 1 if f (v)≥ β , and to 0 otherwise.
We call support of f, written supp( f ), the set Y ⊆ 2X where
f is nonzero : supp( f ) = {x ∈ 2X | f (x) 6= 0}. Note that if
φ is a propositional formula over X , supp(φ) is the model
set of φ .
Finally, let � : R × R → R be an associative and
commutative operation with a neutral element (such
as addition, multiplication, min, max, or the Boolean
connectives ∨ and ∧), let X = (Y ] Z) ⊆ PS, and let

f be a PBF on X . The �-marginalization of Y in f ,
denoted Marg�,Y ( f ), is the function g : 2Z → R defined
by g(v) =

⊙
v′∈2X : v=v′Z

f (v′). Note that if f is a Boolean
function, ∨-marginalization (resp. ∧-marginalization) of Y
corresponds to existentially (resp. universally) forgetting
the variables in Y . We write Forget∃Y ( f ) = Marg∨,Y ( f ) and
Forget∀Y ( f ) = Marg∧,Y ( f ). Also we use for X ⊆ PS, f a
boolean function and v ∈ 2X , f|v = Forget∃X ( f ∧ v)
In this article, we use PBF everywhere. In fact, for
simplification, if PBF is Boolean Function we will write it
as Boolean formula. Also, a valuation, list of term, or a list
or valuation can be considered as a Boolean formula. We
can notice that, for v a valuation and f a boolean formula,
notations v ∈ supp( f ), v |= f and f (v) = 1 are equivalent.

3.1 Static structure
Let us now show how to represent a Kripke structure with
a PBF. The basic idea is to identify worlds with their
valuations, so that propositional formulas over WS directly
represent sets of worlds. Obviously, it is not possible in the
general case: two distinct worlds in a Kripke structure can
have the same valuation. The symbolic representation only
works for structures whose valuation function is injective:

Definition 10 (V-injectivity). A Kripke structure M =
〈W,R,µ,V 〉 is called V-injective if ∀w,w′ ∈W : w 6= w′→
V (w) 6=V (w′).

While V-injective Kripke structures are considerably
restricted in terms of expressiveness (e.g., the satisfiable S5
formula Ka1p∧¬Ka2(Ka1p∨Ka2¬p) has no V-injective
S5 model), the setting still applies to a lot of games –
notably those in which there are no private announcements
or secret actions, so that all uncertainty is reducible to
uncertainty about the “physical state” of the game. This
is the case for Hanabi: for example, even though Alice
does not know what the other players know about her
cards, she can enumerate the possible game states (this
boils down to enumerating her possible hands), and for
each one, assuming it is the actual game state, she knows
exactly what other players know. This would not be the
case if there were private announcements (e.g., one player
gives an information to another one without being heard
by the others) or secret actions (e.g., two players switch
one of their cards without others noticing). Moreover, for
cases requiring more expressiveness, it is always possible
to distinguish between worlds by labelling them with fresh
symbols. Finally, note that this restriction is not unusual;
it also holds for existing approaches to symbolic model
checking for epistemic logic.
In order to represent relations over worlds, we will use
the classical trick of duplicating our vocabulary Gattinger
[2018]: we introduce a fresh set of symbols WS′ ⊆ PS\WS,
in one-to-one correspondence with those in WS (we fix
some bijection succ : WS→WS′, denoting pred = succ−1),
and see each valuation v ∈ 2WS∪WS′ as a pair of valuations
(v1,v2), where v1 = v∩WS and v2 = {pred(x) | x∈ v∩WS′}.



For v ∈ 2WS, we write succ(v) := {succ(x) | x ∈ v}, and for
f a PBF on WS, we write succ( f ) for the PBF v ∈ 2WS 7→
succ(v); we introduce similar overloadings for pred.
We can define symbolic Kripke structure and the function
to transform a explicit Kripke structure into symbolic one.

Definition 11 (Symbolic Kripke structure). A symbolic
Kripke structure is a tuple F = 〈W r,Rr,µr〉 such that

• W r is a Boolean function on WS, called the law of
worlds;

• Rr associates to each agent a ∈ A a Boolean function
Rr

a on WS∪WS′, called the law of knowledge;

• µr associates to each agent a ∈ A a PBF µr
a on WS∪

WS′, called the law of probabilities.

This representation allows any Kripke structure to be
modelled, whether it is S5 or KD45.

Definition 12. Each explicit Kripke structure M =
〈W,R,µ,V 〉 corresponds to a symbolic Kripke structure
symb(M ) = 〈W r,Rr

a,µ
r
a〉 defined as follows:

• W r :=
∨

w∈W
V (w);

• Rr
a :=

∨
(w,w′)∈Ra

V (w)∧ succ(V (w′)) ;

• µr
a = ∑

(w,w′)∈W 2
µa(w)(w′)×V (w)∧ succ(V (w′)).

Here, it is important to see that the "sums" are disjoint
if M is V-inj. Indeed, whether it is for the or logical
on Rr or for the sum on µr, if M is V-inj, the relation
V (w)∧ succ(V (w′)) is unique. If it is not, there is a loss of
information by collasping on the structure.

Definition 13 (Symbolic Kripke into explicit
: symb−1(F)). Each symbolic Kripke structure
F = 〈W r,Rr,µr〉 corresponds to the unique Kripke
structure symb−1(F) = 〈W,R,µ,V 〉 defined as follows:

• W := supp(W r);

• V := (v ∈W 7→ v);

• Ra := {(v,v′) ∈W 2 | v∪ succ(v′) ∈ supp(Rr
a)};

• µa := (v ∈ W 7→ (v′ ∈ W 7→ µr
a(v ∪ succ(v′)) ×

norma(v))), where norma(v) = 1/∑v′∈W µr
a(v ∪

succ(v′)) if the denominator is nonzero, and 0
otherwise.

Lemma 14. If M is V-injective, M '
symb−1(symb(M )).

Proof. Let’s suppose Ml = 〈Wl ,Rl ,µl ,Vl〉 V-inj and Mr =
symb−1(symb(Ma)) = 〈Wr,Rr,µr,Vr〉. Let f be Wl →Wr
such that f (wl) =V (wl).
Wr = supp(

∨
w∈Wl

V (w)) and Vl is injective. So for all wl ∈Wl

there is one only wr ∈Wr such that f (wl) =V (wl) = wr.

Let wr,w′r ∈W 2
r and wl ,w′l ∈W 2

l s.t. wr = f−1(wl) =
V (wl), w′r = f−1(w′l) =V (w′l),

(wr,w′r) ∈ Rr
⇐⇒ wr ∪ succ(w′r) |= supp(

∨
(w,w′)∈Rl

V (w) ∧

succ(V (w′)))
⇐⇒ V (wl) ∪ succ(V (w′l)) |= supp(

∨
(w,w′)∈Rl

V (w) ∧

succ(V (w′)))
⇐⇒ (wl ,w′l) ∈ Rl

µr(wr,w′r)
− ( ∑

wl ,w′l∈W 2
l

µl(wl)(w′l) × V (wl) ×

succ(V (w′l)))(V (wl) ∪ succ(V (w′l)) × norma(w′l)
with norma(w′l) = 1/ ∑

wl∈Wl

∑

w,w′∈W 2
l

µl(w)(w′)×V (w)×

succ(V (w′))
− ( ∑

w∈ f−1(wr),w′∈ f−1(w′r)
µl(wl)(w′l) × V (wl) ×

succ(V (w′l)))(V (wl) ∪ succ(V (w′l)) × norma(w′l)
with Vl injective

− (µl(wl)(w′l) × V (wl) × succ(V (w′l)))(V (wl) ∪
succ(V (w′l))×norma(w′l)

− µl(wl)(w′l)×norma(w′l)
We have by definition of explicit Kripke structure :
∀w ∈Wl , ∑

w′
µl(w)(w′) = 1 and with distinct sums, we

have norma(wr) = 1.
− µl(wl)(w′l)

Though a symbolic Kripke structure represents a unique
(V-injective) Kripke structure, the converse is not true.
When building a symbolic representation of a V-injective
Kripke structure, the law of worlds is fixed, but there are
two degrees of freedom: (i) the law of probabilities does
not have to be normalized, and (ii) the laws of knowledge
and probabilities can assign values to any assignment in
2WS∪WS′ , even when it does not correspond to any pair of
worlds.
Moreover, these “symbolic” Kripke structures are very
generic, since, as we already mentioned, there is no
constraint as to how the Boolean and pseudo-Boolean
functions defining the three “laws” are represented. The
choice of concrete representations can thus depend on the
intended tradeoff between spatial and temporal efficiency
for various applications. Anyway, it should be clear that
symbolic Kripke structure can yield exponential space
savings: a trivial example is F = 〈>,>,1〉 (where 1 here
is the constant PBF), which represents a Kripke structure
with 2|WS| distinct worlds.

3.2 Model checking on static structures
In order to decide whether (the Kripke structure
represented by) a given symbolic Kripke structure is a
model of an LPEL formula, we can build a Boolean



function on WS representing the set of all worlds of
the structure in which the formula holds. This can be
done using dynamic programming thanks to the following
inductive definition.

Definition 15 (Boolean translation of formula). Let F =
〈W r,Rr,µr〉 be a symbolic Kripke structure and φ be a
formula in LPEL. The Boolean translation of φ in F,
denoted ||φ ||F , is the Boolean function defined inductively
as follows:

||p||F := p
||¬φ ||F := 1−||φ ||symb(M )

||φ ∧ψ||F := ||φ ||symb(M )×||ψ||symb(M )

||Kaφ ||F := Forget∀WS′(succ(W r) ∧ Rr
a →

succ(||φ ||symb(M )))

||α1 Pra(φ1) + · · · + αk Pra(φk) ≥ β ||F :=
Cut≥β (∑

k
i=1 αi×||Pra(φi)||F) where :

||Pra(φ)||F = MargΣ,WS′(succ(W r) ×
succ(||φ ||symb(M ))×norm(µr

a))

norm(µr
a) =

µr
a

Marg
Σ,WS′ (µ

r
a)

We said that the law of probabilities does not have to be
normalized, but for modelcheck a Pra formula, we need to
find normalized PBFs to be able to compare the PBF values
with the β value of the formula. In fact, we just need before
applying a model checking to normalize the F structure in
this way: norm(F) = 〈W r,Rr,norm(µr)〉
Remark that using ||Pra(φ)||F is a bit of an notational
abuse, since Pra(φ) is not a formula, and indeed
||Pra(φ)||F is not a Boolean function. Now, it
should be clear that the complexity of building the
Boolean translation of a formula depends on the
concrete representations used. Nonetheless, note
that all operations need – sum, product, renamings,
cut, marginalization/forgetting – can be considered as
elementary operations on PBF representations; they are
notably used by Fargier et al. [2014] to compare the
efficiency of several languages of the decision diagram
family.
The following result can be proved by induction :

Proposition 16 (symbolic model checking on PEL). Let
M = 〈W,R,µ,V 〉 be a V-inj Kripke structure. For any
formula φ in LPEL any w ∈ W, it holds that M ,w |=
φ ⇐⇒ ||φ ||symb(M )(V (w)) = 1.

Proof. The proof is by induction on φ . Cases of atomic
propositions, negation and conjunction are immediate.

M ,w |= ¬φ

⇐⇒ M ,w 6|= φ

⇐⇒ ||φ ||symb(M )(V (w)) 6= 1 (hyp)
⇐⇒ 1−||φ ||symb(M )(V (w)) 6= 0
⇐⇒ ||¬φ ||symb(M ) = 1 (Domain of

||φ ||symb(M )(V (w)) is boolean : [0,1] )

M ,w |= φ ∧ψ

⇐⇒ M ,w |= φ ∧M ,w |= ψ

⇐⇒ ||φ ||symb(M )(V (w)) = 1 and
||ψ||symb(M )(V (w)) = 1 (hyp)

⇐⇒ ||φ ||symb(M )(V (w)) × ||ψ||symb(M )(V (w)) = 1
(Domain of ||φ ||symb(M )(V (w)) and
||ψ||symb(M )(V (w)) are boolean : [0,1]
)

⇐⇒ (||φ ||symb(M )×||ψ||symb(M ))(V (w)) = 1
⇐⇒ ||φ ∧ψ||symb(M )(V (w)) = 1

M ,w |= Kaφ

⇐⇒ ∀w′ ∈W s.t. (w,w′) ∈ Ra : M ,w′ |= φ

⇐⇒ ∀w′ ∈W s.t. V (w)∪ succ(V (w′)) ∈ supp(Rr
a) :

||φ ||symb(M )(V (w′)) = 1 (definition 12 + hyp)
⇐⇒ ∀w′ ∈ W : Rr

a(V (w) ∪ succ(V (w′)) = 1 →
||φ ||symb(M )(V (w′)) = 1

⇐⇒ ∀v′ ∈ 2WS′ : v′ |= succ(W r)→ (Rr
a(V (w)∪v′) =

1→ succ(||φ ||symb(M )(v′)) = 1))
⇐⇒ ∀v′ ∈ 2WS′ : ¬v′ |= succ(W r)∨¬V (w)∪ v′ |=

Rr
a∨ succ(||φ ||symb(M )(v′)) = 1

⇐⇒ ∀v′ ∈ 2WS′ : (V (w) ∪ v′ |= succ(W r) ∧ Rr
a) →

succ(||φ ||symb(M )(v′)) = 1
⇐⇒ Forget∀WS′(succ(W r) ∧ Rr

a →
succ(||φ ||symb(M )))(V (w)) = 1

⇐⇒ ||Kaφ ||symb(M )(V (w)) = 1

We suppose that µr
a is normalized.

M ,w |= α1 Pra(φ1)+ · · ·+αk Pra(φk)≥ β

⇐⇒ ∑
k
i=1 αiµa(M ,w)(φi) ≥ β with

µa(M ,w)(φi) := ∑
w′ : M ,w′|=φi

µa(w)(w′).

⇐⇒ ∑
k
i=1 αi ∑

w′ : M ,w′|=φi

µa(w)(w′)≥ β (rewrite)

⇐⇒ ∑
k
i=1 αi ∑

w′ : M ,w′|=φi

µr
a(V (w)∪ succ(V (w′)))≥ β

(with definition 12)
⇐⇒ ∑

k
i=1 αi ∑

v∈2WS : succ(W r)×succ(||φ ||symb(M )(v))=1
µr

a(V (w)∪

succ(v)) ≥ β (with the induction hypothesis
that M ,w |= φ ⇐⇒ ||φ ||symb(M )(V (w)) = 1
with v = V (w′) and the addition of W r in order
to respect w′ ∈W which become v |=W r)

⇐⇒ ∑
k
i=1 αi ∑

v∈2WS
(µr

a(V (w)∪ succ(v))× succ(W r)×

succ(||φ ||symb(M )))(V (w)∪ succ(v))≥ β

(succ(W r) × succ(||symb(φ)||(v)) are purely
boolean, and that’s why we remove the =
1. It works as a filter under ∑ and also in
multiplication of PBF.)

⇐⇒ ∑
k
i=1 αi MargΣ,WS((µ

r
a(V (w) ∪ succ(v)) ×

succ(W r) × succ(||φ ||symb(M ))))(V (w)) ≥ β

(definition of Marginalisation)
⇐⇒ ∑

k
i=1 αi||Pra(φi)||symb(M )(V (w)) ≥ β

(definition 15)
⇐⇒ Cut≥β (∑

k
i=1 αi × ||Pra(φi)||symb(M ))(V (w))



(definition 15)
⇐⇒ ||α1 Pra(φ1) + · · · + αk Pra(φk) ≥

β ||symb(M )(V (w))

3.3 Symbolic updates
Now that we have defined a symbolic Kripke structure and
showed how PEL model checking can be done on it, we
will show how these structures can be updated through
symbolic update models, which finally yields a model
checking algorithm for PDEL (restricted to propositional
preconditions).

Symbolic representation of update models. We want
to use the same principle as for Kripke structures to
represent the accessibility relation and the probability
functions. But an event is not labeled with a valuation,
but with precondition and postcondition functions. If we
consider only update models with propositional formulas
as preconditions (which are a lot less expressive, but
still sufficient for most real-life games, in which the
applicability of actions only depends on the objective state
of the game and not on what players know about it), it is
possible to view precondition and postcondition functions
as valuations, by representing them into propositional
action theories from classical planning. An action theory
is a propositional formula θ on WS∪WS+ (where WS+ is,
once again, a set of fresh propositional symbols in one-
to-one correspondance with those in WS via some bijection
after, of which we denote before the reciprocal, and that we
overload in the same way as succ and pred) that describes
the effects of an action (or rather, here, an event) in the
following way: given two valuations v,v′ ∈ 2WS, world state
v′ is a possible outcome of applying the action in world
state v if and only if v∪ after(v′) |= θ .

Definition 17 (propositional event theory). Let
E = 〈E,RE ,µE , pre, post〉 be an update model with
propositional preconditions. The propositional event
theory of event e ∈ E is the Boolean function θe defined
by the propositional formula pre(e) ∧ θ

post
e , where

θ
post
e =

∧
x∈WS

(post(e)(x)↔ after(x))

We can break down the θe definition of a e event with
the following lemma, with poste(v) := {x ∈ WS | v |=
post(e)(x)}.

Lemma 18. For v ∈ 2WS, θ
post
e |v = Forget∃WS(θ

post
e ∧ v) =

after(poste(v))

In other words, as θe permit to associate to each v ∈ 2WS

a unique poste(v) and we can see that v ∧ θ
post
e = v ∧

after(poste(v))
We say that an event e in an update model is atomic
if |supp(pre(e))| = 1, i.e., the event only applies to a
single valuation in 2WS: it only describes the transition
from one complete valuation to another. We call event-
atomic an update model of which all events are atomic.

Note that the propositional event theory of atomic events
can be represented by a complete term over WS ∪WS+,
or equivalently, by a single valuation in 2WS∪WS+. Thus,
an event-atomic update model can simply be represented
by a (static) Kripke structure on WS ∪WS+ (of which
the valuation of each world can be interpreted as an
atomic event theory) – and to any Kripke structure on
WS ∪WS+ corresponds a unique event-atomic update
model. Moreover, it can be shown (it is a consequence
of our results) that any update model (with propositional
preconditions) can be represented as an equivalent event-
atomic update model, by separating each event into as
many atomic events as needed, duplicating all accessibility
arcs and probabilities (modulo a final normalization step).
We can now show how an update model can be translated
into a symbolic representation, and finally show how to
compute the product update on symbolic structures.

Definition 19 (symbolic update model). Let E =
〈E,RE , pre, post,µE〉 be a update model with propositional
preconditions; its symbolic representation is the symbolic
Kripke structure symb(E ) = 〈W r,Rr,µr〉 on WS ∪WS+
defined as follows:

• W r :=
∨

e∈E θe;

• Rr
a :=

∨
(e,e′)∈RE θe∧ succ(θe′);

• µr
a := ∑(e,e′)∈E2 θe× succ(θe′)×µE

a (e)(e
′).

Thanks to the symbolic representation definitions of
the symbolic Kripke structures and the symbolic update
models, we can now define the symbolic product update.
By the way, to keep model checking valid, we need to don’t
loose information with collapsing. So we need to keep in
mind that M ⊗E must be V-injective.
So, we need to describe some sufficient conditions for
everything to go well. We define a new constraint on the
event structure: the Transition-injectivity.

Definition 20 (E Transition-injective). E is said to be
transition-injective (T-inj) wrt φ iff ∀e,e′ ∈ E2, ∀v,v′ ∈ 2WS

s.t. v |= pre(e) ∧ φ and v′ |= pre(e′) ∧ φ , poste(v) =
poste′(v′) =⇒ v = v′,e = e′.

In other words we can describe the Transition-injectivity
as follow : ∀v 6= v′ ∈ 2WS or e 6= e′ ∈ E2 =⇒ poste(v) 6=
poste′(v′).
It allows us, regardless of the starting worlds responding
to a φ formula, to guarantee that there will not be two
worlds of the same valuation : poste(v) = poste′(v′) only if
v= v′ and e= e′, and v are all differents by the V-injectivity
of M , so V ((w,e)) can’t have duplicate (i.e.to have a
Valuation-injective structure). Lemma 23 and Definition
20 permit to get M ⊗ E V-inj avoiding a collapsing of
worlds of the same valuation with the symb() function, so
we can have a symbolic product update, and later a valid
model checking.



Figure 3: Computation time for the creation of Kripke structures (left) and for updating knowledge (middle) in their explicit and symbolic
versions, and for model checking PEL formulas on symbolic structures. “hX-aY” means Y agents with X cards in hand. “depth” is the
modal depth of the formula, “nbH” is the number of cards in each player’s hand.M

Proposition 21. Forall M V-inj s.t. W |= φ and forall E
T-inj wrt φ , M ⊗E is V-inj.

Proof. Let w,w′ ∈ W with V (w) |= φ and
V (w′) |= φ and by the definition of T − in jectivity,
∀V (w),V (w′)′ ∈ 2WS, ∀e,e′ ∈ E, ∀V (w) 6= V (w′)
or e 6= e′ =⇒ poste(V (w)) 6= poste′(V (w′)), so
V⊗((w,e)) 6= V⊗((w′,e′)). Consequently, M ⊗ E is
V-inj.

Definition 22 (symbolic product update). Let F =
〈W r

F ,R
r
F ,µ

r
F〉 be a symbolic Kripke structure on WS and

χ= 〈W r
χ,R

r
χ,µ

r
χ〉 be a symbolic update model on WS∪WS+

of a Transition-injective Event model (with propositional
precondition, as required in definition of T-injective). The
symbolic product update of F by χ is the symbolic Kripke
structure on WS defined as

• W r = before(Forget∃WS(W
r
F ∧W r

χ))

• Rr = before(Forget∃WS(R
r
F ∧Rr

χ))

• µr = α

Marg
Σ,WS′ (α) with α = before(MargΣ,WS(µ

r
F ×

µr
χ))

Note that this definition implies that WS is
“quadruplicated”, since we need fresh symbols to
represent succ(after(x)) for x ∈WS. We implicitly extend
succ to range over WS ∪WS+ and after to range over
WS∪WS′, making sure that succ◦after = after◦succ. The
resulting symbolic Kripke structure is on WS because the
worlds in the product update are pairs (w,e), on WS∪WS′,
which is being forgotten and renamed.
With goods properties on M (V-injective) and on E (T-
injective), we have :

Lemma 23. For any V-inj M and any T-inj E
with propositional preconditions, symb(M ⊗ E ) =
symb(M )⊗ symb(E )

The following result, of which we omit the straightforward
but tedious proof, puts all pieces together; then we
complete Def. 15 with the case of the update operator.

We note L 0-T -in j
PDEL the language in which update models

have only propositional preconditions and are Transition-
injective.

Definition 24. Let M = 〈W,R,µr〉 be a V-inj Kripke
structure, E be a Transition-injective update model, and
φ be a formula in L 0-T -in j

PDEL .
The Boolean translation of φ in symb(M ), denoted
||φ ||symb(M ), is the Boolean function defined inductively in
the same way as in Def. 15, with the following additional
case:
||[E ,e]φ ||symb(M ) := Forget∃WS+(pre(e) → (θ post

e ∧
after(||φ ||symb(M )⊗symb(E ))))

We can see θ
post
e ∧ after(||φ ||symb(M )⊗symb(E )) as {w,w+ |

w+ = poste(w), F × symb(E ),before(w+) |= φ}. So w+

are worlds after product update that satisfy φ , and w the
worlds which led to w+, and forgetting the WS+ allows to
keep the worlds that led to it. With this new definition on
translation, we obtain a proposition to do symbolic model
checking on PDEL.

Proposition 25 (symbolic model checking on PDEL). Let
M be a V-inj Kripke structure. For any formula φ in
L 0-T -in j

PDEL and any w ∈ W, it holds that M ,w |= φ ⇐⇒
||φ ||symb(M )(V (w)) = 1.

Proof. The proof is by induction on φ . For case of φ ∈
LPEL, see proposition 16.

M ,w |= [E ,e]φ
⇐⇒ M ,w |= pre(e) =⇒ M ⊗ E ,(w,e) |= φ .

(Definition 9)
⇐⇒ M ,w |= pre(e) =⇒

||φ ||symb(M⊗E )(V⊗((w,e))) = 1 (Hyp and
Proposition 21)

⇐⇒ pre(e)(V (w)) = 1 →
||φ ||symb(M⊗E )(V⊗((w,e))) = 1 (preconditons
are propositional)

⇐⇒ pre(e)(V (w)) = 1 →
||φ ||symb(M )⊗symb(E )(V⊗((w,e))) = 1 (Lemma
23)



⇐⇒ pre(e)(V (w)) = 1 →
||φ ||symb(M )⊗symb(E )(poste(V (w))) = 1 (Def of
poste(v))

⇐⇒ pre(e)(V (w)) = 1 →
after(||φ ||symb(M )⊗symb(E ))(after(poste(V (w))))=
1

⇐⇒ pre(e)(V (w)) = 1 →
after(||φ ||symb(M )⊗symb(E ))(θ

post
e |V (w)) = 1

(Lemma 18)
⇐⇒ pre(e)(V (w)) = 1 → (θ post

e ∧
after(||φ ||symb(M )⊗symb(E )))(V (w) ∧
θ

post
e |V (w)) = 1 (Lemma 18) (translation

still only work on θ
post
e |V (w) and

θ
post
e |=V (w)∧θ

post
e |V (w))

⇐⇒ Forget∃WS+(pre(e))(V (w)) =
1 → Forget∃WS+((θ

post
e ∧

after(||φ ||symb(M )⊗symb(E ))))(Forget∃WS+(V (w)∧
θ

post
e |V (w))) = 1 (forget is free in pre which is

on WS, on forgetting on right is possible because
of the Transition-injectivity of the event model :
there is one valuation on WS∪WS+)

⇐⇒ Forget∃WS+(pre(e))(V (w)) =
1 → Forget∃WS+((θ

post
e ∧

after(||φ ||symb(M )⊗symb(E ))))(V (w)) = 1
⇐⇒ Forget∃WS+(pre(e) → (θ post

e ∧
after(||φ ||symb(M )⊗symb(E ))))(V (w)) = 1

⇐⇒ ||[E ,e]φ ||F(V (w)) = 1

4 Experiments on Hanabi
We now report on experiments we ran on our Python
implementation of the PDEL framework, with both on
“explicit” and symbolic Kripke structures. The concrete
language we used to represent PBFs is that of ADDs Bahar
et al. [1997], which, while strictly less succinct than other
decision diagram languages such as SLDDs, has efficient
algorithms for almost all the operators we need Fargier
et al. [2014]. We used our own Python implementation
of an ADD package. The variable order in ADDs is of
crucial importance to get small representations; we use
a natural order that arise when compiling formulas, after
having experimentally checked that varying the position of
variable groups (e.g., putting variables from WS closer to
WS′ or to WS+) did not seem to yield much better results.
On the ADD structure, basic operations are polynomial in
the size of the structure. For example applying an operator
(or, and, sum, product) between 2 adds is quadratic. The
problem is for Marginalisation or Forget: it’s quadratic in
the worst case, for a single variable, so it can explode when
you need to forget a lot. However (1) it doesn’t explode if
the variables to be forgotten are at the end of the order,
and (2) in practice it remains reasonable because there
are a lot of symmetries in the structures, before and after
marginalisations. The aim of the experiments is precisely

to see that in practice, at scales sufficient to represent
Hanabi, it works.
All experiments have been performed on a server with 4
AMD Opteron 6282SE 2.6GHz processors, 64 cores and
512G RAM (but no experiment exploited any parallelism
or multithreading. This power has not been exploited and
the calculation times are roughly the same on a laptop).
Each experiment has been run five times; the graphs show
the average time, with a black line indicating standard
deviation.
In Fig. 3 (left) , we can compare the creation times of static
Kripke structures with event structures, in the explicit and
symbolic cases, with varying total number of cards and
number of cards in each player’s hand, with a timeout of
1800 seconds. For 2 agents, we can compare the red curves
(symbolic) and blue curves (explicit). For nbH=1, the gain
appears only from 25 cards. For nbH=2, the difference is
more drastic: with the symbolic approach we can generate
the game with 46 cards, versus only 11 for the explicit
one. We can make similar observations for 3 agents. Let
us note that the creation time of the symbolic structures is
mainly used for creating the update models, which have
twice as many variables as the static structures (because
of the variables after(var)). For testing the application of
the product update, we used the most complex action of
the game: playing a card. It is programmed as an “action
pipeline”: play a card, then shift the cards in hand to fill
the “hole”, draw a new card, change turns. Results (Fig. 3,
middle) are similar to those about creation time; the gain
becomes flagrant for nbH=2 or 3.
For model checking on structures (only with 2 agents),
we use a number of formulas, up to a depth of 3,
using K and µ operators, and apply them on different
Kripke structures with varying nbH. For the explicit
structures that could be generated, model checking takes
less than 5 seconds for almost all formulas. For symbolic
structures (Fig. 3, right), propositional formulas are
instantaneous, but the model checking of formulas with
K or µ operators requires forgetting variables and time-
consuming calculations. Yet, it is feasible in practice, and it
compares very advantageously to explicit structures when
those cannot even be generated.

5 Experiments with a KBP
A KBP can be seen as a plan in a form of program with
conditions and loops presented by ?. We implemented a
small one, presented in algorithm 1 and ran it to test a basic
type of planification in realistic contexte.
By varying the distribution of the cards at the beginning of
the game, here is what we were able to obtain as a sequence
of actions, for nbA=2, nbC=10, with pointed world as
agent a has {W5, W2, W4} and b has {W2, W1, W4} in
hand:

• b-has-v=1-at-1 because of [!event] Kb he-can-play-sth

• b-plays-p1, because Kb b-can-play-1



Algorithm 1 KBP

Require: (M ,w) epistemic model, E list of events, a an
agent, nbH number of cards in hands, A list of agents,
nbred and nbblue number of current red and blue tokens

Ensure: An action of E
for all p ∈ {1..nbH} do

if M ,w |= Ka a-can-play(p) then
return a-plays-p

for all event ∈ E in announcement do
for all b ∈ A\{a} do

if M ,w |= [!event]Kb b-can-play-something then
return event

γ ← 0.66 if nbred=0, 0.80 if nbred=1, 0.90 if nbred=2
for all p ∈ {1..nbH} do

if M ,w |= Pra a-can-play-(p) ≥ γ then
return a-plays-p

if nbblue = 0 then
return a-discards-nbH

return random-annoucement

• b-has-v=2-at-1 because of [!event] Kb he-can-play-sth

• b-plays-p1, because Kb b-can-play-1

• random-announcement

• b-plays-p2, because of Prb b-can-play-2 ≥ 0.66

The relatively low number of cards allows here to have only
yellow cards. Thus, players already know a large part of
the information on their cards. All they have to do now
is learn the value of their cards. Nevertheless, we can see
from the sequence of actions generated by the KBP that the
actions are well targeted and that the model checking with
probabilities even allows agent b to take risks by playing a
card that enters the game with a 66% chance.
With differents experiences with nbA=2, nbH=3, we
have some results. With nbC=10 and 20, 49 and 56
are respectivly the maximal number of possible model
checking in this KBP. For 3 runs with nbC=10, is 18.88,
with standard deviation as 19.49 and the average time to
apply a model checking is 2.99 seconds with standard
deviation 3.56. For 2 runs with nbC=20, the average
number of model checking necessary in the KBP is 21.08,
with standard deviation as 22.42 and the average time to
apply a model checking is 19.53 seconds with standard
deviation 32.07.

6 Conclusion
In this article we have seen that we can do model checking
on probabilistic Kripke structures using pseudo-boolean
functions, implemented with structures such as ADDs.
The primary interest to test model checking with PDEL
with Hanabi as example is to see the card game aspect
with inherent probabilities. It seems quite justified to ask
"what is the probability that this card is 2 green", "is
this probability greater than that this card is 2 blue"? In

this game it is not always possible to make a safe move,
so probabilistic reasoning is still present. So our future
work will rely on symbolic structures to apply planning
techniques in order to compute strategies for Hanabi.
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