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A general approach is presented that offers exact analytical solutions for the time-evolution of quantum spin systems during parametric waveforms of arbitrary functions of time. The proposed method utilises the path-sum method that relies on the algebraic and combinatorial properties of walks on graphs. A full mathematical treatment of the proposed formalism is presented, accompanied by an implementation in Matlab. Using computation of the spin dynamics of monopartite, bipartite, and tripartite quantum spin systems under chirped pulses as exemplar parametric waveforms, it is demonstrated that the proposed method consistently outperforms conventional numerical methods, including ODE integrators and piecewise-constant propagator approximations.

Introduction

Understanding the dynamics and control of quantum spin systems, indispensable in spectroscopy, sensing, quantum computing and information processing, is among the most challenging areas of research in current science. The diverse fields of applications include high-resolution magnetic resonance spectroscopy and imaging [START_REF] Khaneja | Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[END_REF], terahertz technologies [START_REF] Rasanen | Optimal control of quantum rings by terahertz laser pulses[END_REF][START_REF] Coudert | Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses[END_REF], and control of trapped ions [START_REF] Zhao | Coherent and optimal control of adiabatic motion of ions in a trap[END_REF], cold atoms [START_REF] Saywell | Optimal control of mirror pulses for cold-atom interferometry[END_REF] and NV-centers in diamond [START_REF] Chou | Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond[END_REF][START_REF] Tian | Optimal quantum optical control of spin in diamond[END_REF]. In many of these applications, sophisticated manipulations of quantum systems are achieved using pulses in the form of radio-frequency, microwave, or laser. A good understanding of the evolution of quantum spin systems during these events is crucial for enabling new methodologies.

A large class of these pulses are parametric, i.e. the waveform can be represented as a function dependent on certain time-dependent and time independent parameters. Numerical solutions of the spin dynamics during such pulses can be presented via solutions of ODEs e.g. using adaptive Runge-Kutta method [START_REF] Foroozandeh | Spin dynamics during chirped pulses: applications to homonuclear decoupling and broadband excitation[END_REF], or methods relying on the approximation of matrix exponentials and Fokker-Planck formalism [START_REF] Kuprov | Fokker-planck formalism in magnetic resonance simulations[END_REF][START_REF] Allami | Quantum mechanical mri simulations: Solving the matrix dimension problem[END_REF], but exact solutions of quantum systems under arbitrary parametric pulses are less explored. Although for frequency-swept pulses, an important class of parametric pulses, some approximated [START_REF] Dumez | Spatial encoding and spatial selection methods in highresolution NMR spectroscopy[END_REF] and exact [START_REF] Hioe | Solution of bloch equations involving amplitude and frequency modulations[END_REF][START_REF] Zhang | Full analytical solution of the bloch equation when using a hyperbolic-secant driving function[END_REF] analytical solutions for the time evolution of single spin-1 {2 particles have been presented in the literature. Other Email addresses: giscard@univ-littoral.fr (Pierre-Louis Giscard), mohammadali.foroozandeh@chem.ox.ac.uk (Mohammadali Foroozandeh) approaches that can offer similar solutions include integrable multi-state Landau-Zener Models [START_REF] Sinitsyn | The quest for solvable multistate landauzener models[END_REF][START_REF] Sinitsyn | Integrable time-dependent quantum hamiltonians[END_REF] In this article we present very general exact analytical solutions for spin dynamics during parametric waveforms of arbitrary functions of time using the path-sum approach [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF][START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF]. The approach relies on the algebraic and combinatorial properties of walks on graphs and here yields the complete description of the time-dependent propagator matrix in terms of the waveform and spin system parameters. The proposed approach is general and applicable to any user-defined pulses, arbitrarily constructed of parametric components e.g. chirps, hyperbolic secants, polynomials, Fourier series, etc. The method can be utilised to describe the time-evolution of quantum systems under the effect of parametric pulses. This paper is structured as follows: in section 2 the underlying theory for the equation of motion of quantum spin systems along with a general background on the path-sum approach is presented. In section 3 we present in detail the analytical solution for the propagation of monopartite systems driven by arbitrary time-dependent pulses in the path-sum formalism. In section 4 the method is extended to larger systems of spin-1 {2 particles and explicitly worked out in the case of bipartite and tripartite systems, demonstrating the applicability of the path-sum formalism to diverse Hamiltonian structures. Finally, in section 5 we present numerical results and assess the computational performances of Matlab codes implementing the path-sum formalism, using 6-parameter chirped pulses as exemplar waveforms, in the context of nuclear magnetic resonance (NMR) and the presence of scalar interactions.

Theory

2.1. Quantum equation of motion for a single spin- 1 2 Generators of rotation in SOp3q can be expressed as orthogonal skew-symmetric matrices

L x " ¨0 0 0 0 0 ´1 0 1 0 ', L y " ¨0 0 1 0 0 0 ´1 0 0 ', L z " ¨0 ´1 0 1 0 0 0 0 0 ', (1) 
and the Hamiltonian of the system under a pulse can be written as H ptq "

2β x ptqL x `2β y ptqL y `ΩL z , (2) 
where Ω is the spin resonance offset, as commonly used in nuclear magnetic resonance (NMR), and β x and β y are real and imaginary components of the pulse

βptq " β x ptq `iβ y ptq " 1 2 ω 1 ptq exp `iφptq ˘. (3) 
The state of the system, ρ can be expressed as

ρptq " g 1 ptqL x `g2 ptqL y `g3 ptqL z , (4) 
where gptq " rg 1 ptq, g 2 ptq, g 3 ptqs P R 3 is a time-dependent unit vector representing the position of the spin on a Bloch sphere. Considering 9 gptq " ´iH ptq gptq,

we can write

¨9 g 1 9 g 2 9 g 3 '" ¨0 ´Ω 2β y Ω 0 ´2β x ´2β y 2β x 0 '¨g 1 g 2 g 3 '. (6) 
Here time-dependencies of g 1 , g 2 , g 3 , β x , and β y are removed for simplicity. For a single spin-1 2 the basis set can also be written using shift operators L "

! L `, ? 2L z , L ´) , (7) 
where L `" L x `iL y and L ´" L x ´iL y . Using this basis set, the Hamiltonian under an arbitrary waveform can be written as

H ptq " βptqL ``βptqL ´`ΩL z , (8) 
where the bar ¯indicates complex conjugation. Equation (5) using this basis set can be written as

¨9 g 1 9 g 2 9 g 3 '" ´i ¨´Ω ? 2β 0 ? 2 β 0 ´?2β 0 ´?2 β Ω '¨g 1 g 2 g 3 '. (9) 
Switching between two representations of the Hamiltonian in Equations ( 6) and ( 9) can be achieved with a transformation matrix U as

H S Z " U ¨H C ¨U: , (10) 
where

U " 1 ? 2 
¨1 i 0 0 0 ? 2 1 ´i 0 ', (11) 
and H S Z and H C are the Hamiltonians in the shift and Cartesian basis respectively.

Path-sum approach

The system eq. ( 9) is solved exactly with the method of pathsum, which we here present only briefly. We refer the reader to [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF][START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF] for further details. Conceptually, the method relies on three mathematical pillars:

i) The evolution operator solution of the quantum equation of motion is the resolvent of the Hamiltonian H if the usual multiplication between entries of H is replaced with another product, called Volterra composition [START_REF] Volterra | Lec ¸ons sur la composition et les fonctions permutables, Collection de monographies sur la théorie des fonctions[END_REF].

ii) This resolvent is formally given by a sum over all walks on a graph G H whose adjacency matrix is the Hamiltonian operator and which thus encodes the discrete structure of the quantum state space.

iii) Sums of walks are given exactly by a continued fraction of finite depth and breadth involving a finite number of progressively simpler terms and stemming from an algebraic structure of sets of walks. Remarkably, each term of this continued fraction corresponds to a simple cycle or a simple path on the graph, i.e. to walks that do not visit any vertex more than once [START_REF] Giscard | Walk-sums, continued fractions and unique factorisation on digraphs[END_REF].

Combining these three observations, one can evaluate any time-ordered evolution operator exactly from a finite number of Volterra compositions and inverses between entries of the Hamiltonian as they appear successively along simple cycles and simple paths on the quantum state space. This conceptual framework has already been established in its full generality, so that when implementing path-sum concretely only writing the continued fraction needs to be done. This is because it changes according to the situation since the structure of the Hamiltonian dictates what the quantum state space graph G H looks like and thus which simple cycles/paths occur on it.

We begin by recasting eq. ( 9) in matrix form as d dt U " ´iH ptqU ptq with H the Hamiltonian matrix of eq. ( 9) and U the corresponding evolution operator, which is the time-ordered exponential of ´iH ,

U ptq " T exp " ´i ż t 0 H pt 1 q dt 1  , (12) 
As stated earlier, we can put this in resolvent form upon using the Volterra composition, a special case of the ‹-product [START_REF] Giscard | On the solutions of linear Volterra equations of the second kind with sum kernels[END_REF].
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Figure 1: Graph G H showing the structure of the quantum state space as imposed by the Hamiltonian H . Edge weights are indicated next to each edge while the vertices are labelled by integers 1, 2 and 3. The vertices in fact correspond to the canonical basis states of the quantum state space, 1 " |1, 0, 0y, 2 " |0, 1, 0y and 3 " |0, 0, 1y. Alternative bases are of-course possible, as path-sum is valid in all bases. The contribution of a walk w on G H to the overall quantum dynamics as described by U is given the ‹-products of the weights of the edges it traverses. This allows for an exact evaluation of U using a path-sum which represents the sum of all weighted walks on the above graph.

remark 1. Fundamentally, the ‹-product is defined differently and on a much wider class of distributions of two variables, which include piecewise-smooth functions but also the Dirac delta and all its distributional derivatives. From there, it is also defined on matrices of distributions [START_REF] Giscard | On the solutions of linear Volterra equations of the second kind with sum kernels[END_REF]. These technicalities are necessary to rigorously prove, among other things, that the Dirac delta distribution is the identity element with respect to the ‹-product and to perform ‹-inversions. Here we admit such results and proceed with the simplest definition of the ‹-product as Volterra did before the inception of distributions [START_REF] Volterra | Lec ¸ons sur la composition et les fonctions permutables, Collection de monographies sur la théorie des fonctions[END_REF].

To define the resolvent form of U ptq, let f pt 1 , tq and gpt 1 , tq be two smooth functions of two variables. We define f ‹ g as

`f ‹ g ˘pt 1 , tq " ż t 1 t f pt 1 , τqgpτ, tqdτ, (13) 
For functions of less than two time variables, the variable must be treated as the left one, e.g. if hpt 1 q depends only on one variable, then ph ‹ gqpt 1 , tq " hpt 1 q ş t 1 t gpτ, tqdτ, p f ‹ hqpt 1 , tq " ş t 1 t f pt 1 , τqhpτqdτ. One can then show that [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF] U ptq "

ż t 0 ´I‹ ´p´iqH ¯‹´1 pτ, 0q dτ,
where I ‹ :" 1 ‹ ˆI " δpt 1 ´tqI is the identity matrix times the Dirac delta distribution 1 ‹ " δpt 1 ´tq and p.q ‹´1 designates a matrix inverse where all ordinary multiplications are taken instead to be Volterra compositions. To alleviate the notation and because it is related to Green's functions, the above resolvent p1 ‹ I ´H q ‹´1 pt 1 , tq is denoted G pt 1 , tq. Then U ptq " ş t 0 G pτ, 0qdτ. Now path-sum guarantees not only that G pt 1 , tq is well defined, but also that any entry of G is given from ‹-products and ‹-inverses of entries ´iH . This is illustrated in details in Section 3.

Analytical solution of the quantum equation of motion

Solutions for general parametric waveforms

We consider the Hamiltonian of eq. ( 8), with the corresponding graph G H illustrated in Figure 1. The path-sum formula- ¯‹´1 .

Here all ´i factors originates from the ´i in ´iH . The ‹inverses in the above expression, e.g. in p1 ‹ ´p´iqΩq ‹´1 , stem from sums over all possible repetitions of a simple cycle c. Indeed, the observation 1 `c `c.c `c.c.c `¨¨¨" ř n c n " p1 ´cq ´1 is true at the formal level for cycles and walks [START_REF] Giscard | Walk-sums, continued fractions and unique factorisation on digraphs[END_REF], which implies its validity for actual weighted walks [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF].

We can now evaluate the above path-sum explicitly. First, since Ω depends on strictly less than two time variables we have [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF] `1‹ ´p´iqΩ ˘‹´1 pt 1 , tq " δpt 1 ´tq ´iΩe ´iΩpt 1 ´tq .

Second, since β depends on a single time, for any function f pt 1 , tq we have

pβ ‹ f qpt 1 , tq " βpt 1 q ż t 1 t f pτ, tqdτ.
With these observations, we obtain

G 22 pt 1 , tq " ˆ1‹ ´p´2qβpt 1 q ż t 1 t βpτqdτ ´p´2q βpt 1 q ż t 1 t βpτqdτ ´p´2q βpt 1 q ż t 1 t `eiΩpt 1 ´τq ´1˘β pτqdτ ´p´2qβpt 1 q ż t 1 t `e´iΩpt 1 ´τq ´1˘β pτqdτ ˙‹´1 " ˆ1‹ `2 B Bt 1 ˇˇż t 1 t e ´iΩτ βpτqdτ ˇˇ2 ˙‹´1 , " ˆ1‹ `2 B Bt 1 ˇˇB t 1 ,t pΩ{2πq ˇˇ2 ˙‹´1 . (14) 
In these expressions, B t 1 ,t pΩ{2πq :" ş t 1 t e ´iΩτ βpτqdτ is the Fourier transform with respect to τ of βpτq `Θpτ´t 1 q´Θpτ´tq ȇvaluated in Ω{2π, Θp.q being the Heaviside function with the convention that Θp0q " 1. remark 2. Appearance of Fourier transform in the path-sum solution in eq. ( 14) is not a feature of the path-sum method itself, but rather of the peculiar form of the Hamiltonian H , in particular that Ω is time-independent.

The end result is remarkably simple and holds for all pulse shapes β, provided they are smooth in the mathematical sense. Numerical evaluation of the exact path-sum solution eq. ( 14) is straightforward using a discretized version of the ‹-product. Analytically speaking, the path-sum solution is best evaluated from its Neumann expansion, a non-perturbative series representation that is super-exponentially (and thus unconditionally) convergent and lends itself to analytical calculations. In order to facilitate the notation, we introduce bpt 1 , tq :"

B Bt 1 ˇˇB t 1 ,t pΩ{2πq ˇˇ2, " 2 Re ˜e´iΩt 1 βpt 1 q ż t 1 t e iΩτ βpτqdτ ¸. (15) 
Then, since

U 22 ptq " 1 `ż t 0 G 22 pτ, 0qdτ, (16) 
the Neumann expansion of the path-sum solution is

U 22 ptq " 1 `8 ÿ n"1 p´2q n ż t 0 b ‹n pτ, 0qdτ, " 1 ´2 ˇˇB t,0 pΩ{2πq ˇˇ2 (17) `4 ż t 0 ˇˇB t,τ pΩ{2πq ˇˇ2 B Bτ ˇˇB τ,0 pΩ{2πq ˇˇ2 dτ ´¨¨¨,
here displaying only the first two orders. Higher order terms are analytically accessible and can reach any desired accuracy. To illustrate this, consider the m th Neumann order approximation

U pmq 22 ptq :" 1 `m ÿ n"1 p´2q n ż t 0 b ‹n pτ, 0qdτ. (18) 
In this notation U p8q 22 ptq is the exact solution, which we emphasize that it can be evaluated numerically directly without resorting to Neumann series. Indeed, Volterra compositions map to ordinary matrix products when time is discretized [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF] so that the ‹-inverse of eq. ( 14) becomes the ordinary inverse of a well-conditioned triangular matrix, directly yielding the numerical evaluation of U Using path-sum we can evaluate the other entries of G similarly.

G 11 ptq " ´1‹ ´Loop 1Ð1 hk kik kj iΩ `2 β ‹ `1‹ `Cycle 2Ð3Ð2 hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj 2β ‹ p1 ‹ `iΩ lo omo on Loop 3Ð3 q ‹´1 ‹ β ˘‹´1 ‹ β looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon Cycle 1Ð2Ð1 ¯‹´1 , " ´1‹ ´iΩ`2β‹ ´1‹ `2e ´iΩt 1 βpt 1 q Ě B t 1 ,t pΩ{2πq ¯‹´1 ‹ β¯‹ ´1,
and G 33 ptq " Ğ G 11 ptq. Off-diagonal terms are given by sums over simple paths on the graph of Figure 1. Here we have for example 

G
where U ptq is the solution of the differential equation

d dt U ptq " ´iH ptqU ptq, U p0q " 1. (20) 
In general, regardless of whether the Hamiltonian commutes with itself or not, the solution is eq. ( 12).

Solution for monopartite systems

The Hamiltonian of a monopartite quantum spin-1 {2 system with a resonance offset Ω can be written as

H ptq " ˆΩ 2 βptq βptq ´Ω 2 ˙. (21) 
Since the Hamiltonian is 2 ˆ2 with no zero entry, the corresponding graph G H is the complete graph on 2 vertices and the path-sum formulation of the corresponding evolution operator is [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF] 

G 11 pt 1 , tq " ´1‹ `Loop 1Ð1 hk kik kj iΩ{2 `Edge 1Ð2 hk kik kj β ‹ p1 ‹ ´Loop 2Ð2 hk kik kj iΩ{2 q ‹´1 ‹ Edge 2Ð1 hk kik kj β looooooooooooooooooooooomooooooooooooooooooooooon Cycle 1Ð2Ð1 ¯‹´1 , " ´1‹ `iΩ{2 `βpt 1 qe iΩt 1 {2 B t 1 ,

System of M interacting spin-1 2 s

In an M-spin system, the general form of spin operator for the i th spin can be expressed as (22) with a Pauli matrix in position i. The total Hamiltonian can be written as a sum of the Hamiltonian for spin resonance offset (H Ω ), pulse (H P ), and some scalar interaction, known as Jcoupling in NMR (H J ) 

I piq α " 1 b 1 b ¨¨¨b σ α b ¨¨¨1 b 1 α P tx, y, zu
H Ω " M ÿ i"1 Ω i I piq z , H P " f ptq M ÿ i"1 I piq x `gptq M ÿ i"1 I piq y , H J " M ÿ i, j jąi

Solution for bipartite systems

The Hamiltonian for a bipartite quantum spin- 

where

h 11 " 1 2 pπJ `Ω1 `Ω2 q h 22 " 1 2 p´πJ `Ω1 ´Ω2 q h 33 " 1 2 p´πJ ´Ω1 `Ω2 q h 44 " 1 2 pπJ ´Ω1 ´Ω2 q
For the sake of simplicity regarding the equations that give the evolution operator, and without loss of generality, let us change the energy gauge to

H 1 ptq " H ptq ´1 2 πJ I ,
with I the 4 ˆ4 identity matrix. Of course, this Hamiltonian leads to the very same dynamics as of the original H of eq. ( 23). Now we rely on path-sum's scale invariance to express the solution of this spins system. Mathematically speaking, this 'scale invariance' refers to path-sum's continued validity for all partitions of the Hamiltonian matrix into (possibly noncontiguous) blocks. In other terms, there is a path-sum formulation of the evolution operator U ptq in terms of any chosen partition of the Hamiltonian into blocks of any size, including non-square ones. Physically, this means that path-sum is able to formulate the dynamics of a quantum system in terms of the isolated dynamics of any chosen collection of its subsystems. We may also use partitions exhibiting mappings from one Hamiltonian to another, so as to demonstrate the similarity in the time evolutions they effect.

To illustrate the direct relation between monopartite and bipartite dynamics, we partition the Hamiltonian H 1 ptq as follows

H 1 ptq " ¨h1 11 βptqu 0 βptqu T H 1 II βptqu T 0 βptqu ´h1 11 ', (24) 
where we defined u :" p1, 1q and

H 1 II :" ˆh1 22 πJ πJ h 1 33 ˙,
is the 2 ˆ2 submatrix of H ptq formed by entries H 1 ptq i, j with i, j " 2, 3. In these expressions, h 1 ii " h ii ´p1{2qπJ. We chose this partition so has to exhibit an exact mapping from the bipartite system to an effective monopartite case with non-Abelian energy H II for the degrees of freedom spanned by states p0, 1, 0, 0q and p0, 0, 1, 0q. This mapping is best seen on the graph G H 1 , shown in Figure 2, which encodes this partition of H 1 and is structurally similar to that of one the spin case shown in Figure 1. The partition in itself plays no special role in the analytical solution however, and the problem could be solved using the ordinary entries of H 1 directly. Now let U ptq be the evolution operator of the bipartite system-i.e. the solution of [START_REF] Giscard | On the solutions of linear Volterra equations of the second kind with sum kernels[END_REF] with Hamiltonian H 1 -and let G " 9 U . Using the same partition for U as for H 1 , let U II be the 2 ˆ2 submatrix of U formed by the entries U ptq i, j with h' 11

β u β u T β u T β u -h' 11 H ' II 1 II 4 Figure 2: Graph G H 1
showing the structure of the quantum state space as imposed by the bipartite Hamiltonian H 1 when partitioned as per eq. ( 24).

Because the structure of G H 1 and of the monopartite Hamiltonian graph G H of Figure 1 differ only in the presence of a central loop on vertex 2, the pathsum formulation of the corresponding evolution operators will differ only in a single term representing this loop.

i, j " 2, 3. Then U II ptq " ş t 0 G II pτqdτ with G II the Green's function given by the path-sum expression

G II pt 1 q " ˆI‹ `iH 1 II `2P B Bt 1 ˇˇB t 1 ,t `pΩ 1 `Ω2 q{4π ˘ˇ2 ˙‹´1 ,
where I ‹ " 1 ‹ ˆI " δpt 1 ´tqI is the two by two identity matrix times 1 ‹ " δpt 1 ´tq and P " u T .u is the 2 ˆ2 matrix full of 1. As predicted above, G II is similar to [START_REF] Sinitsyn | The quest for solvable multistate landauzener models[END_REF] for G 22 in the monopartite case. Note that the additional iH 1 II ptq term would also have been present in the one spin case had there been a non-zero H 22 diagonal term in the Hamiltonian. The pathsum for G II involves a matrix ‹-inverse, meaning that G II enters a non-Abelian linear Volterra integral equation of the second type, with unconditionally convergent analytical representation given by the matrix-valued Neumann series of ‹-powers of its kernel.

Furthermore, one can use path-sum's scale invariance to get scalar-valued expressions for any entry of G II rather than manipulating matrices. For example, entry pG II q 1,1 " G 2,2 is given by the path-sum The remaining entries are succinctly obtained from path-sum in matrix form as 

pG II q 1,1 " ˆ1‹ `ih 1 22 `2bpt 1 , tq ´p2bpt 1 , tq `iπJq ‹ `1‹ `2bpt 1 , tq `ih 1 33 ˘‹´1 ‹ p2bpt 1 , tq `iπJq ˙‹´1 , where bpt 1 , tq " B Bt 1 ˇˇB t 1 ,t `pΩ 1 `Ω2 q{4π ˘ˇ2 . Vector G 1,II " pG 1,2 , G 1,3 q then follows as G 1,II " pG 1,2 , G 1,3 q, " p1 ‹ ´ih 1 11 q ‹´1 ‹ p´i βuq ‹ G II ,
ˆG1 G 1,4 G 4,1 G 4 ˙" ˜I‹ ´ˆ´ih 1 11 0 0 ih 1 11 βpt 1 q βpt 1 q βpt 1 q βpt 1 q ˙.

Solution for tripartite systems

The Hamiltonian for a tripartite quantum spin-1 {2 system with offsets Ω 1 , Ω 2 , and Ω 3 and coupling constants J 12 , J 13 , and J 23 can be expressed as 

H ptq " (25 
β 0 0 0 β 0 β β h 88 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, where h 11 " 1 2 pπ pJ 12 `J13 `J23 q `Ω1 `Ω2 `Ω3 q , h 22 " 1 2 pπJ 12 ´π pJ 13 `J23 q `Ω1 `Ω2 ´Ω3 q , h 33 " 1 2 p´π pJ 12 ´J13 `J23 q `Ω1 ´Ω2 `Ω3 q , h 44 " 1 2 p´π pJ 12 `J13 ´J23 q `Ω1 ´Ω2 ´Ω3 q , h 55 " 1 2 p´π pJ 12 `J13 ´J23 q ´Ω1 `Ω2 `Ω3 q , h 66 " 1 2 p´π pJ 12 ´J13 `J23 q ´Ω1 `Ω2 ´Ω3 q , h 77 " 1 2 pπJ 12 ´π pJ 13 `J23 q ´Ω1 ´Ω2 `Ω3 q , h 88 " 1 2 pπ pJ 12 `J13 `J23 q ´Ω1 ´Ω2 ´Ω3 q .

(26

)
This system presents no further difficulty than the monopartite and bipartite cases. We may exploit different partitions of the quantum state space to exhibit mappings either from the tripartite to the bipartite or monopartite cases, or to an altogether

h 11 h 88 β(t) u T β(t) u β(t) u T β(t) u β(t) M β(t) M 1 8
H II H III

II III

Figure 3: Graph G H showing the structure of the quantum state space as imposed by the tripartite Hamiltonian H when partitioned as per Eq. ( 27). Different partitions of the Hamiltonian of eq. ( 25) would lead to different graphs, all of which generate valid path-sum expressions of the very same solution.

different situation such as a mathematically advantageous structure, all thanks to path-sum scale invariance. Here we choose to map the Hamiltonian to a path-graph, whose path-sums yield continued fractions with a single branch.

Let |iy designate the canonical basis states, e.g. |1y " p1, 0, 0, 0, 0, 0, 0, 0q T .

Let V I " spanp|1yq, V II " spanp|2y, |3y, |5yq, V III " spanp|4y, |6y, |7yq and V IV " spanp|8yq. At the scale formed by these vector spaces, the Hamiltonian takes the form

H ptq " ¨h11 βptqu 0 0 βptqu T H II βptqM 0 0 βptqM H III βptqu T 0 0 βptqu h 88 ‹ ‹ ' , (27) 
where u " p1, 1, 1q and 

M " ¨1 1 0 1 0 1 0 1 1 ',

'.

The corresponding graph is a path-graph on 4 vertices, illustrated on Figure 3.

To succinctly present the path-sum expression for the evolution operator let G " 9 U , define I ‹ :" I ˆ1‹ the 3-by-3 identity matrix times the Dirac Delta distribution 1 ‹ " δpt 1 ´tq and let

Γ 8 " 1 1 ‹ ´p´iqh 88
" δpt 1 ´tq ´ih 88 e ´ih 88 pt 1 ´tq ,

Γ III " 1 I ‹ ´p´iqH III ´p´iq 2 βu T ‹ Γ 8 ‹ βu , Γ II " 1 I ‹ ´p´iqH II ´p´iq 2 βM ‹ Γ III ‹ βM , γ 1 " 1 1 ‹ ´p´iqh 11 " δpt 1 ´tq ´ih 11 e ´ih 11 pt 1 ´tq , γ II " 1 I ‹ ´p´iqH II ´p´iq 2 βu T ‹ γ 1 ‹ βu , γ III " 1 I ‹ ´p´iqH III ´p´iq 2 βM ‹ γ II ‹ βM ,
here all inverses are to be understood as ‹-inverses, i.e. inverses with respect to the ‹-product, the above presentation being chosen so as to reveal clearly the continued fraction nature the pathsum expressions. Now we have access to all entries and block of entries of the Green's function G ,

G " ¨G1,1 G 1,II G 1,III G 1,8 G II,1 G II,II G II,III G II,8 G III,1 G III,II G III,III G III,8 G 1,8 G II,8 G III,8 G 8,8 ‹ ‹ ' ,
with the path-sum expressions

G 1,1 " `1‹ ´p´iqh 11 ´p´iq 2 βu ‹ Γ II ‹ βu T ˘‹´1 , G II,II " ´I‹ ´p´iqH II ´p´iq 2 βu T ‹ γ 1 ‹ βu ´p´iq 2 βM ‹ Γ III ‹ βM ¯‹´1 , G III,III " ´I‹ ´p´iqH III ´p´iq 2 βu T ‹ Γ 8 ‹ βu ´p´iq 2 βM ‹ γ II ‹ βM ¯‹´1 , G 8,8 " `1‹ ´p´iqh 88 ´p´iq 2 βu ‹ γ III ‹ βu T ˘‹´1 ,
while the off-diagonal blocs are

G II,1 " Γ II ‹ βu T ‹ G 1,1 , G III,8 " γ III ‹ βu T ‹ G 8,8 , G III,1 " Γ III ‹ βM ‹ G II,1 , G II,8 " γ II ‹ βM ‹ G III,8 , G 8,1 " Γ 8 ‹ βu ‹ G III,1 , G 1,8 " γ 1 ‹ βu ‹ G II,8 , and 
G 1,II " γ 1 ‹ βu ‹ G II,II , G 8,III " Γ 8 ‹ βu ‹ G III,III , G III,II " Γ III ‹ βM ‹ G II,II , G II,III " γ II ‹ βM ‹ G III,III , G 8,II " Γ 8 ‹ βu ‹ G III,II , G 1,III " γ 1 ‹ βu ‹ G II,III .
This provides the exact, fully analytical formulation of the evolution of the tripartite systems under a time-dependent driving.

These expressions can all be expanded analytically into closed form approximations via truncated unconditionally convergent Neumann series. They can also be directly evaluated numerically when time is discretized using strategies presented in the following Section.

Numerical computations

A Matlab implementation of the path-sum approach, presented in this work, has been made freely available [22]. Here we present an assessment of its computational performances compared with the standard piecewise-constant propagator approximation, based on the identity

U ptq " lim ∆tÑ0 N"t{∆t ź k"0 e ´iH pk∆tq∆t , (28) 
and adaptive Runge-Kutta method, using ode45 in Matlab.

Exemplar waveform: chirped pulse

In this article we employ a general expression of βptq for a chirped pulse [START_REF] Foroozandeh | Spin dynamics during chirped pulses: applications to homonuclear decoupling and broadband excitation[END_REF], which can be expressed using 6 parameters: amplitude (ω 1 ), bandwidth (∆F), duration (τ p ), overall phase (φ 0 ), time offset (δ t ), and frequency offset (δ f ). The time envelope (amplitude profile) of a chirped pulse can be expressed using a super-Gaussian distribution

ω 1 ptq " ω 1,max exp " ´2n`2 ˆt ´δt τ p ˙n , ( 29 
)
where n is a smoothing factor. The frequency sweep function can be written as

ωptq " 2π∆Fpt ´δt q τ p `2πδ f , (30) 
which correspond to the phase

φptq " φ 0 `π∆Fpt ´δt q 2 τ p `2πδ f pt ´δt q. ( 31 
)
The maximum amplitude of a chirped pulse (ω 1,max ) can be calculated using three parameters as

ω 1,max " d 2π∆FQ 0 τ p , (32) 
where Q 0 is the adiabaticity factor at time τ p{2, where t P r0, τ p s and δ t " τ p{2. The relationship between Q 0 and pulse flip angle (α) can be written as [START_REF] Jeschke | Coherence transfer by passage pulses in electron paramagnetic resonance spectroscopy[END_REF] Q

0 " 2 π ln ˆ2 cos pαq `1 ˙. (33) 
As the effective flip angle of a chirped pulse approaches 180 asymptotically as the ω 1 increases, for most practical purposes a value of Q 0 is chosen to satisfy adiabatic condition, while avoiding excessive pulse amplitudes.

Figure 4 shows comparisons between numerical and analytical results for single spin-1 {2 under a chirped pulse. Figure 5 shows the performance of several analytical approximations as in eq. ( 18), for a chirped pulse with realistic parameters, versus the true solution. Figure 6 shows the time-evolution of a spin-1 2 experiencing an adiabatic inversion on a Bloch sphere, obtained from the path-sum solution described in Section 3.1.

Numerical implementation of path-sums

Let I " r0, T s be the time interval over which the numerical solution is sought. Let tt i P Iu 0ďiďN´1 be the discrete times at which the solution is to be numerically evaluated. For simplicity, we take these time points to be equally spaced by ∆t. For a smooth function f pt 1 , tq over I 2 , we define the triangular matrix F with entries

F i, j :" # f pt i , t j q, for i ě j 0, otherwise.
With discretized time, the Volterra composition ‹ of eq. ( 13) turns into an ordinary matrix product and as predicted by Equations ( 14) and ( 16) (dashed red line), for a monopartite system with Ω " 2π 7kHz under a chirped pulse, described in Section 5.1, with ω 1 " 2π ˆ1545 rad/s, ∆F " 30kHz, τ p " 10ms, φ 0 " 0, δ t " 5ms, δ f " 0, and n " 30. Two curves show perfect overlap and hence are indistinguishable. Inset shows the normalised temporal amplitude profile 2|βptq|{ω 1 .

p f ‹ gqpt i , t j q " ż t i t j f pt i , τqgpτ, t j qdτ § đ ÿ t j ďt k ďt i f pt i , t k qgpt k , t j q∆t " pF .G q i, j ∆t, (34) 
U 22 (1) (t) 
U 22 (30) (t) where G is the triangular matrix built from g. Most importantly, this observation extends to ‹-resolvents

`1‹ ´f ˘‹´1 pt i , t j q " lim ∆tÑ0 1 ∆t `I ´∆t F ˘´1 i, j .
Therefore, in practical numerical computations with ∆t ! 1 the ordinary inverse of the triangular matrix I ´∆t F approximates the ‹-resolvent of f . Furthermore, matrix I ´∆t F is necessarily well conditioned since its diagonal entries 1 ∆t F i,i can be made arbitrarily close to 1 by choosing ∆t small enough. Consequently, numerical evaluation of any path-sum requires only multiplying and inverting well-conditioned triangular matrices [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF][START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF] We improve upon this strategy by noting that eq. ( 34) corresponds to using the rectangular rule of integration. Using the trapezoidal or averaged Simpson rule [START_REF] Kalambet | Comparison of integration rules in the case of very narrow chromatographic peaks[END_REF] instead leads to much more accurate results. Standard numerical analysis indicates that a code using trapezoidal quadrature on N time points and time step ∆t " T {N should have an accuracy scaling as Op∆t ´2q and a computational cost of OpN 2 q. Similarly, a code relying on the average Simpson rule of integration should have an accuracy scaling as Op∆t 3 q for a computational cost of OpN 2 q. In contrast, the piecewise-constant propagator approximation of eq. ( 28) is expected to have accuracy Op∆tq and linear computational cost OpNq.

Seeking more flexibility in the calculations, the path-sum codes allow for subdivisions of the time interval I into N I smaller intervals. Over each of the subintervals, the evolution operator is evaluated from its path-sum formulation on N p discrete time points. The evolution operator at the end of the interval is passed as a seed to the next interval, over which it is once again evaluated from its path-sum. This offers an hybrid approach between piecewise-constant propagator approximation (PCPA) (N p " 1, N I " 1) and pure path-sum pN p " 1, N I " 1). Overall, this hybrid approach evaluates the solution at a total of N " N p N I time points. Tuning N p and N I independently allows the user to trade accuracy for speed and vice-versa. For example, keeping N p moderate while choosing N I " 1 allows for faster evaluations than N p " 1, N I " 1 and is thus better suited should the user require the solution at a very large number of time points. At the opposite, more accurate results will be obtained by making N p large while N I can be as low as 1. In practise, we found that in most-though not all-situations a pure path-sum approach (N p " 1, N I " 1) offers the best trade-off of speed versus accuracy.

The codes designed to produce the entire discretized timeevolution of the density matrix taking the spin system and the waveform parameters as inputs. Figure 7 shows the output density matrix for a bipartite (4 ˆ4) system undergoing an adiabatic inversion using a chirped pulse.

Accuracy evaluation

Let ρ M ptq be the density matrix as evaluated by a method M (e.g. path-sum or PCPA) and let ρ r be the reference density matrix as evaluated within machine precision (relative and absolute tolerances set to 10 ´13 for each entry) by the standard solver ode45. We evaluate the accuracy of ρ M ptq by evaluating the deviation from 1 of its normalised Frobenius scalar product with ρ r Example of an output produced by the path-sum code using Simpson quadrature in the case of a bipartite system with relative error E M " 3.28 10 ´9 using eq. ( 35). Each element of the figure represents the real part of the density matrix elements ρ i, j ptq as a function of time t (in µs). Spin system parameters: Ω 1 " 2π ˆ700 rad/s, Ω 2 " 2π ˆ600 rad/s, J " 150 Hz; waveform parameters: τ p " 1ms, ∆F " 50kHz, φ 0 " 0, ω 1 " 2π ˆ6.31 krad/s, δ t " 0.5ms, δ f " 0 and n " 20.

E M :" 1 T ż T 0 1 ´Tr `ρ: M pτqρ r pτq ȃ}ρ M pτq} F }ρ r pτq} F dτ, (35) 
which is the relative error on ρ M with respect to the reference solution. Here }A} F :" TrpA : Aq designates the Frobenius norm of matrix A. As constructed above, the relative error E M evaluates to 0 if ρ M ptq " ρptq at all times.

Performances

Throughout this section we consider a βptq for a chirped pulse as described in Section 5.1. All computational tests take place on a Dell Laptop running Ubuntu 18.04 equipped with Intel Core i7-8665U CPU @ 1.90GHz 8 running Matlab R2019a. In Tables 1 to 3 we show the time and number of points N needed for each method to reach a target relative error E M of 10 ´3, 10 ´6 and 10 ´8. In the cases of Path-Sum (PS) codes, we have always set N p " N and N I " 1 to facilitate comparisons.

These tests show that for relative errors E M on the order of 10 ´3 to 10 ´7-largely sufficient to simulate actual experimentspath-sum codes outperform the piecewise-constant propagator approximation (see in particular Figure 8) and even ode45. The latter observation is surprising given that: i) hear we are dealing with small systems for which ode45 is highly optimized; ii) ode45 is allowed to choose the number and position of its computation points while path-sum is constrained by our implementation to work on equally spaced points-a known disadvantage; iii) ode45's computation time degrades rapidly when asked to produce the solution at a large number of evaluation points.

Further improvements to the current path-sum implementation can be made by using optimized, instead of linearly spaced, time points or working with an orthogonal polynomial basis. Additionally, C or Python implementations can offer significant speed-up compared to the present Matlab one, as evidenced by path-sum based codes for computing Heun functions [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF]26] 

Numerical outlook for large systems

As the size of the Hamiltonian increases, we expect the difference of computation times to grow in favor of codes evaluating the path-sum solutions, in particular, for codes exploiting path-sum's scale invariance property [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF] or using Lanczos path-sum [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF][START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF][START_REF] Giscard | Lanczos-Like algorithm for the time-ordered exponential: The ˚-inverse problem[END_REF]. Lanczos path-sum is a type of preconditioning procedure for path-sum that finds a tridiagonal time-dependent matrix T ptq whose line 1 column 1 entry of the time-ordered exponential is the same as v T .U ptq.w, with any pair of vectors, v and w, i.e. T is determined such that T exp ˆż t 0 T pτqdτ ˙1,1 " v T .U ptq.w.

While the above equality is exactly satisfied for a tridiagonal matrix T of the same size as U , an excellent approximation of v T .U ptq.w may be achieved using a truncation of T that is much smaller than U . This procedure, standard in timeindependent Lanczos methods, partially alleviates the problem posed by the exponential expansion of the quantum space with the number of spins the Hamiltonian's sparsity and can effectively reduce the size of the matrices involved while maintaining numerical accuracy by truncating T ptq [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF]. Once a suitable truncation of T is determined, path-sum is exploited to compute its time ordered exponential. Because T and its truncations are all tridiagonal the path-sums are finite scalar-valued ‹-continued fractions with a single branch similar in structure to those presented in this work.

Conclusion

In this work we used the path-sum formalism and showed the wide applicability of this approach to solve, both analytically and numerically, the spin dynamics of quantum spin systems driven by time dependent forces. Analytically speaking, the method offers closed form expressions in terms of ‹-resolvents, which may nonetheless themselves be transcendent mathemati-cal functions. However, these ‹-resolvents are always available from their analytical unconditionally converging Neumann series expansions or numerically, to any desired accuracy. Using the time-discretization of Volterra compositions, numerical implementations of path-sums require only multiplying and inverting well conditioned triangular matrices. Via a diverse set of examples, we demonstrated that the resulting numerical path-sum integrator consistently outperforms piecewiseconstant propagator approximation and ODE integration methods, which furthermore do not provide any analytical insights in contrast with the path-sum approach.

The proposed method has the potential to find applications in a variety of areas where having access to exact solutions of the time evolution of quantum spin systems is beneficial, including geometric [START_REF] Khaneja | Sub-riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer[END_REF][START_REF] Khaneja | Subriemannian geodesics and optimal control of spin systems[END_REF][START_REF] Jurdjevic | Optimal control on lie groups and integrable hamiltonian systems[END_REF][START_REF] Bonnard | A review of geometric optimal control for quantum systems in nuclear magnetic resonance[END_REF][START_REF] Bonnard | Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance[END_REF] and adiabatic optimal control [START_REF] Kato | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Brif | Exploring adiabatic quantum trajectories via optimal control[END_REF][START_REF] Meister | Optimal control theory with arbitrary superpositions of waveforms[END_REF][START_REF] Augier | Adiabatic ensemble control of a continuum of quantum systems[END_REF] methods, in addition to optimal control of quantum spin systems [START_REF] Meister | Optimal control theory with arbitrary superpositions of waveforms[END_REF].
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  22 ptq. Nonetheless, the Neumann approximations U pmq 22 ptq are useful in that they provide analytical closed-form expressions for any desired accuracy.
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Figure 4 :

 4 Figure 4: Time evolution of U 22 ptq as obtained numerically (solid black line) and as predicted by Equations (14) and (16) (dashed red line), for a monopartite system with Ω " 2π 7kHz under a chirped pulse, described in Section 5.1, with ω 1 " 2π ˆ1545 rad/s, ∆F " 30kHz, τ p " 10ms, φ 0 " 0, δ t " 5ms, δ f " 0, and n " 30. Two curves show perfect overlap and hence are indistinguishable. Inset shows the normalised temporal amplitude profile 2|βptq|{ω 1 .

Figure 5 :

 5 Figure 5: Exact time evolution of U 22 ptq (solid black line, corresponding to U p8q 22 ptq) and approximated evolutions, as in eq. (18), predicted by the analytical closed-forms Neumann approximations: U p1q 22 ptq (dotted red line), U p30q 22 ptq (dashed blue line). Inset shows the normalised temporal amplitude profile 2|βptq|{ω 1 . Spin and pulse parameters are identical to those given in the caption of Figure 4.

Figure 6 :

 6 Figure 6: Time evolution |ψptqy " U : .U ptq.U.ψ 0 on the Bloch sphere as dictated by the path-sum solution described Section 3.1. Spin and pulse parameters are identical to those given in the caption of Figure 4.

Figure 7 :

 7 Figure7: Example of an output produced by the path-sum code using Simpson quadrature in the case of a bipartite system with relative error E M " 3.28 10 ´9 using eq. (35). Each element of the figure represents the real part of the density matrix elements ρ i, j ptq as a function of time t (in µs). Spin system parameters: Ω 1 " 2π ˆ700 rad/s, Ω 2 " 2π ˆ600 rad/s, J " 150 Hz; waveform parameters: τ p " 1ms, ∆F " 50kHz, φ 0 " 0, ω 1 " 2π ˆ6.31 krad/s, δ t " 0.5ms, δ f " 0 and n " 20.
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 8 Figure 8: Relative error E M versus computation time for PCPA (red disks), path-sum trapezoidal ('PS-T', blue squares) and path-sum Simpson ('PS-S', black diamonds) in the case of the bipartite system with the parameters of Figure 7.
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Table 1 :

 1 . Comparisons of computational performances for a monopartite system with Ω " 2π ˆ1 krad/s in SU(2) representation driven by a chirped pulse with parameters: τ p " 1ms, ∆F " 100 kHz, φ 0 " 0, ω 1 " 2π ˆ8.92 krad/s, δ t " 0.5ms, δ f " 0, n " 30 over the time interval up to T " 1ms.

			Method M	E M	N	Time (s)
			ode45	10 ´3	´0.092
			PCPA	10 ´3	500	0.087
		PS Trapezoidal 10 ´3	140	0.01
			PS Simpson	10 ´3	121	0.007
			ode45	10 ´6	´0.113
			PCPA	10 ´6	17000	1.596
		PS Trapezoidal 10 ´6	2000	0.115
			PS Simpson	10 ´6	300	0.012
			ode45	10 ´8	´0.121
			PCPA	10 ´8 450000	42.86
		PS Trapezoidal 10 ´8	15000	2.69
			PS Simpson	10 ´8	7000	2.49
		0.001			
				PCPA	
	Relative error	10 -5	PS-T	
		10 -7	PS-S		
		10 -9			
			0.05 0.10		0.50	1	5	10
				Computation time (s)

  . The ‹-Lanczos approach heavily exploits

	Method M	E M	N	Time (s)
	ode45	10 ´3	´0.092
	PCPA	10 ´3	510	0.011
	PS Trapezoidal 10 ´3	127	0.022
	PS Simpson	10 ´3	120	0.017
	ode45	10 ´6	´0.095
	PCPA	10 ´6	16000	0.040
	PS Trapezoidal 10 ´6	700	0.251
	PS Simpson	10 ´6	350	0.035
	ode45	10 ´8	´0.102
	PCPA	10 ´8 160000	0.255
	PS Trapezoidal 10 ´8	2000	4.96
	PS Simpson	10 ´8	3000	6.18

Table 2 :

 2 Comparisons of computational performances for a monopartite system in SO(3) representation driven by a chirped pulse with parameters given in the caption of Table1. Here path-sum codes solve the whole 3 ˆ3 system of Bloch equations irrespective of the initial state, ψp0q. In contrast, the PCPA-based algorithm evolves ψptq from one given ψp0q, an easier task.

	Method M	E M	N	Time (s)
	ode45	10 ´3	´0.172
	PCPA	10 ´3	330	0.075
	PS Trapezoidal 10 ´3	85	0.030
	PS Simpson	10 ´3	77	0.026
	ode45	10 ´6	´0.221
	PCPA	10 ´6	10500	1.19
	PS Trapezoidal 10 ´6	500	0.206
	PS Simpson	10 ´6	200	0.046
	ode45	10 ´8	´0.269
	PCPA	10 ´8 110000	12.47
	PS Trapezoidal 10 ´8	2000	8.89
	PS Simpson	10 ´8	1100	1.69

Table 3 :

 3 Comparisons of computational performances in the bipartite cases with parameters given in the caption Figure7.
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