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Abstract

This paper addresses modeling, identification, and observer design of the Hall-

Héroult process. This process is the main core of aluminum manufacturing.

More specifically, by building upon a blend of physical-chemical constitutive

relations and system identification tools, this paper first provides a model de-

scribing the interplay of Anode-Cathode Distance (ACD), alumina concentra-

tion, and pot pseudo-resistance. The proposed model is then used to tune a

linear Kalman filter generating online estimates of the plant state variables.

The proposed approach is validated via data taken from a real industrial plant.

Keywords: physical modeling, parameter identification, observer design,

Kalman Filter, industrial application

1. Introduction

Aluminum is produced in large scale via the Hall-Heroult electrolysis process

since the 19th century [1]. This process is carried out by dipping carbon anodes

into a cryolite bath solution that contains dissolved alumina (Al2O3). A high

intensity electric current is applied to the system and the chemical process

produces liquid aluminum cumulating at the bottom of the cell, and releases
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carbon dioxide. The process is summarized by the following chemical reaction:

Al2O3(diss) +
3

2
C(anode) → 2Al(l) +

3

2
CO2(g) (1)

A schematic representation of a simple pot cell is shown in Figure 1. To

enhance production, industrial plants have a large number of anodes connected

in parallel by a common bar for each electrolysis cell. The height of this bar can

be adjusted to change the Anode-Cathode Distance (ACD). This distance is not5

constant during the operation due to the chemical reaction. Indeed, the carbon

anodes are consumed and they are replaced after some time, while the liquid

aluminum layer increases because of the production. Furthermore, perturba-

tions of the current and bath composition can affect the ACD. However, the

hazardous conditions inside the pot make it impossible to develop a sensor for10

continuous measurement of the system state. The ACD value is critical since

a large distance decreases the pot cell efficiency and a small value can cause a

short-circuit between the produced aluminum and the anode [2, 3]. A recent

study shows that an effective ACD regulation can improve cell energy consump-

tion [4] and consequently increase the efficiency as shown in [5]. Unfortunately,15

the mechanisms behind this process are complex and only a few papers have

modeled this dynamical behavior in detail [6, 7].

Figure 1: Pot Schematic View
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The dissolved alumina concentration (wAl2O3) is also an important quan-

tity that is not continuously measured. Usually, alumina is injected in powder

state by individual feeders distributed along the cell according to a predefined20

sequence. Low values of alumina concentration can cause the so-called anode

effect, a deleterious phenomenon leading to the production of greenhouse gases

[8]. However, a large alumina powder injection does not induce an instantaneous

change in the concentration and it can possibly produce sludge phenomena. This

is an undesired condition since the accumulation of undissolved alumina in the25

bath can lead to cell damages [9]. Commonly, just a few measurements of the

alumina concentration per week are manually taken, which makes it difficult to

obtain an experimental model.

In actual plants, only the line current applied to the system (I), the pot

cell voltage (V ), the busbar motion (BM), and the frequency of the alumina30

feeding (F ) are continuously collected by sensors. For the system regulation, an

indirect measurement called “pseudo-resistance” (R) is commonly used to adjust

ACD and wAl2O3. Based on the pseudo-resistance value, the alumina feeding

frequency is modified, alternating between two pre-determined periods to have

faster or slower feeding [7]. Moreover, the pseudo-resistance is adjusted via the35

ACD regulation to ensure system stability and obtain a good current efficiency

[10]. From this complex relation, it is not easy to obtain information about the

instantaneous values of ACD and wAl2O3. Therefore, it is important to model

this process to be able to generate online estimations for those quantities.

Some researchers have been developing nonlinear estimators to overcome40

this information limitation and obtain the desired process states [11, 6, 12].

However, those works are mostly based on the Extended Kalman Filter [13],

i.e. on approximate model linearization on the one hand (facing all related

drawbacks), and do not rely much on the underlying physics of the process on

the other hand.45

In this context, and on the basis of a plant in actual industrial operation, the

present paper proposes a modeling methodology for Hall-Héroult process, which

enables real time estimation of ACD and wAl2O3, as an extension of our pre-
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liminary works of [14, 15]. Despite its simplicity, our model captures the main

features of regular operations conditions by combining physical-chemical aspects50

with experimental models. Furthermore, in spite of its nonlinearity, we show

how tools from linear systems theory can be used by separating the estimation

problem in two steps: identification in a first one, with least square optimiza-

tion, and state observer design in a second one, via an appropriate rewriting and

an exact linear Kalman Filter approach (referring to formal results of [16] for55

instance). Finally, the proposed method is validated on industrial data, taken in

actual operational conditions. This paper extends our previous work in multiple

directions [14, 15]:

First, the ACD physical model is here explained in details by a chemical balance

analysis.60

Additionally, a simplification in the alumina concentration is done by avoiding

any time delay. This is reasonable since the available alumina measurements

have been taken at intervals of several hours.

Moreover, the alumina dissolving dynamics has a time response of several min-

utes. Thus, a delay of one minute, or even slightly more, is not expected to65

relevantly affect the value of the alumina at the measurement instants and then

a relatively accurate alumina model can be identified even by neglecting the

delay.

Furthermore, the pot pseudo-resistance is represented by a specific polynomial

function with new identification procedure.70

Finally, validation tests are carried out with new sets of data to ensure ro-

bustness, collected from industrial APXe pot cell of Rio Tinto Laboratoire des

Recherches de Fabrications (LRF) located in Saint Jean de Maurienne, France,

in regular operation. The data used in this paper was collected during daily

industrial operations. Therefore, all the parameters identification and state es-75

timation procedures are performed with real signals that are generated aiming

at operation safety and production goals. Notice that for confidentiality rea-

sons, the data details in the y-axis of all plots and the values of the estimated

coefficients are not shown.
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The paper is organized as follows: Section 2 presents the proposed physical-80

based modeling equations, and Section 3 discusses the related identification

approach. Section 4 shows the use of this model for state estimation. The

conclusions are presented in Section 5.

2. Modeling

The complex electrochemical process under consideration is modeled in discrete-85

time since the goal is a real-time application of Linear Kalman Filter tools. It

is aimed to capture the average dynamics of the pot cell. Hence, the respective

states represent global indicators of the plant. This means that local conditions

such as the current distribution and anode change effect are not taken into ac-

count explicitly. In this context, the models of the unmeasured quantities ACD90

and wAl2O3 are related to the available inputs, i.e. beam motion and frequency

of feeders, as well as the measured disturbance of the electric line current. Then,

the system output, i.e. the pseudo-resistance, is related to the modeled states.

The model is obtained using a hybrid approach that combines physical-chemical

aspects and information extracted from data. Moreover, the sampling time of95

1 minute is selected because the time constant for the dissolution of alumina is

in this order of magnitude and to avoid the noise influence [17].

2.1. Anode-Cathode Distance

From the problem description, it is possible to define the derivative of the

ACD ( d
dtACD) as a result of the height variations of the aluminum ( d

dtAlheight),

the carbon ( d
dtCheight) layer, and the anodes busbar beam position ( d

dtBM):

d

dt
ACD =

d

dt
Alheight −

d

dt
Cheight +

d

dt
BM (2)

Each layer height can be written as a function of the mass production using

the corresponding densities. Hence, the aluminum and carbon height variations

become:
d

dt
Alheight =

1

ρAlS

[
d

dt
mAl

]
(3)
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d

dt
Cheight =

1

ρCS

[
d

dt
mC

]
(4)

where ρAl is the liquid aluminum density, mAl is the aluminum produced mass,

ρC is the carbon density, mC is the carbon produced mass, and S is the average100

reaction surface area.

The produced aluminum mass rate ( d
dtmAl) is given by Faraday’s law of

electrolysis [18]:
d

dt
mAl =

CeAlm
3F

I (5)

where Ce is the current efficiency, Alm is the aluminum molar mass, I is the line

current, F is the Faraday’s constant, and 3 corresponds to the valency number

of aluminum ions obtained via the following reaction:

4Al3+ + 6O2− + 3C(anode) → 4Al(l) + 3CO2(g) (6)

From the chemical balance in (1), it is possible to relate the aluminum mass

production with the carbon mass consumption. This leads to the following

expression for the carbon mass consumption rate d
dtmC :

d

dt
mC =

Cm

4F
I (7)

where Cm is the carbon molar mass and 4 is the stoichiometric coefficient.

Hence, equation (2) can be rewritten using the above expressions as:

d

dt
ACD =

1

SF

(
CeAlm
3ρAl

− Cm

4ρC

)
I +

d

dt
BM (8)

The beam position variation is considered as one of the system inputs (U1):

U1 :=
d

dt
BM (9)

Hence, by defining β as:

β :=
1

SF

(
CeAlm
3ρAl

− Cm

4ρC

)
(10)

and using equation (10) in (8), the ACD dynamics result as:

d

dt
ACD = βI + U1 (11)
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In discrete-time, equation (11) becomes:

ACD[n+ 1] = ACD[n] + βi[n] + u1[n] (12)

ACD[n] stands for ACD(nTs) for a sampling time Ts, i and u1 are discretized

integrals of I and U1 respectively over Ts with Ns samples, as:

u1[n] =

Ns∑
k=1

U1

((
k

Ns
+ n

)
Ts

)
(13)

i[n] =

Ns∑
k=1

I

((
k

Ns
+ n

)
Ts

)
(14)

Remark 1. As it is not possible to measure the ACD during the operation

of the plant, β cannot be obtained experimentally. Hence, this parameter is

calculated using theoretical values for a regular pot operation.105

2.2. Alumina Concentration

The variation of the alumina concentration wAl2O3 can be modeled as the

difference between the quantity injected by the feeders (wAl2O3in) and the one

consumed by the chemical reaction (wAl2O3cons):

d

dt
wAl2O3 = wAl2O3in − wAl2O3cons (15)

The quantity injected by the feeders at time t can be represented by:

wAl2O3in =
Ngmin

M
F (16)

where Ng is the number of feeders in the pot, min is the amount of mass injected

by feeders, M is the total bath mass, and F is the frequency of feeders. As the

sampling time for this process is typically large, we assume that the alumina

dissolving dynamics can be neglected.110

The frequency of the feeders is considered as a second system input:

U2 := F (17)
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Then, equation (16) becomes:

wAl2O3in =
Ngmin

M
U2 (18)

The Al2O3 consumption is given by the Faraday’s law divided by the bath

mass:

wAl2O3cons =
Al2O3mCe

6FM
I (19)

where Al2O3m is the alumina molar mass and 6 is the number of electrons

required for the electrolysis to perform. Replacing equations (18) and (19) into

(15):
d

dt
wAl2O3 =

Ngmin

M
U2 −

Al2O3mCe

6FM
I (20)

and defining:

α1 =
Ngmin

M , α2 = Al2O3mCe

6FM
(21)

equation (20) can be written as:

d

dt
wAl2O3 = α1U2 − α2I (22)

A discrete-time model for wAl2O3 can then be obtained using a similar

procedure for ACD:

wAl2O3[n+ 1] = wAl2O3[n] + α1u2[n]− α2i[n] (23)

with same notations as before, and:

u2[n] =

Ns∑
k=1

U2

((
k

Ns
+ n

)
Ts

)
(24)

2.3. Pseudo-Resistance

Now that ACD and wAl2O3 models are available, it is necessary to relate

them with the output signal, pseudo-resistance R. From the physical modeling

described in [19], it is possible to plot a curve that relates ACD, wAl2O3 and

R as shown in Figure 2.115

However, this relation is complex and takes into account other quantities that

cannot be continuously measured. One possible solution to directly relate ACD
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Figure 2: Typical pot resistance curve as a function of alumina concentration and ACD

and wAl2O3 is to approximate the curve with a polynomial function around the

desired operational range. In particular, by denoting the ACD as z1, wAl2O3

as z2 and considering an alumina concentration range between 2% and 4%, the

curve can be approximated as follows:

R = c(z2)2 + (d+ ez1)z2 + (f + gz1) (25)

where c, d, e, f , and g are constant parameters to be determined. By differ-

entiating equation (25), parameter f disappears and it is possible to obtain a

dynamical model for the variation of pseudo-resistance as:

d

dt
R = ez1

d

dt
z2 +

(
2c
d

dt
z2 + e

d

dt
z1

)
z2 + d

d

dt
z2 + g

d

dt
z1 (26)

From equations (11) and (22), the pseudo-resistance as a function of the available

inputs is given by:
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d

dt
R = ez1 (α1u2 − α2i) + [2c (α1u2 − α2i) + e (βi+ u1)] z2

+ d (α1u2 − α2i) + g (βi+ u1) (27)

Using the discretization method described in previous subsections, it is pos-

sible to obtain the following model for the resistance variations:

R[n+ 1] = R[n] + e∆z2[n]z1[n] + (2c∆z2[n] + e∆z1[n])z2[n]

+ d∆z2[n] + g∆z1[n] (28)

where:

∆z1[n] := u1[n] + βi[n] (29)

∆z2[n] := α1u2[n]− α2i[n] (30)

3. Identification

Using the data collected from daily operational conditions, it is possible to

identify parameters α1 and α2 in wAl2O3 model equation (23). Then, the esti-120

mation can be performed for parameters c, d, e and g for R model equation (28).

Next, it is presented an identification procedure, along with the corresponding

validation.

3.1. Alumina Concentration

During an operational day, just few alumina concentration measurements are

recorded, and without constant sampling time. Hence, to identify parameters

α1 and α2, using the data collected at Na times
[
n1Ts n1Ts · · · nNa

Ts

]
in

seconds, equation (23) can be arranged in matrix form using the accumulation

10



of u2 and i signals in these intervals, as follows:
wAl2O3[n2]− wAl2O3[n1]

wAl2O3[n3]− wAl2O3[n2]
...

wAl2O3[nN ]− wAl2O3[nN−1]

 =



∑n2−1
k=n1

u2[k] −
∑n2−1

k=n1
i[k]∑n3−1

k=n2
u2[k] −

∑n3−1
k=n2

i[k]
...

...∑nN−1
k=nN−1

u2[k] −
∑nN−1

k=nN−1
i[k]


α1

α2


(31)

Based on the structure of equation (31), it is possible to perform a least125

square estimation for parameters α1 and α2. The experimental model is vali-

dated by a comparison between the simulated values of alumina concentration

with estimated parameters and the alumina concentration values collected on

the plant. Notice that the data used for validation are different from those used

for the identification. The model is initialized with a real measurement. For130

every new alumina concentration sample collected, the model is reinitialized to

improve the accuracy.

Figure 3 shows first the comparison between simulated and alumina concen-

tration values, then the absolute relative error at measurement times, and the

frequency of feeders and the line current. The model is initialized with mea-135

surement and the simulation is started using signals u2 and i. Every time a

new alumina concentration measurement is available, the model is reinitialized

to improve the accuracy of the prediction provided by the model.

By analyzing the absolute relative error plot and the inputs, it turns out

that the model presents a very good fit for regular operation, when current is140

not affected by a disturbance or absence of feeding. In particular, the mean

absolute relative error is smaller than 1 % for this condition. For the general

situation, over the full period of time which is displayed, the model presents an

average error of 9.2376%. Therefore, this model should be used for a regular

pot operation to estimate the alumina concentration in the collected position.145

3.2. Pseudo-Resistance

In equation (28), the parameter identification requires initial knowledge.

On wAl2O3, which can be available at some specific times but also on ACD,

11
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Figure 3: Alumina Concentration Model Validation

which is not measurable during usual operation. One solution is to initialize

the procedure at a time when wAl2O3 is reliable, and ACD can be inferred150

from specific physical knowledge, in a similar way as in as [19] for instance.

Then, using N samples at times as
[
0, Ts, · · · (N − 1)Ts

]
, it is possible to
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organize equation (28) as follows:


∆R[1]

...

∆R[N ]

 =


a11 a12 a13 a14
...

...
...

...

aN1 aN2 aN3 aN4



c

d

e

g

 (32)

where:

a11 = 2∆z2[0]z2[0]

a12 = ∆z2[0]

a13 = ∆z2[0]z1[0] + ∆z1[0]z2[0]

a14 = ∆z1[0]

...

aN1 = 2∆z2[N − 1]

(
z2[0] +

N−1∑
k=0

(α1u2[k]− α2i[k])

)

aN2 = ∆z2[N − 1]

aN3 = ∆z2[N − 1]

(
z1[0] +

N−1∑
k=0

(u1[k] + βi[k])

)
+ ∆z1[N − 1]

(
z2[0] +

N−1∑
k=0

(α1u2[k]− α2i[k])

)

aN4 = ∆z1[N − 1]

with notations ∆z1, ∆z2 of equations (29)-(30), and:

∆R[k] = R[k]−R[k − 1] (33)

for k ≥ 1.

At this stage, the parameters can be identified using again a least square155

estimation algorithm. In Figure 4, a comparison between the model output and

actual measurements is shown.

The mean absolute error computed for this dataset is 2.21%. However, Fig-

ure 4 shows a small drift. This happens because the model (28) is an integrator.

Therefore, the difference between the model and the measurements accumulates160
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Figure 4: Resistance Model Validation

because of the integrator dynamics. Apart from this, it can be concluded that

the proposed estimations are accurate.

4. State Estimation

Based on the models established in Section 2 with the parameter identified

in Section 3, the problem of state estimation can now be addressed. Considering165

the current intensity as a measured disturbance in the system, it is possible to

define a discrete-time time varying state-space model of the plant as follows:



x[n+ 1] =


1 a12[n] a13[n]

0 1 0

0 0 1


︸ ︷︷ ︸

A[n]

x[n] +


b1[n]

b2[n]

b3[n]


︸ ︷︷ ︸

B[n]

y[n] =

[
1 0 0

]
︸ ︷︷ ︸

C

x[n]

(34)
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where:

a12[n] = e(α1u2[n]− α2i[n]) (35)

a13[n] = (2c(α1u2[n]− α2i[n]) + e(u1[n] + βi[n]) (36)

b1[n] = (d(α1u2[n]− α2i[n]) + g(u1[n] + βi[n])) (37)

b2[n] = (u1[n] + βi[n]) (38)

b3[n] = (α1u2[n]− α2i[n]) (39)

with all those varying parameters being known quantities and the state vector

given by:

x[n] =


R[n]

ACD[n]

wAl2O3[n]

 ∈ R3 (40)

Notice that model (34) is affine in the state. This makes it possible to design

an exact linear observer for the nonlinear model by feeding it with measured

quantities of equations (35)-(39). To perform this state estimation, a Time-

Varying Linear Kalman Filter [20] is used as a state observer. In particular,

Kalman Filter equations are given as follows:

Prediction:

x̂[n+ 1]− = A[n]x̂[n] +B[n]

P [n+ 1|n] = A[n]P [n|n]A[n]T +Qnoise

Update:

K[n] = P [n|n− 1]CT (CP [n|n− 1]CT +Rnoise)
−1

x̂[n] = x̂[n]− +K[n](y[k]− Cx̂[n]−)

P [n|n] = (I −K[n]C)P [n|n− 1]

where x̂ is the state estimate vector, P is the covariance matrix, Qnoise is the

process noise intensity matrix and Rnoise is the measurement noise matrix. To

implement the observer, it is necessary to tune the covariance and noise matrices.

15



For the considered data, the initial covariance matrix P [0|0] is set to:

P [0|0] =


1 0 0

0 101 0

0 0 1

 (41)

The largest entry in the P matrix is related to the ACD [14]. As it is not

possible to measure this state, it is given a larger priority. The process and

measurement noise matrices, Qnoise and Rnoise respectively are chosen from

various trials (as in [14])

Qnoise =


10−5 0 0

0 10−5 0

0 0 10−5

 , Rnoise = 10−5 (42)

The proposed observer is tested on data sets with different initial conditions.

For each test, a different combination of ACD and wAl2O3 initial values is used

in a certain operational range, while the values of R are initialized using real170

measurements. The resulting estimates are shown in Figure 5 with a zoom

on initial times in Figure 6. The solid line is the pot resistance measurement,

the dashed lines are the states estimates and the “x” markers are the alumina

concentration measurements.

From both figures, it is possible to notice a fast convergence, for all estimates175

regardless of the initial conditions. In addition, Figure 5 also shows the esti-

mates provided by the observer over a long period and compares those with the

measurements of wAl2O3. The values of the mean absolute error reported in Ta-

ble 1 confirm the effectiveness of the proposed estimation strategy: good results

are indeed achieved jointly for resistance and alumina concentration estimation,180

while relying on a single model combining their evolution. This validates the

overall model and makes the estimation results for ACD (which are consistent

with usual industrial knowledge) quite trustable.
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5. Conclusions

In this paper, a modeling approach to capture the main dynamics of the Hall-185

Héroult process has been proposed. In particular, a state affine representation

has been obtained, that combines physical-chemical aspects and experimental

data. On this basis, a Linear Kalman filter is provided to estimate the states

of the system. The model and observer have been validated with experimental

data. The proposed observer strategy proved to be reliable in providing accurate190

estimates of the plant states for unknown initial conditions. The use of these

results for monitoring and closed-loop control are part of our ongoing work.
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Figure 5: State Estimation for a long period - Each dashed line is a state estimation with

different initial condition and the solid line is the measurement.
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Figure 6: State Estimation for a short period - Each dashed line is a state estimation with

different initial condition and the solid line is the measurement.
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