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Abstract

This work is concerned with the numerical modeling of the Darcy flow and solute transport
in fractured porous media for which the fractures are modeled as interfaces of codimension
one. The hybrid-dimensional flow and transport problems are discretizaed by a lumped piece-
wise linear finite element method, combined with the algebraic correction of the convective
fluxes. The resulting transport discretization can be interpreted as a conservative finite volume
scheme that satisfies the discrete maximum principle, while introducing a very limited amount
of numerical diffusion.

In the context of fractured porous media flow the CFL number may vary by several order
of magnitude, which makes explicit time stepping unfeasible. To cope with this difficulty
we propose an adaptive semi-implicit time stepping strategy that reduces to the low order
linear implicit discretization in the high CFL regions that include, but may not be limited to
the fracture network. The performance of the fully explicit and semi-implicit variants of the
method are investigated through the numerical experiment.

Keywords: Discrete matrix fracture model, transport equation, finite element method, finite
volume method, algebraic flux correction.

1 Introduction

Flow and transport in fractured porous media are key processes in many subsurface applications
such as geothermal energy production, CO2 sequestration, or geological waste storage. In this
article, we consider a so-called hybrid-dimensional or Discrete Fracture Matrix (DFM) model,
where the fractures are geometrically represented as surfaces of codimension one embedded
into the surrounding porous matrix. The reduced flow and transport equations are obtained by
averaging the physical unknowns as well as the conservation equations across the fracture width,
and by imposing some appropriate transmission conditions at the matrix fracture interfaces
[2], [32]. Compared to the equi-dimensional representation of the fracture network, the hybrid-
dimensional approach facilitates the mesh generation and is likely to reduce the computational
cost of the resulting numerical scheme [10]. Due to the ubiquity of fractures in geology and
their considerable impact on the flow and transport in the porous medium the DFM models
have been intensively studied over the last two decades. We refer to [9] and [6] for review of
the relevant literature.

The tetrahedral (triangular in 2d) meshes are commonly used to cope with the geometrical
complexity of fracture networks. In this context, nodal discretizations have a clear advan-
tage over cell-centered or face based ones, since they lead to a much lower number of degrees
of freedom (dofs). Those nodal methods usually combine the discretization techniques from
Finite Element (FE) and Finite Volume (FV) methods. In particular they rely on the FE
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representation of the pressure, while the main ingredients borrowed from the FV framework is
the lumping of the mass matrix and the stable discretization of the transport terms.

The nodal FV-FE are locally conservative with respect to some nodal control volumes. This
is achieved by constructing the conservative edge fluxes that account for the mass exchange
between the neighboring nodes. In addition the use of the FV techniques allows to design the
numerical schemes that are monotone in the sense that the maximum principle is preserved at
the discrete level. In order to insure the latter property the convection term has to be treated
either by the first order linear upwinding scheme or by a nonlinear higher-order method. The
nodal DFM discretizations using the linear upwinding can be found in [34], [36], [35], [39],
[38], [7], [8] and [10]. Those first order schemes lead in general to overly diffused solutions.
The numerical diffusion can be reduced by combining the higher-order flux approximation with
some nonlinear flux limiting procedure [45], [41], [44]. Nodal FV-FE schemes of this kind have
been proposed in [14] and [42] for multi-phase DFM flow, and in [33] for DFM passive transport
problem. Alternatively, the monotone higher-order methods for DFM flow and transport have
been designed in [46], [47], [22] using cell-centered FV approach, in [16], [17], [19], [18], [50]
using Mixed FE method coupled to Discontinuous Galerkin discretization, and in [15], [23] in
the context of the embedded DFM methodology.

The alternative to the geometrical slope limiting [49] is the Algebraic Flux Correction
approach, which has been actively developed over the past two decades . Roughly speaking
the AFC framework provides the road map on how to transform a high-order discretization
(typically a Galerkin FE method) into a monotone nonlinear scheme. This is achieved by
combining the high-order baseline discretization with a low order monotone method, which
provides a required amount of numerical diffusion. Compared to the traditional geometric
slope limiting [49], the AFC methods only rely on the topology of the mesh and the matrix
coefficients resulting from the baseline discretization, and therefore, can be easily implemented
within existing finite element codes. The AFC method was originally introduced in [24] and [28]
for the multi-dimentional linear transport problem, and then further extended to the hyperbolic
systems [26] and elliptic problems [27], [3]. Let us particularly mention [37] where the AFC
method has been applied to flow and transport in fractured porous media in the context of
equi-dimensional fracture network representation. A recent review of the AFC methods can be
found in [4] and [30].

In this work we apply the FE-AFC method from [26] in the context of DFM flow and trans-
port. We consider the single-phase Darcy flow problem under continuous pressure assumption
combined with a passive tracer transport in matrix and fracture domains. We use the piece-
wise linear FE method both to discretize the flow problem and as the baseline method of the
AFC discretization of the transport equation. We show that the resulting transport scheme
can be interpreted as a conservative nodal FV-FE method. We note that in contrast to the
existing high-order nodal FE-FV schemes, such as in [14], [33] or [42], our method does not
require the construction of any dual grid.

As it has been pointed out in [18] and [33] the numerical DFM flow models are characterized
by the CFL number that may vary by several orders of magnitude. This is essentially due to
the high permeability contrast between the fracture and the matrix domains. In addition, the
geometrical complexity of the realistic fracture networks is likely to result in the locally refined
meshes, which, again, contributes to the variability of the CFL number. In this context, the
use of the time stepping methods based on the global CFL constraint may not be practical.
Following [18] and [33] we propose the semi-implicit time discretization that treats low and
high CFL regions differently. In the regions where the local CFL constraint is acceptable we
use the nonlinear explicit AFC method, while the high CFL zones are treated with the lower
order linear implicit scheme. In practice, the CFL constraint can be significantly relaxed if the
implicit time stepping zone is identified with the fracture network. Our numerical experiment
shows that the low-order implicit discretization of the fracture domain is sufficient to capture
accurately the concentration profiles at the large time scale. In addition, we show that extending
the implicit zone to a small portion of the matrix mesh elements allows to further increase the
stable time step by the few orders of magnitude without affecting the overall accuracy.

2 Continuous problem

Let Ω be an open bounded domain of Rd, d = 2, 3, assumed to be polyhedral for d = 3 (and
polygonal for d = 2). To fix ideas the dimension will be fixed to d = 3 when it needs to be
specified, for instance in the naming of the geometrical objects or for the space discretization
in the next section. The adaptations to the case d = 2 are straightforward. Let Γ =

⋃
k∈I Γk
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denotes the network of fractures Γk ⊂ Ω, k ∈ I, such that each Γk is a planar polygonal simply
connected open domain included in some plane of Rd. Without restriction of generality, we will
assume that the fractures may intersect exclusively at their boundaries (see Figure 1), that is
for any k, l ∈ I, k 6= l one has Γk ∩ Γl = ∅, but not necessarily Γk ∩ Γl = ∅.

Figure 1: Example of a 2D domain Ω with 3 intersecting fractures Γk, k = 1, 2, 3.

In the matrix domain, defined as Ωm = Ω \ Γ, (resp. in the fracture network Γ), we denote
by φm(x) (resp. φf (x)) the porosity and by Λm(x) (resp. Λf (x)) the permeability (resp.
tangential permeability) tensor. The thickness of the fractures is denoted by df (x) for x ∈ Γ.
Let pm and pf denote the pressure fields defined over Ωm and Γ respectively, neglecting the
gravity we define the corresponding Darcy velocity fields qm and qf as

qm = −Λm∇pm and qf = −dfΛf∇τpf ,

where ∇τ is the d − 1 dimensional gradient operator tangential to Γ. Because of the mass
exchange occurring at the matrix-fracture interface the normal trace of qm is in general dis-
continuous across Γ. The jump of the normal trace of qm will be denoted by Jqm · nKΓ. Let
divτ denote the d− 1 tangential to Γ divergence operator. Assuming the incompressible flow,
the mixed-dimensional volume conservation law is expressed as

divqm = 0 in Ωm (1)

and
divτqf = Jqm · nKΓ in Γ. (2)

We suppose that the pressure fields pm and pf satisfy some Dirichlet boundary conditions
imposed on ∂ΩD ⊂ ∂Ω and ∂ΓD := ∂ΩD∩∂Γ respectively, while the remainder of the boundary
is subject to the no-flow condition

qm · n = 0 on ∂Ω \ ∂ΩD,
qf · n = 0 on ∂Γ \ ∂ΩD.

(3)

Note that (3) also implies the classical no-flux condition at the tips of the fractures.
To close the system (1)-(3) we have to prescribe some transmission condition at the matrix-

fracture interface. In this article we assume the so-called continuous pressure model introduced
in [2]. More specifically pm is assumed to be continuous across Γ, while the fracture pressure
pf coincides with the trace of pm on Γ. In a single phase flow setting those assumptions are
relevant for the fractures acting as drains. For the discussion on more general transmission
condition and the model comparison we refer to [12], [32], [10], [1], [13] and [5].

Let cm and cf denote the tracer concentration fields defined over Ωm and Γ respectively.
The tracer volume conservation in the matrix and the fracture domains reads as

φm∂tcm + div(cmqm) = 0 in Ωm (4)

and
dfφf∂tcf + divτ (cfqf ) = Jcmqm · nKΓ in Γ. (5)

The system (4)-(5) system should be complemented by some initial conditions, as well as some
Dirichlet condition imposed on the inflow part of the boundary

∂Ω−D = {x ∈ ∂ΩD|qm · n < 0} and ∂Γ−D = {x ∈ ∂ΓD|qf · n < 0} .

More over, as in the case of the pressure problem, we have to prescribe a closure condition
on matrix-fracture interface. Since we are dealing here with the hyperbolic equations, we can
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not, in general, expect the solution to be continuous across the fracture. In order to avoid the
unnecessary technicality the matrix-fracture transmission condition will not be specified for the
continuous model. Roughly speaking, it states of the continuity of the fracture and the matrix
concentration fields at the inflow boundary of the matrix domain Ωm = Ω \Γ, for more details
we refer to [48], we also refer to [11] for some specific energy stable transition condition for
advection-diffusion DFM problems. At the discrete level we will be imposing the continuity
of tracer concentration at the matrix-fracture interface, which is the common practice for the
nodal FV-FE methods (see e.g. [34], [19], [18], [38], [33], [7] and [9]).

Let ψ ∈ C∞(Ω), multiplying (1) and (2) by ψ, performing the integration by parts, and
adding the contributions of the matrix and fracture domains we obtain∫

Ωm

∇ψ · qm dx +

∫
Γ

∇τψ · qf dσ(x)−
∫
∂ΩD

ψ qm · ndσ(x)−
∫
∂ΓD

ψ qf · ndl(x) = 0 (6)

in view of (3). Similarly (4) and (5) lead to∫
Ωm

ψφm∂tcm dx +

∫
Γ

ψdfφf∂tcf dσ(x) =

∫
Ωm

cm∇ψ · qm dx +

∫
Γ

cf∇τψ · qf dσ(x)

−
∫
∂ΩD

cmψ qm · ndσ(x)−
∫
∂ΓD

cfψ qf · n dl(x).

(7)

3 Discrete problem

3.1 Space discretization

We now introduce a conforming simplical mesh. We denote by T a finite set of open tetrahedra
(triangles if d = 2) such that ∪T∈T T = Ω and such that T ∩ T ′ = ∅ for any T 6= T ′; moreover
we assume that for any T 6= T ′ the set T ∩ T ′ coincides with some face, edge or a node of T
and T ′. The set of mesh nodes is denoted by (xi)i∈N , where N = {1, 2, . . . , Ndof} is the set of
node indices. We denote by F the set of mesh faces, that are open d − 1 simplices (triangles
for d = 3 and segments for d = 2).

We assume that the mesh is conforming with respect to the geometry of the fracture network,
meaning that each individual fracture Γk can be represented as a union of mesh faces. This
can be insured by the following conditions: T ∩ Γ = ∅ for any T ∈ T and σ ∩ ∂Γk = ∅ for all
σ ∈ F and k ∈ I. We further assume that Λm and φm are constant on each T ∈ T , and that
Λf , φf and df are constant on each σ ∈ FΓ.

The subsets of faces and nodes associated with the fracture network are defined as FΓ =
{σ ∈ F|σ ∩ Γ 6= ∅} and NΓ = {i ∈ N|xi ∈ Γ}. In addition, for any element T we denote by
NT the set of its nodes, NT = {i ∈ N|xi ∈ T}. Similarly, for any face σ we denote by Nσ the
set of its nodes, Nσ = {i ∈ N|xi ∈ σ}. For all i ∈ N we further denote by Ti the subset of
mesh elements connected to the node i, that is Ti = {T ∈ T |xi ∈ T}, and by Fi the subset of
mesh faces connected to the node i, that is Fi = {σ ∈ F|xi ∈ σ}. Finally, we denote by Ni
the set of neighboring nodes of i, that is Ni =

⋃
T∈Ti

NT .

We denote by Vh the standard conforming P1 finite element space associated with T . Let
ND denote the set of Dirichlet nodes, {i ∈ N|xi ∈ ∂ΩD}, we define

Vh,0 = {v ∈ Vh| v(xi) = 0, i ∈ ND}.

For ph ∈ Vh the approximate matrix (resp. fracture) pressure fields are defined as

pm,h = ph|Ωm and pf,h = ph|Γ.

Similarly the matrix and fracture concentration fields are build from a globally continuous
approximation ch ∈ Vh as

cm,h = ch|Ωm and cf,h = ch|Γ.

3.2 FE discretization

The discrete Darcy velocities qm,h and qf,h are element-wise constant and are defined as

qm,h|T = − (Λm∇ph) |T ∀T ∈ T and qf,h|σ = − (dfΛf∇τph) |σ ∀σ ∈ FΓ. (8)
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The discrete pressure problem is obtained from (6) by using the test function from Vh,0 and by
replacing qm and qf by their discrete counterparts.

Let pD,h be some function from Vh that approximate the Dirichlet data on ∂ΩD, the discrete
pressure problem reads as: Find ph such that ph − pD,h ∈ Vh,0 and such that∫

Ωm

∇ψh · qm,h dx +

∫
Γ

∇τψh · qf,h dσ(x) = 0 ∀ψh ∈ Vh,0. (9)

Let us now turn to the discretization of the transport problem. We begin with the baseline FE
discretization in space. Let Tf be some final simulation time and let us denote by ch(t) the
function that maps from [0, Tf ] to Vh. The FE discretization of the transport problem reads
as follows∫

Ωm

ψh∂tch dx +

∫
Γ

ψh∂tch dσ(x) =

∫
Ωm

ch∇ψh · qm,h dx +

∫
Γ

ch∇τψh · qf,h dσ(x)

−
∫
∂ΩD

chψh qm,h · n dσ(x)−
∫
∂ΓD

chψh qf,h · ndl(x) ∀ψh ∈ Vh

(10)
together with some initial conditions ch(0) = ch,ini ∈ Vh and the boundary conditions which
will be specified later. Roughly speaking the concentration values are imposed at the inflow
subset of ND.

Setting ch(t) =
∑
j cj(t)ηj and using ψh = ηi as the test function in (10) for all i ∈ N we

obtain the following a system of ODEs

M̃
dc

dt
= K̃c−

(
S̃+c+ S̃−cD

)
. (11)

Here M̃ is the mass matrix, K̃ = K̃m + K̃f is the discrete transport operator combining the
matrix and the fracture contributions, while the last two terms correspond to the outflow and
inflow boundary contribution in (10).

It is well known that the system the system (11) leads in general to the oscillatory solutions
and does not preserve the maximum principle (see e.g. [30]). This is mainly due to the

presence of the negative off-diagonal terms in the matrix K̃. In order to obtain a non-oscillatory
discretization of (7) we will modify (11) along the following axes. First, we replace the mass
matrix by it’s lumped approximation and introduce some particular treatment of the boundary
terms that, again, can be interpreted as a sort of lumping. As the result the system (11) will be
replaced by the system (12) below, which can be interpreted as a conservative FV-FE method.

Secondly the transport operator K̃ will be turned into a monotone one by means of the AFC
method, this procedure will be discussed in Section 3.4.

3.3 FV-FE discretization

Let L(RN ) denote the set of real N -by-N matrices and let Ld(RN ) ⊂ L(RN ) denote the subset
of diagonal matrices. We introduce the following “row sum” operator RS from L(RN ) onto
Ld(RN ), such that for any A ∈ L(RN ) the elements of D = RS(A) are given by

dij =

{ ∑
k aik, if i = j,

0 if i 6= j.

In other words the diagonal of RS(A) is made of the a row sums of A.

Using those notations the lumped mass matrix M is defined by M = RS(M̃); more specif-
ically the elements of M satisfy

mii =
1

d+ 1

∑
T∈Ti

φm|T |T |+
1

d

∑
σ∈Fi∩FΓ

(φfdf )|σ|σ|.

Let S = RS(K̃), we remark that the elements of S satisfy

sii =

∫
Ωm

∇ηi · qm,h dx +

∫
Γ

∇τηi · qf,h dσ(x),

where sii can be interpreted as the total Darcy flux to the node i. Note that in view of (9) we
have that sii = 0 for all i ∈ N \ ND. For i ∈ ND this quantity is non-zero in general, and one
can distinguish between the outflow and the inflow boundary nodes based on the sign of sii.
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Introducing the diagonal matrices S+ = max(S, 0) and S− = min(S, 0) (where max and min
are applied element-wise) we replace the system (11) by the following one

M
dc

dt
= K̃c−

(
S+c+ S−cD

)
. (12)

Below we give an interpretation of (12) and (9) in terms of the FV method. In particular, we
will show that the system (12) can be expressed in the following conservative form

mii
dci
dt

=
∑

j∈Ni\{i}

fij − fi,D ∀i ∈ N , (13)

where fij = −fji are the edge fluxes from the neighboring nodes to the node i and fi,D is the
nodal boundary flux from the node i. Similarly, the problem (9) can be written as a set of local
conservation equations for “non-Dirichlet” nodes∑

j∈Ni\{i}

qij = 0 ∀i ∈ N \ ND, (14)

where qij = −qji are the edge Darcy fluxes form the neighboring nodes to the node i.

Since ∇ηi and qm,h are element-wise constant, using
∑
j∈NT

(∇ηj)|T = 0 for any T ∈ T and

denoting cT =
1

d+ 1

∑
j∈NT

cj , we obtain for any i ∈ N

∫
Ωm

∇ηi · chqm,h dx =
∑
T∈Ti

cT

∫
T

∇ηi · qm,h dx

= −
∑
T∈Ti

cT

∫
T

∇ηi · Λm|T
∑
j∈T

(∇ηjpj) dx

= −
∑
T∈Ti

cT

(∫
T

∑
j∈T

(∇ηi · Λm|T∇ηj) dx

)
(pj − pi) .

(15)

Denoting

βTij = −
∫
T

∇ηi · Λm|T∇ηj dx,

and changing the sum order in the last term in (15) we get∫
Ωm

∇ηi · chqm,h dx =
∑

j∈Ni\{i}

∑
T∈Ti∩Tj

cTβ
T
ij(pj − pi). (16)

Similarly, for any i ∈ NΓ we have∫
Γ

∇τηi · chqf,h dσ(x) =
∑

j∈Ni∩NΓ\{i}

∑
σ∈Fi∩Fj

cσβ
σ
ij(pj − pi). (17)

with cσ =
1

d

∑
j∈Nσ

cj and

βσij = −
∫
σ

∇τηi · (dfΛf ) |σ∇τηj dx.

Let
qij =

∑
T∈Ti∩Tj

βTij(pj − pi) +
∑

σ∈Fi∩Fj∩FΓ

βσij(pj − pi). (18)

for any i ∈ N and j ∈ Ni \ {i}. Clearly qij = −qji, and, in view of (16), (17) and (18), the
pressure problem (9) can be expressed in the conservative form (14).

Let us show that (12) can be written as (13). We define the nodal boundary flux as

fi,D = ci max(0, sii) + cD,i min(0, sii) (19)

and the edge fluxes as

fij =
∑

T∈Ti∩Tj

cTβ
T
ij(pj − pi) +

∑
σ∈Fi∩Fj∩FΓ

cσβ
σ
ij(pj − pi). (20)

One can observe that, in view of (16), (17), (19) and (20), the system (12) can be expressed in
the conservative form (13).
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3.4 Algebraic flux correction

So far we have replaced (11) by (12), which we have interpreted as a FV discretization. We
will now introduce a monotone version of (12) by performing the algebraic flux correction of

K̃. To do that we add some amount of solution dependent edge diffusion. As the result, the
system (12) will be replaced by the following one

M
dc

dt
=
(
K̃ +D(c)

)
c−

(
S+c+ S−cD

)
, (21)

where D is the nonlinear mapping from RN to L(RN ) satisfying dij(c) = dji(c) ≥ 0 for i 6= j

and dii(c) = −
∑
j 6=j

dij(c). The solution dependent diffusion matrix D(c) will provide a limited

amount of numerical diffusion allowing for the discrete maximum principle to hold. Note that
in view of the zero row sum property of D we have(

D(c)c
)
i

=
∑
j

dij(c)(cj − ci), (22)

and we remark that, since dij(c) = dji(c), the extra diffusion term in (21) does not affect the
conservativity of the scheme.

This discretization design relies on the following proposition, which states the sufficient
conditions under which a general semi-implicit discretization guarantees the local and the global
discrete maximum principles.

Proposition 3.1 (Discrete maximum principle) Let N be a positive integer, let A,B ∈
L(RN ) and let C ∈ L(RN ) be a diagonal matrix with non-negative elements; we further assume
that the row sums of A and B satisfy RS(A)−RS(B) = C. Let u0 ∈ RN and let (gn)n≥0 be a
sequence of vectors from RN , we consider the following iterative scheme

Aun+1 = Bun + Cgn, n ≥ 0. (23)

For all i ∈ {1, . . . , N} we define

Ñi = {j ∈ {1, . . . , N}| |aij |+ |bij | > 0}.

Assume that A is an M-matrix and that B is non-negative, then the iterates uni satisfy the
following global “in space” DMP

min

(
min
j
unj ,min

j
gnj

)
≤ un+1

i ≤ max

(
max
j
unj ,max

j
gnj

)
. (24)

Moreover, the following local DMP also holds

min
k∈{n,n+1}

(
min

j∈Ñi\{i}
ukj

)
≤ un+1

i ≤ max
k∈{n,n+1}

(
max

j∈Ñi\{i}
ukj

)
(25)

for all i such that cii = 0.

Proof: The proof is rather standard and is given here for the sake of completeness. A somewhat
similar result can be found for example in [30]. Let us first recall that the matrix A is said to
be an M-matrix if A is invertible, A−1 is non-negative and aij ≤ 0 for i 6= j. We also remark
that the diagonal elements of an M-matrix are strictly positive [40, 2.4.8]. Let w be a vector
in RN with equal components, setting vk = uk − w for k ≥ 0 we obtain

Avn+1 +RS(A)w = Bvn +RS(B)w + Cgn

and
Avn+1 = Bvn + C(gn − w). (26)

To prove the global DMP, we set for all components of w to

min

(
min
j
unj ,min

j
gnj

)
providing that vn ≥ 0 and gn − w ≥ 0. Since A−1 is non-negative we obtain vn+1 ≥ 0 which
proves the lower bound in (24). The upper bound is obtained similarly.
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In order to prove (25) we consider some i ∈ {1, . . . , N} such that cii = 0. The row i of the
system (26) reads as

aiiv
n+1
i =

∑
j 6=i

(−aij)vn+1
j +

∑
j

bijv
n
j . (27)

Setting all components of w to

min
k∈{n,n+1}

(
min

j∈Ñi\{i}
ukj

)

we observe that vkj ≥ 0 for all j ∈ Ñi and k ∈ {n, n + 1}, this implies that the right-hand-
side of (27) is non-negative in view of the assumption on A and B. Since aii > 0 we deduce
that vn+1

i ≥ 0, which in turn implies the lower bound in (25). The upper bound is obtained
similarly. �
We can think about (23) as of a discretization of some evolutionary PDE. In that case the
term gn can be interpreted as the variable in time Dirichlet boundary data associated with
the discretization nodes i satisfying cii > 0; the initial condition is given by u0. Under such
interpretation Proposition 3.1 implies that the local (in space) extrema decrease over time,
while the global (in space and time) extrema are reached at the boundary of the space-time
domain.

For the sake of clarity we first present the AFC method applied to the combined matrix-
fracture transport. Alternatively, one may want to treat the fracture and the matrix transport
terms separately, in that case the transport operator K̃ = K̃m + K̃f has to be replaced with∑
α=m,f

(K̃α +Dα(c)), where the the diffusive correction is computed for the matrix and fracture

domains separately. This version of the method will be discussed in Section 3.5.2 below in the
context of a semi-implicit discretization.

We recall below the algebraic flux correction method as it was presented in [25], for the
review of more recent literature we refer to [4] and [30]. The first step is to design the lower
order linear transport operator whose matrix L would have non-negative off-diagonal elements.
Such low-order operators involving upwind flux discretization can be obtained using for example
a FV-FE approach as in [33], [34], or [9]. Here instead, following the AFC methodology, we
define the low-order discretization L in a purely algebraic way, that is solely based on the
coefficients of K̃.

To begin with we identify the “divergence free” part of K̃. As before we denote S = RS(K̃)

and we defined by K = K̃ − S which has a zero row sums. The low-order transport operators
L is obtained from K by adding the minimal amount of artificial diffusion that allows L to
have only non-negative off-diagonal elements. Let D ∈ L(RN ) be a symmetric matrix, whose
elements are given by

dij = dji = max (0,−kij ,−kji) for i 6= j and dii = −
∑
j 6=i

dij ,

We set L = K +D and we introduce the nonlinear edge diffusion operator in the form

D(c) = D − U(c), (28)

where U(c) is a symmetric solution dependent matrix with non-negative off-diagonal coefficient
and satisfying zero row sum property. The aim of U is to remove a certain of numerical diffusion
introduced by D. In order to define U(c) we first express, using zero row sum property K, the
total flux to the node i ∈ N as

(Kc)i =
∑
j 6=i

min(0, kij)(cj − ci) +
∑
j 6=i

max(0, kij)(cj − ci),

where the first term in the right-hand-side is anti-diffusive in nature and is responsible for
numerical instability, while the second term is diffusive and is not problematic. For i ∈ N let
us denote by Q±i the total diffusive flux to and from the node i, that is

Q+
i =

∑
j 6=i

max(0, kij) max(0, cj − ci) and Q−i =
∑
j 6=i

max(0, kij) min(0, cj − ci). (29)

Similarly we define the inflow and outflow anti-diffusive contributions

P+
i =

∑
j 6=i

min(0, kij) min(0, cj − ci) and P−i =
∑
j 6=i

min(0, kij) max(0, cj − ci). (30)
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Following [25] we correct the inflow and outflow anti-diffusive separately. Let Φ(r) denote some
standard symmetric flux limiter function, in the numerical experiment (Section 4) we present
the results for the minmod and superbee limiters, for which we have the following expressions

Minmod: Φ(r) = max(0,min(r, 1));

Superbee: Φ(r) = max(0,min(2r, 1),min(r, 2)).

For any edge (i, j) let us assume for the moment and without loss of generality that it is oriented
such lji ≥ lij . In other words i is an upstream node with respect to j (in the sense of algebraic

upwinding defined by L). Denoting R±i =
Q±i
P±i

and using the convention lji ≥ lij we define the

the coefficients of U by

uij(c) =

{
min(Φ(R+

i )dij , lji), ci − cj ≥ 0
min(Φ(R−i )dij , lji), ci − cj < 0,

and uji(c) = uij(c). (31)

Remark 3.1 In view of (28), and using K̃ = K + S and L = K̃ +D we can can be expressed
the system (21) in the following form

M
dc

dt
= (S +K(c)) c−

(
S+c+ S−cD

)
,

with K(c) satisfying

(K(c)c)i =
∑
j

lij(cj − ci)−
∑
j

uij(cj − ci). (32)

We wish to stress out that the solution dependent coefficients lij − uij in (32) may still be
negative. However, the definition (31) guaranties that for any c there exists a zero row sum
matrix K?(c) with non-negative off-diagonal elements such that K(c)c = K?(c)c. Indeed, let
N+
i = {j ∈ Ni|lij ≥ lij} and N−i = {j ∈ Ni|lij < lji}, we rewrite (32) as

(K(c)c)i =
∑
j∈N+

i

(lij − uij)(cj − ci) +
∑
j∈N−

i

(lij − uij)(cj − ci). (33)

In view of (31) we have that uij ≤ max(lij , lji), which implies that the last term in (33) is
diffusive, in the sense that lij − uij ≥ 0 for j ∈ N+

i . Now let us show that, for j ∈ N−i the
anti-diffusive flux −uij(cj − ci) can be expressed as a sum of the diffusive ones, that is

−uij(cj − ci) =
∑
k

u?,jik (ck − ci), u?,jij ≥ 0. (34)

If dij = 0 there is nothing to prove, so let us assume that dij > 0. Let us first assume that
ci − cj ≥ 0. Using the “symmetry” of the flux limiter, that is Φ(r) = rΦ(1/r) for any r ≥ 0,
we deduce from (31) that

uij(ci − cj) = a+
ijR

+dij max(0, ci − cj)

with a+
ij = Φ(1/R+

i ) min(1, lji/(dijΦ(R+
i ))) ≥ 0. Using the expression of R+

i =
Q+
i

P+
i

and (29)

we obtain

uij(ci − cj) = a+
ij

dij max(0, ci − cj)
P+
i

∑
k

max(0, kik) max(0, ck − ci).

Denoting by H+(x) the Heaviside function we obtain that the coefficients u?ik given by

u?,jik = a+
ij

dij max(0, ci − cj)
P+
i

H+(ck − ci)

and are clearly positive in view of the definition of (30). The proof of (33) for the case ci−cj < 0
is similar.

To conclude, we have shown that that K(c)c can be expressed as K?(c)c, where the matrix
K?(c) has non-negative off-diagonal elements and zero row sums; more precisely we have

(K?(c)c)i =
∑
j∈N+

i

(lij − uij)(cj − ci) +
∑

k∈Ni\{i}

u?ik(ck − ci)

with u?ik =
∑
j∈N−

i

u?,jik ≥ 0, and where lij − uij(c) ≥ 0 for all j ∈ N+
i .
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3.5 Time discretization

3.5.1 Explicit discretization

Let us first present a simple forward Euler method. Let ∆t > 0, we consider the following
explicit scheme

M
cn+1 − cn

∆t
=
(
K̃ +D(cn)

)
cn −

(
S+cn+1 + S−cD

)
. (35)

We refer to the discretization (35) as to o2-explicit scheme. In addition, we consider a low-order
linear version of this discretization where the D(cn) is replaced by D. This scheme denoted as
o1-explicit is defined by

M
cn+1 − cn

∆t
=
(
K̃ +D

)
cn −

(
S+cn+1 + S−cD

)
. (36)

Let us show that the linear scheme (36) satisfies the assumptions of Proposition 3.1 under some
CFL-like condition on ∆t. We can write (36) as

Acn+1 = Bcn − S−cD

with
A = M/∆t+ S+ and B = M/∆t+ K̃ +D.

Since K̃ +D = L+ S, we have
B = M/∆t+ L+ S.

Clearly A is an M-matrix and we have that RS(A)−RS(B) = −S−; in addition the off-diagonal
elements of B are non-negative. It remains to insure that B has a non-negative diagonal. That
can be guarantied by the following the CFL-like condition

∆t ≤ max
i∈N

mii

max(0, |lii| − sii)
, (37)

where |lii| − sii can be expressed as −k̃ii − dii.

3.5.2 Semi-implicit discretization

Due to the high permeability contrast between the matrix and the fracture domains we expect
the transport in the fracture network to occurs at the time scale much smaller than the one
associated with the matrix. This motivates us to use a separate time discretization in the
matrix and fracture domains.

In order to perform the AFC in the matrix and the fracture transport operators separately
we identify the “divergence free” parts of the operators K̃m and K̃f . For α = m, f , let

Sα = RS(K̃α) and Kα = K̃α − Sα, where Kα satisfy the zero row sum property. We consider
the following semi-implicit time discretization of (21)

M
cn+1 − cn

∆t
=
(
K̃m +Dm(cn)

)
cn +

(
K̃f +Df

)
cn+1 −

(
S+cn+1 + S−cD

)
, (38)

where Df and Dm are the edge diffusion operators build upon Kf and Km respectively. Note
that the scheme (38) relies on the linear low-order approximation approximation in the fracture
domain. Alternatively one can replace the operator Df by the nonlinear one Df (cn+1) in which
case the scheme would require to solve a nonlinear system at each time step [25], [20], [29],
[21], [31]. However, since we are interested in using large time steps that would typically lead
to the fracture CFL number much large than 1, it is not clear if such higher-order nonlinear
implicit scheme would improve the accuracy. The comparison of the mixed-order scheme (38)
with the fully explicit higher-order method (35) is presented in Section 4.1. The results of the
numerical experiment suggest that the mixed-order scheme is sufficiently accurate at least at
the matrix time scale.

The mixed-order semi-implicit discretization (38) is referred to as o1-o2-semi-implicit scheme.
We also consider a low-order linear version of this scheme obtained by replacing Dm with Dm.
This scheme, denoted as o1-semi-implicit, is defined by

M
cn+1 − cn

∆t
=
(
K̃m +Dm

)
cn +

(
K̃f +Df

)
cn+1 −

(
S+cn+1 + S−cD

)
. (39)
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Let us investigate the monotonicity condition of the linear scheme (39). We will show that (39)
satisfies the assumptions of Proposition 3.1 under some condition on ∆t. We express (39) as

Acn+1 = Bcn − S−cD

with

A =
M

∆t
− K̃f −Df + S+ and B =

M

∆t
+ K̃m +Dm.

Since K̃α +Dα = Lα + Sα with α = m, f , and using S = S+ + S− = Sf + Sm, we have

A =
M

∆t
− Lf + Sm − S− and B =

M

∆t
+ Lm + Sm.

Since RS(Lα) = 0 for α = m, f we deduce that

RS(A)−RS(B) = −S−.

Next, the off-diagonal elements of B are non-negative since bij = lm,ij ≥ 0 for i 6= j, while the
diagonal elements of B satisfy

bii =
mii

∆t
+ lm,ii + sm,ii.

The non-negativity of bii can be insured by the condition

∆t ≤ max
i∈N

mii

max(0, |lm,ii| − sm,ii)
. (40)

It turns out that the condition (40) is also “almost sufficient” to insure that A is an M-matrix.
It follows from (40) that

mii

∆t
+ sm,ii ≥ 0, (41)

where the inequality in (41) is strict if either (40) is strict, or if |lm,ii| > 0, for all i, which
roughly speaking corresponds to some nontrivial matrix flow. Note that aij = −lf,ij ≤ 0 for
i 6= j. Since Lf has zero row sums and since s−ii ≤ 0, it follows from (41) that

aii ≥ −lf,ii =
∑
j 6=i

lf,ij =
∑
j 6=i

|aij |. (42)

This shows that A is diagonal dominant. Now, assume that either |lm,ii| > 0 for all i or that
the inequality (40) is strict. This implies that (41) holds with the strict inequality. In turn,
the first inequality in (42) is also strict, which implies that A is strictly diagonally dominant
and therefore is an M-matrix (see [40, 2.4.14]). Alternatively, the M-matrix property can be
established assuming some nontrivial fracture flow, that is |lf,ii| > 0 for all i, and a nonempty
inflow boundary, that is s−ii > 0 for at least one i, which would imply that A is irreducibly

diagonal dominant and that aii > 0 for all i. Let us remark that |lm,ii|−sm,ii = −(k̃m,ii+dm,ii)
and that the CFL-like condition (40) only involve the matrix discretization parameters and does
not depends on the fast fracture flow.

Remark 3.2 In view of Remark 3.1 and proceeding as above one can show that the schemes
(35) and (38) satisfy the DMP under some appropriate condition on the time step. However
deriving a sharp estimate on such stable time step is a delicate matter. In the numerical
experiment presented below the choice of the time step for the nonlinear schemes (35) and (38)
will be again based on (37) and (40) respectively.

4 Numerical experiment

In this section we present two numerical experiments. The first test case presented in Section
4.1 allows for the analytical solution, which enables us to evaluate the numerical error and the
experimental convergence rate of the schemes. In particular we will compare the performance of
the mixed-order semi-implicit scheme (38) with the fully explicit high-order one (35). It results
that at the large time scale the discretization (38) provides a sufficiently accurate solution,
while, compared to (35), allowing for much larger time steps. In the second test case presented
in Section 4.2 we compare the semi-implicit methods in the context of a realistic DFM model.
As expected, compared to the o1-semi-implicit scheme, the solution produced by the mixed-
order is much sharper and detailed. In Section 4.2 we also investigate the benefits of treating
a small portion of high CFL matrix elements with the implicit time discretization. We show
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that assigning of a small portion of the matrix elements to the implicit zone allows to increase
the stable time step by few orders of magnitude without affecting the overall solution quality.

All numerical simulations are performed on conforming triangular meshes that are generated
by Triangle software [43]. The stable time step ∆tstab is computed based on (37) for the explicit
discretization and on (40) for the semi-implicit ones. As discussed above the provable CFL
condition for the nonlinear schemes (35) and (38) is not available, as the rule of thumb we
choose the actual time step to be smaller than 0.5∆tstab for all discretization. This seems to
be sufficient since we have not encountered the violation of the global DMP in the simulations.
Let Tf denote some positive final simulation time, for the sake of constancy when evaluating
the numerical error we also choose the actual time step smaller than Tf/100. More precisely
we define the time step as follows: let N be a number of time steps given by

NT = min{k ∈ N| kmin(∆tmax, 0.5∆tstab) ≥ Tf},

we, then, set ∆t = Tf/NT .

4.1 Single fracture analytical test case

We consider the numerical test case with a single fracture from taken from [10] and [48], for
which the solution can be computed analytically. The geometry of the test case is represented on
Figure 2. Let Ω = (0, 1)2, the fracture domain is defined by Γ = {(x, y ∈ Ω)| y = 1/4+x tan θ},
with θ = π/4, as before we set Ωm = Ω \ Γ. The pressure field is given by p(x, y) = 1 − x.
The initial tracer concentration is zero and boundary conditions are given by cm(x, y, t) = 1
on ∂Ω−D = Ωm ∩ {x = 0} and cf (x, y, t) = 1 on Γ−D = Γ ∩ {(0, 1/4)} for t ∈ (0, Tf ), where the
final simulation time is set to Tf = 0.5. We refer to [10] for the closed form of the solution.

Following [48] we set φm = φf = 1, df = 0.01, we set Λm = 1, and we consider two values of
the fracture tangential permeability Λf = 20 (low permeability contrast) and Λf = 2000 (high
permeability contrast). Because of the permeability contrast the solution of the transport

Figure 2: Matrix and fracture domains for the analytical test case.

problem involves two time scales - the fast fracture time scale and the slower matrix one.
The fast fracture filling process is characterized by the time τf = 1

Λf cos(θ)2
, which is the time

required for the concentration front to reach the right outflow boundary. For t > τf the fracture
equation (5) is essentially stationary and the fracture concentration profile is controlled by the
matrix-fracture exchanges. We illustrate this dynamics by Figure 3 that reports the fracture
solution profiles for the small times (comparable to τf ) and the large times (comparable to Tf ).
Note that for t ≥ τf the fracture concentration is continuous. To further illustrate the time
scale contrast we report at Figure 4 the average fracture concentration as the function of time.
Figures 5 and 6 show the exact matrix solution at t = τf and t = Tf .

For this test case we use four different triangular meshes with the total number dofs ranging
from 100 to about 100 103, the characteristics of the meshes are reported in Table 1. Depending
on the value of Λf the fully explicit time discretizations (35) and (36) require the time step
which few times or few hundred times smaller than the stable time step of the semi-implicit
methods (38) and (39). The time discretization parameters are reported in Tables 2. For the
case Λf = 20 we present the simulation results and the experimental convergence analysis for
both explicit and semi-implicit schemes; more precisely we consider o1-explicit and o1-semi-
implicit, o2-explicit and the mixed-order o1-o2-semi-implicit discretizations. For the schemes
using the second order discretization in the matrix domain we consider the minmod and the
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Figure 3: Exact solution in fracture domain for Λf = 20 (left) and Λf = 2000 (right). Red curves

represent the solution profile at times t =
k

3
τf , k = 1, 2, 3. Blue curves show the solution at times

t = τf +
k

3
(T − τf ), k = 1, 2, 3. Fracture length is rescaled.

Figure 4: Average fracture concentration as the function of time for Λf = 20 and Λf = 2000.

Figure 5: Exact solution in matrix domain for Λf = 20 at t = τf (left) and t = T (right).

superbee limiters. Because of a strong CFL constraint in the high permeability contrast case
Λf = 2000 we limit the numerical experiment to the family of semi-implicit methods.

Let cm(x, t) and cf (x, t) denote the exact matrix and fracture tracer concentration. For
each mesh and all time steps n, we denote by cnα, α = m, f , the standard nodal FE interpolation
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Figure 6: Exact solution in matrix domain for Λf = 2000 at t = τf (left) and t = T (right).

Mesh # triangles # frac. faces # dof mat. # dof frac.
1 172 10 104 11
2 1600 31 854 32
3 16460 99 8371 100
4 163510 284 82267 285

Table 1: Space discretization parameters.

of cα(·, n∆t) in matrix and fractured domains respectively, that is we set

cnm(x) =
∑
i∈N

ηi(x)cm(xi, n∆t) and cnf (x) =
∑
i∈NΓ

ηi|Γ(x)cf (xi, n∆t).

For each mesh and each discretization we compute the matrix and fracture relative L1 space-
time error as follows

errm =

∑
n

∫
Ω

|cn − cnm|dx∑
n

∫
Ωm

|cnm| dx
and errf =

∑
n

∫
Γ

df |cn − cnf | dσ(x)

∑
n

∫
Γ

df |cnf | dσ(x)

.

4.1.1 Case Λf = 20

At Figure 15 we report the approximate solution at the final time Tf obtained on the fines
mesh. The top row of the figure shows the results of the explicit time stepping schemes, while
the bottom row reports the semi-implicit solutions. The amount of numerical diffusion reduces
from left to right. The left column shows the solution obtained with the first-order space
discretization, which introduces a large amount of numerical diffusion especially in the matrix
domain. The smearing of the sharp matrix concentration front is largely reduced by the use
of the second-order accurate schemes (middle and right columns). As expected the second-
order scheme using superbee limiter (right column) produces the sharpest concentration fronts.
At the same time one can notice some numerical artifacts introduced by this overcompressive
scheme. Interestingly enough we observe that the semi-implicit discretizations leads to a slightly
sharper fronts. It turns out that the mixed-order semi-implicit method even outperforms the
second-order explicit one in terms of the L1 space-time error (see Figure 7).

Semi-implicit schemes Explicit schemes Λf = 20 Explicit schemes Λf = 2000
Mesh ∆tstab × 103 ∆t× 103 Nt ∆tstab × 104 ∆t× 104 Nt ∆tstab × 106 ∆t× 106 Nt

1 12.74 4.95 101 68.34 34.01 147 106.10 53.05 9425
2 4.97 2.48 202 17.41 8.7 575 22.94 11.47 43593
3 1.51 0.76 662 2.3 1.15 4350 2.46 1.23 407114
4 0.45 0.22 2247 0.75 0.37 13405 0.76 0.38 1309383

Table 2: Time discretization parameters.
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Figure 16 shows the concentration profile in the fracture domain at the final time Tf .
The results are reported for the finest mesh. At the matrix transport time scale the fracture
transport equation (5) is almost stationary and the matrix-fracture exchange term plays a
crucial role. For such time scale a correctly captured matrix solution would result in a accurate
fracture concentration profile. All the schemes captures well the solution profile away from the
middle of the fracture, which coincide with the matrix front location. Near x = 0.5 the shape
of the solution is much better reproduced by o2-explicit and o1-o2-semi-implicit schemes, which
is likely due to a smaller numerical diffusion in the matrix domain.

The figure 7 reports the relative L1 matrix and fracture error as the function of the mesh
size; the experimental order of convergence is reported in Tables 4 and 5. The explicit and the
semi-implicit first-order methods lead to very similar results, both schemes achieve the order of
convergence about 0.5 in the matrix domain and about 0.8 in the fracture (see Tables 4 and 5).
The higher convergence order in the fracture domain can be attributed to the higher regularity
of the solution for t ≥ τf .

The use of the schemes that are second-order accurate in the matrix domain allows to a
significant improvement of the matrix solution (see Figure 7). The order of convergence is
improved by minmod (eoc ≈ 0.64) and superbee (eoc ≈ 0.92) schemes using both fully explicit
and semi-implicit formulations (see Tables 4 and 5). The error and the convergence rate in the
fracture domain are also slightly improved. For all four schemes that are second-order accurate
we observe the convergence rate close to 0.9. Note, that, in view of our time discretization
method, we can not expect the convergence rate higher than 1. In this sense all four schemes
perform almost optimally.

Figure 7: Relative L1 space-time error as the function of the mesh size for matrix (left) and fracture
(right) domains (case Λf = 20).

4.1.2 Case Λf = 2000

Because the fully explicit discretizations are subjects to a very restrictive time step constraint
(see Table 2) we limit ourself to the family of semi-implicit methods. The figure 17 reports
the approximate solution at the final time Tf obtained on the finest mesh, while at Figure
18 we report the solution profile in the fracture domain. As before the mixed-order scheme
allows to reduce the numerical diffusion and leads to a more accurate solution both in matrix
and fracture domains. We report on Figure 8 the relative L1 space-time error for matrix and
fracture domain as the function of the mesh size.

Regarding the error in the matrix domain the results obtained for this case are qualitatively
similar to those of the case Λf = 20 for the family of semi-implicit discretizations. The observed
order of convergence for the first order method is about 0.5 (see Table 6) which is the optimal
one given the low regularity of the solution. The use of the second-order accurate discretization
in the matrix domain allows to reduce the smearing of the solution fronts. As before, the most
accurate results are obtained using the front preserving superbee limiter. We observe the
convergence rate for the mixed-order schemes of 0.65 for minmod limiter and 0.9 for superbee
limiter respectively (Table 6).
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Because of a lower numerical diffusion in the matrix, the mixed-order semi-implicit dis-
cretizations allow, at least at the large time scale, for a more accurate representation of the
solution profile (see Figure 18). On the other hand the performance of both first-order and the
mixed-order semi-implicit schemes is almost identical in terms of L1 space-time error in the
fracture domain, the convergence rate is about 0.75. This behavior may probably be attributed
to the fact that, due to its large time step, the semi-implicit schemes equally fail to represent
the fast fracture dynamics occurring at the beginning of the simulation.

Figure 8: Relative L1 space-time error as the function of the mesh size for matrix (left) and fracture
(right) domains (case Λf = 2000).

4.2 Application to a complex fracture network

Figure 9: Left: flow domain and fracture network geometries. Right: matrix pressure field.

In this section we apply the first and the mixed-order semi-implicit methods to the test
case involving a complex fracture network. The geometry of the fracture network is taken
from [13] and is based on the outcrop observed at Sotra island. The flow domain, defined by
Ω = (0, 700)× (0, 600), and the fracture network is exposed on Figure 9. We set the following
parameters φm = φf = 1, df = 0.01, Λm = 1 and Λf = 2 · 105. The Dirichlet boundary
conditions for the pressure problem are set on the left and the right boundaries of Ω; more
specifically we set pD = 700 on ∂Ω−D = Ω ∩ {x = 0} and pD = 0 on ∂Ω+

D = Ω ∩ {x = 700}.
The remainder of the boundary is subject to zero Neumann boundary condition. The tracer
transport is computed for the t ∈ (0, Tf ) with Tf = 100. The initial tracer concentration is
zero both in matrix and the fracture domains, at the inflow boundary ∂Ω−D the concentration
is set to 1.
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We perform the computations using the triangular mesh having 138 672 triangular elements,
3896 fracture segments and a total of 69 778 nodal dofs. We compare the first order semi-implicit
method with the mixed-order one using the superbee flux limiter. The time discretization based
on the matrix stability condition is defined as in the previous test case and results in the time
step ∆t = 8.88 · 10−4.

We report on Figures 9 the matix pressure field and on Figures 11 the tracer concentration
for t = 10, 20, 40 and 80. Although the results obtained by two methods are qualitatively
similar, one can observe that the the mixed-order scheme produces a much sharper and de-
tailed solution. A more quantitative error assessment is provided by Figure 10 which shows
the weighted L1 distance between the approximate solutions obtained by two schemes. More
precisely, let cno1, c

n
o1-o2 ∈ Vh denote the approximate solution at time tn obtained by the scheme

o1-semi-implicit and o1-o2-semi-implicit scheme respectively. We expose on the figure 10 the
quantities

distm(tn) =

∫
Ωm

|cno1 − cno1-o2|dx∫
Ωm

dx

and distf (tn) =

∫
Γ

df |cno1 − cno1-o2| dσ(x)∫
Γ

df dσ(x)

.

Figure 10: Weighed L1 distance between the approximate solutions.

4.2.1 Implicit time stepping in high CFL matrix regions

In the context of high permeability contrast between matrix and fracture domains the use
of the implicit time stepping in the fracture network makes the simulations computationally
affordable. In this section we investigate the possibility of extending the implicit time stepping
zone further in the matrix domain. More precisely, we identify the high CFL regions of the
matrix domain to which we apply the implicit lower-order discretization. We show that treating
a small portion of the matrix elements with the implicit time discretization allows to increase
drastically the stable time step, while still preserving the accuracy.

The choice of the matrix elements to be assigned to the implicit zone will be based on the
following element-wise parameter that characterizes the local CFL constraint

ξT =

√
|T |

‖qm,h|T ‖2
, ∀T ∈ T ,

where qm,h is defined by (8) and ‖ · ‖2 denotes the standard Euclidean norm. For a given
threshold value ξ we define the implicit and explicit zones as Timp(ξ) = {T ∈ T | ξT ≥ ξ} and
Texp(ξ) = T \ Timp(ξ). Based on this splitting of T we define the implicit and explicit matrix

transport operators K̃m,imp and K̃m,exp that are associated with the FE bilinear forms

(ψ, cm) 7→
∑

T∈Timp(ξ)

∫
T

cm∇ψ · qm dx and (ψ, cm) 7→
∑

T∈Texp(ξ)

∫
T

cm∇ψ · qm dx.
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Figure 11: Approximate solution using the first-order implicit (left) and the mixed-order semi-
implicit (right) schemes at t = 10, 20, 40 and 80 (from top to bottom).

Setting K̃exp = K̃m,exp and K̃imp = K̃m,imp + K̃f we consider the following semi-implicit
discretization

M
cn+1 − cn

∆t
=
(
K̃exp +Dexp(c

n)
)
cn +

(
K̃imp +Dimp

)
cn+1 −

(
S+cn+1 + S−cD

)
, (43)
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ξ #Timp(ξ) ∆tstab Speed-up
0 0 0.0008881 1

0.01 8 0.0057353 6.5
0.05 34 0.0201959 22.7
0.1 89 0.0307692 34.7
0.2 311 0.0676590 76.2
0.3 1210 0.0795862 89.6
0.5 10622 0.1187648 133.7

Table 3: Size of the implicit zone, stable time step and the computational speed-up for the scheme
(43) as the function of ξ.

where, as before, the edge diffusion operators Dexp and Dimp are constructed based on K̃exp−
RS(K̃exp) and K̃imp−RS(K̃imp) respectively. The stable time step is derived from the condition

similar to (40) using K̃exp instead of K̃m.
The table 3 reports the number of elements in Timp(ξ) and the stable time step for the

scheme (43) with the threshold parameter ξ = 0.01, 0.05, 0.1, 0.2, 0.3, 0.5. The value ξ = 0 leads
to the reference semi-implicit scheme (38). The last column of Table 3 reflects the obtained
computational speed-up defined as the ration of NT (0) over NT (ξ), where NT (ξ) denotes the
total number of time steps as the function of ξ. We observe that by incorporating a very small
portions of the matrix elements into the implicit zone the stable time step can be increased
by almost two orders of magnitude. Taking a large enough ξ would eventually result in a fully
implicit scheme, note however that increasing the size of Timp above 311 elements (ξ = 0.2)
does not lead to a considerable improvement in terms of the stable time step.

Figure 12 reports the location of the high CFL cells incorporated in Timp(0.05) and Timp(0.2).
The highest CFL cells with ξT ≥ 0.05 are essentially associated with fracture network discon-
tinuities (see Figure 13). The regions with a slightly lower CFL are located at the fracture
tips.

Figure 12: Implicit zones Timp(0.05) (purple) and Timp(0.2) (green).

As for the numerical error, we report on Figure 14 the weighted L1 distance from the
solution obtained by (43) to the reference solution provided by (38) as the function of time.
Note that because the schemes (38) and (43) do not use the same time steps, the calculation
of the L1 distance involves the linear interpolations of the results provided by (43) between
the time steps. For the sake of comparison Figure 14 equally reports the results obtained by
the low-order scheme (39). We observe that the precision of the method is preserved for small
values of ξ especially in the matrix domain. The higher values of the L1 fracture distance at
small times can be attributed to the fact that the scheme (43) uses larger time steps, and thus
is less capable of capturing the fast transport in the fracture network and it vicinity.
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Figure 13: Zoom on the high CFL zone Timp(0.05) around fracture network discontinuities.

Figure 14: Weighed L1 distance between the approximate solutions form the matrix (left) and the
fracture network (right) domains.

5 Conclusion

We have introduced and studied a higher-order nodal numerical method for the hybrid-dimensional
model of the solute transport in fractured porous media coupled to the Darcy flow problem.
The numerical discretization of the transport problem combines the lumped piece-wise linear
FE method with the Algebraic Flux Correction procedure leading to the family of nonlinear
schemes that satisfy the local and the global versions of the Discrete Maximum Principle, while
introducing a very limited amount of numerical diffusion. The numerical discretization that
we have introduced can interpreted as a locally conservative nodal finite volume method. An-
other feature of the proposed method is that it’s construction only relies on the standard FE
stiffness and mass matrices, and the mesh topology. As the result this numerical method can
be easily implemented in the existing FE codes, or extended to other discretization methods
such as for example the Vertex Approximate Gradient scheme [10], [48]. In order to relax the
global time constraint of the explicit time stepping schemes, we have proposed a mixed-order
semi-implicit strategy, where the matrix domain is discretized using the higher-order nonlinear
FE-AFC method, while the fracture domain is treated with the low-order implicit scheme.

We have performed the numerical convergence analysis for both fully explicit and semi-
implicit approaches based on a simple test configuration, where the analytical solution is avail-
able. As expected, compared to the lower-order methods, the use of the FE-AFC discretization
allows to reduce significantly the amount of numerical diffusion. For a low permeability con-
trast between fracture and matrix domains the comparison of the higher-order explicit scheme
to the mixed-order semi-implicit approach shows that the latter one is sufficient to capture
accurately the concentration profiles at the matrix transport time scale. In contrast to the
fully explicit discretization, this semi-implicit method allows to address the flow scenario that
exhibits the high permeability contrast between matrix and fracture domains.

We have further applied the semi-implicit FE-AFC method to the problem involving a
complex fracture network. Here again, compared to the low-order upwind discretization the
mixed-order FE-AFC method leads to a much sharper and detailed solution. Finally we have
shown that the stable time step can be drastically increased by extending the implicit time
stepping zone over a small portion of high CFL the matrix mesh elements associated with the
discontinuities of the fracture network as well as some of the fracture tips.
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Appendix A. Case 4.1: Approximate solution for Λf = 20

Figure 15: Approximate solution at t = Tf using, left column: o1-explicit (top) and o1-semi-implicit
(bottom) schemes; middle column: o2-explicit (top) and o1-o2-semi-implicit (bottom) schemes with
minmod limiter; and right column: o2-explicit (top) and o1-o2-semi-implicit (bottom) schemes
with superbee limiter.

Figure 16: Left: approximate and exact solution along the fracture at t = Tf . Right: zoom view of
left figure around x = 0.5. Fracture length is rescaled.
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Appendix A. Case 4.1: Approximate solution for Λf = 2000

Figure 17: Approximate solution at t = Tf using, left column: o1-explicit (top) and o1-semi-implicit
(bottom) schemes; middle column: o2-explicit (top) and o1-o2-semi-implicit (bottom) schemes with
minmod limiter; and right column: o2-explicit (top) and o1-o2-semi-implicit (bottom) schemes
with superbee limiter.

Figure 18: Left: approximate and exact solution along the fracture at t = Tf . Right: zoom view of
left figure around x = 0.5. Fracture length is rescaled.
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Appendix B. Case 4.1: L1 relative space-time error

o1-explicit o2-exp. minmod o2-exp. superbee
Mesh errm eoc errf eoc errm eoc errf eoc errm eoc errf eoc

1 0.391 - 0.2043 - 0.3002 - 0.1971 - 0.2525 - 0.2177 -
2 0.2504 0.4023 0.106 0.5918 0.1579 0.5797 0.09682 0.6415 0.1082 0.7649 0.1068 0.6432
3 0.1457 0.4702 0.03405 0.987 0.07451 0.6525 0.02907 1.045 0.03839 0.9004 0.03369 1.002
4 0.08323 0.4865 0.01351 0.8031 0.03589 0.6344 0.01049 0.8855 0.01332 0.9193 0.01247 0.8633

Table 4: Relative L1 space-time error and the experimental order of convergence for explicit schemes
(case Λf = 20).

o1-semi-implicit o1-o2-semi-imp. minmod o1-o2-semi-imp. superbee
Mesh errm eoc errf eoc errm eoc errf eoc errm eoc errf eoc

1 0.3887 - 0.2043 - 0.295 - 0.1812 - 0.2391 - 0.1697 -
2 0.2449 0.4168 0.1046 0.6045 0.1505 0.6075 0.0883 0.6491 0.09781 0.8069 0.08027 0.6759
3 0.1417 0.4751 0.03332 0.9935 0.0692 0.6749 0.02843 0.9846 0.03345 0.9321 0.02668 0.957
4 0.08118 0.4841 0.01331 0.7972 0.03258 0.6543 0.01009 0.9 0.01147 0.9296 0.009605 0.8874

Table 5: Relative L1 space-time error and the experimental order of convergence for semi-implicit
schemes (case Λf = 20).

o1-semi-implicit o1-o2-semi-imp. minmod o1-o2-semi-imp. superbee
Mesh errm eoc errf eoc errm eoc errf eoc errm eoc errf eoc

1 0.3867 - 0.007856 - 0.3061 - 0.007748 - 0.2581 - 0.00771 -
2 0.2711 0.3206 0.00347 0.7375 0.1723 0.5186 0.003247 0.785 0.1165 0.7176 0.003151 0.8076
3 0.1602 0.4571 0.00143 0.7701 0.0819 0.6461 0.001368 0.7509 0.0414 0.899 0.001345 0.7396
4 0.09183 0.4831 0.000608 0.7429 0.03864 0.6526 0.000565 0.7681 0.01408 0.9367 0.000555 0.7689

Table 6: Relative L1 space-time error and the experimental order of convergence for semi-implicit
schemes (case Λf = 2000).
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