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A strongly coupled algorithm is presented for the incompressible fluid-rigid body interac-12

tion using the moving immersed boundary method. The pressure and the boundary force13

are treated as Lagrange multipliers to enforce the incompressibility and no-slip wall con-14

straints. To compute the two unknowns from the velocity field, we adopt the fractional15

step algorithm and successively apply the two constraints. A Poisson equation and a mov-16

ing force equation are derived for the pressure and the boundary force respectively. As17

both coefficient matrices are formulated to be symmetric and positive-definite, the result-18

ing linear systems are solved efficiently with the conjugate gradient solver. The strongly-19

coupled nonlinear fluid-solid system is achieved by a fixed point iteration. To improve the20

computational efficiency, we only iterate the moving force equation with the rigid body21

motion equation and the time-consuming pressure Poisson equation is solved once the22

sub-iteration is finished. The proposed method is validated with various benchmark tests23

and the results compare well with the literature.24
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I. INTRODUCTION25

One primary challenge of fluid-solid interaction (FSI) simulation is dealing of complicated and26

time-dependent interface between two physical fields. Body-fitted mesh methods, such as finite27

volume or finite element discretization of fluid equations in arbitrary Lagrangian–Eulerian for-28

mulation, need mesh-deforming or re-meshing regularly to accommodate the time-varying solid29

boundaries. It is very costly for large scale problems and prone to mesh interpolation errors and30

divergence due to severe mesh distortion. The Chimera/overset grid method1 circumvents these31

issues by employing multiple computational fluid domains covered by independent meshes. One32

background mesh, usually a Cartesian mesh, is utilized to discretize the global domain, while the33

others are body-fitted meshes surrounding the objects. The Chimera/overset grid method is ca-34

pable to capture the boundary layer well at moderate and high Reynolds number, comparable to35

classical body-fitted mesh methods, since grids can be allocated efficiently when aligning to solid36

boundaries. However constructing a body-fitted mesh of high quality for complex geometries is37

still non-trivial. Simple discretization method like finite difference may require a coordinate trans-38

formation to work on a curvilinear mesh. In such circumstance finite volume or finite element39

method is usually used and the resulting system is solved with sophisticated solvers, such as pre-40

conditioned Krylov subspace methods (e.g. conjugate gradient) or algebraic multigrid method.41

Moreover since the fluid equations are computed on different domains, it is difficult to ensure42

conservation.43

Alternatively, the immersed boundary method (IBM)2–8 adopts a surface mesh for the solid44

boundary, thereby the fluid is only simulated on the background mesh. Using a simple fluid45

mesh is advantageous not only for the ease of mesh generation but also for the accuracy mat-46

ter. The Cartesian mesh produces the best mesh quality and hence high order accuracy can be47

achieved. The matrix assembly is also simplified and the matrix condition is well preserved. Most48

importantly, it facilitates the use of many simple and efficient methods developed for Cartesian49

mesh. The finite difference discretization can be constructed into high order accuracy easily and50

highly efficient solvers, such as geometrical multigrid method and fast Poisson solver, can be used51

straightforward. Parallelization of program is relatively simple to a good efficiency. However as52

no underlying mesh will conform to the solid boundary, the imposition of boundary condition at53

the interface can be tricky. Interpolation methods are often selected to overcome this problem,54

either by locally reconstructing the velocity 9,10 or by adopting a source forcing function in the55
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momentum equation 5–8. In fact, the two approaches are essentially the same as they both rectify56

the velocity in the vicinity of immersed boundary to produce solid effect11.57

For the source forcing approach, it is crucial to compute the boundary force accurately to58

ensure a physical boundary condition. Uhlmann3 developed an efficient direct forcing IBM for59

simulating particle suspensions, where an explicit formulation is used for the boundary force. As60

a result, the no-slip wall condition is not satisfied and large errors occur at the interface. Kempe61

and Fröhlich4 reduced the error through an additional forcing loop, which is solved with only a62

few number of iterations without convergence. Therefore the no-slip wall condition will not be63

fully verified. Full convergence however requires considerable computational efforts, thus it is64

often relaxed in practice12. Actually, the boundary force can be viewed as a Lagrange multiplier65

for the no-slip constraint. an implicit immersed boundary projection method (IBPM) is proposed66

by Taira and Colonius13 by integrating the boundary force and the pressure into a modified Pois-67

son equation. The IBPM is very accurate since it enforces the divergence-free and the no-slip68

constraints simultaneously. In spite of the mathematical rigor and completeness, the IBPM is less69

efficient and stable than the explicit IBMs, as an enlarged system is formulated and evolves in time70

for moving bodies. Instead of solving the pressure and the boundary force in one single system,71

the moving immersed boundary method (MIBM) was proposed by Cai et al.5–8 to decouple the72

pressure and the boundary force into two independent systems. The pressure Poisson coefficient73

matrix is kept unchanged and hence preconditioners only need to be constructed in the initial step.74

The boundary force is computed from a moving force equation after operator splitting. The size75

of the corresponding matrix is considerably reduced as it is only proportional to the number of76

Lagrangian markers defining the immersed boundary, which is much smaller than the fluid mesh77

numbers. The MIBM is found very efficient and accurate for moving boundary problems. In this78

work, we will extend the MIBM to fluid-solid interaction applications by incorporating the rigid79

body dynamics.80

Generally, two approaches can be used for the fluid-solid interaction time coupling: the mono-81

lithic (direct) approach and the partitioned (segregated) approach. For the monolithic method, all82

the unknowns from the fluid and solid equations are formulated into a single large system along83

with interface conditions. While the partitioned method formulates the two subproblems into dif-84

ferent systems and solve them separately. The monolithic approach is advantageous from the85

stability point of view, but it requires considerable efforts on code modifications. The partitioned86

approach can be further classified into two subgroups, namely the explicit coupling (weakly or87
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loosely coupled) and the implicit coupling (strongly or tightly coupled). Weak coupling is very88

efficient since it solves the two subproblems in a sequential manner, but it leaves the interface89

conditions unfulfilled. As a result, spurious energy is generated at the interface, which leads to90

unstable solutions, which is often called the added mass effect14,15. The stability criterion mainly91

depends on the density ratio between the solid and the fluid. Below a certain threshold the cal-92

culation diverges immediately for any chosen time step for incompressible fluids16. The strongly93

coupled method iterates the two subproblems until the interface conditions are satisfied, thus it94

is comparable to the monolithic method. In the present work, we will design a partitioned but95

strongly coupled scheme with the moving immersed boundary method.96

The organization of this paper is as follows. First we present the general fluid-solid interaction97

problem in the immersed boundary formulation. In the following part the MIBM and the strongly98

coupled partitioned scheme are presented in detail. Numerical simulations are then performed99

with the proposed method and validated with benchmark tests. Conclusions are drawn in the final100

section.101

II. METHODOLOGY102

Figure 1 illustrates a general description of a rigid body motion in an incompressible fluid,103

where the fluid and the rigid body occupy the physical domains Ω f and Ωs respectively. The fluid-104

solid interaction takes place at the their common boundary ∂Ωi = Ω f ∩Ωs. The whole system is105

subjected to the gravitational acceleration g.106

Ω f

∂Ω f

Ωs

r
∂Ωi

g

vs

ωs

O
x

y xs

xc

FIG. 1: Schematic representation of the fluid-solid interaction problem.

The fluid subproblem is usually described in Eulerian coordinates, which is governed by the107
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incompressible viscous Navier-Stokes equations108

∂v f

∂ t
+∇ · (v f ⊗v f ) = ∇ ·σ f +g, (1a)109

∇ ·v f = 0, (1b)110
111

where v f represents the fluid velocity vector and the fluid stress tensor σ f (divided by ρ f ) is given112

by113

σ f =− p
ρ f

I+ν
(
∇v f +(∇v f )

T) , (1c)114

115

where p designates the fluid pressure, ρ f the fluid density, ν the fluid kinematic viscosity. Appro-116

priate initial and boundary conditions are assumed to the fluid Navier-Stokes equations to ensure117

that the problem is well posed.118

Contrarily the solid subproblem is often treated in a Lagrangian framework. The motion of a119

rigid body is governed by the Newton-Euler equations, which can be expressed as120

ms
dvs

dt
= ρ f

∫
∂Ωi

σ f ·nds+ms(1−
ρ f

ρs
)g, (2a)121

Is
dωs

dt
= ρ f

∫
∂Ωi

r×
(
σ f ·n

)
ds, (2b)122

123

where ms, ρs, Is represent the solid mass, density and the moment of inertia respectively. vs, ωs124

designate the translational velocity and the angular velocity of the solid. r = xs−xc is the position125

vector of any surface point with respect to the solid mass center xc. n represents the outward-126

pointing normal vector to the surface ∂Ωi. The position of the rigid body can be obtained by127

integrating the kinematic equations128

dxc

dt
= vs, (2c)129

dθc

dt
= ωs, (2d)130

131

where θc designates the rotation angle around the solid mass center.132

On the fluid-solid interface ∂Ωi the continuity of velocity133

v f = vs +ωs × r, (3)134

needs to be satisfied in order to take the fluid-solid interaction into account.135

The immersed boundary method approximates the above fluid-solid interaction problem by136

replacing the solid domain with the surrounding fluid. To account for the presence of the immersed137
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solid, a boundary force f is introduced and added into the fluid momentum equation. Therefore138

the fluid is simply simulated in a fixed domain Ω = Ω f (t)∪Ωs(t) irrespective to the movement139

of the immersed solid. The fluid-solid interaction problem in the immersed boundary formulation140

becomes141

∂v f

∂ t
+∇ · (v f ⊗v f ) =− 1

ρ f
∇p+ν∇

2v f + f in Ω, (4a)142

∇ ·v f = 0 in Ω, (4b)143

ms
dvs

dt
=−ρ f

∫
Ωs

fdV +ms(1−
ρ f

ρs
)g, (4c)144

Is
dωs

dt
=−ρ f

∫
Ωs

r× fdV, (4d)145

v f = vs +ωs × r on ∂Ωi, (4e)146

f(x, t) =
∫

Γs

F(s, t)δ (x−X(s, t))ds, (4f)147

148

where F(s, t) represents the boundary force defined on the Lagrangian position X(s, t) and f(x, t)149

on the Eulerian frame respectively. δ designates the Dirac delta function. Note that the effect of150

gravity in the fluid momentum equation is from now on incorporated into the pressure.151

The fluid governing equations (4) are discretized in time as152

vn+1
f −vn

f

∆t
+

3
2
N (vn

f )−
1
2
N (vn−1

f ) =− 1
ρ f

G pn+1 +
ν

2
L (vn+1

f +vn
f )+S Fn+1, (5a)153

Dvn+1
f = 0, (5b)154

T vn+1
f = vn+1

s +ωn+1
s × rn+1 on ∂Ω

n+1
i , (5c)155

156

where second order semi-implicit time stepping schemes are utilized for the velocity, namely157

the explicit Adams-Bashforth scheme for the convection and the implicit Crank-Nicholson for the158

diffusion. Euler implicit scheme is applied to the two Lagrange multipliers, that is, the pressure and159

the boundary force. N , L , D , G represent the convection, Laplacian, divergence, and gradient160

operators respectively. Since the fluid grid is not coincident with the solid node, T and S are161

the interpolation and spreading operators that are responsible for the field exchange between two162

grids (see Figure 2). The discrete delta function is employed for the construction of T and S163

δh(x−X) =
1
h2 φ(

x−X
h

)φ(
y−Y

h
). (6)164

In this work, we select the three-point kernel proposed in Ref. 17 aimed for staggered grid, whose165
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one-dimensional form is166

φ(r) =



1
3

(
1+

√
−3r2 +1

)
, |r|< 0.5,

1
6

(
5−3|r|−

√
−3(1−|r|)2 +1

)
, 0.5 ⩽ |r|< 1.5,

0, otherwise.

(7)167

Xl

δh

Spreading

Interpolation

FIG. 2: Illustration of interpolation and spreading procedures with a discrete delta function.

With respect to the solid equation, we choose a simple Euler implicit scheme168

ms
vn+1

s −vn
s

∆t
=−ρ f

∫
Ωs

fn+1dV +ms(1−
ρ f

ρs
)g, (8a)169

Is
ωn+1

s −ωn
s

∆t
=−ρ f

∫
Ωs

r× fn+1dV, (8b)170

xn+1
c −xn

c
∆t

= vn+1
s , (8c)171

θn+1
c −θn

c
∆t

= ωn+1
s . (8d)172

173

The total amount of force and torque are not changed during the transfer between Lagrangian174

and Eulerian locations, owing to the partition of unity of the discrete delta function. The solid175

equations can be solved as follows176

ms
vn+1

s −vn
s

∆t
=−ρ f

nb

∑
l=1

Fn+1
∆Vl +ms(1−

ρ f

ρs
)g, (9a)177

Is
ωn+1

s −ωn
s

∆t
=−ρ f

nb

∑
l=1

r×Fn+1
∆Vl, (9b)178

179
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where ∆Vl represents the area/volume associated with the Lagrangian marker. Therefore, provided180

the boundary force, the solid equations can be easily solved. For the fluid part, we employ an181

operator splitting scheme as182

(1) Prediction step for v̂n+1
f183

v̂n+1
f −vn

f

∆t
+

3
2
N (vn

f )−
1
2
N (vn−1

f ) =− 1
ρ f

G pn +
ν

2
L (v̂n+1

f +vn
f ). (10)184

(2) Immersed boundary forcing step for imposing the no-slip wall condition at the interface185

ṽn+1
f − v̂n+1

f

∆t
= S Fn+1, (11a)186

T ṽn+1
f = vn+1

s +ωn+1
s × rn+1 on ∂Ω

n+1
i . (11b)187

188

Applying the no-slip constraint, we obtain189

T S Fn+1 =
vn+1

s +ωn+1
s × rn+1 −T v̂n+1

f

∆t
, (12a)190

ṽn+1
f = v̂n+1

f +∆tS Fn+1. (12b)191
192

Given M = T S the moving force coefficient matrix, then we obtain a compact form of the193

moving force equation194

M Fn+1 = Fe, (13)195

with196

Fe =
vn+1

s +ωn+1
s × rn+1 −T ṽn+1

f

∆t
, (14)197

where Fe is the explicit force used by Kempe and Fröhlich4. Given the solid velocity and position198

at time level n+1, the moving force equation can be solved with various linear system solvers. In199

the present work the moving force coefficient matrix M is found to be symmetric and positive-200

definite. Hence the moving force equation can be converged to the machine precision very quickly201

by using the conjugate gradient method, even without preconditioning. Moreover, the size of the202

moving force coefficient matrix is proportional to the number of nodes on the immersed boundary,203

which is in general much smaller than the size of the fluid matrix. Since the moving force coef-204

ficient matrix does not involve the fluid matrix, its update is computationally inexpensive in the205

case of moving boundaries.206
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(3) Projection step for obtaining a divergence free velocity vn+1
f207

vn+1
f − ṽn+1

f

∆t
=−G φ

n+1, (15a)208

Dvn+1
f = 0. (15b)209

210

Applying the divergence operator to (15a) along with the divergence free condition (15b), the211

projection step is actually performed as212

L φ
n+1 =

1
∆t

D ṽn+1
f , (16a)213

vn+1
f = ṽn+1

f −∆tG φ
n+1. (16b)214

215

The final pressure is advanced by216

pn+1 = pn +φ
n+1 − ν

2
D v̂n+1

f . (17)217

Now we will present a novel coupling approach for the interaction of the two subproblems.218

Mathematically speaking, the FSI problem of equation (4) is accomplished by the Lagrange multi-219

plier method to joint two subdomains on a common boundary. The unknowns of the entire system220

are (vn+1
f , pn+1) for the fluid, (xn+1

s , ẋn+1
s ) for the solid, and Fn+1 for the interface condition.221

The conventional strongly coupled method iterates those variables at each time step in order to222

match the interface condition. Even if it leads to accurate and stable solutions, solving implicit223

coupling usually exhibits a prohibitive computational cost. This becomes more unaffordable in224

ALE formulation, since the mesh and the associated matrices have to be updated regularly.225

Fernández et al.18 proposed an efficient coupling method by taking advantage of the projection226

method. The prediction (ALE-advection-viscous) step is ruled out from the FSI loop to reduce227

computational cost, so that the mesh and the associated matrices are computed once at each time228

step. Finally only the projection step is coupled implicitly to ensure stability. It has been shown229

that this semi-implicit scheme is stable for a reasonable range of the discretization parameters,230

compared to the explicit coupling approach.231

We extend this idea to the moving immersed boundary method. However the projection step232

usually is the most time-consuming part in the projection method. In spite of various methods233

(e.g. Aitken relaxation) are available to accelerate the coupling procedure, the computational cost234

still remains high. We also notice that in equation (9) the solid is coupled to the fluid by the235

boundary force but not the pressure, and in equation (12) the boundary force is determined by236
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the solid velocity and position. Therefore, we can move out the time-consuming projection step237

from the FSI iteration, and replace it by the immersed boundary forcing step. Following Ref. 18,238

the prediction step is not included in the FSI iteration either, as it is performed on a stationary239

combined domain in MIBM and the boundary force is not incorporated in this step for the solid240

effects. The moving force equation can be considered as an implicit equation for the no-slip241

boundary condition for the fluid at the interface. Therefore the implicit coupling of the immersed242

boundary forcing step with the solid equations features a strongly coupled FSI method.243

Algorithm 1: Novel implicit coupling scheme

1 Given: vn
f , pn, xn

s , ẋn
s ;

2 (Fluid) Predict the velocity ṽn+1
f using (10);

3 Initialize values: (·)k=0,n+1 = (·)n, where (·) includes xs, ẋs,F;

4 for k = 0 to kmax do

5 (Fluid) Construct or update the interpolation operator matrix T (xk,n+1
s ) and the moving force

coefficient matrix M (xk,n+1
s );

6 (Fluid) Interpolate the fluid velocity T (xk,n+1
s )ṽn+1

f ;

7 (Interface) Solve the moving force equation (12a) for Fk+1,n+1 with ẋk,n+1
s ;

8 (Solid) Compute the solid equations for (xk+1,n+1
s , ẋk+1,n+1

s ) using (9);

9 if ||(·)k+1,n+1 − (·)k,n+1||/||(·)k+1,n+1||< tolerance then

10 (·)n+1 = (·)k+1,n+1;

11 break;

12 else

13 k = k+1;

14 end

15 end

16 (Fluid) Correct the fluid velocity to v̂n+1
f with Fn+1 using (12b);

17 (Fluid) Solve the pressure Poisson equation and compute the final velocity vn+1
f and the pressure

pn+1 using (16a), (16b), (17).

Note that the moving force equation is non-linear, because the interpolation, spreading op-244
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erators and the boundary force are functions of solid position xn+1
s , namely M n+1Fn+1 =245

T (xn+1
s )S (xn+1

s )F(xn+1
s ). We can linearize this equation by treating the moving force coef-246

ficient matrix explicitly M (xn
s ), but this will decrease the overall accuracy due to the time lag, as247

indicated in Ref. 19. In order to preserve a high accuracy, fully implicit implementation of the248

moving force equation is considered in the Algorithm 1.249

III. NUMERICAL RESULTS250

A. Freely falling cylinder in a confined channel251

We first investigate the motion of a circular cylinder falling freely between two parallel walls252

in a quiescent fluid. The width and height of the computational domain are chosen to be 2 cm and253

6 cm. The circular cylinder with a diameter of D = 0.25 cm is released initially from the position254

(1 cm, 4 cm) and falls down because of gravity. The density of the cylinder and the surrounding255

fluid are ρs = 1.25 g/cm3 and ρ f = 1.0 g/cm3 respectively. The fluid dynamic viscosity µ is set to256

0.1 g/(cm·s).257

The calculations are carried out on two different uniform meshes, i.e. h = 1/48 cm and h =258

1/96 cm, to check the mesh sensitivity. The immersed cylinder surface is discretized evenly with259

a mesh size approximated to the size of surrounding fluid cells, due to the inherent limitation260

of the discrete delta function. Therefore the resulting Lagrangian marker numbers are 38 and 76261

respectively. The time step is chosen to be ∆t = 0.001 s and the resulting maximum CFL number is262

reported to be 0.46. The vorticity around the falling cylinder is shown in Figure 3 at different times263

t = 0.2 s, 0.4 s, 0.6 s, 0.8 s. The cylinder quickly reaches a uniform falling velocity until it hits the264

bottom of the channel. We plot the flow quantities as a function of time in Figure 4, including the265

longitude position yc of the cylinder center, the vertical velocity vc, the Reynolds number Re and266

the translational kinetic energy ET . Here Re and ET are defined as Re = (ρsD
√

u2
c + v2

c)/µ and267

ET = 0.5ms(u2
c +v2

c) respectively, where uc is the horizontal velocity component. For comparison,268

the results of Ref. 20 are included in Figure 4, taken from h = 1/96 cm. Good agreements have269

been obtained.270
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(a) t = 0.2 s (b) t = 0.4 s (c) t = 0.6 s (d) t = 0.8 s

FIG. 3: Vorticity fields at different times t = 0.2 s, 0.4 s, 0.6 s, 0.8 s for the freely falling cylinder

in a confined channel problem. The contour levels are set from -15 (blue) to 15 (red) with an

increment of 1.

B. Freely falling and rising cylinder in an open domain271

Next we consider an object freely falling and rising in an open domain as another test. This272

phenomenon happens frequently in nature and a large amount of work can be found in the litera-273

ture. Here we compare to the numerical results of Namkoong et al.21 and Lacis et al.19, using the274

body-fitted ALE formulation and the immersed boundary projection method respectively.275

Two density ratios are considered in this study, i.e. ρs/ρ f = 1.01 for the falling case and276

ρs/ρ f = 0.99 for the rising simulation. A large computational domain is taken as [−5D,5D]×277

[−70D,70D] with free-slip boundary conditions applied at all the exterior boundaries, where D =278

0.5 cm is the cylinder diameter. A uniform mesh is employed to cover the computational domain,279

and the mesh resolution is kept to 0.04D in order to compare with Lacis et al.19. Initially the280

cylinder is located at ±65D, depending on the situation (65D for the falling case, −65D for the281

rising case). The Reynolds number Re = VtD/ν f here is 156, where Vt is the terminal velocity.282

Note that the Reynolds number depends on the Galileo number G = (|ρs/ρ f −1|gD3)1/2/ν f (the283

gravity force divided by the viscous force, G = 138) and the density ratio ρs/ρ f .284
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FIG. 4: Time evolution of longitude position yc, velocity vc of the cylinder center, the Reynolds

number Re and the translational kinetic energy ET for the freely falling cylinder in a confined

channel problem. “◦", result of Ref. 20; “—", present result with h = 1/96 cm; “- - - -", present

result with h = 1/48 cm.

The instantaneous vorticity fields are presented in Figure 5 for the falling cylinder case. Ini-285

tially symmetric vortex pair forms behind the cylinder in the beginning of falling. After that the286

numerical error accumulates and breaks the symmetry. At around tVt/D = 40, the flow becomes287

unsteady and periodic vortex shedding occurs. The time histories of the velocity of the cylinder are288

plotted in Figure 6. Table I shows the Strouhal number St = f D/Vt ( f is the shedding frequency)289

and the coefficients of drag and lift. Present results are compared to those of Namkoong et al.21
290

and Lacis et al.19. Good agreements have been obtained.291

To illustrate the efficiency of the proposed coupling method, different strong FSI coupling292
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(a) tVt/D = 10 (b) tVt/D = 90

FIG. 5: Snapshots of vorticity fields for a freely falling cylinder in an open domain . The contour

level is set from -6 (blue) to 6 (red) with an increment of 0.4.
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FIG. 6: Time histories of the vertical and horizontal velocity for the freely rising cylinder

ρs/ρ f = 0.99.

methods are compared in Figure 7. The time consumption of the traditional strong FSI coupling293

method, where the pressure Poisson equation is involved in the sub-iteration, almost scales linearly294

with the number of sub-iterations, which is due to the fact that the solution of the pressure Poisson295

equation is the most dominating part. It can be seen that the proposed method reduces up to 75%296
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ρs/ρ f Methods CD |CL|max St

1.01 Present 1.35 0.10 0.189

Lacis et al.19 1.29 0.14 0.17185

Namkoong et al.21 1.23 0.15 0.1684

0.99 Present 1.35 0.10 0.189

Lacis et al.19 1.29 0.14 0.17188

Namkoong et al.21 - - 0.1687

TABLE I: The drag, lift coefficients and the Strouhal number for the freely falling and rising

circular cylinder in an open domain.
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FIG. 7: Comparison of different strong FSI coupling strategies. (a) The number of sub-iterations

in the strong FSI coupling; (b) Time consumption ratio of various strong coupling methods

compared to the weak coupling method. “◦", strong coupling with pressure Poisson equation in

the sub-iteration; “+", the proposed strong coupling.

of the FSI coupling time within nearly the same number of sub-iteration.297

C. Elliptical particle sedimentation in a confined channel298

In this example, we consider the sedimentation of an elliptical particle in a narrow channel, to299

demonstrate the ability of current FSI algorithm for non-circular object. This example was stud-300
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ied previously by Xia et al.22 for the boundary effects on the sedimentation mode. Five distinct301

modes of sedimentation have been found ranging from oscillating, tumbling along the wall, ver-302

tical sedimentation, horizontal sedimentation to an inclined mode. In their work, a multi-block303

lattice Boltzmann method is used and compared to the traditional ALE formulation.304

L

a

b

θ

g

FIG. 8: Computational domain of the elliptical particle sedimentation problem.

(a) (b) (c) (d) (e) (f)

FIG. 9: Vorticity fields at different times: (a) t = 0.1 s ; (b) t = 0.3 s; (c) t = 0.5 s; (d) t = 1.0 s;

(e) t = 1.5 s; (f) t = 2.0 s. The contour levels are set from -15 to 15.
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FIG. 10: Particle trajectory and orientation of the elliptical particle. “—", present results; “◦",

results of Xia et al.22.

To compare with Xia et al.22, the computational domain is selected to be [0,L]× [0,7L] with305

L = 0.4 cm, as shown in Figure 8. The aspect ratio of the ellipse is α = a/b = 2, where a and b are306

the major and minor axes respectively. The blockage ratio is defined as β = L/a = 4. The density307

ratio is ρs/ρ f = 1.1. The kinematic viscosity of fluid is set to ν = 0.01 cm2/s. The particle starts308

falling in a quiescent fluid from the centroid at (0.5L, 6L) with an initial angle of π/4 to break the309

symmetry.310

No-slip boundary conditions are applied at four boundaries. A uniform mesh is employed with311

a gird resolution of 0.0027 cm. The time step is chosen such that the CFL condition is satisfied.312

Figure 9 shows the vorticity fields at different times at t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0313

s. The trajectory and orientations are compared to the results of Xia et al.22 in Figure 10. Good314

agreements have been obtained.315

D. Flow around a rotating NACA0012 airfoil316

The rigid objects simulated in this section so far have been the circular or elliptical particles.317

In this example, we consider the incompressible viscous flow over a NACA0012 airfoil to demon-318
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strate the capacity of current MIBM for handling sharp geometries. The shape of the NACA0012319

airfoil is given by320

Y =±0.6 · (0.2969
√

X −0.1260X −0.3516X2 +0.2843X3 −0.1015X4), (18)321

where X ∈ (0,1.009) cm. The characteristic length, i.e. the airfoil length, is 1.009 cm. Following322

Glowinski et al.23 and Wan and Turek20, we select a computational domain of [-4 cm,16 cm] ×323

[-2 cm, 2cm] with the airfoil centered at (0.42 cm,0), as shown in Figure 11.324

ωs

u = 1

v = 0

u = 1

v = 0

u = 0,v = 0

u = 0,v = 0

FIG. 11: Computational domain of the flow past a rotating NACA0012 airfoil. The dashed lines

represent the initial position of the airfoil.

The airfoil is fixed at its mass center and is free to rotate due to hydrodynamic forces. The325

density of fluid is taken as ρ f = 1.0 g/cm3 and the density of solid is ρs = 1.1 g/cm3 in this326

simulation. The viscosity of the fluid is ν f = 0.01 cm2/s. Initial angular velocity and incident327

angle of the airfoil are set to zero. The boundary conditions of flow are given as u = (0,0) at328

y=-2 cm, 2 cm and u = (1,0) cm/s at x = -4 cm, 16 cm. Those boundary conditions are used329

in Glowinski et al.23 and are adopted here in order to compare the results of two methods. The330

Reynolds number is around 101 based on airfoil length and the maximum inflow speed.331

This flow is quite challenging as the leading edge of the airfoil has very small radius of curva-332

ture. To resolve the flow near the leading edge, a good resolution of the Cartesian mesh is required.333

Two sets of grids are chosen here to test the grid sensitivity, namely h = 1/96 cm and h = 1/64334
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cm. The same time step is used in both cases (∆t = 0.002 s). The resulting CFL numbers are 0.40335

and 0.25 respectively.336

(a)

(b)

FIG. 12: Instantaneous vorticity (a) and velocity (b) of the flow over a rotating NACA0012 airfoil.

The flow fields are shown in Figure 12. The airfoil keeps a stable position with its broadside337

perpendicular to the in-flow direction in the beginning and finally reaches a periodic motion of338

oscillation. The time histories of the rotational angle and the angular velocity are plotted in Figure339

13. The results are pretty smooth. For comparison, we also include the results of Glowinski340

et al.23 in Figure 13 obtained by the distributed Lagrange multiplier method. Presents results341

match well those of Glowinski et al.23. We observe that the direction of oscillation depends on342

the numerical errors. The oscillating direction changes over different calculation parameters. An343

opposite oscillating case can be found in Wan and Turek20. Present direction of oscillation is in344

accord with Glowinski et al.23.345

19



0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

θ
c

(a)

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

ω
s

(b)

FIG. 13: Time histories of the angle (a) and the angular velocity (b) of the rotating NACA0012

airfoil. h = 1/96 cm, solid line; h = 1/64 cm, dashed line. The measures are in rad and rad/s

respectively. The results of Glowinski et al.23 are marked with circles.
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IV. CONCLUSIONS346

A revised algorithm for the fluid-solid interaction was presented in this paper based on the347

moving immersed boundary method. Operator splitting is successively employed to achieve com-348

putational efficiency and modularity. First the pressure-velocity coupling is handled by a second349

order fractional step method, breaking the Navier-Stokes equations into a Helmholtz-type equation350

for the velocity and a Poisson equation for the pressure; Followed by the immersed boundary force351

splitting, a moving force equation is derived to account for the solid effect; At last a partitioned352

approach separates the fluid field from the solid field. By doing this, all the variables are decoupled353

and computed effectively with their own favored solvers. To achieve a more stable FSI coupling,354

a strongly coupled scheme is employed through a fixed point iteration. For better performance,355

we have removed the time-consuming pressure Poisson solver out from the FSI iteration and the356

computational time has been considerably reduced. Various cases have been tested, ranging from357

circular to non-circular objects with large displacements and rotations. The numerical results are358

compared to the benchmark, which demonstrates a good accuracy of the proposed method.359
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