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Abstract

Modelling epidemics using classical population-based models suffers from shortcomings that
so-called individual-based models are able to overcome, as they are able to take into account
heterogeneity features, such as super-spreaders, and describe the dynamics involved in small
clusters. In return, such models often involve large graphs which are expensive to simulate and
difficult to optimize, both in theory and in practice.

By combining the reinforcement learning philosophy with reduced models, we propose a nu-
merical approach to determine optimal health policies for a stochastic individual-based model
taking into account heterogeneity in the population. More precisely, we introduce a deterministic
reduced population-based model involving a neural network, designed to faithfully mimic the local
dynamics of the more complex individual-based model. Then the optimal control is determined
by sequentially training the network until an optimal strategy for the population-based model
succeeds in also containing the epidemic when simulated on the individual-based model.

After describing the practical implementation of the method, several numerical tests are pro-
posed to demonstrate its ability to determine controls for models with contact heterogeneity.
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(emmanuel.franck@unistra.fr).

‡Univ Lyon, Ecole Centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan, F-69134 Ecully, France,
(killian.lutz@ecl19.ec-lyon.fr).
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1 Introduction

1.1 Population versus Individual-based models

Correclty modelling the spread of epidemics is of paramount importance in defining health policies
to control their development. Models make it possible to estimate the so-called basic reproduction
ratio R0, which indicates whether the epidemic is developing or not, and to propose optimal policies
to limit the saturation of hospital services, for instance. In such a program, one difficulty is to take
into account the presence of so-called super-spreaders. An individual is said to be a super-spreader
if he/she is likely to infect many more people than a generic person would: indeed, the distribution
of the number of contacts in the population is very heterogeneous. In the seminal work [28], the
authors show that epidemics tend to be rarer but more explosive with super-spreaders. Indeed,
super-spreaders tend to be infected in the early stages of an epidemic.

To tackle this problem, several levels of descriptions can be considered [23]. The two extreme
types of models are population-based and individual-based models. Population-based or mean-field
models, like the deterministic SIR model, are the simplest descriptions of epidemics: they describe
the time evolution of the total number of susceptible (S), infected (I), retired (R) people or of other
categories. At the opposite level of description, individual-based models are the most accurate. They
describes the stochastic time evolution of the states (susceptible, infected, retired or other) of each
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individual by taking into account the contact graph between individuals [23]. Similar deterministic
individual-based versions could be used.

Individual-based models are much better suited to describe the effect of super-spreaders. Indeed,
they rely on an precise description of the contact graph between individuals: each node corresponds
to an individual and each edge corresponds to the contact between two individuals [37, 36, 11]. It is
therefore easy to include contact heterogeneities by considering contact graphs with prescribed distri-
butions of node degrees [40, 21]. The individual-based models are then constructed as a continuous-
time Markov process, in which each individual can evolve between the different states (susceptible,
infected, retired) at random times. Thus the infection of one susceptible individual depends on the
number of connected infected neighbours as well as the individual transmission rate βind, while the
transition to the retired state depends only on the recovery rate γ.

Individual-based models allow for more accurate modelling, but require more computing resources
to simulate large or complex contact graphs [2]. It should be noted that models such as percolation
processes have been proposed. The level of description is then intermediate and the state process
is simplified. For instance, in [28, 14], the authors used this kind of models to describe the number
of secondary infections. In some cases, population-based models can also be derived analytically
from individual-based models, which is interesting for simulations [44, 45]. First, assuming some
independence between the states of each individual, the individual-based stochastic models can be
approximated by a deterministic model, where the state of each individual follows SIR differential
systems coupled to those of other individuals [23]. Then, by assuming that the degree distribution
has a small variance, this model can be further simplified and we recover the classical population
based SIR models. Without this last assumption, SIR models structured by contact numbers can
be derived but result in larger models.

Thus, to incorporate the effect of super-spreaders in population-based models, one possible ap-
proach is to expand the number of categories: for each health state, we can consider several com-
partments associated with sub-populations with more or less contacts [22]. Another strategy is to
consider a single additional compartment with specific epidemiological properties at the population
level (e.g. recovery rates, transmission rates, etc.) [33]. Other studies proposed to take into account
super-spreaders by considering spatial inhomogeneities, which leads to an unequal distribution of
the epidemic in the country [13]. The infection probability then depends on the distance between
two individuals, and the difference between normal individuals and super-spreaders is taken into
account via this dependency.

In another direction, recurrent neural networks have been proposed to improve population-based
models [3]. Their long short-term memory is used to identify the transmission rate as a function of
the observed mobility and social behaviour. Based on external data, the paper constructs a time
dependent transmission rate modelling the effects of some social interactions which could include
super-spreading events. Recently neural networks have been used to increase the accuracy of the
compartmental models (e.g. additional compartment dynamics [47]) or to estimate the parameters
of a SIR-like model [18, 29].

Despite the advantages of population-based models in terms of simplicity, only individual-based
models are really capable of handling heterogeneous contact distributions and describing epidemics
with stochastic effects and few individuals.

1.2 Optimal control issues

In this work, we propose a strategy to define an optimal control for an individual-based model. The
optimal control problem we consider is to keep the number of infected individuals below a certain
threshold by adjusting the average transmission rate and the parameters of the contact distribution
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over time.
More specifically, we consider an individual-based model where contacts follow a negative bino-

mial distribution. Such a distribution is used to model populations with super-spreaders [28] and is
parametrized by its mean value α > 0 and the so-called dispersion coefficient κ > 0. Misleadingly,
since the variance in the contacts distribution is α + α2/κ, a low value of the dispersion coefficient
κ is associated with a high variance of the contact distribution and thus with the presence of super-
spreaders. The dispersion control acts mainly on the super-spreaders while the control of the average
transmission rate β = αβind is a uniform control on the population. We are therefore interested in
defining an optimal pair (β(·), κ(·)) = (b(·)β0, k(·)κ0), with the smallest deviation from the initial
values (β0, κ0), in order to maintain the number of infected people below a certain threshold.

For small graphs, a possible approach is to use convex optimisation techniques such as geometric
programming [35]. However this type of methods does not scale well to larger graphs. On the other
hand, when the graph represents the links between certain cities, analytical approaches are also used
to solve the control problem [38]. To define a control of the Markovian stochastic individual-based
model, a classical approach consists in using dynamic programming algorithms. Indeed, the problem
can be formulated as a Markov Decision Process (MDP) [42], with given probability transitions
between the 3N states of the SIR model, where N denotes the number of individuals. For large N ,
it is no longer possible to easily deal with such a model completely and a reinforcement learning
approach should be used. In [6], a Deep-Q reinforcement learning algorithm is applied to large graphs
using a global control on agents (in the case of partially observable MDP). For such global control
problems, cooperative multi-agent approaches can also be used [27]. Another approach is to consider
reinforcement learning based on a reduced model. As proposed in [2], it may be interesting to rely
on simpler models, like population-based ones, for which the standard control theory framework
applies. The optimal control strategy for the reduced model is then used as the starting point for
designing controls for the individual-based model.

Regarding the control of population-based models, references are numerous: they are generally
based on the use of optimality conditions such as the Pontryagin Maximum Principle (PMP). If few
of them propose an analytical design of the controls (see for instance [4, 5]), many introduce adapted
optimization algorithms based either on a discretization of the complete problem (discretize then
optimize, see e.g. [31]) or an algorithm on the continuous problem applied on a discretized version
of the model (optimize then discretize, see e.g. [4, 5]).

1.3 Initial objective, added value of the approach and organization of the article

The initial objective of this paper is to propose a local control approach based on a reduced model
of the individual-based model. The focus is on the methodology and strategy of the approach.

This optimal control strategy on a reduced model could be developed and optimised thanks to
the estimation of quantities of interest, such as the reproduction ratio R0, at first sight secondary,
but in fact crucial to justify the choices made in the elaboration of the strategy. This is why we
have clarified them in the appendix in order to motivate the choices made thereafter. Modelling
(e.g. taking into account super-spreaders) and comparison with the reality of health policies (e.g.
interpretation of the final controls obtained) are also secondary in our approach and, as such, will
not be addressed in the numerical results.

In this work, the proposed strategy for designing a control of the individual-based model is
decomposed into the three following steps:

(i) First, using neural networks, learn a reduced population-based SIR model via data coming
from numerical simulations of the individual-based model.
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(ii) Then, define a control of the parameters of the population-based models.

(iii) Finally, use a model-based reinforcement algorithm to improve the population-based model
around the controlled solution and thus the control itself.

The data-driven population-based SIR model is intended to capture the effect of heterogeneity in
the contact distribution and the stochastic effects due to relatively small size of the population. The
model therefore depends on the dispersion parameter κ, the transmission rate β and the relative size
of the population n, a coefficient depending on N describing the closeness to the large population
regime.

The neural network is trained to compute the time variation of the number of susceptible people
following an ordinary differential equation of the form S′ = −Fθ(S, I;n, β, κ), where θ denotes a
parameters vector. Note that throughout this study, the recovery rate γ is fixed, equal to 1/6 day−1.
Then, the optimal control of the data-driven population-based SIR model is defined by means of an
optimal control algorithm. This will define time-varying parameters (β(t), κ(t)). However, since the
learned population-based model is not a priori trained with such time varying parameters, the latter
control is not well adapted to the underlying individual-based model. This is why the reinforcement
strategy is essential to obtain a meaningful control with respect to the individual-based model.

The outline of the article is as follows. In the second section, we discuss the principles underlying
the construction of the individual-based SIR model as well as the methodology used to average time-
series of this stochastic system. We then introduce the main problem we aim to solve in this paper: an
optimal control problem of the individual-based model. In the third section, we present the proposed
method to solve the optimal control problem. We first describe how the data-driven reduced SIR
model is constructed from the data using a classical multi-perceptron neural network. A theoretical
analysis is performed to show that the control of the data-driven SIR reduced model is well defined
and then the reinforcement strategy is detailed. Finally, in the fourth section, several numerical tests
are performed to assess the validity of the whole methodology. A few appendices conclude this paper
by detailing technical points on the individual-based model (Appendix A), the reduced data-driven
population-based model and its proper utility to evaluate epidemiological quantities, especially in
parameter regimes not covered by the classical SIR model (Appendix B), some proofs of the control
section (Appendix C) and numerical algorithms (Appendix D).

2 Optimal control problem of an individual-based SIR model

In this section, we first introduce the individual-based SIR model, hereafter denoted (IBM), which
is able to take into account numerous aspects and most notably the epidemic dynamics involving
contact heterogeneity among the population. We then explain the challenges and method used to
approximate the averaged dynamics of the stochastic IBM. After that, we introduce an optimal
control problem for the IBM in which we seek to curb the spread of the epidemic.

In Table 1, we gather all the parameters introduced in the models presented in this section, in
order to facilitate its reading. The reader wishing to find the definition of the parameter as well as
the place where it is introduced in the article can thus refer to the table below.

2.1 Individual based SIR model: graph and continuous-time Markov process

The individual-based SIR model consists of a graph with N vertices, together with the specification
of the SIR dynamics. Each vertex represents one individual, whose epidemic state over time is
denoted Xj(t) ∈ {s, i, r} for t ⩾ 0, for susceptible (s), infected (i) and retired (r). The edges of
the graph represent the contacts between individuals: the number of contacts of the j-th individual
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N total number of individuals Section 1.2
n population size ratio Section 3.1
βind individual transmission rate Section 2.1
γ recovery rate Section 2.1
α average number of contacts Section 2.1
β = αβind mean transmission rate Section 2.1
κ dispersion coefficient Section 2.1
β0 initial transmission rate Section 2.3
κ0 initial dispersion coefficient Section 2.3
b(t) = β(t)/β0
k(t) = κ(t)/κ0

control functions Section 2.3

bmin ∈ (0, 1] minimal pointwise value of the control variable b Section 2.3
kmax > 1 maximal pointwise value of the control variable k Section 2.3
Ihosp < 1 threshold used in the cost function to penalize the number

of infected individuals in hospitals
Imax ∈ (Ihosp, 1] threshold used in the cost function to penalize the maximum

number of infected individuals

Table 1: Parameters of the model and the optimal control problem

is denoted νj ∈ N. Then the dynamics is described by a continuous-time Markov process, whose
two main parameters (common to all nodes) are the individual transmission rate βind > 0 and the
recovery rate γ > 0.

The state space of the Markov process consists of the 3N possible configurations of the individuals
of the graph and the continuous-time Markov process can be defined by the transition rate from one
configuration to another as follows. If two configurations differ for the j-th individual only, which
goes from susceptible to infected (s→ i), then the transition rate equals βdj where dj is the number
of its infectious contacts and β = αβind is the mean transmission rate, with α > 0 denoting the
average number of contacts in the graph. If two configurations differ for the j-th individual only,
which goes from infected to recovered (i→ r), then the transition rate equals γ. We refer to [23] for
a detailed description of this model.

More precisely, the changes of state of the individuals in the graph occur one by one at random
times (Tm)m∈N. Given the graph state at time Tm, the next time Tm+1 and the associated transition
are defined as follows. We assign random clocks Cj to any states and these clocks follow exponential
distributions. If the j-th individual is infected then the exponential distribution has a rate γ. If
the j-th individual is susceptible, then the exponential distribution has a rate βdj . Then the next
transition occurs for the j∗-th individual at time Tm+1 = Tm + Cj∗ , where j∗ corresponds to the
smallest clock time among all individuals: Cj∗ = minj Cj . With such dynamics, the more contacts
an individual has with infected neighbors, the more likely he is to be infected in turn.

To investigate the role of super-spreaders in the dynamics, we consider a heterogeneous distribu-
tion of contacts. Accordingly, the edges of the graph are distributed such that the number of contacts
νj of the j-th individual follows a (generalized) negative binomial, also called Pólya, distribution1:

νj ∼ BN
(
κ,

κ

α+ κ

)
,

1The probability distribution of the Pólya distribution writes: P (νj = k) = Γ(α+k)
k!Γ(α)

(1 − p)kpα for all k ∈ N, with
p = α

α+κ
.
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where κ > 0 is the dispersion parameter. The mean of the distribution is α and the variance equals
α+α2/κ. Thus, a small dispersion coefficient κ corresponds to a large variance and so to the existence
of super-spreaders (see Figure 1). For large κ, the Pólya distribution converges (in law) to the Poisson
distribution used to model a homogeneous population (see Figure 1). With this distribution, the
heterogeneity of contacts relatively to the average number of contacts is parametrized by α/κ. In
practice, in order to fit this distribution, the edges are constructed using the Molloy-Reed algorithm
[34].

The possible controls of this model can either act on the individual transmission rate βind (by
imposing masks, for instance) or on the contact distribution parameters (α, κ) (one can think for
example of the lockdown or the closing of the restaurants). However, the control of βind and α are
quite similar as they both modify the mean transmission rate β = αβind, which is the key parameter
for epidemics developments. Thus the two main parameters that we are aiming to control are:

(i) the mean transmission rate β = αβind,

(ii) the dispersion coefficient κ,

while the recovery rate γ and the population size N are two given quantities.
The model is one of the simplest model for the dynamics of epidemics on graphs. It is simulated

by using a Gillepsie algorithm [15]. We refer to [23] for more details. We performed numerical
simulations for this model using the Python packages EpidemicsOnNetworks [32] and NetworkX
[19]. At time t = 0, a given proportion of states are randomly initialized as infected, the others
being considered as susceptible.

2.2 Time shifted averaged dynamics

For modelling and control purposes, we are interested in deriving a population-based model which
approximates the dynamics generated by the individual-based model.

We are therefore looking at the dynamics of the average number of susceptible, infected and
recovered individuals in the graph:

S(t) =
1

N

N∑
j=1

P (Xj(t) = s), I(t) =
1

N

N∑
j=1

P (Xj(t) = i), R(t) =
1

N

N∑
j=1

P (Xj(t) = r).

To this end, we calculate the average of several time series associated with the same set of parameters
(β, γ, κ,N). In cases where the population size is particularly small or where super-spreaders drive
the epidemic, two main difficulties arise: (i) some simulations lead to immediate extinctions whereas
others lead to outbreaks, (ii) the onset of the epidemic occurs at random times. Consequently,
as illustrated in Figure 2, computing the average trajectory via a naive average frequently leads
to severe underestimations of the total number of infected individuals I(t), as already noted in [23,
Appendix A.2]. A standard way to overcome this issue is to compute the standard point average only
after time-translating the time series so that the outbreaks all occur at the same time. Details on
the calculation of the average trajectories can be found in Appendix A. Although it seems that this
method mostly solves the issues mentioned above and gives robust results, as a safeguard, individual
stochastic trajectories will also be displayed when plotting the results.

Although we are interested in the averaged dynamics, there is no associated closed differential
model for these quantities. Indeed, without the time shift, the averaged quantities solve the following
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differential equations (see [23]):

S′ = −βind[SI], (1)

I ′ = βind[SI]− γI, (2)

R′ = γI, (3)

where the quantity [SI] denotes the average number of edges connecting an infected and a susceptible
individual:

[SI](t) =
1

#C

∑
(j,k)∈C

P (Xj(t) = s,Xk(t) = i).

where C denotes the set of contacts and #C its size. Obtaining a closed system requires a relation
between [SI] and the variables S, I. For a homogeneous contact graph, the relation [SI] = αSI/N is
valid in the large population limit. However, since we consider contact heterogeneity and time-shift,
this relation is no longer valid.

Figure 1: Pólya distribution (orange) of the number of contact ℓ for increasingly large dispersion
coefficient κ and fixed mean α. Comparison with the Poisson distribution of mean α (blue) to
illustrate convergence of the Pólya distribution to the Poisson one as κ→∞.

2.3 Optimal control problem of the IBM

In this section, we define a control problem for the individual-based model with heterogeneous
contacts. The aim is to minimize the maximum number of infected individuals by including an
important constraint reflecting the limited capacity of hospitals. In what follows, we will use the
coefficients β and κ as optimization variables to contain the epidemic. Action on β can be seen
as mandatory measures affecting the whole population (e.g. lockdowns or wearing masks indoor)
contrary to action on κ which focuses on super-spreaders (e.g. cancelling of large events or imposing
one to hold a valid COVID-19 certificate).

Suppose that at the initial time, only a small fraction of a population of size 1 = S(t)+I(t)+R(t)
has contracted a disease whose transmission rate is estimated to be β0 and that the coefficient of
dispersion is approximately known to be κ0. Furthermore, let T > 0 be the time horizon up to which
we wish to study the effect of given health policies and Tc < T be the non-negative time required for
a sufficient number of secondary infections to occur and the health authorities to intervene. At this
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Figure 2: Simulations of S(t) (left) and I(t) (right) illustrating the insufficiency of a naive average:
the delays in the start of the epidemic due to stochasticity lead to an underestimation of the instan-
taneous number of infected people. It also illustrates the importance of modelling the dispersion
since here, in the homogeneous case (κ = +∞, corresponding to a Poisson distribution), there is
immediate extinction. (n, β, γ, i0) = (0.25, 0.15, 0.15, 0.001).

time, the state of the population is denoted by the non-negative numbers Sc and Ic. We consider
health policies b(·) := β(·)/β0 and k(·) := κ(·)/κ0 with bounded values over the time interval [Tc, T ].
More precisely, the set of admissible control is

U =
{
(b, k) ∈ L∞(Tc, T ;R

2) : bmin ≤ b(t) ≤ 1, 1 ≤ k(t) ≤ kmax a.e.
}
, (4)

where bmin ∈ (0, 1] and kmax > 1 are given and reflect the fact that a perfect application of sanitary
measures is unrealistic.

Towards an optimal control problem for the IBM. There are different aspects that we want
to include in the definition of the optimal control problem:

• on the one hand, the application of sanitary measures can be detrimental in the long run, both
to the mental health of the citizens but also to the economy. We therefore choose to integrate
weights in the definition of the criterion, which represent the trade-offs a political decision-
maker has to consider. This makes it possible to penalize or not certain types of measures
(confinement or closure of certain public places) in the cost of control.

• on the other hand, we wish that the epidemic dies out as soon as possible without putting
too much pressure on the health infrastructures (hospitals, intensive care units). This stress
translates mathematically to proportions of infected individuals above a given threshold Ihosp.

These considerations lead us to balance the costs using a convex combination of terms involving
three non-negative weights ωβ, ωκ and ωhosp. The last term of the cost function aims at penalizing
strongly, say by 1/ε for a small positive ε, any control leading to proportions of infected individuals
above a certain threshold Imax ∈ (Ihosp, 1]. This constraint can be understood as a strong constraint
such as the one on intensive care beds for example.

Thus, denoting by IIBM the second component of the (S, I) solution to the IBM associated with
a (b, k) health policy, the previous elements are taken into account in the fixed-time optimal control
problem

inf
(b,k)∈ U

JIBM[b, k] (5)
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relying on the cost functional JIBM defined on the set of admissible controls U by

JIBM[b, k] =
1

2

∫ T

Tc

ωβ (1− b(t))2 + ωκ (k(t)− 1)2 + ωhosp

(
IIBM(t)

Ihosp
− 1

)2

+

+
1

ε

(
IIBM(t)

Imax
− 1

)2

+

dt,

Notice that, in the above definition, the purpose of the positive part function is to avoid penalizing
efficient health policies that limit the quantity of sick individuals to proportions lower than Ihosp.

3 Optimal control method

Determining solutions to the optimal control problem (5) for the IBM is a complex and computation-
ally expensive task. The proposed strategy is to solve the optimal control problem for an associated
population-based reduced model which faithfully reproduces the time-shifted averaged dynamics of
the IBM. This population-based reduced model is constructed using a neural network and iteratively
improved in order to best fit the the solution around the optimal control trajectory. The overall
methodology is summarized in Figure 3.

Data set Dp
Learn reduced model

(RMθ(p))
Solve OCP

(b̂, k̂) ≃ (b∗, k∗)[θ(p)]

Reinforcement
Dp ∪ {((Sm, Im)IBM, b̂m, k̂m)m}

Errors ≤
Tolerance?

Test control on (IBM)
(S, I,R)IBM

Done.

No

Yes

Figure 3: Blue blocks: learning of a reduced model (RMθ(p)) described in Section 3.1. Red blocks:
resolution of the optimal control problem on the reduced model described in Section 3.2. White
blocks: reinforcement step described in Section 3.3. Index p refers to the iteration of the reinforce-
ment algorithm consisting in sequentially updating the data set and the reduced model.

3.1 Construction of a data-driven population-based reduced model

This subsection deals with the construction of a deterministic closure for the population-based model
(1)-(2)-(3) which faithfully approximates the dynamics of the stochastic individual-based model.
Using supervised machine learning techniques, the main goal is to capture, through an SIR-like
system of autonomous differential equations, the effects of contact heterogeneity and population size
on the dynamics of an epidemic. More precisely, we assume the following relationships hold between
the state variables S, I,R and their time derivatives:

S′ = −Fθ(S, I;n, β, κ),
I ′ = Fθ(S, I;n, β, κ)− γI,
R′ = γI,

(RMθ)
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where γ is still the individual recovery rate and the function Fθ : R5 → R is a parametrized incidence
function [30] whose purpose is to approximate the term βind[SI].

Its inputs are assumed to be both the instantaneous proportion of susceptible S and infected I
individuals, as well as three positive parameters: the population size ratio n = min{1, N/Nmax}, the
mean transmission rate β and the dispersion coefficient κ. The introduction of the parameter Nmax,
taken equal to 20, 000, allows us to extend our approach to large population sizes. From a practical
point of view, we choose Nmax empirically in such a way that the population dynamics did not vary
anymore when increasing Nmax, but the approach stays valid for a larger value of Nmax. In other
words, n is a ratio describing the closeness to the large population regime.

In order to ensure that the state variables remain in the interval [0, 1], it is further assumed that
the incidence function writes:

Fθ(S, I;n, β, κ) = fθ(S, I;n, β, κ)SI, (6)

where fθ : R5 → R is another function, with the same inputs, called the transmission rate function.
For the sake of clarity, we postpone to Appendix C details on regularity assumptions on both
functions fθ and Fθ, as well as well-posedness issues (existence and uniqueness of an absolutely
continuous global solution with non-negative components) of System (RMθ). From now on, we
will assume that such regularity properties on Fθ are satisfied so that System (RMθ) has a unique
solution which is moreover Lipschitz, with non-negative components. Note that because S+I+R = 1
(remember that these quantities are proportions), all state variables of (RMθ) are bounded from
above by 1 and one of the three equations in (RMθ) is redundant. Hence, the equation corresponding
to recovered individuals is hereafter omitted.

Neural network structure. The function fθ is built by means of a fully-connected neural network
(or multilayer perceptron), which shows a great ability to learn non-linear functions [46, 17]. The
function is then defined by composition of layers: each layer performs an affine transformation on its
inputs and then applies a non-linear function (a so-called activation function) which is determined
in advance. All the coefficients involved in the affine transformations are thus parameters of the
function fθ and correspond to the vector-valued parameter θ. The neural network structure is then
determined by so-called hyperparameters, for instance, the number of layers, the input and output
sizes of each layer and the activation functions used. The hyperparameters that we have selected
are specified in Table 2 (left column).

Hyperparameters Values Learning parameters Values

Neurons per layer 64 / 128 / 64 / 16 Initial learning rate 10−3

No. inputs / outputs 5 / 1 Validation split 15%
Inputs normalization Centered and reduced Cost function Mean squared error
Initialization Orthogonal Optimizer Adam
Activations [Last] ReLu [Linear] Batch size 512
Learning rate schedule Exponential Epoch 15

Table 2: Practical details regarding the learning of the transmission rate function fθ using the open-
source Python library Keras [12].

Learning the transmission rate function from data. According to the authors in [1], there
are two approaches for data-driven closures: model regression and trajectory regression. The model
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regression approach consists in solving a regression problem on the quantity we aim to approximate∑
([SI],S,I;n,β,κ)∈D

|βind[SI]− Fθ(S, I;n, β, κ)|2

This approach seems costly since it requires computing the probability [SI] using the IBM. In the
second approach, the regression problem involves the left term dS/dt instead of the term βind[SI]
which only requires simulating the IBM and approximating the time-derivative of S. In the remain-
ing, we will use the latter approach.

We now discuss how the closure is constructed. The parameter θ is set in such a way that the
transmission rate function fθ best approximates the rate observed on the individual-based model
simulations. More precisely, the parameter θ is found by regression, i.e. by minimizing the mean
squared error:

L(θ) =
∑

(S̃,S,I;n,β,κ)∈D

∥∥∥∥∥fθ(S, I;n, β, κ)− S̃ − S

∆t SI

∥∥∥∥∥
2

,

where D denotes the data set composed of samples (S̃, S, I;n, β, κ), where S, I are the average
number of the susceptible and infected populations at a given time t, S̃ the value at time t + ∆t,
obtained after averaging individual-based simulations with parameters (n, β, κ). The hope is that,
by considering a diverse enough data set, the function corresponding to an optimal parameter will
manage to capture the underlying trend which relates the inputs to the output, especially for input
values lacking in the data set. Details about the practical implementation of the learning algorithm
are displayed in Table 2 (right column).

To generate the data set, parameters (n, β, κ, I(0)) are chosen randomly according to the dis-
tributions given in Table 3. The susceptible state at t = 0 is then S(0) = 1 − I(0). Next, we
run the individual-based model over a given time interval. We then average the time-series of the
corresponding susceptible and infected populations over 50 simulations at discrete times tm = m∆t.
For the simulations, we choose ∆t ≃ 0.28. Repeating this process a significant number of times and
storing the results makes up the training data set D which, in our case, contains about 7.4 millions
of samples.

Parameters Lower bound Upper bound Units Interpretation

n 0.1 1 - Population size ratio
β 0.075 0.9 days−1 Transmission rate
κ 0.1 10 - Dispersion coefficient

I(0) 10−4 10−3 - Initial proportion of infected people

Table 3: Samples used to learn the function fθ have their input parameters randomly drawn (uni-
formly for n, β and log-uniformly for κ and I(0)) in a subset of their possible values.

Global model validation Once the parameters defining the transmission rate function fθ have
been determined, the validation step is carried out to prevent over-fitting and evaluate the model
accuracy. To do so, we select unseen values of (n, β, κ) in the ranges of interest (see Table 3) for
which the population-based model (RMθ) is numerically solved over a given time horizon. Then, the
corresponding trajectory of (S, I) is compared to the one simulated via the (IBM) initialized with the
same parameters. In each case, the time-series of the number of susceptible and infected individuals
are compared based on their qualitative behaviour as well as quantitative error criteria. To be more
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Figure 4: Response (susceptible evolution in the left, infected evolution in the right) of the learned
model (RMθ) to parameters that are constant over time. In the legend, these are specified in the
format (n, β, κ). Learning is based on the data set D. In dotted lines with markers: predictions of
the (RMθ) learned model. In continuous lines: average of the IBM trajectories.

specific, we were mostly interested in the ability of the learned model (RMθ) to correctly predict
immediate disease extinctions, even in parameter regimes in which stochasticity plays a significant
role (low dispersion coefficient κ or small population size ratio n).

On Figure 4, we illustrate our approach on several examples by comparing, for different pa-
rameters (n, β and κ), the average of the IBM and our data-driven population-based model. The
outcome is pretty convincing and the reduced model shows decent accuracy for a wide range of
parameter values (low population size ratio and dispersion coefficient, etc.). These results suggest
that the model captures well the dynamics involved in a heterogeneous epidemic and might be used
to analyze those. Indeed, the reduced model is overall accurate and capable of predicting immediate
extinctions (see the purple and orange trajectories). In Appendix B, we present some other features
of the reduced model and in particular its ability to predict key epidemiological quantities such as
the threshold number R0.

Limitations of a global reduced model for time-dependent parameters The results of
the previous paragraph show that the data-driven population-based model (RMθ) is able to capture
complex dynamics with super-spreading in a wide range of population size ratios. Moreover, the
neural network structure of the incidence function makes numerical computations easier and the
resulting function Fθ enjoys nice properties (at least local Lipschitz continuity) helping with the
theoretical analysis of the ODE model.

However, all previous simulations were concerned with parameters β and κ that were constant
over time. When considering time varying parameters and seeking to build a robust reduced model
able to handle numerous values of n, β and κ (cf. Table 3), which is what would be required to
control its dynamics, the model no longer works well as observed on Figure 5. Indeed, in the
latter, we simulate two epidemics with time piece-wise constant β and κ parameters and the main
observation is that the reduced model approximates well the average of the IBM until the first time
at which the parameter-values change. Then, the accuracy worsens more and more as the number
of changes increases. For instance, the reduced model fails to capture the last epidemic rebound in
Figure 5 (a).

The incidence function is a function mapping a subset of R5 into R. When training the reduced
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(a) n = 0.5, β = (0.5, 0.1, 0.1, 0.9),
κ = (0.2, 0.6, 1, 1)

(b) n = 0.75, β = (0.9, 0.2, 0.4, 0.9),
κ = (10, 0.5, 5, 10)

Figure 5: Comparison of the trajectory I between the (RMθ) model (dashed line blue) and IBM (in
black on the figure) in two cases where the parameters β (red squares markers) and κ (green triangle
markers) vary over time.

model using constant coefficients the samples generated by the simulations only cover a smaller part
of this subset compared to the varying coefficient case. For example we observe cases where S is very
close to zero and I is reaching a peak. A possible explanation of the difficulty to approximate the
target function when dealing with time-varying parameters could be the conjunction of a (globally)
badly-behaved function (difficult to learn) and a subset of data larger than in the constant case.

Provided that the above explanation is correct, there is hope that learning the reduced model
based on a training data set involving fewer combinations of the parameters will lead to better
results. This issue together with finding the right subset of parameters to include in the data set is
dealt with in Section 3.3. For now, we will attempt to find an optimal control of the reduced model
based on the optimal control problem (5) defined for the IBM.

3.2 Optimal control algorithm of the reduced model

Recall that we choose to use a reduced model to determine an optimal policy for the IBM. However,
as mentioned in the previous paragraph, the reduced model is not accurate anymore whenever β
and κ vary over time. This is problematic. Indeed, this lack of accuracy means that an optimal
control for the reduced model will likely fail to contain the epidemic on the IBM, since a candidate
control is likely to involve time-variations of β(t) and κ(t). To avoid this, we will use the principle
of model-based reinforcement learning [26]. That is, we will learn a local model around a trajectory,
compute the associated control and then learn the controlled trajectory. By repeatedly applying
these steps, we expect to obtain a control that is relevant to the original individual-based model.

To implement the above strategy, we first need to define and be able to solve an optimal control
for the data-driven population-based SIR model constructed in Section 3.1. This section is thus
dedicated to applying the standard theory of optimal control (OC) to the learned model (RMθ)
involving the incidence function Fθ whose expression has been obtained thanks to a neural network.
Recall that the weights of the latter neural network have been optimized so that the output of
Fθ accurately estimates the rate of change of the proportion of susceptible individuals (see Section
3.1). However, it is not clear that the partial derivatives of Fθ = Fθ(S, I;n, β, κ) are also good
approximations of the corresponding quantities. Thus, when solving the equations numerically,
difficulties may arise due to the fact that the tools of OC theory rely heavily on the differentiation
of the system dynamics with respect to the state variables and control.
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Reduced system under control. The equations describing the dynamics of the reduced system
under the admissible health policies (b, k) ∈ U are given over the time interval [Tc, T ] as(

S′

I ′

)
= g (S, I, bv(k), k) ,

(
S
I

)
(Tc) =

(
Sc

Ic

)
, (7)

where we have defined the right-hand side by

g : R4 ∋ (a, b, c, d) 7→ (−Fθ(a, b;n, cβ0, dκ0), Fθ(a, b;n, cβ0, dκ0)− γb) ∈ R2.

Let us also comment on the choice of transmission rate bv(k) appearing in model (7). The mapping
v is defined as a non-increasing function of k by

v : [1, kmax] ∋ k 7→ 1/ (1 + log10(k)) ∈ R.

It is a relatively simple way to account for the fact that controlling super-spreaders (e.g. closing down
certain public places or introducing mandatory COVID-19 certificates) invariably has an influence
on the whole population. Mathematically, we take this into account by expressing that the action
on κ (the action on the super-spreaders) also has a small influence on β (on the whole population).
Introducing an effective rate bv(k) enables us to couple both the controls. On top of that, we will
from now on make the following regularity assumptions on the function Fθ:

Fθ : Ω→ R belongs to W 1,∞ and is of the form given in Equation (6), (HFθ)

where Ω = [0, 1]3 × [β0bmin, β0] × [κ0, κ0kmax]. Under this assumption, System (7) has a unique
global solution that belongs to W 1,∞(Tc, T ;R3), according to Appendix C. Moreover, since the total
population size is constant in time, it is enough to consider only the (S, I) equation in the control
problem.

Cost function definition. The optimal control problem for the reduced model mimics the one
we defined for the IBM (see Equation (5)), except that the cost functional J also penalizes the cost
of the control. More precisely, we consider the optimal control problem

inf
(b,k)∈ U

J [b, k] (OCP)

where, denoting by Ib,k the second component of the (S, I) solution to (7) associated with a (b, k)
health policy,

J [b, k] =
1

2

∫ T

Tc

ωβ (1− b(t))2 + ωκ (k(t)− 1)2 + ωhosp

(
Ib,k(t)

Ihosp
− 1

)2

+

+
1

ε

(
Ib,k(t)

Imax
− 1

)2

+

dt.

On the existence of an optimal control. In the problem (OCP), the control intervenes in the
dynamics in a strongly nonlinear way. It is known that, for such control problems, it is not guaran-
teed that a solution exists and phenomena such as relaxation or homogenization of the minimizing
sequences, leading to numerical pathologies, may occur. For this reason, we will in fact slightly
modify the previous optimal control problem by adding a regularization term to the cost function
J . We have decided to consider here a BV regularization2 of (OCP), by introducing the following

2Recall that if Ω denotes an open set of Rn, f belongs to BV(Ω) whenever f belongs to L1(Ω) and

TV(f) < +∞ where TV(f) = sup
ψ∈C1

c (Ω;Rn)
∥ψ∥L∞(Ω)=1

∫
Ω

f divψ.

The Banach space BV is endowed with the norm ∥ · ∥BV(Ω) defined by ∥f∥BV(Ω) := ∥f∥L1(Ω) +TV(f).
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problem:

inf
(b,k)∈ U

Jδ[b, k] , (OCPδ)

where δ > 0 is a parameter standing for the strength of the regularization and

Jδ[b, k] = J [b, k] + δ(TV[b] + TV[k]).

Such a regularization is interesting from several points of view. For example, if the control is of the
bang-bang type3, the BV regularization imposes a maximum number of switches, which may reflect
an economic cost. On the other hand, this term imposes that the control belongs to the BV Banach
space, which leaves the freedom to choose the control functions among a large variety of functions,
not necessarily continuous.

We claim that Problem (OCPδ) has a solution (b, k). Since the arguments are rather standard,
we refer to Appendix C for additional explanations. Let us now introduce the first-order optimality
conditions for this problem, which are at the heart of the numerical solution algorithm that we then
implement. The optimality conditions for this problem involve the notion of subdifferential ∂ TV of
the total variation operator. For the sake of readability, the proof of the following result is postponed
to Appendix C.

Theorem 3.1. Let Mθ(S, I;n, β0bv(k), κ0k) denote the matrix

Mθ =

(
−∂1Fθ(S, I;n, β0bv(k), κ0k) −∂2Fθ(S, I;n, β0bv(k), κ0k)
∂1Fθ(S, I;n, β0bv(k), κ0k) ∂2Fθ(S, I;n, β0bv(k), κ0k)− γ

)
(8)

and let [p1, q1, p2, q2] denote the solution of the (linear) adjoint system

− d

dt


p1
q1
p2
q2

 =

(
M⊤

θ 0M2(R)

0M2(R) M⊤
θ

)
p1
q1
p2
q2

+

(
ωhosp

Ihosp

(
I

Ihosp
− 1

)
+

+
1

Imaxε

(
I

Imax
− 1

)
+

)
0
1
0
1

 (9)

completed with the terminal conditions

p1(T ) = q1(T ) = p2(T ) = q2(T ) = 0.

The functionals U ∋ [b, k] 7→ (S, I) ∈ [W 1,∞(Tc, T )]
2 and J are differentiable, where the pair (S, I)

denotes the solution of (7) associated with the control choice (b, k). Furthermore, the differential of
J is given by

⟨dJ [b, k], [h1, h2]⟩ =

∫ T

Tc

(h1∂bJ(b, k) + h2∂kJ(b, k)) dt (10)

for every [b, k] ∈ U and every admissible perturbation4 [h1, h2], where

∂bJ(b, k) = ωβ (b− 1) +

(
p1
q1

)
·
(
−β0v(k)∂4Fθ

β0v(k)∂4Fθ

)
∂kJ(b, k) = ωκ (k − 1) +

(
p2
q2

)
·
(
−β0bv′(k)∂4Fθ − κ0∂5Fθ

β0bv
′(k)∂4Fθ + κ0∂5Fθ

)
.

3In other words, if the control takes only two distinct values.
4More precisely, we call “admissible perturbation” any element of the tangent cone T[b,k],U at [b, k] to the set U . The

cone T[b,k],U is the set of functions [h1, h2] ∈ L∞(Tc, T ;R2) such that, for any sequence of positive real numbers (εn)n∈N

decreasing to 0, there exists two sequences of functions hi,n ∈ L∞(Tc, T ) converging to hi, i = 1, 2, as n → +∞, and
[b, k] + εn[h1,n, h2,n] ∈ U for every n ∈ N.
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Now, let us assume that (HFθ) is true and let (b, k) denote a solution to Problem (OCPδ). There
exist Tb ∈ ∂ TV(b) and Tk ∈ ∂ TV(k) such that

∀(B,K) ∈ L∞(Tc, T ; [bmin, 1])× L∞(Tc, T ; [1, kmax]),

{ ⟨∂bJ − Tb, B − b⟩L2(Tc,T ) ≥ 0

⟨∂kJ − Tk,K − k⟩L2(Tc,T ) ≥ 0.

Remark 3.2 (subdifferential of the total variation). Let us recall that, according to [10, Proposi-
tion I.5.1], the subdifferential of the total variation is given by

∂ TV(b) = {η ∈ C0([Tc, T ]) | ∥η∥∞ ≤ 1 and

∫
ηdb = TV(b)}.

From a practical point of view, we will not directly use these optimality conditions which remain
rather abstract written as they are. Instead, we will regularize the TV term and introduce a de-
scent method using the differential calculation established in Theorem 3.1, using the adjoint state
(p1, q1, p2, q2). The implemented algorithm is introduced in Appendix D.

As explained earlier, we will consider an optimal control computed from the reduced nonlinear
model that we will apply to the individual-based model. To numerically compute an estimate
of the control solving the (OCPδ) problem, we use a direct approach consisting in discretizing
the differential systems involved via a regular S subdivision of the [Tc, T ] interval with step-size
∆t. This also allows us to transform the optimal control problem into a nonlinear program whose
decision variables are the control values (b, k) evaluated at each point of S. The optimization of
the latter values is performed using a relatively simple adaptive step projected gradient algorithm,
using a linear search of the step size taken in the direction of greatest descent5. In order to limit
the computational cost, the latter online search is performed using a gradient-free method called
golden-section search [39]. Details are provided in Appendix D.

0 10 20 30 40 50

t

0.0

0.2

0.4

0.6

0.8

1.0

S∗

I∗

R∗

Imax
Ihosp

(a) Trajectories with (solid line)
/ without (dashed line) control.

0 2 4 6 8 10 12 14

t

0.0

0.2

0.4

0.6

0.8

1.0

β
/β

0

b∗

2

4

6

8

10

κ
/κ

0

k∗

(b) Evolution of the controls over the
first 15 days. Afterwards, the con-
trols remain constant.

0 10 20 30 40

Iteration, p

10−1

100

C
os

t,
J
p
/J

0

10−4

10−3

10−2

10−1

100

S
te

p
si

ze
(d

ot
s)

(c) Cost (black triangle markers) and
descent step evolution.

Figure 6: Example of controlled trajectories. Parameters: (n, β0, κ0) = (0.6, 0.8, 0.4), Tc = 1, T = 50,
∆t = 0.1, δ = 10−7, ε = 10−2, (Ihosp, Imax) = (5%, 10%), (ωβ, ωκ, ωhosp) = (0.2, 0.2, 0.6). Here 50
iterations are required for the gradient descent to converge. On the right figure, Jp denotes the value
of Jδ at the p-th iteration.

In Figure 6, we give an example of control computations on the reduced model independently
of the individual-based model. On the left, we see an example of uncontrolled (dashed lines) and

5In other words, such that the next control leads, after projection onto the set of constraints, to the greatest
possible decrease in the value of the cost functional
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controlled (solid lines) trajectories. We obtain that the maximum number of infected is exceeded
during a very short time compared to the uncontrolled trajectories. Since the beginning of the
control is delayed (by Tc) and since it is not realistic to set β (resp. κ) too low (resp. too high), it
is sometimes not possible to avoid exceeding Imax. Let us also note that the implemented gradient
algorithm allows a priori to determine only local minima: there is no guarantee that a global
minimizer has been obtained. In the middle, we plot the associated controls of the coefficients β
and κ. Finally, we show on the right the evolution of the cost function and size of the descent step.
As expected, we obtain a decreasing cost function. This example illustrates the accuracy of the
algorithm used to find optimal controls of the reduced system. Based on the latter, we will now
present the main algorithm of this paper which gathers all together the tools we developed so far to
construct approximate solutions to the control problem (5) for the IBM.

3.3 Reinforcement learning strategy to improve controls

In the model-based reinforcement learning problems, there are two families of approaches: the global
model-based methods and the local model-based methods (see e.g. [24, 8]). At the end of Section 3.1,
we have seen that it is difficult to build a versatile (global) model capable of handling time-varying
parameters (β, κ). Therefore, we propose to use a more local approach.

Recall that in Section 3.1, the complexity of the individual-based model was simplified to obtain
a reduced model (RMθ) consisting of only two deterministic ODEs, at the cost of richness and
accuracy. The reduced model approaches the dynamics of the individual-based model over a wide
range of constant parameters (i.e. large ranges of values of n, β, and κ). In Section 3.2, we looked
for an optimal health policy specifically for the reduced model. A question then naturally arises:
to what extent can a control minimizing the cost function of the optimal control problem for the
reduced system be used to obtain a ”good” control for the original individual-based model? As
explained in Section 3.1, this naive approach is lacking because a versatile reduced model can fail
to be accurate when β and κ vary over time (which is the case when applying a control policy). We
now seek to overcome this issue by constructing a reduced model specialized around a given set of
parameters (n, β0, κ0) and whose sole purpose is to approximate only locally, but very accurately,
the dynamics of the IBM. This is done by restricting the number of parameter combinations in
the training data set and raises the following question: how does one select the relevant subset of
parameters S to construct a local reduced model?

The subset S depends on the choice of (n, β0, κ0) which makes it difficult to determine before
starting the learning process. Thus, we propose to follow an approach inspired by the theory of
model-based reinforcement learning in which the subset S is built ”on the fly” and determined by
”trial and error”. More precisely, the approach consists in alternating between a learning step on the
reduced model and an optimal control step. At each iteration, the control trajectory is recomputed
based on the IBM and added to the data set used to train the reduced model.

It is common practice to use a valid linear model just around a state (S(tm), I(tm)). However,
since we are able to efficiently control a non-linear system, we propose to compute a valid non-linear
system around a complete trajectory. This choice appears to be a compromise between a local and
a global model. We will now describe the algorithm used to control the IBM.

Local model-based reinforcement approach. The idea is to sequentially training the network
until an optimal control strategy for the corresponding reduced model manages to equally well
contain the epidemic when simulated on the IBM. Suppose that, at the beginning of an epidemic,
the authorities have recorded a percentage of infected people I0 with an estimated coefficient of
dispersion κ0. Moreover, we assume that the transmission rate β0 of the disease is known, and that
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an optimal control problem was defined for the local model (7) we aim to construct.
To begin with, the function Fθ(0) is trained on D0, a very small fraction (e.g. 5-10%) of the

shuffled training dataset D, introduced in Section 3.1. In other words, the neural network defining
Fθ receives information about the IBM dynamics corresponding to a reduced but representative
region of the parameter space (n, β, κ). The main objective of this exploration concerns stability:
the reduced model becomes accurate enough to take into account the dominant behaviour of the
IBM, which ensures that the solution to the associated ODE does not blow-up under control. Recall
that the definition of the population size ratio n has been introduced and commented in Section 3.1.

Let us now describe a current iteration of the control algorithm using the MPC approach. Assume
that the p-th iteration of the algorithm begins and that the neural network has a weight configuration
θ(p). Figure 3 already showed a flowchart of the proposed approach based on the MPC method.
Following the steps described in Section 3.2, we can estimate a control (b∗, k∗) optimally driving the
reduced model (7) based on the knowledge induced by the weight configuration θ(p). Depending on
the fineness of the partition of the time interval of interest, this optimal health policy may correspond
to measures evolving freely on an unrealistic time scale (a few days or a few hours). For this reason,
the control (b∗, k∗) is approximated via a regression tree (computed using the SK-learn library)
by two piece-wise constant functions, denoted (b̂, k̂), taking at most 8 different values over a time
horizon of 200 days. Starting from the initial configuration corresponding to the operating point
(S0, I0, n, β0, κ0), the IBM is then simulated under this last policy and the corresponding scenario
denoted by (S, I,R)IBM.

We decide to stop the algorithm when the obtained health policy is sufficiently efficient. The
stopping criterion requires a sufficient decrease in the value that the cost function JIBM evaluated at
the current iteration control takes. More precisely, we say that the current control (b̂, k̂) is acceptable
with tolerance τRL > 0 if

JIBM[b̂, k̂] ≤ τRLJ
0
IBM,

where J0
IBM is the cost associated with the control-free IBM solution. Recall that Tc is the time

at which the intervention of the health authorities begins (detailed in Section 2.3). In addition to
requiring that the control is acceptable, the p-th scenario must, under the same (b̂, k̂) control, be
associated with a lower cost than the cost of the reduced model under the (b̂, k̂) control. In other
words, the algorithm should not stop unless the inequality JIBM[b̂, k̂] ≤ J [b̂, k̂] holds. This stopping
criterion allows us to relate the performance of the control on the reduced model and on the IBM.

Since the success of the algorithm depends upon the ability of the reduced model to accurately
predict the output of the IBM, the stopping criterion also involves the following three error metrics:
we retrieve global information by computing the discrete L2-norm of the difference between the
reduced model and the IBM for the state variables S and I, and by estimating the mismatch
between the final proportion R∞ of removed people, defined by (13). Accuracy is also assessed by
measuring the delay between the time at which the infection peak (IP) occurs, respectively for the
IBM and reduced model. The numerical values of the associated tolerances τL2 , τR∞ and τIP are
shown in Table 4.

If the stopping criterion is not satisfied, then the reduced model is strengthened by training the
weights θ(p+1) on a larger training set Dp+1 containing not only Dp, but also the local information
corresponding to the p-th scenario (S, I,R)IBM as well as the parameters defining the candidate
control (b̂, k̂). The above sequence of steps repeats until these criteria are satisfied, at which point
the output of this algorithm is the (b̂, k̂) health policy corresponding to the last iteration.

Note that, in an attempt to reduce the computational cost and to escape as much as possible
from local minima wells, at each p reinforcement step, the optimal control algorithm is initialized
with the control obtained at the end of the previous reinforcement step. Moreover, the more we
advance in the reinforcement algorithm, the more precise the optimal control algorithm must be
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(more iterations, smaller step sizes). The reasoning behind this last point is that in the first few
iterations of reinforcement, high accuracy is not so important because the behavior of the reduced
model under control is likely to be an unfaithful approximation of that of the IBM.

4 Numerical results

In this section, we present the behaviour of our optimal control method (Section 3.3) for different
regime of parameters. In each case, we provide the quantities n, β0, κ0 and the number of iterations of
the reinforcement learning algorithm. We plot on each of them the trajectories relative to susceptible
individuals on the left, the trajectories for the infected in the middle, and the control for the IBM
model (red for the β control, green for the κ control) on the right. Scales for β/β0 and κ/κ0 are shown
respectively on the left and right sides of the right figure. In Table 4, we specify the parameters
common to all the test cases. If one of these parameters were to change, it would be indicated in
the legend of the figure.

Parameters Values Param. Val. Param. Val.

S0 99.95% (Ihosp, Imax) (0.025, 0.1) Tc 1
I0 0.05% (ωβ, ωκ, ωhosp) (0.2, 0.2, 0.6) T 200
γ 1/6 (bmin, kmax) (0.1,10) ∆t 2/7
τRL 10−3 ε 10−2 τR∞ 10−3

τL2 1 δ 10−7 τIP 6

Table 4: Numerical values of the main parameters involved in the reinforcement algorithm (Section
3.2) and (OCPδ). These are common to all results shown in Section 4.

Since the legend of the figures is the same for all the tests, let us explain the notations we use:

• IBM denotes an average trajectory (based on 50 simulations) for the IBM without control,

• IBMC denotes an average trajectory (based on 50 simulations) for the IBM with the final
control obtained by the reinforcement learning algorithm (individual trajectories are in grey),

• RMC denotes a trajectory produced by the reduced model trained only on the initial data set
D0 with the final control of the algorithm,

• RMRLC denotes a trajectory produced by the reduced model after model-based reinforcement
with the final control of the algorithm.

• b̂ and k̂ denote the final controls, piece-wise constant, provided by the algorithm. The vertical
dashed segments indicate times at which changes in control values occur.

The presentation of the results is divided into three parts. In the first one, we illustrate the effi-
ciency and flexibility of the proposed algorithm via simulations representative of the different regimes
observed with the IBM (super-spreaders or homogeneous contact distribution, little or large popula-
tion sizes, etc.).Then, we focus on how the number of iterations of reinforcement affects the reduced
model accuracy and the effectiveness of the associated control. Lastly, we turn our attention to the
limitations and drawbacks of the proposed reinforcement learning approach.

20



4.1 Algorithm versatility in the different parameter regimes

We now present results corresponding to different parameter configurations. To begin with, we
consider two cases where the population size ratio and κ are large (large population and homogeneous
contact regime), meaning that they are in the validity regime of the classical SIR dynamics. We
observe the results on this type of configuration in Figures 7-8. In the first one, for the black curve,
we observe that the strong constraint on Imax is preserved and the number of infected stays close to
Ihosp. In this case, the reduced model learned only with D0 (blue curve) is arguably as accurate as
the reinforced one. In the second case (Figure 8), similar results are obtained, but we observe that
the reinforcement step allows to increase the accuracy of the reduced model (red versus blue curves)
which subsequently improves the control efficiency.

Figure 7: (Large population size and large dispersion) n = 0.95, β0 = 0.5, κ0 = 9, 10 iterations. In
the classical SIR regime, very few iterations are needed to generate an effective control.

Figure 8: (Large population size and large dispersion) n = 0.85, β0 = 0.8, κ0 = 10, 6 iterations. In
the classical SIR regime, very few iterations are needed to generate an effective control.

In Figures 9-10, we stray away from classical population-level regimes by considering intermediate
population sizes and dispersion coefficients. In this slightly more complicated regime, stochastic
behaviours are commonly observed in the IBM simulations. Nevertheless, in the first case (Figure
9), the reinforced reduced model (red curve) faithfully approximates the IBM average trajectory
(black curve) and the control is effective enough to ensure that I does not exceed the threshold Imax.
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Similarly the control policy remains satisfying in the second case (Figure 10), although it is more
difficult for the reduced model to capture the averaged random behaviour of the IBM due to the
very low value of the parameter n.

Figure 9: (Intermediate population size and dispersion) n = 0.6, β0 = 0.5, κ0 = 1, 15 iterations.
The proposed algorithm seems effective in spite of the particularly strong stochastic behaviour of
the IBM.

Figure 10: (Intermediate population size and dispersion) n = 0.2, β0 = 0.3, κ0 = 0.8, 7 iterations.

In the following results, we increase one step further the difficulty by considering even lower
population size ratios and dispersion coefficients. Figure 11 deals with a very large heterogeneity
in the population (low κ). The resulting control is accurate and the black curve remains far away
from the strong constraint. By comparing the red curve to the blue one, we also observe that the
reinforcement learning allows to improve a lot the reduced model which seems to be more and more
faithful to the IBM trajectory, even if we observe a discrepancy between the final values of S∞.
Indeed, since S∞ = 1−

∫∞
0 γI, the accumulation of non-compensating errors on I seems to lead to a

poor estimate of S∞. Note that, in the optimal control problem, the cost functional does not involve
S∞. In the end, this is not an issue because the main objective of the method is to compute an
optimal control for the IBM which reduces the infection peak. Accurately predicting the behaviour
of S(t) is not necessary to achieve this goal.

Figure 12 highlights results in a very low population size regime where the graph and stochastic
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effects are important, yet the results are also convincing. It is worth noting that the reinforcement
learning procedure (red curve) drives to an improvement of the reduced model (blue curve) which
in the end captures correctly the infection peaks.

Figure 11: (Large population size and small dispersion) n = 0.8, β0 = 0.3, κ0 = 0.2, 44 iterations with
(ωβ, ωκ, ωhosp) = (0.5, 0.1, 0.4). Populations with large contact heterogeneity are prone to epidemic
rebounds, requiring more iterations of the proposed algorithm to meet the stopping criteria.

Figure 12: (Small population size and small dispersion) n = 0.2, β0 = 0.3, κ0 = 0.4, 23 iterations.
Significant accuracy improvement (red) of the reduced model compared to the naive approach (blue).

4.2 Overall improvement of the control strategy with the number of iterations

In this second subsection, we investigate how the number of reinforcement iterations affects the
results of the algorithm. First, we consider in Figure 13 a case with large dispersion. We observe
that making some additional iterations increases a little bit the accuracy of the reinforcement learning
reduced model and allows to compute a better control, since the amplitude of the infection peak
remains less close to the constraint Imax.

We now consider a low dispersion regime (with super-spreaders) in Figure 14. Since the epidemic
is small, capturing the threshold is generally more complicated for the reduced model. Here, we
compare one training after 18 and 34 iterations respectively, as well as a new training with 17
iterations and a smaller initial data set. As before, we observe that increasing the number of
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Figure 13: (Variation of the number of iterations of the control algorithm with large dispersion)
n = 0.5, β0 = 0.8, κ0 = 9. 14 iterations for the top versus 30 for the bottom, leading to an
improvement of the control acceptability (lower infection peak).

iterations improves the accuracy of the reduced model and control. Indeed at the top of Figure 14,
the run corresponding to 18 iterations does not preserve the strong constraints, contrary to the second
one in the middle of Figure 14 which generates a trajectory satisfying the constraints. However, the
reduced model is not flawless and previous tests show that this impacts the accuracy of the control.

To improve control accuracy, we propose in this case to reduce the size of the initial data set D0.
This modification allows us to obtain a better reduced model and comparable control. A possible
explanation is that the initial training may lead the neural network to learning a trajectory that
deviates too far from the test case, making it difficult to explore the space of admissible trajectories.
In other words, its ability to adapt to new samples may be impaired. This shows that the size of
the data set D0 and its diversity may impact the efficiency of the algorithm.

Figure 15 deals with a test case involving moderate dispersion and population size ratio. This
example illustrates that usually, during the algorithm, the control improves while the reduced model
may momentarily worsen. Indeed, after only 8 iterations, the control fails to contain the epidemic
(most stochastic trajectories of the IBM violate the strong constraint Imax) even if the reduced
model is qualitatively and quantitatively accurate. At the expense of model accuracy, making 8
additional iterations (middle plot) improves the control which now mitigates the peak of the average
IBM trajectory (black curve), but not of all individual ones (grey trajectories). However, making
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Figure 14: (Variation of the number of iterations of the control algorithm with small dispersion)
n = 0.8, β0 = 0.3, κ0 = 0.2. 18 iterations for the top, 34 iterations for the middle and 17 iterations
with a (40%) smaller data set D0 for the bottom. The size and diversity of the initial data set affects
the efficiency of the proposed algorithm.

about twice as many iterations (bottom plot, black curve) leads to a control that is acceptable with
tolerance 5 · 10−3 (i.e. JIBM[b̂, k̂] ≤ 5 · 10−3J0

IBM) and to a faithful reduced model (red curve).
These results show that generally, whenever more iterations are made, the reduced model will

overall become better. However, this improvement depends on the degree of randomness involved in
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Figure 15: (Variation of the number of iterations of the control algorithm with intermediate disper-
sion) n = 0.6, β0 = 0.5, κ0 = 1. Respectively 8, 16 and 35 iterations for the top, middle and bottom.
The control effectiveness usually improves throughout the iterations, even if the reduced model may
momentarily worsen.

the parameter regime at stake and it is not given that an increase in the accuracy of the model will
lead to a better control. Indeed, we sometimes observe efficient controls associated with unfaithful
reduced models. But, generally speaking, when the model becomes good, so does the control. That
is, the ”convergence” of the reduced model towards the IBM trajectory seems to guarantee that the
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corresponding control is accurate, although sometimes not the best.

4.3 Over-fitting effect and limitations of the proposed algorithm

Our algorithm may fail to both generate an accurate reduced model and an acceptable control. We
identified two possible mechanisms at the root of these seemingly rare failures. The first one relates
to an over-fitting-like effect. More precisely, throughout the reinforcement algorithm iterations, the
neural network is generally fed with more and more similar samples. Thus, at a certain point, the
network predictions are likely to deteriorate in an attempt to capture the dynamics associated with
the mean IBM. For instance, it is seen in Figure 16 that, after 18 iterations, the reduced model is
very accurate even if the control is unsatisfactory. Hence, to improve the effectiveness of the control
on the IBM, 7 additional reinforcement iterations are made. This strategy ends up paying off, but
the improvement comes at the expense of a significant deterioration in the accuracy of the reduced
model. Moreover, if we were to continue, the predictions of the reduced model might not improve.
Considering early-stopping or a posteriori model selection among saved intermediate models (by
tracking performance criteria) may help overcoming these difficulties.

Figure 16: (Possible deterioration of the reduced model with algorithm iterations) n = 0.95, β0 = 0.8,
κ0 = 9. Top: 18 iterations. Bottom: 25 iterations. Illustrates the need for a posteriori model
selection among saved intermediate reduced model when accuracy matters.

The second mechanism we identified relates to the limitations of approximating a fundamentally
stochastic system (the IBM) by means of a deterministic reduced model. In other words, when
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the parameter regime is such that randomness is dominating the behaviour of the system (e.g. all
three parameters n, β and κ are low), approximating the average trajectory of the IBM is very
challenging, as can be seen in Figure 17. Indeed, in this setting, computing the incidence func-
tion Fθ(S(t), I(t);n, β, κ) is particularly sensitive to errors. In addition, this range of parameters
is scarcely represented in the initial data set D0 (see Table 3). The latter could partially explain
the difficulties observed in Figure 17. However, enriching D0 with more samples may not be recom-
mended since previous examples have shown that the reduced model would probably end up having
difficulty specializing around the controlled trajectory.

Figure 17: (Difficulties in capturing the reduced dynamics in stochastic regime, with small population
size, dispersion and transmission rate) n = 0.15, β0 = 0.7, κ0 = 0.4, 33 iterations. Limitations due
to a deterministic approximation of a stochastic system: poor results after numerous iterations.

5 Conclusion and perspectives

In this work, we proposed a method to control a stochastic individual-based epidemic model which
takes into account super-spreaders. To this end, we proposed a model-based reinforcement approach
which consists in alternating between the learning phase of a reduced model and the control phase.
Our approach could be interpreted as a Model Predictive Control (MPC) type method. In the
literature on model-based methods, it is common to either use global models for all states, or
linear and local models around the current state. Here, we struck a compromise by building a
non-linear model valid in a certain sub-region of the admissible values of the controls. To solve the
control problem for the reduced model, we then use optimal control approaches for ODEs. The
iterative algorithm allows us to build a control for the original IBM based on the one computed
for the learned reduced model. The results show the ability of the algorithm to compute efficient
controls in classical regimes (low dispersion, large population) as well as in more complicated regimes,
as they are generally more stochastic, for which the population size ratio is small and contact
heterogeneity large. This algorithm involves building a reduced SIR model, relying on a neural
network, which takes into account the effects of small population and dispersion effects associated
with super-spreaders. Constructing the latter model also provides tools to study the effects of contact
heterogeneity (dispersion) in epidemics. Indeed, since we learn a SIR-type model where the incidence
function Fθ(S, I;n, κ, β) is differentiable, we could, for instance, derive by analytical means a formula
for the basic reproduction ratioR0. Hence, it is possible to investigate the dependence of the latter on
the dispersion and the population size while this is usually difficult to estimate for individual-based
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models. More generally, building a reduced SIR-type model with a neural network from heavier
simulations may be an interesting way to study phenomena that are not easily understood in large
models such as the epidemic threshold, the group epidemic threshold, etc. One of the limitations of
our approach is that we only aim at controlling the mean trajectory of the individual-based model,
but it could be relevant and interesting to take into account its variance.
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Appendices

Appendix A Averaging the IBM output

Suppose we are interested in averaging P ∈ N∗ runs of the IBM over the time interval [0, T ] and let
M ≥ 2 be the number of points of a regular subdivision of this time interval with time-step ∆t.

For each trajectory p ∈ {1, 2, . . . , P}, run the IBM and refer to the resulting discrete output as
Sp and Ip, both of which are elements of RM . Their values at time m∆t are respectively denoted
Sm
p and Imp for m ∈ {1, 2, . . . ,M}. Note that we have Rp = 1− Sp − Ip.
The p-th trajectory is considered an outlier whenever the size of recovered population ends up

being underestimated in the following sense

RM
p −R0

p ≤ 0.8×Rmax,

where Rmax = max{RM
p , p = 1, . . . , P}. In other words, all trajectories leading to immediate

extinction are excluded since they would otherwise pull down the pointwise values of the mean
trajectory.

The next step is to find the average time of the first epidemic onset. For each p, let

τp = min{m∆t : Imp − I0p > 10−3, m = 1, . . . ,M}, (11)

if the involved set is non-empty and zero otherwise. Denote by P ′ the number of trajectories for
which τp > 0. Based on these values, compute the mean time

τ̄ =
1

P ′

P ′∑
p=1

τp,

and find for each trajectory p the number of time-steps dp ∈ Z by which the outbreak time is delayed
(or in advance) with respect to the mean value τ̄ , that is

∀p, dp =

⌊
τp − τ̄

∆t

⌋
.

Before averaging the trajectories, time-translate each trajectory p by dp time-steps ∆t and denote
S̃p, Ĩp the resulting vectors. To keep vectors of the same size, we extend the vector by constant values
on the left or right depending on the sign of the translation:

for dp > 0, for dp < 0,

S̃m =

{
Sdp+m if 1 ≤ m ≤M − dp,
SM if M − dp + 1 ≤ m ≤M,

S̃m =

{
S0 if 1 ≤ m ≤ |dp|,

S|dp|+m if |dp|+ 1 ≤ m ≤M.

We therefore implicitly assume that the trajectories do not vary too much at the beginning and end
of the simulations on a time scale |dp|∆t. Lastly, we compute the point-wise average according to

∀m ∈ {1, 2, . . . ,M}, S̄m =
1

P ′

P ′∑
p=1

S̃m
p , and Īm =

1

P ′

P ′∑
p=1

Ĩmp .

Note that in Definition (11), the threshold 10−3 offers a decent compromise. Indeed, the higher
this value is, the more accurate the estimation of the family (τp)p is, but at the same time, the higher
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the risk that some very rare trajectories reach the threshold much later (or earlier) than the others,
resulting in a biased mean value τ̄ .

We wish to draw the reader’s attention to the following observation: when we run the IBM
with piece-wise constant parameters β and κ, epidemic rebounds may occur several times in a given
simulation, e.g. in Figures 5a and 12. Nevertheless, since it is in the early stage of the epidemic that
immediate extinctions are the most likely (due to stochasticity and very low proportions of infected
people), translating the individual trajectories solely based on the time of the first epidemic onset
remains a priori a reasonable assumption.

Appendix B Byproduct of our approach: estimating key epidemi-
ological quantities

We trained the population-based model (RMθ) which is expected to faithfully capture not only the
global dynamics arising from individual variation, but also the impact of super-spreaders on an
epidemic. In this subsection, we are working towards defining a threshold number via the so-called
next-generation matrix theory and estimating the size of an epidemic. The goal is not so much
about getting precise quantitative results regarding those epidemiological indicators, but rather to
make qualitative statements and gain insight into how the parameters at stake, namely n, β and
κ, interact and influence them. Indeed some quantities like the epidemic threshold are very useful
for the epidemiologists but, contrary to what is the case for the classical homogeneous models, not
easy to calculate when super-spreaders are taken into account [28]. In order to obtain smoother
results, we constructed another reduced model dedicated to the calculation of these epidemiological
indicators. This model involves a larger neural network which was trained on a data set containing
many additional parameter configurations.

B.1 Estimating a threshold number.

In the case of population-based models and under suitable hypothesis, the next-generation matrix
theory introduced by Diekmann et al. [9] offers a systematic framework to define a threshold number
whose properties are identical to the well known R0 in the traditional SIR model. By analogy, this
threshold number will hereafter be called R0. Informally, it provides information about the stability
of the disease-free equilibrium (DFE) (S, I) = (1, 0) in the population-based model (RMθ). That is,
if R0 < 1, then the DFE is locally asymptotically stable and the epidemic dies out; if not, then it is
unstable and an outbreak occurs [30, 43].

Having numerically checked that the learned incidence function Fθ satisfies all the hypotheses of
the next-generation matrix theory (mainly dealing with positivity) [9], the calculation is straight-
forward and unambiguous. The threshold number R0 can be seen as a scalar function of the three
parameters (n, β, κ) given by:

R0(n, β, κ) =
∂IFθ

γ

∣∣∣∣
(S=1,I=0;n,β,κ)

. (12)

We refer to Appendix B.3 for a detailed derivation of this formula. Equation (12) suggests that, in
the early stage of an epidemic, an outbreak is all the more likely to occur as the rate of secondary
infections is sensitive to increases in infected individuals. Since the parametric function Fθ is a neural
network, its partial derivative can be easily computed using automatic differentiation implemented
in libraries such as Keras [12].

To visualize the dependence of the threshold number on its parameters, we plot in Figure 18,
for many values of population size ratios and dispersion coefficient (n, κ), the ratio βc(n, κ)/γ where
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Figure 18: Left: We represent the critical value βc above which the DFE is unstable. It is normalized
by γ to obtain a dimensionless number (similar to R0 in the classical SIR model). The grid used
contains 50 points for n, 200 for κ and 200 for β. Right: Same plot in 2D. The white contour
corresponds to the case where the threshold is exactly equal to one.

βc(n, κ) denotes the critical transmission rate value above which the DFE becomes unstable. More
precisely, βc = βc(n, κ) is the smallest value of the transmission rate such that the following inequality
holds: R0 (n, βc(n, κ), κ) ⩾ 1.

In Figure 18, we observe that the critical transmission rate βc is an increasing function of the
dispersion coefficient κ. Consequently, with small dispersion coefficients (and thus super-spreaders),
low transmission rates may be more likely to lead to the development of epidemics. In other words,
low-dispersion diseases have a high risk of developing into epidemics. This is the kind of tendency
we would expect, as suggested in the work [28]. We also note that the critical transmission rate
seems not to be significantly dependent on the population size, except when the contact distribution
is almost homogeneous.

Moreover, the results show that the model captures epidemic outbreak well. For this, we plot
in Figure 19 the critical transmission surface projected in 2D and compare it with the individual-
based simulations. Green dots refers to IBM simulations without outbreak, while red ones refer to
simulations with outbreak. If the model were perfect, the green dots would all be under the surface
and the red ones above the surface. Overall, this is the kind of behaviour we observe and see that
the trend described by the surface corresponds to the one found empirically.

B.2 Estimating the epidemic size.

The epidemic size, hereafter denoted R∞, is defined as the total number of people who caught the
disease. The epidemic size thus corresponds to the number of recovered individuals in large time:

R∞ = lim
t→+∞

R(t). (13)

This quantity can be seen as a function of the parameters (n, β, κ) as the dynamics of R is depending
on them. In practice, the epidemic size is found by running the population-based model (RMθ) on
a sufficiently long time interval, namely T equal to 200, which is large enough so that the system
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Figure 19: Green dots: stable IBM simulations. Red dots: IBM simulations with outbreak epidemic.
In grey the projection of the critical transmission rate surface of Figure 18. Out of 250 simulations
(dots), more than half match the theory (40 green dots should have been red while 70 red dots
should have been green).
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Figure 20: R∞ as a function of (β, κ) for different population size ratios n. The grid used contains
50 points for κ, 30 points for β.

dynamics approach a stationary state. Figure 20 shows contour plots of R∞ based on the outcome
of numerical simulations with, for each population size ratio n = 0.1, 0.2 and 0.8, many parameters
(β, κ). This suggests that:

(i) R∞ is less dependent on the infection rate β whenever κ ≤ 0.5,

(ii) dependency of R∞ on n is more sensitive in the large dispersion coefficient case (κ > 1) and
for large values of the transmission rate β,

(iii) R∞ seems to decrease with κ; a possible interpretation of this observation is that if epidemics
are more intense but shorter, the total number of infected people may be less than if the
epidemic is less intense but extends over longer periods of time.
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B.3 More careful derivation of R0

The derivation proposed in Section B.1 is incomplete because one of the hypotheses required for
applying the next-generation matrix theory is not satisfied by the reduced model (RMθ). The fifth
assumption stated in [43] is lacking: in our case, it states that the ODE should have, provided no
infected individuals (I ≡ 0), a unique asymptotically stable equilibrium point, the so-called disease-
free equilibrium (DFE). However, in the model (RMθ), there exists an infinite number of equilibrium
points of the form (S∗, 0) for any S∗ ∈ R and none of them is asymptotically stable. Nevertheless, in
order to fit to the theoretical framework, we can add demographic dynamics, through birth and death
rates, leading to a stabilizing population size ratio and such that the only disease-free equilibrium
point is (S∗, I∗) = (1, 0). Given the uncertainty about the long term accuracy of the reduced model,
the order of magnitude of the time horizons up to which the model is to be run is about 100 days.
Moreover, since the demographic dynamics occur on a much larger time scale (years if not decades),
this modelling assumption seems reasonable and will not strongly affect the dynamics arising from
the reduced model (RMθ).

Therefore, we insert birth and death dynamics into the model:

S′ = −fθ(S, I;n, β, κ)SI + µ− µS,
I ′ = fθ(S, I;n, β, κ)SI − γI − µI,

(14)

where µ > 0 stands for the population constant birth and death rates. First, observe that (S∗, I∗) =
(1, 0) is indeed the only disease-free state value making the dynamics of (14) stationary. Moreover,
any solution with initial condition (Sin, 0), with Sin ∈ R converges to the unique equilibrium point
(1, 0).

Then for any µ > 0, the next-generation matrix theory, can be applied to model (14), leading

to an expression of the threshold number, say R†
0 = R†

0(µ). Indeed, let F denote the rate at which
secondary infections increase in the infected compartment and V the sum of the rates at which the
disease progresses and infected individuals die. We have that

I ′ = F(S, I)− V(I), with

{
F(S, I) = fθ(S, I;n, β, κ)SI,
V(I) = (γ + µ)I.

Among the four other assumptions stated in [43], three of them are straightforward to verify. The
last one states that the rate of secondary infections be positive or zero whenever susceptible or
infected individuals remain (F(S, I) ≥ 0 for any S, I ≥ 0). The latter was checked numerically for
more than 10,000 randomly chosen different combinations of positive values. The requirement did
not fail to hold and we can thus define the threshold number.

In the particular case of model (14), the next-generation matrix is actually a scalar and coincides
with the threshold number:

R†
0(µ) =

∂IFθ

γ + µ

∣∣∣∣
(S=1,I=0,n,β,κ)

.

As µ→ 0, we recover the expression of R0 given by Eq. (12).

Appendix C Properties of the controlled model

Well-posedness and qualitative properties

It is notable that if Fθ is assumed to be locally Lipschitz with respect to (S, I), continuous with
respect to its other variables, then System (7) is well-posed according to the Carathéodory’s existence
theorem [7, Theorem 1.1 of Chapter 2]: it has a unique solution that belongs to W 1,∞(Tc, T ;R3).
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Since we are interested in implementing an algorithm based on gradient like iterations, and in
particular at deriving first order optimality conditions, we will further assume in what follows that
Fθ satisfies (HFθ).

The qualitative properties on (S, I) follow from the uniqueness property above and the fact
that Fθ is of the particular form (6). Indeed, since Fθ(0, ·, ·, ·, ·) = Fθ(·, 0, ·, ·, ·) = 0, the semi-axis
{S = 0, I ≥ 0} and {S ≥ 0, I = 0} correspond to particular orbits of System (7). Therefore, a
component of the solution (S, I) associated with positive initial data cannot vanish. Furthermore,
since initial data have been chosen in such a way that S + I + R = 1 at every time, and since R is
obviously non-negative, we infer that max{S, I} ≤ 1−R ≤ 1 at every time.

Analysis of the optimal control problem (OCPδ)

Before stating the first order optimality conditions for Problem (OCPδ), let us first investigate
existence properties for Problem (OCPδ).

Lemma C.1. Let δ > 0. Problem (OCPδ) has a solution (bδ, kδ).

Proof. Let (bp, kp)p∈N denote a minimizing sequence for Problem (OCPδ). Since all terms of the
cost functional are non-negative, the sequence (TV(bp)+TV(kp))p∈N is bounded. Since (bp)p∈N and
(kp)p∈N are uniformly bounded in L∞(Tc, T ), it follows that (∥(bp, kp)∥BV(Tc,T ))p∈N is bounded, and
we infer that (bp, kp)p∈N converges up to a subsequence to some element (bδ, kδ) ∈ BV(Tc, T ) in
L1(Tc, T ) and in particular pointwisely. In what follows, when there is no ambiguity, we will denote
similarly a sequence and a subsequence with a slight abuse of notation. The pointwise convergence
implies that bmin ≤ bδ(·) ≤ 1 and 1 ≤ kδ(·) ≤ kmax a.e in (Tc, T ) which yields that (bδ, kδ) belongs
to U .

Let us denote by (Sp, Ip, Rp) the solution to (7) for the control choice (b, k) = (bp, kp). Since
Sp + Ip + Rp is constant in [Tc, T ] and since Sp and Ip are non-negative because of the particular
form of Fθ given by (6) and according to (HFθ), it follows that (Sp)p∈N and (Ip)p∈N are uniformly
bounded in L∞(Tc, T ). Since fθ is assumed to be continuous with respect to each variable, it
follows from (7) that (Sp)p∈N and (Ip)p∈N are uniformly bounded in W 1,∞(Tc, T ). According to the
Ascoli theorem, up to a subsequence, (Sp)p∈N and (Ip)p∈N converge in C0([Tc, T ]) to some element
(Sδ, Iδ) ∈W 1,∞(Tc, T ).

Now, let us recast (7) as{
Sp(t) = Sc −

∫ t
Tc

Fθ(Sp, Ip;n, β0bpv(kp), κ0kp),

Ip(t) = Ic +
∫ t
Tc

Fθ(Sp, Ip;n, β0bpv(kp), κ0kp)− γIp,
(15)

for all t ∈ [Tc, T ]. Since Fθ is assumed to be (at least) continuous with respect to any of its vari-
able, passing to the limit in these equation follows straightforwardly from the Lebesgue dominated
convergence theorem. We get{

Sδ(t) = Sc −
∫ t
Tc

Fθ(Sδ, Iδ;n, β0bδv(kδ), κ0kδ),

Iδ(t) = Ic +
∫ t
Tc

Fθ(Sδ, Iδ;n, β0bδv(kδ), κ0kδ)− γIδ,
(16)

for all t ∈ [Tc, T ], yielding that (Sδ, Iδ) satisfies (7). We conclude by noting that, according to the
Lebesgue dominated convergence theorem, one has

lim
p→+∞

J(bp, kp) = J(bδ, kδ).
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By semicontinuity of the TV seminorm for the L1 convergence, one has

TV[bδ] + TV[kδ] ≤ lim inf
p→+∞

(TV[bp] + TV[kp]),

leading to
Jδ[bδ, kδ] ≤ lim inf

p→+∞
Jδ[bp, kp] = inf

(b,k)∈ U
Jδ[b, k].

This concludes the proof.

Computation of the differential of J and first order optimality conditions

Proof of Theorem 3.1. The first claim of the statement, related to the differentiability of S and I
with respect to [b, k] follows directly from the so-called Pontryagin maximum principle (see e.g.
[25]). The differentiability of J is hence straightforward. Let [b, k] ∈ U and [h1, h2] be an admissible
perturbation. It remains to compute ⟨dJ [b, k], [h1, h2]⟩.

Let us introduce Ŝ1, Î1 (resp. Ŝ2, Î2) as the differentials of the mappings b 7→ S, b 7→ I
at b in the direction h1 (resp. the differentials of k 7→ S, k 7→ I at k in the direction h2). In
what follows, we will temporarily drop the variables (S, I;n, β0bv(k), κ0k) in the quantities involving
Fθ(S, I;n, β0bv(k), κ0k) in order to alleviate notations.

These functions solve the following ODE system:

d

dt

(
Ŝ1

Î1

)
= Mθ

(
Ŝ1

Î1

)
+ h1

(
−β0v(k)∂4Fθ

β0v(k)∂4Fθ

)
(17)

and

d

dt

(
Ŝ2

Î2

)
= Mθ

(
Ŝ2

Î2

)
+ h2

(
−β0bv′(k)∂4Fθ − κ0∂5Fθ

β0bv
′(k)∂4Fθ + κ0∂5Fθ

)
(18)

completed with the initial conditions

Ŝi(Tc) = Îi(Tc) = 0, i = 1, 2,

where Mθ is given by (8).
By using standard differentiation rules, one gets

⟨dJ [b, k], [h1, h2]⟩ =

∫ T

Tc

ωβh1 (b− 1) + ωκh2 (k − 1)

+

∫ T

Tc

ωhosp

Ihosp
(Î1 + Î2)

(
I

Ihosp
− 1

)
+

+
1

Imaxε
(Î1 + Î2)

(
I

Imax
− 1

)
+

.

Now, let us multiply System (17) by (p1, q1) and System (18) by (p2, q2) in the sense of the inner
product. By integrating by parts, one gets successively(

p1
q1

)
·
(
Ŝ1

Î1

)∣∣∣∣∣
t=T

+

∫ T

Tc

(
− d

dt

(
p1
q1

)
−M⊤

θ

(
p1
q1

))
·
(
Ŝ1

Î1

)
=

∫ T

Tc

h1

(
p1
q1

)
·
(
−β0v(k)∂4Fθ

β0v(k)∂4Fθ

)
and(
p2
q2

)
·
(
Ŝ2

Î2

)∣∣∣∣∣
t=T

+

∫ T

Tc

(
− d

dt

(
p2
q2

)
−M⊤

θ

(
p2
q2

))
·
(
Ŝ2

Î2

)
=

∫ T

Tc

h2

(
p2
q2

)
·
(
−β0bv′(k)v(k)∂4Fθ − κ0∂5Fθ

β0bv
′(k)v(k)∂4Fθ + κ0∂5Fθ

)
.
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Using that (p1, q1, p2, q2) solves the linear system (9) yields∫ T

Tc

ωhosp

Ihosp
(Î1 + Î2)

(
I

Ihosp
− 1

)
+

+
1

Imaxε
(Î1 + Î2)

(
I

Imax
− 1

)
+

=∫ T

Tc

h1

(
p1
q1

)
·
(
−β0v(k)∂4Fθ

β0v(k)∂4Fθ

)
+

∫ T

Tc

h2

(
p2
q2

)
·
(
−β0bv′(k)∂4Fθ − κ0∂5Fθ

β0bv
′(k)∂4Fθ + κ0∂5Fθ

)
,

whence the desired expression of the differential.
Let us now prove the last statement of this theorem. Let [b, k] denote a solution to Prob-

lem (OCPδ). Let us introduce the so-called indicator function ιU to the set U , given by

ιU (x) =

{
0 if x ∈ U
+∞ else.

The functional Jδ is not differentiable in a standard sense because of the TV terms. For this
reason, we will use subdifferentials to derive first order optimality conditions. We first claim that
Problem (OCPδ) is equivalent to the optimization problem

inf
(b,k)∈L∞(Tc,T )

J [b, k] + δ(TV[b] + TV[k]) + ιU ((b, k)).

The standard first order optimality condition reads

0 ∈ ∂ (J [b, k] + δ(TV[b] + TV[k]) + ιU ((b, k))) .

which rewrites { −∂bJ ∈ ∂ TV(b) + ∂ι[bmin,1]

−∂kJ ∈ ∂ TV(k) + ∂ι[1,kmax]

and therefore, there exist Tb ∈ ∂ TV(b) and Tk ∈ ∂ TV(k) such that the Euler inequation

∀(B,K) ∈ L∞(Tc, T ; [bmin, 1])× L∞(Tc, T ; [1, kmax]),

{ ⟨∂bJ − Tb, B − b⟩L2(Tc,T ) ≥ 0

⟨∂kJ − Tk,K − k⟩L2(Tc,T ) ≥ 0

holds true and the expected conclusion follows. Note that, since it is not our main purpose, we do
not provide details in this article but refer for instance to [20] for explicit characterizations of such
sets.

Appendix D Numerical implementation

Since the adjoint system is state-dependent, given an initial estimate of the control, we first determine
the set of {(S, I)(t), t ∈ S} (e.g., using an explicit fourth-order Runge-Kutta numerical scheme),
and then {(p1, q1, p2, q2)(t), t ∈ S}.

The regularization term appearing in the problem (OCPδ) is computed using the following ap-
proximation of the total variation (see [16, §1.30]):

TV[q] ≃
∑
m

∣∣q(tm)− q(tm−1)
∣∣ ,

where the family of points (tm) belongs to S. Note that, in the expression of the total variation, the
partition used for the calculation is not arbitrary.
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In addition, notice that the resulting regularisation term involves the non-differentiable absolute
value function. Since this term contributes to the gradient of the cost functional Jδ, we use the
following computationally efficient smooth approximation [41]: |x| ≃

√
η + x2, for all x ∈ R, where

η is taken equal to 10−6.
A concise description of the optimal projected gradient approach is given in Algorithm 1 where

u ∈ R2×|S| denotes6 the current (discrete) control approximation to the vector-valued solution of
the problem (OCPδ). In addition, the input u0 is an initial guess for the control values whereas
the parameters Ng and τg are respectively the maximum number of iterations of the algorithm and
a tolerance. Lastly, PU refers to the map which projects the discrete components b ∈ R1×|S| and
k ∈ R1×|S| of u according to

PU : u =

(
b1, b2, . . . , b|S|
k1, k2, . . . , k|S|

)
7→
(
Pb(b1), . . . , Pb(b|S|)

Pk(k1), . . . , Pk(k|S|)

)
,

where Pb : x 7→ min (1,max (bmin, x)) and Pk : x 7→ min (kmax,max (1, x)) are defined on R.

Algorithm 1: Optimal step size projected gradient

Require: Partition S of [Tc, T ].
Inputs: u0 ∈ R2×|S|, Ng ∈ N∗, τg > 0.

p ←− 0,
u ←− u0,
jold ←− +∞,

jnew, j0 ←− Jδ[u0],
∇j ←− ∇Jδ[u0].

while p < Ng and (jold − jnew) > τgj0 do

Golden-section search to find ρ∗ a local minimizer of ρ 7→ Jδ [PU (u− ρ∇j)] ,
Update :

u ←− PU (u− ρ∗∇j) ,
jold ←− jnew,
jnew ←− Jδ[u],
∇j ←− ∇Jδ[u].

if ∇j ̸= 0 then

Normalise ∇j ←− ∇j/ ||∇j|| ,
p←− p+ 1.

Return: u.

6|S| denotes the cardinality of the set S.
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