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Abstract

Modelling epidemics via classical population-based models suffers from shortcomings that so-
called individual-based models are able to overcome, as they are able to take heterogeneity features
into account, such as super-spreaders, and describe the dynamics involved in small clusters. In
return, such models often involve large graphs which are expensive to simulate and difficult to
optimize, both in theory and in practice.

By combining the reinforcement learning philosophy with reduced models, we propose a nu-
merical approach to determine optimal health policies for a stochastic epidemiological graph-
model taking into account super-spreaders. More precisely, we introduce a deterministic reduced
population-based model involving a neural network, and use it to derive optimal health policies
through an optimal control approach. It is meant to faithfully mimic the local dynamics of the
original, more complex, graph-model. Roughly speaking, this is achieved by sequentially training
the network until an optimal control strategy for the corresponding reduced model manages to
equally well contain the epidemic when simulated on the graph-model.

After describing the practical implementation of this approach, we will discuss the range of
applicability of the reduced model and to what extent the estimated control strategies could
provide useful qualitative information to health authorities.

Keywords: Individual-based models, Super-spreaders, Reduced models, Optimal control, Rein-
forcement Learning, Neural network
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1 Introduction

1.1 Population versus Individual-based models

Modelling the spread of epidemics correctly is of paramount importance for defining health policy
to control their development. Models allow to estimate the so-called basic reproduction ratio Rg
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that indicates whether the epidemic is growing or not and then propose optimal policies to limit the
saturation of hospital services for instance. In such a program, one difficulty is to take into account
the presence of the so-called super-spreaders. This refers to any individual who is likely to infect
many more people than a generic person: indeed, the distribution of the number of contacts in the
population is very heterogeneous. In the seminal work [24], the authors show that epidemics tend
to be rarer but more explosive with super-spreaders. Indeed, super-spreaders tend to be infected in
the early stages of an epidemic.

To tackle this problem, several levels of descriptions can be considered [20]. The two extreme
types of models are population-based and individual-based models. Population-based or mean-
field models, like the SIR one, are the simplest descriptions of epidemics: they describe the time
evolution of the total number of susceptible (S), infected (I), retired (R) people or other categories.
At the opposite level of description, individual-based models are the most accurate: they describe the
stochastic temporal evolution of the status (susceptible, infected, retired or other) of each individual
by taking into account the contact graph between individuals.

Individual-based models are much better suited to describe the effect of super-spreaders. Indeed,
they are based on an accurate description of the contact graph between individuals: each node
corresponds to an individual and each edge to the contact between two individuals. It is therefore
easy to include contact heterogeneities by considering contact graphs with prescribed distributions of
node degrees [32),[18]. The individual-based models are then constructed as a continuous-time Markov
process, in which each individual can evolve between the different status (susceptible, infected,
retired) at random times. Thus the infection of one susceptible individual depends on the number
of connected infected neighbours as well as the individual transmission rate S;,q while the transition
to the retired state depends only on the recovery rate 7.

Individual-based models allow for more accurate modelling, but require more computational
resources to simulate large or complex contact graphs [1]. It is notable that models corresponding
to intermediate descriptions such as branching or percolation processes, where the state process
is simplified, have been proposed. For instance, in [24] [12], the authors used this kind of models
to describe the number of secondary infections. In some cases, population-based models can also
be derived analytically from individual-based models, which is of interest for simulations. First,
assuming some independence between the statuses of each individual, the individual-based stochastic
models can be approximated by a deterministic model, where the status of each individual follows
SIR differential systems coupled to those of other individuals [20]. Then, making the additional
assumption that the degree distribution has a small variance, this model can be further simplified
and we recover the classical population based SIR models. Without this assumption of small variance,
SIR models structured by contact numbers can be derived leading to larger models.

Thus, to incorporate the effect of super-spreaders in population-based models, a possible ap-
proach is to extend the number of categories: for each health status, we can consider several compart-
ments associated with sub-populations having different amount of contacts [19]. Another proposed
strategy is to consider a single additional compartment with specific epidemiological properties at
the population-level (e.g. recovery rates, transmission rates, etc.) [29]. Other studies have proposed
to take super-spreaders into account through a spatial description of the epidemic [I1].

The infection probability then depends on the distance between two individuals, and the dif-
ference between normal individuals and super-spreaders is taken into account via this dependence.
In another direction, recurrent neural networks have been proposed to improve population-based
models [2]: their long short-term memory is used to identify the transmission rate as a function of
the observed mobility and social behaviour trends.

Despite the advantages of population-based models in terms of simplicity, only individual-based
models are really able to handle heterogeneous contact distributions and describe epidemics with



few individuals and stochastic effects.

1.2 Optimal control issues

In this work, we are interested in proposing a possible strategy to define an optimal control for an
individual-based model. The optimal control problem we consider is to keep the number of infected
individuals below a threshold by adjusting the average transmission rate and the parameters of the
contact distribution over time.

Specifically, we consider an individual-based model where contacts follow a negative binomial
distribution. Such a distribution is used to model populations with super-spreaders [25] and is
parametrized by its mean value a > 0 and the so-called dispersion coefficient k > 0. Misleadingly,
since the variance in the contacts distribution is a + o/, a low value of the dispersion coefficient
K is associated with a high variance in the distribution of contacts and thus with the presence of
super-spreaders. The dispersion control acts mainly on the super-spreaders while the control of
the average transmission rate 8 = afi,q is a uniform control on the population. We are therefore
interested in defining an optimal pair (3(-), x(-)) = (b(-)Bo, k(-)ko), with the smallest deviation from
the initial values (So, ko), in order to keep the number of infected people below a certain threshold.

To define a control of the stochastic individual-based model, the classical methods use dynamic
programming algorithms. Indeed, the problem can be formulated as a Markov Decision Process
(MDP) [34], with given probability transitions between the 3V states of the SIR model, where N
denotes the number of individuals. For large NV, it is no more possible to easily deal with such a model
completely and a reinforcement learning approach should be used. In [5], a Deep-Q reinforcement
learning algorithm is used for large graphs using a global control on agents (partially observable
MDP). For such global control problem, cooperative multi-agent approaches can also be used [23].
Another approach is to consider reinforcement learning based on a reduced model. As proposed
in [1], it may be worthwhile to build on simpler models, like population-based ones, for which the
standard control theory framework applies. The optimal control strategy for the reduced model is
then used as the starting point for designing controls for the individual-based model.

Concerning the control of population-based model, references are plentiful: they are generally
based on the use of optimality conditions such as the Pontryagin Maximum Principle (PMP). If few
of them propose an analytical design of the controls (see for instance [3],[4]), many introduce adapted
optimization algorithms based either on a discretization of the complete problem (discretize then
optimize, see e.g. [27]) or an algorithm on the continuous problem applied on a discretized version
of the model (optimize then discretize, see e.g. [3, []).

1.3 Organization of the article

In this work, the proposed strategy for designing a control of the individual-based model is decom-
posed into the three following steps:

(i) First, learn a reduced population-based SIR model via data coming from numerical simulations
of the individual-based model using neural networks.

(ii) Then, define a control of the parameters of the population-based models.

(iii) Finally, use a reinforcement algorithm to improve the population-based model around the
controlled solution and thus the control itself.

The data-driven population-based SIR model is intended to capture the effect of the contact dis-
tribution heterogeneity and stochastic effects due to relatively small population size. The model



thus depends on the dispersion parameter k, the transmission rate § and the relative size of the
population n, a coefficient depending on N describing the closeness to the large population regime.

The neural network is trained to compute the time variation of the number susceptible people
following an ordinary differential equation of the form: S’ = —Fy(S,I;n, [, k), where 6 denotes
a vector of parameters. Note that throughout this study, the recovery rate  is fixed, equal to
1/6 day—!. Then, the optimal control of the data-driven population-based SIR model is defined
by means of an optimal control algorithm. This will define time-varying parameters (5(t), x(t)).
However, since the learned population-based model is not a priori trained with such time varying
parameters, the latter control is not well adapted to the underlying individual-based model. This
is why the reinforcement strategy is essential to obtain a meaningful control with respect to the
individual-based model.

The outline of the article is the following. In the first section, we present how the data-driven SIR
model is constructed from the data using a classical multi-perceptron neural network. We show that
this model is interesting on its own to evaluate epidemiological quantities, especially in parameter
regimes not covered by the classical SIR, model. The next section is then devoted to the optimal
control method. A theoretical analysis is performed to show that the control of the data-driven SIR
model is well defined. Then the reinforcement strategy is detailed. Finally, several numerical tests
are performed to assess the validity of the whole methodology. Some appendices conclude this paper
by detailing technical points on the individual-based model (Appendix , the reduced data-driven
population-based model (Appendix , some rigorous proofs of the control section (Appendix |C))
and numerical algorithms (Appendix @

2 From an individual-based to a data-driven population-based SIR
model

In this section, we first introduce the individual-based SIR model, hereafter denoted (IBM), which
enables to model epidemic dynamics with contact heterogeneity. Then we present our data-driven
approach to learn the reduced population-based dynamics of the total number of safe, infected and
recovered people.

2.1 Individual-based SIR model with contact heterogeneity (IBM)

The individual-based SIR model consists in a graph with N vertices. Each vertex represents one
individual, whose epidemic state over time is denoted: X;(t) € {s,,7} for t > 0, for susceptible (s),
infected (7) and retired (7). The edges of the graph represent the contacts between individuals: the
number of contacts of the j-th individual is denoted v; € N. Then the dynamics is described by a
continuous-time Markov process, whose two main parameters are the individual transmission rate
Bina > 0 and the recovery rate v > 0.

One individual evolves in time from the susceptible to the infected state (s — i) and then from
the infected state to the recovered one (i — r). The change of the individual states in the graph
occurs one by one at random times (7™),,en. Given the graph state at time 7, the next time 7+!
and the associated transition is defined as follows. We assign random clocks C; to any states and
these clocks follow exponential distributions. If the j-th individual is infected then the exponential
distribution has rate «. If the j-th individual is susceptible, then the exponential distribution has
rate Bd; where d; is the number of its infectious contacts and 8 = afinq is the mean transmission
rate. Then the next transition occurs for the j*-th individual at time 771 = T™ + Cj«, where j*
corresponds to the smaller clocking time: Cj+ = min; C;. With such dynamics, the more contacts
one individual has with infected neighbors, the more likely he is to be infected in turn.



To investigate the role of super-spreaders in the dynamics, we consider a heterogeneous distri-
bution of contacts. Thus, the edges of the graph are distributed such that the number of contacts
vj of the j-th individual follow a (generalized) negative binomial also named Pélya distributiorﬂ

l/jNBN(H, n ),
a—+ K

where o > 0 denotes the average number of contacts and x > 0 is the dispersion parameter. The
mean of the distribution is o and the variance equals o + a?/k = a(1 + a/k). Thus, a small
dispersion coefficient x corresponds to a large variance and so to the existence of super-
spreaders (sce Figure[l). For large «, the Pélya distribution converges (in law) towards the Poisson
one used classically to model an homogeneous population (see Figure . With this distribution, the
heterogeneity of the contacts relatively to the average number of contacts is parametrized by «a/k.
In practice, in order to fit this distribution, the edges are constructed thanks to the Molloy-Reed
algorithm [30].

The possible controls of this model can either be on the individual transmission rate SBinq (by
imposing masks, for instance) or on the contact distribution parameters («, ) (with confinements
or restaurant closures). However, the control of Si,q and « are quite similar as they both modify the
mean transmission rate 8 = afinq, which is the key parameter for epidemics developments. Thus
the two main parameters that we are aiming to control are:

(i) the mean transmission rate 5 = afing,
(ii) the dispersion coefficient &,

while the recovery rate v and the population size N are two given quantities.

The model is one of the simplest model for epidemic dynamics on graphs. It is simulated by using
a Gillepsie algorithm [I3]. We refer to [20] for more details. We performed numerical simulations
for this model by using the Python packages EpidemicsOnNetworks [28] and NetworkX [16]. At
time ¢t = 0, a given proportion of states are initialized randomly as infected, the other ones being
considered susceptible.

2.2 Average dynamics and stochastic delay

For modelling and control purposes, we are interested in deriving a population-based model which
approximates the dynamics generated by the individual-based one. We are thus looking at the
dynamics of the average number of susceptible, infected and recovered individuals in the graph:

1 Y 1Y 1Y
S(t) = SOPG(H) =), 1) = YPOGH) =), R(O) = D PX;(0) = 7).
j=1 j=1 J=1

To this end, we average several time series associated with the same set of parameters (3,7, x, N). In
settings in which population size is particularly small or contact heterogeneity drives the epidemic,
two main difficulties arise: (i) some simulations lead to immediate extinctions whereas the others
lead to outbreaks, (ii) randomness in the time of the epidemic onset. Consequently, as illustrated
in Figure 2| computing the average trajectory via a naive average frequently leads to severe under
estimations of the total number of infected individuals I(t), as already noted in [20, Appendix A.2].
One standard way to overcome this issue is to compute the standard pointwise average only after

'The probability distribution of the Pélya distribution writes: P(v; = k) = 1;(,??;’? (1 —p)*p® for all k € N, with

b= a+k"




having time-translated the time series such that the outbreaks occur all at the same time. Details
on the calculation of the average trajectories can be found in Appendix[A] Though it seems that this
method most of the time solves the above mentioned issues and gives robust results, as a safeguard
individual stochastic trajectories will also be shown when plotting results.

If we do not take into account this time shift, it is shown in [20] that the averaged quantities
solve the following differential equations:

S" = —BinalS1),
I' = BinalSI] — I,
R =4I,

where the quantity [SI] denotes the average number of edges connecting an infected and a susceptible
individual. Obtaining a closed system requires a relation between [SI] and the variables S, I. For a
homogeneous contact graph, the relation [SI] = aSI/N holds in the large population limit. However,
as we are considering contact heterogeneity, this relation is no more valid. It is therefore necessary
to establish a valid closure for time-shifted dynamics with contact heterogeneity.

0.35 - 0.35 - 0.35 - 0.35 -
: mmm Poisson : mmm Poisson : @Em Poisson : @ Poisson
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Figure 1: Convergence of the Pélya distribution to the Poisson one with respect to parameter .

2.3 Data-driven population-based model (RMy))

This subsection deals with the construction of a deterministic population-based model, which faith-
fully approximates the dynamics of the stochastic individual-based model (IBM) discussed in Section
Using supervised machine learning techniques, the main goal is to capture, through an SIR-like
system of autonomous differential equations, the effects of contact heterogeneity and population size
on the dynamics of an epidemic. More precisely, we assume the following relationships hold between
the state variables S, I, R and their time derivatives:

S, = —F@(S,I;n,ﬁ,li),
I' = FO(SaI;n767’€)_7I7 (RMH)
R = v,

where 7 is still the individual recovery rate and the function Fp : R> — R is a parametrized incidence
function [26] whose purpose is to capture the infection process. Its inputs are assumed to be both
the instantaneous proportion of susceptible S and infected I individuals, as well as three positive
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Figure 2: Example of simulations illustrating the insufficiency of a naive average: the delays in
the start of the epidemic due to stochasticity lead to an underestimation of the punctual number
of infected people. Also it illustrates the importance of modelling the dispersion since here, in the
homogeneous case (kK = +00, corresponding to a Poisson distribution), there is immediate extinction.
(n, B,v,i0) = (.25,.15,.15,.001).

parameters: the population size ratio n = min{l, N/Npax}, the mean transmission rate 8 and the
dispersion coefficient x. The introduction of the parameter Ny,.y, taken equal to 20,000, allows us
to extend our approach to large population sizes. From a practical point of view, we choose Nyax
empirically in such a way that the population dynamic does not vary anymore when increasing Ny, ax.
In other words, n is a ratio describing the closeness to the large population regime.

In order to ensure that the state variables remain in the interval [0, 1], it is further assumed that
the incidence function writes:

FQ(S,I;TL,B,H):fg(S,I;TL,ﬂ,KJ)SI, (1)

where fy : R®> — R is another function, with the same inputs, called the transmission rate function.
For the sake of clarity, we postpone to Appendix [C] details on regularity assumptions on both
functions fp and Fy, as well as well-posedness issues (existence and uniqueness of an absolutely
continuous global solution) of System . From now on, we will assume that such regularity
properties on Fy are satisfied so that System has a unique solution which is moreover Lipschitz,
with non-negative components. Note that because S+ I + R = 1 (remember that these quantities
are proportions), all state variables of are bounded from above by 1 and one of the three
equations in is redundant. Hence, the equation corresponding to recovered individuals is
hereafter omitted.

Neural network structure. The function fy is built by means of a fully-connected neural network
(or multilayer perceptron), which shows a great ability to learn non-linear functions [36, [15]. The
function is then defined by composition of layers: each layer performs an affine transformation on its
inputs and then applies a non-linear function (a so-called activation function) which is determined
in advance. All the coefficients involved in the affine transformations are thus parameters of the
function fy and correspond to the vector-valued parameter §. The neural network structure is then
determined by so-called hyperparameters, for instance, the number of layers, the input and output
sizes of each layer and the activation functions used. The hyperparameters that we have selected
are specified in Table [1| (left column).



Hyperparameters Values ‘ Learning parameters Values

Neurons per layer 64 /128 / 64 / 16 Initial learning rate 1073

No. inputs / outputs 5/ 1 Validation split 15%

Inputs normalization Centered and reduced | Cost function Mean squared error
Initialization Orthogonal Optimizer Adam

Activations [Last] ReLu [Linear] Batch size 512

Learning rate schedule Exponential Epoch 15

Table 1: Practical details regarding the learning of the transmission rate function fy using the
open-source Python library Keras [10].

Learning the transmission rate function from data. The parameter 6 is then set in such a way
that the transmission rate function fy best approximates the rate observed on the individual-based
model simulations. More precisely, the parameters 6 are found by regression, i.e. by minimizing the

mean squared error:
~ 2
S-S

L) = TALST

>

(8,8,I;n,B,k)ED

f9(5715n7ﬁa’%)

I

where D denotes the data set composed of samples (S ,S,I;n, B,k), where S, I are the average
number of the susceptible and infected populations at a given time t, S the value at time t + At,
obtained after averaging individual-based simulations with parameters (n, 8, k). The hope is that,
by considering a diverse enough data set, the function corresponding to an optimal parameter will
manage to capture the underlying trend which relates the inputs to the output, especially for input
values lacking in the data set. Details about the practical implementation of the learning algorithm
are displayed in Table [1| (right column).

To generate the data set, parameters (n,,x,I(0)) are chosen randomly according to the dis-
tributions given in Table [2 The susceptible state at ¢t = 0 are then S(0) = 1 — I(0). Then, we
run the individual-based model over a given time interval. We then average the time-series of the
corresponding susceptible and infected populations over 50 simulations at discrete times t™ = mAft.
For the simulations, we choose At ~ 0.28. Repeating this process a significant number of times and
storing the results makes up the training data set D which, in our case, contains about 7.4 millions
of samples.

Parameters Lower bound Upper bound Units Interpretation
n 0.1 1 - Population size ratio
I5; 0.075 0.9 days™! Transmission rate
K 0.1 10 - Dispersion coefficient
1(0) 1074 1073 - Initial proportion of infected people

Table 2: Samples used to learn the function fp have their input parameters randomly drawn (uni-
formly for n, 8 and log-uniformly for x and I(0)) in a subset of their possible values.

2.4 Model validation

Once the parameters defining the transmission rate function fy have been determined, the validation
step is carried out to prevent over-fitting and evaluate the model accuracy. To do so, we select



(0.75,0.8,10.0)
(0.75,0.8, 1.0)
(0.75,0.8,0.2)
(0.5,1.0,1.0)

(0.5,0.1,1.0)

(0.25,0.8,0.2)
(0.25,0.5,0.1)
(0.25,0.2,10.0)

0.4

0.3

0.1

0.0 =4
(

Figure 3: Response of the learned model to parameters that are constant over time. In the
legend, these are specified in the format (n, 3, k). Learning is based on the data set D. In dotted
lines with markers: predictions of the learned model. In continuous line: average of the IBM
(individual trajectories are not shown for clarity).

unseen values of (n, [, k) in the ranges of interest (see Table for which the population-based
model is numerically solved over a given time horizon. Then, the corresponding trajectory of
(S,I) is compared to the one simulated via the (IBM) initialized with the same parameters. In each
case, the time-series of the number of susceptible and infected individuals are respectively compared
in light of both qualitative behaviour and quantitative error criterion. More precisely, to perform
qualitative comparison, we were mostly interested in the ability of the learned model to
correctly predict immediate disease extinctions, even in parameter regimes in which stochasticity
plays a significant role (low dispersion coefficient x or small population size ratio n).

On Figure|3| we illustrate our approach on several examples: we compare for different parameters
(n, B and k) the average of the IBM and our data-driven population-based model. The outcome
is pretty convincing and the reduced model shows decent accuracy for a wide range of parameter
values (low population size ratio and dispersion coefficient, etc.). These results suggest that the
model captures well the dynamics involved in a heterogeneous epidemic and might be used to analyze
those. The results also show that in many cases, the bifurcation outbreak/extinction is correctly
captured by the model. We further discuss this issue at the end of the next section.

2.5 Byproduct of our approach: estimating key epidemiological quantities

So far, we trained the population-based model which is expected to faithfully capture not only
the global dynamics arising from individual variation, but also the impact of super-spreaders on an
epidemic. In this subsection and based on the latter reduced model, we are working towards defining
a threshold number via the so-called next-generation matrix theory and estimating an epidemic size.
The goal is not so much about getting precise quantitative results regarding those epidemiological
indicators, but rather to make qualitative statements and gain insight into how the parameters at
stake, namely n, 8 and k, interact and influence them. Indeed some quantities like the epidemic
threshold are very useful for the epidemiologists but, contrary to the classical homogeneous models,
not easy to calculate when super-spreaders are taken into account [25].

Estimating a threshold number. In the case of population-based models and under suitable
hypothesis, the nezt-generation matriz theory introduced by Diekmann et al. [§] offers a systematic
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Figure 4: Left: We represent the critical value . beyond which the DFE is unstable. It is normalized
by 7 to obtain a dimensionless number (similar to R in the classical SIR model). The grid used
contains 50 points for n, 200 for x and 200 for 5. Right: Same plot in 2D. The white contour
corresponds to the case where the threshold is exactly equal to one.

framework to define a threshold number whose properties are identical to the well known R in the
traditional SIR model. By analogy, this threshold number will hereafter be called Rg. Informally, it
provides information about the stability of the disease-free equilibrium (DFE) (S,I) = (1,0) in the
population-based model . That is, if Rg < 1, then the DFE is locally asymptotically stable
and the epidemic dies out; if not, then it is unstable and an outbreak occurs [26], [35].

Having numerically checked that the learned incidence function Fy satisfies all the hypotheses of
the next-generation matrix theory (mainly dealing with positivity) [8], the calculation is straight-
forward and unambiguous. The threshold number Rg can be seen as a scalar function of the three
parameters (n, 3, k) given by:

_ OrFy

RO(”: B7 H) - . (2)
Y (8=1,I=0;n,8,x)

We refer to Appendix [B| for a detailed derivation of this formula. Equation (2) suggests that, in
the early stage of an epidemic, an outbreak is all the more likely to occur as the rate of secondary
infections is sensitive to increases in infected individuals. Since the parametric function Fy is a neural
network, its partial derivative can be easily computed using automatic differentiation implemented
in libraries such as Keras [10].

To visualize the dependence of the threshold number on its parameters, we plot in Figure [4] for
many values of population size ratios and dispersion coefficient (n, k), the ratio f.(n,)/y where
Be(n, k) denotes the critical transmission rate value above which the DFE becomes unstable. More
precisely, 5. = .(n, k) is the smallest value of the transmission rate such that the following inequality
holds: Ro (n, Be(n, k), k) > 1.

In Figure [4] we observe that the critical transmission rate . is an increasing function of the
dispersion coefficient k. Consequently, with small dispersion coefficients (and thus super-spreaders),
low transmission rates may be more likely to lead to the development of epidemics. In other words,
low-dispersion diseases have a high risk of developing into epidemics. This is the kind of tendency
we would expect, as suggested in the work [24].

For dispersion coefficients lower than 0.4, the critical transmission rate is smaller than 1072 and
the graph looks flat. The estimation of the threshold number R is probably not very accurate or rel-

10
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Figure 5: Green dots: stable IBM simulations. Red dots: IBM simulations with outbreak epidemic.
In grey the projection of the critical transmission rate surface of Figure @I

evant in this region. Indeed, for these parameters, the individual-based dynamics are very stochastic
and the population-based model may have some difficulty to learn the relevant threshold. However,
the validation results (see previous subsection) show that the model captures epidemic outbreak well
even for low . The difficulty is thus likely to be localized around the critical transmission rate. To
validate this explanation, we plot in Figure [5| the critical transmission surface projected in 2D and
compare it with the individual-based simulations. Green dots refers to IBM simulations without
outbreak, while red ones refer to simulations with outbreak. If the model were perfect, the green
dots would all be under the surface and the red ones above the surface. We observe this behaviour
for £ > 0.4 and see that the trend described by the surface corresponds to the one found empirically.

Estimating the epidemic size. The epidemic size, hereafter denoted R, is defined as the total
number of people who caught the disease. The epidemic size thus corresponds to the number of
recovered individuals in large time:

Roo = lim_R(1). (3)

This quantity can be seen as a function of the parameters (n, 3, k) as the dynamics of R is depending
on them. In practice, the epidemic size is found by running the population-based model on
a sufficiently long time interval, namely T equal to 200, which is large enough so that the system
dynamics approach a stationary state. Figure [6] shows contour plots of R based on the outcome
of numerical simulations with, for each population size ratio n = 0.1,0.2 and 0.8, many parameters
(8, k). This suggests that:

(i) R is less dependent on the infection rate 5 whenever k < 1,

(ii) dependency of R on n is more sensitive in the large dispersion coefficient case (x > 1) and
for large values of the transmission rate S,

(iii) Roo seems to decrease with k; a possible interpretation of this observation is that if epidemics
are more intense but shorter, the total number of infected people may be less than if the
epidemic is less intense but extends over longer periods of time.
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Figure 6: R+ as a function of (8, k) for different population size ratios n. The grid used contains
50 points for x, 30 points for 5.

2.6 Model limitations

The results of the previous section show that the data-driven population-based model is
able to capture complex dynamics with super-spreading in a wide range of population size ratios.
Moreover, the neural network structure of the incidence function makes the analysis of the reduced
system theoretically and numerically easier.

However, all previous simulations were concerned with parameters 5, k that were constant over
time. When considering time varying parameters, as would be required to control the dynamics, the
model no longer works well as observed on Figure [7}

A possible explanation is that learning the incidence function for parameters close to the epidemic
threshold (. is delicate. It is likely that constant parameters choices generate smaller sets for
(S,1,R) as the ones required to capture the epidemic threshold . in more general cases, and that
the transmission rate function fy is non regular. Indeed, when considering non-constant parameters,
many additional configurations (S, I, R) generating bifurcations may arise. Roughly speaking, the
incidence function is probably more intricate to approximate.

The next section is dedicated to improving the data-driven population-based model in order to
manage such time-varying parameters. It is an essential ingredient for the control strategy of the
individual-based model.

3 Optimal control strategies based on the data-driven population
based SIR model

In this section, we seek to define a control problem for the individual-based model with heterogeneous
contacts. We will consider a problem in which we aim at minimizing the maximum number of infected
individuals by including an important constraint reflecting the limited capacity of hospitals. The
control parameters, allowing to act on the population-based SIR system , are the coefficients
B and k. The action expressed by § can be seen as a policy concerning the whole population (such
as lockdowns, indoor masks) contrary to the action expressed by s which allows acting on super-
spreaders (cancelling of large events for instance). Since the control of the (IBM) is complex, we
choose to use the reduced model to determine an optimal policy. However, as mentioned before,
the model is not efficient anymore whenever 3 and x are non-constant functions of the time. As
a consequence, if we use it, we will have a reduced model and a fortiori a control that will not be
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Figure 7: Comparison of the trajectory I between the (RMpy|) model (dashed line blue) and IBM
(in black on the figure) in three cases where the parameters 5 (red squares markers) and x (green
triangle markers) vary over time.

relevant in some areas. To avoid this, we will use the principle of model predictive control with
local model (MPC), where we learn a local model around a trajectory, compute the control and
learn the controlled trajectory. By iterating this method, we expect to obtain a control relevant to
the original individual-based model.

Before introducing this strategy, we will first define an optimal control on the data-driven popula-
tion based SIR model constructed in Section 2.3} As expected, without additional care being taken,
this control deteriorates the fit between the reduced population based-model and the individual-based
model. Subsequently, an MPC-based reinforcement learning strategy is introduced to compute an
accurate control of the individual-based model.

3.1 Optimal control of the data-driven reduced population based model

This section is dedicated to applying the standard theory of optimal control (OC) to the learned
model involving the incidence function Fy whose expression has been obtained thanks to a
neural network. Recall that the weights of the latter neural network have been optimized so that the
output of Fy accurately estimates the rate of change of the proportion of susceptible individuals (see
Section . Therefore, it is not clear that the partial derivatives of Fy = Fy(S,I;n, 3, k) are also
good approximations of the corresponding quantities. Thus, when solving the equations numerically,
difficulties may arise due to the fact that the tools of OC theory rely heavily on the differentiation
of the system dynamics with respect to the state variables and control.

Since the learned model captures in particular the dynamics related to contact heterogeneity,
the health policies we consider are not only modeled by variations in the transmission rate § but
also in the dispersion coefficient x. A decrease in the former is considered to be the mathematical
translation of mandatory measures such as lockdown or indoor masks. In contrast, an increase in the
latter should be seen as a consequence of decisions to either close down places where super-spreaders
are likely to be found, such as nightclubs or concert halls, or to require people to hold a valid COVID
certificate. In what follows, we will use the coefficients 5 and k as optimization variables to contain
the epidemic. The idea behind such a choice is that decreasing the coefficient of dispersion flattens
the tail of the negative binomial probability density.

13



Introduction of the reduced controlled system. Suppose that at the initial time, only a small
proportion of a population of size 1 = S(t) +I(t) + R(t) has contracted a disease whose transmission
rate is estimated to be Sy and that the coefficient of dispersion is approximately known to be kq.
Furthermore, let T' > 0 be the time horizon up to which we wish to study the effect of given health
policies and T, < T be the non-negative time required for a sufficient number of secondary infections
to occur and the health authorities to intervene. At this time, the state of the population is denoted
by the non-negative numbers S. and I.. The equations describing the dynamics of the system under
the health policies b(-) := 3(-)/Bo and k(-) := k(-)/ko are given over the time interval [T, T] as

(57) =100, ()@= (7). ()

where we have defined the right-hand side by
g: R* 2 (a’v b, c, d) = (_Fﬂ(a7 b;n, cBo, dl{O)a Fg(a, b; n, cBo, dl{O) - Vb) € R?.

Since the total population size is constant in time, it is enough to consider only the (S, I) equation
in the control problem. In addition, the health policy (b, k) is assumed to belong to the set of
admissible control

U={(bk) € L(T;,T;R?) : byin < b(-) <1, 1 < k(-) < kmax ace.}, (5)

where by € (0,1] and kpax > 1 are given and reflect the fact that a perfect application of sanitary
measures is unrealistic. It is recalled in Appendix |[C| that in this setting, the ODE system is
well-posed. Let us also comment on the choice of transmission rate bv(k) appearing in model ().
The mapping v is defined as a non-increasing function of k by

v 1, kmax] 2 k= 1/ (1 +log(k)) € R.

It is a relatively simple way to account for the fact that controlling super-spreaders (e.g. closing
down certain public places or introducing mandatory COVID certificate) invariably has an influence
on the whole population. Mathematically, we take this into account by expressing that the action
on £ (the action on the super-spreaders) also has a small influence on § (on the whole population).
Introducing an effective rate bv(k) enables us to couple both the controls.

Towards an optimal control problem for the reduced model. There are different aspects
that we want to include in the definition of the optimal control problem:

e on the one hand, the application of sanitary measures can be detrimental in the long run, both
to the mental health of the citizens but also to the economy. We therefore choose to integrate
weights in the definition of the criterion, which is similar to a choice of the political decision-
maker. This makes it possible to penalize or not certain types of measures (confinement or
closure of certain public places) in the cost of control.

e on the other hand, we wish that the epidemic dies out as soon as possible without putting
too much pressure on the health infrastructures (hospitals, intensive care units), i.e. having
proportions of infected individuals above a given threshold Isp.

These considerations lead us to balance the costs using a convex combination of three non-negative
weights wg, w, and whesp. The last term of the cost function aims to penalize strongly, say by 1/e
for a small positive e, any control leading to proportions of infected individuals above a certain
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threshold Iimax € (Ihosp, 1]. This constraint can be understood as a strong constraint such as the one
on intensive care beds for example.

Thus, by denoting by I, the second component of the (S, I) solution to associated with a
(b, k) health policy, all the previous elements are taken into account in the fixed-time optimal control
problem

inf J[b, k]

OCP
(bk)eU ( )

relying on the cost functional J defined on the set of admissible controls U by

T 2 2
J[b, k] = ;/ ws (1= ()% + wi (k(1) — 1) + Whosp <Ib”“(t) - 1) + é <Ib”“(t) - 1>+ dt.

Te I hosp + I max

Notice that, in the definition above, the purpose of the positive part function is to avoid penalizing
efficient health policies that limit the quantity of sick individuals to proportions lower than Ijsp-

On the existence of an optimal control. In the problem , the control intervenes in the
dynamics in a strongly nonlinear way. It is known that, for such control problems, it is not guaran-
teed that a solution exists and phenomena such as relaxation or homogenization of the minimizing
sequences, leading to numerical pathologies, may occur. For this reason, we will in fact slightly
modify the previous optimal control problem by adding a regularization term to the cost function
J. We have decided to consider here a BV regularizatiorﬂ of , by introducing the following
problem:

inf b, k P
(b}f)leu‘]‘;[ k], (OCPy)

where & > 0 is a parameter standing for the strength of the regularization and
Jslb, k] = J[b, k] + 6(TVI[b] + TVIK]).

Such regularization is interesting from several points of view. For example, if the control is of the
bang-bang typeEL the BV regularization imposes a maximum number of switches, which may reflect
an economic cost. On the other hand, this term imposes the membership of the control to the BV
Banach space, which leaves the freedom to choose the control functions among a large variety of
functions, not necessarily continuous. From now on, we will have to make the following regularity
assumptions on the function Fjy:

Fp:Q — Ris W and of the form , (")

where © = [0, 1]? X [Bobmin, Bo] X [K0, Kokmax). Under this assumption, System has a unique global
solution that belongs to W1 (T, T; R?), according to Appendix

We claim that Problem has a solution (b, k). Since the arguments are rather standard,
we refer to Appendix [C] for additional explanations. Let us now introduce the first-order optimality
conditions for this problem, which are at the heart of the numerical solution algorithm that we then

2Recall that if Q denotes an open set of R™, f belongs to BV(2) whenever f belongs to L'() and

TV(f) < +oo where TV(f) sup /fdlvw
wecl(ﬂ R™)
Il Loo () =1

The Banach space BV is endowed with the norm || - [|gv(q) defined by || fllsv() := [|fllz1 (@) + TV(f)-
3in other words, if the control takes only two distinct values
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implement. The optimality conditions for this problem involve the notion of subdifferential 9 TV of
the total variation operator. For the sake of readability, the proof of the following result is postponed
to Appendix [C]

Theorem 3.1. Let My(S, I;n, Bobv(k), kok) denote the matriz

My — —0sFy(S, I;yn, Bobu(k), kok)  —0rFy(S, I;n, Bobv(k), kok) (6)
0 0sFy(S, I;n, Bobv(k), kok)  OrFy(S, I;n, Bobv(k), kok) — =y

and let [p1,q1,p2, q2] denote the solution of the (linear) adjoint system

D1 . p1 0

d q1 ( Mg 0M2 R)) q1 Whosp ( I ) 1 ( I ) 1
-2 = + —1) + 1 7
dt | p2 OMQ(R) Mj P2 Ihosp Ihosp + Imax€ \ Imax + 0 ( )

42 42 1

completed with the terminal conditions
p1(T) = qi(T) = p2(T) = ¢2(T) = 0.

The functionals U > [b,k] — (S, 1) € [WH(T,,T)]? and J are differentiable, where the pair (S, )
denotes the solution of associated with the control choice (b, k). Furthermore, the differential of
J is given by

(b, K], b1, hal) = /T(hlabJ(b,k)+h28kJ(b,k)) dt (8)

for every [b, k] € U and every admissible perturbatioﬁ [h1, ho], where
[ —Bov(k)a,@F9>
O J(b k) — b—1)+ :
b7 (0,K) wp (b= 1) <(J1> ( Bov(k)9sFy

_ _ p2\ ([ —Bobv' (k)0pFp — roOkFp
KT (b k) = welk 1)+<(J2> <Bobvl(k)35Fe+H05ﬁFo '

Now, let us assume that (Hg,|) is true and let (b, k) denote a solution to Problem (OCPs|). There
exist T, € 0TV (b) and T}, € 0TV (k) such that

(OpJ — Ty, B —b)2(1,,7) > 0

UBLK) € (T T b 1) x F(T T3 (1 k). { (57 0 57 26

Remark 3.2 (subdifferential of the total variation). Let us recall that, according to [9, Proposi-
tion 1.5.1], the subdifferential of the total variation is given by

OTV(b) = {n € CUUTL T | I11]loe < 1 and / ndb = TV(b)}.

“More precisely, we call “admissible perturbation” any element of the tangent cone Tiv,k),u at [b, k] to the set U. The
cone Tpp, x],u is the set of functions [h1, ko] € L™ (Te, T} Rz) such that, for any sequence of positive real numbers (¢, )nen
decreasing to 0, there exists two sequences of functions h; ., € L°(T.,T) converging to h;, i = 1,2, as n — +o0, and
[b, k] + enlh1,n, ho,n] € U for every n € N.
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From a practical point of view, we will not directly use these optimality conditions which remain
rather abstract written as they are. Instead, we will regularize the TV term and introduce a de-
scent method using the differential calculation established in Theorem using the adjoint state
(p1,q1,p2,q2). The implemented algorithm is introduced in Appendix @

As explained earlier, we will consider an optimal control computed from the reduced non-linear
model that we will apply to the individual-based model. To numerically compute an estimate
of the control solving the (OCPs|) problem, we use a direct approach consisting in discretizing
the differential systems involved via a regular S subdivision of the [T, T] interval with step-size
At. This also allows us to transform the optimal control problem into a nonlinear program whose
decision variables are the control values (b, k) evaluated at each point of S. The optimization of
the latter values is performed using a relatively simple adaptive step projected gradient algorithm,
using a linear search of the step size taken in the direction of greatest desceniﬂ In order to limit
the computational cost, the latter online search is performed using a gradient-free method called
golden-section search [31]. Details are provided in Appendix [D]
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Figure 8: Example of controlled trajectories. Parameters: (n, 8y, ko) = (0.6,0.8,0.4), T, = 1, T' = 50,
At =0.1,6 = 1077, ¢ = 1072, (Jnosp, Imax) = (5%, 10%), (wg, Wx, Whosp) = (0.2,0.2,0.6). Here 50
iterations of gradient are required to converge. On the right figure, J, denotes the value of Js at the
p-th iteration.

In Figure[8] we give an example of control computation on the reduced model independently of the
individual-based model. On the left, we see an example of uncontrolled (dashed lines) and controlled
(solid lines) trajectories. We obtain that the maximum number of infected is exceeded during a very
short time compared to the uncontrolled trajectories. Since the beginning of the control is delayed
(by T¢) and since it is not realistic to set 8 (resp. k) too low (resp. too high), it is sometimes not
possible to avoid exceeding I,.x. Let us also note that the implemented gradient algorithm allows
a priori to determine only local minima: there is no guarantee that a global minimizer has been
obtained. In the middle, we plot the associated controls of the coefficients 8 and k. Finally, it is
shown on the right the evolution of the cost function and size of the descent step. As expected,
we obtain a decreasing cost function. This example provides an overview of the accuracy of the
algorithm and we will now focus on the final algorithm for the individual-based model.

5In other words, such that the next control leads, after projection onto the set of constraints, to the greatest
possible decrease in the value of the cost functional
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3.2 Control of the individual-based model (IBM) based on reinforcement learn-
ing

Recall that in Section the complexity of the individual-based model was simplified to obtain
a reduced model consisting of only two deterministic ODEs, at the cost of richness and
accuracy. The reduced model approaches the dynamics of the individual-based model over a wide
range of constant parameters (i.e., large ranges of values of n, 8, and k). In Section we looked
for an optimal health policy specifically for the reduced model. A question then naturally arises:
to what extent can a control minimizing the cost function of the optimal control problem for the
reduced system be used to obtain a ”good” control for the original individual-based model?

In what follows, we seek to improve the above mentioned approach. To this end, we follow an
approach borrowed from the theory of model-based reinforcement learning in order to build a model
whose sole purpose is to approximate only locally, but very accurately, the dynamics of the IBM.
We propose to use the model predictive method (MPC) which consists in alternating between
a learning step on the model and an optimal control step. At each iteration, the control trajectory
is recomputed based on the IBM and added to the data set used to train the reduced model. In the
MPC literature for reinforcement learning problems, there are two families of methods: the global
model-based method or the local model-based method (see e.g. [2I], [7]). In Section we have
seen that it is difficult to build a versatile model capable of handling time-varying parameters (3, k).
Therefore, we propose to use a more local approach. It is common practice to use a valid linear
model just around a state (S(¢"),I(t™)). However, since we are here able to efficiently control a
non-linear system, we propose to compute a valid non-linear system around a whole trajectory. This
choice appears to be a compromise between a local and a global model. We will now describe the
algorithm used to control the IBM.

Local model predictive control approach. Suppose the setting is such that at the beginning
of an epidemic, the authorities have recorded a percentage of infected people Iy with an estimated
coefficient of dispersion xg. Moreover, we assume that the transmission rate By of the disease is
known, and that an optimal control problem was defined for the local model we aim to construct.

To begin with, the function Fy is trained on Dy, a very small fraction (e.g. 5-10%) of the
shuffled training dataset D, introduced in Section[2.3] In other words, the neural network defining Fy
receives information about the IBM dynamics corresponding to a reduced but representative region
of the parameter space (n, 3, ). The main objective of this exploration is stability: it guarantees
that the solutions of the ODE do not blow up during the numerical computation. Recall that
the definition of the population size ratio n has been introduced and commented in Section

Let us now describe a current iteration of the control algorithm using the MPC approach. Assume
that the p-th iteration of the algorithm begins and that the neural network has a weight configuration
0(p). Figure @] shows a flowchart of the proposed approach based on the MPC method. Following
the steps described in Section we can thus estimate a control (b*,%k*) optimally driving the
reduced model based on the knowledge induced by the weight configuration 6(p). Depending
on the fineness of the partition of the time interval of interest, this optimal health policy may
correspond to measures evolving freely on an unrealistic time scale (a few days or a few hours). For
this reason, the control (b*, k*) is approximated via a regression tree (computed using the SK-learn
library) by two piecewise constant functions, denoted (I;, /;:), taking at most 8 different values over
a time horizon of 200 days. Starting from the initial configuration corresponding to the operating
point (S, I,n, B, k)o, the IBM is then simulated under this last policy and the corresponding scenario
denoted by (S, I, R)IBM-

We decide to stop the algorithm when the obtained health policy is sufficiently efficient. The
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Figure 9: Generic iteration p of the reinforcement algorithm used to estimate an efficient health
policy for the IBM. Potential policies are selected among optimal (b*, k*) controls for a reduced
local model involving a parametrized function Fy. Throughout the algorithm, the weights 0 are
sequentially updated until a given control satisfies a criterion related to the cost function of the
optimal control problem ((OCP).

stopping criterion is based on the comparison of a cost inspired by the cost function for the reduced
optimal control problem . More precisely, we say that the current control (l;, l%) is acceptable
with tolerance gy, > 0O if

¢p < TRLCO,

where the cost ¢, associated with the p-th scenario is given by

T 2 2
I t 1 /T t
Cp = / Whosp ( IBM( ) - 1> + — (IBM( ) — 1) dt,
Te Ihosp + € Imax +
and cg is the cost associated with the control-free IBM solution. Recall that T, is the beginning time
of the intervention of the health authorities (detailed in Section [3.1] E In addition to requiring that
the control to be acceptable, the p-th scenario must, under the same (b k) control, be associated with

a lower cost than the cost of reduced model under the (b, k:) control. In other words, by denoting
by c;fduced, the cost corresponding to the reduced model with (b, k), the algorithm does not stop

until ¢, < c;educed. This stopping criterion allows us to relate the performance of the control on the
reduced model and on the IBM.

Since the success of the algorithm depends upon the ability of the reduced model to accurately
predict the output of the IBM, the stopping criterion also involves the following three error metrics:
we retrieve global information by computing the discrete L?-norm of the difference between the
reduced model and the IBM for the state variables S and I, and estimating the mismatch between
the final proportion R, of removed people, defined by . Accuracy is also assessed by measuring
the delay between the time at which the infection peak (IP) occurs, respectively for the IBM and
reduced model. The numerical values of the associated tolerances 7;2,7r_. and 7ip are shown in
Table 3

If the stopping criterion is not satisfied, then the reduced model is strengthened by training the
weights 6(p+ 1) on a larger training set Dp41 containing not only D, but also the local information
corresponding to the p-th scenario (S, I, R)ipm as well as the parameters defining the candidate
control (I;, l%) The above sequence of steps repeats until these criteria are satisfied, at which point
the output of this algorithm is the (5, ff) health policy corresponding to the last iteration.
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Note that, in an attempt to reduce the computational cost and to escape as much as possible
from local minima wells, at each p reinforcement step, the optimal control algorithm is initialized
with the control obtained at the end of the previous reinforcement step. Moreover, the more we
advance in the reinforcement algorithm, the more precise the optimal control algorithm must be
(more iterations, smaller step sizes). The reasoning behind this last point is that in the first few
iterations of reinforcement, high accuracy is not so important because the behavior of the reduced
model under control is likely to be an unfaithful approximation of that of the IBM.

4 Numerical results

In this section, we provide numerical simulations for reinforcement learning based on the model
introduced in Section Since it is not easy to make statistics on these results, we will illustrate
our approach with numerous examples. In each case, we provide the quantities n, 8y, k¢ and the
number of iterations of the reinforcement learning algorithm. We plot on each of them the trajectories
relative to susceptible individuals on the left, the trajectories for the infected in the middle, and
the control for the IBM model (red for the 3 control, green for the x control) on the right. Scales
for /By and k/ko are shown on the left and right on the right figure. In Table [3| we specify the
parameters common to all the test cases. If one of these parameters changes, it will be written in
the legend of the figure.

Parameters  Values ‘ Param. Val. ‘ Param. Val.
So 99.95% | (Ihosp> Imax) (0.025,0.1) T, 1

Iy 0.05% | (wg,wk,Whosp) (0.2,0.2,0.6) T 200

v 1/6 (bmin, Kmax) (0.1,10) At 2/7

TRL 1073 £ 10~2 TR., 1073
oo 1 ) 1077 TIp 6

Table 3: Numerical values of the main parameters taking part in the reinforcement algorithm (Section

and (OCPg)). These are common to all results shown in Section

Since the legend of the figures is the same for all the tests, let us explain below the notations we
use:

e IBM denotes an average trajectory (based on 50 simulations) for the IBM without control,

e IBMY denotes an average trajectory (based on 50 simulations) for the IBM with the final
control obtained by the reinforcement learning algorithm (individual trajectories are in grey),

e RMY denotes a trajectory produced by the reduced model trained only on the initial data set
Dy with the final control of the algorithm,

o RM Y denotes a trajectory produced by the reduced model after model-based reinforcement
with the final control of the algorithm.

e b and k denote the final controls, piecewise constant, provided by the algorithm. The vertical
dashed segments indicate times when changes in control values occur.

The presentation of the results is divided into three parts. In the first one, we shed light on the
outcome of simulations corresponding to several parameter configurations. Then, we focus on how
the number of iterations of reinforcement affects the reduced model accuracy and the effectiveness
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of the associated control. Lastly, we turn our attention to the limitations and drawbacks of the
proposed reinforcement learning approach.

4.1 Examples of control dynamics

We here present several results in different configurations. We recall that, in the optimal control
problem associated with the IBM system, we only consider the cost on the infected peoples, and not
the terms related to the control.

To begin with, we consider two cases where the population size ratio and x are large (large
population and homogeneous contact regime), meaning that they are in the validity regime of the
classical SIR dynamics. We observe the results on this type of configuration on Figures On
the first one, we observe that the strong constraint on I,y is preserved and the number of infected
stays close to Ipesp. In this case the reduced model learned only with Dy (blue curve) is pretty good.
For the second case, we obtain similar results but see that the reinforcement step allows to increase
the accuracy of the reduced model which subsequently improves the control efficiency.
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Figure 11: n = 0.85, 5y = 0.8, kg = 10, 6 iterations
In Figures we stray away from classical population-level regimes by considering intermedi-

ate population sizes and dispersion coefficients. In this slightly more complicated regime, stochastic
behaviours are commonly observed in the IBM simulations. Nevertheless, in the first case (Figure
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, the reinforced reduced model faithfully approximates the IBM average trajectory and the con-
trol is effective enough to ensure that I does not exceed the threshold I,,,x. Similarly the control
policy remains satisfying in the second case (Figure , although it is more difficult for the reduced
model to capture the averaged random behaviour of the IBM due to the very low value of parameter
n.
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Figure 13: n = 0.2, 5y = 0.3, ko = 0.8, 7 iterations

In Figure we consider a case similar to the one investigated in Figure where weights in
the cost function are modified. We strengthen the penalization on 5, and weaken the ones on x and
the infected population. We observe as expected that the control on k plays a more important role
than previously, but it does not seem to significantly change the average behaviour of the IBM.

In the following results, we increase one step further the difficulty by considering even lower
population size ratios and dispersion coefficients. Figure 15| deals with a very large dispersion effect
(low k). The resulting control is accurate and we remain far away from the strong constraint. We
also observe that the reinforcement learning allows to improve a lot the reduced model which seems
to be more and more faithful to the IBM trajectory, even if we observe a discrepancy between the
final values of Sy. Indeed, since Soo = 1— fooo ~I, the accumulation of non-compensating errors on I
seems to lead to a poor estimate of So. Note that the cost functional in the optimal control problem
does not involve So,. In practice, this does not cause any concern because the main objective of the
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method is to compute an optimal control for IBM, in order to reduce the infection peaks.

Figure [L6] highlights results in a very low population size regime where the graph and stochastic
effects are important, yet the results are also convincing. It is notable that the reinforcement learning
procedure drives to an improvement of the reduced model which in the end captures correctly the

infection peaks.
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Figure 15: n = 0.8, Sy = 0.3, ko = 0.2, 44 iterations with (wg,ws,Whosp) = (.5, .1, .4).

4.2 Overall improvement with the number of iterations

2

In this second subsection, we investigate how the number of reinforcement iterations affects the
results of the algorithm. First, we consider a case with large dispersion in Figure We observe
that making some additional iterations increases a little bit the accuracy of the reinforcement learning
reduced model and allows to compute a better control, since the infection peak is less close to the
Imax constraint.

We now consider a highly dispersive test case (low xg) with a low Sy but a large population size
ratio, in Figure[I§ Since the epidemic is small, capturing the threshold is generally more complicated
for the reduced model. Here, we compare one training after 18 and 34 iterations respectively, as
well as a new training with 45 iterations and a smaller initial data set. As before we observe that
increasing the number of iterations improves the accuracy of the reduced model and control. Indeed
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Figure 17: n = 0.5, Bp = 0.8, kg = 9. 14 iterations for the top and 30 for the bottom.

on the top of Figure[I8] the run after 18 iterations does not preserve the strong constraints, contrary
to the second on the middle of Figure which generates a trajectory satisfying the constraints.
However, the reduced model is not flawless and previous tests show that this impacts the accuracy
of the control.

To improve control accuracy, we propose in that case to reduce the size of the initial data set Dy.
This modification allows us to obtain a better reduced model and comparable control. A possible
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explanation is that the initial training may lead the neural network to learning a trajectory that
deviates too far from the test case, making it difficult to explore the space of admissible trajectories.
In other words, its ability to adapt to new samples may be impaired. This shows that the size of
the data set Dy and its diversity may impact the efficiency of the algorithm.
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Figure 18: n = 0.8, By = 0.3, kg = 0.2. 18 iterations for the top, 34 iterations for the middle and 17
iterations with a (40%) smaller data set Dy for the bottom.

Figure [19] deals with a test case involving moderate dispersion and population size ratio. This
example illustrates that usually, during the algorithm, the control improves while the reduced model
may momentarily worsen. Indeed, after only 8 iterations, the control fails to contain the epidemic
(most stochastic trajectories of the IBM violate the strong constraint Ip.x) even if the reduced
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model is qualitatively and quantitatively accurate. At the expense of model accuracy, making
8 additional iterations (middle plot) improves the control which now mitigates the peak of the
average IBM trajectory, but not of all individual ones (grey trajectories). However, making twice

as many iterations (bottom plot) leads to a control that is acceptable with tolerance 5- 1073 (i.e.
cp/co <5-1073) and (again) to a faithful reduced model.
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Figure 19: n = 0.6, 8y = 0.5, kg = 1. Respectively 8, 16 and 35 iterations for the top, middle and

bottom.

These results show that, whenever we make more iterations, the reduced model will generally
overall become better. However, the improvement depends on the degree of randomness involved in
the parameter regime at stake and it is not given that an increase in the accuracy of the model will
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lead to a better control. Indeed, we sometimes observe efficient controls associated with unfaithful
reduced models. But, generally speaking, when the model becomes good, so does the control. That
is, the ”convergence” of the reduced model towards the IBM trajectory seems to guarantee that the
corresponding control is accurate, although sometimes not the best.

4.3 Fails and over-fitting

Our algorithm may fail to both generate an accurate reduced model and an acceptable control. We
identified two possible mechanisms at the root of these seemingly rare failures. The first one relates
to an over-fitting-like effect. More precisely, throughout the reinforcement algorithm iterations, the
neural network is generally fed with more and more similar samples. Thus, at a certain point, the
network predictions are likely to deteriorate in an attempt to capture the dynamics associated with
the mean IBM. For instance, it is seen in Figure that, after 18 iterations, the reduced model
is very accurate even if the control is unsatisfactory. Hence, to improve the effectiveness of the
control on the IBM, we try to make 7 additional reinforcement iterations. This strategy ends up
paying off, but the improvement comes at the expense of a significant deterioration in the accuracy
of the reduced model. Moreover, if we were to continue, the predictions of the reduced model might
not improve. Considering early-stopping or a posteriori model selection among saved intermediate
models (by tracking performance criteria) may help overcoming these difficulties.
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Figure 20: n = 0.95, By = 0.8, kg = 9. Top: 18 iterations. Bottom: 25 iterations

The second mechanism we identified relates to the limitations of approximating a fundamentally
stochastic system (the IBM) by means of a deterministic reduced model. In other words, when
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the parameter regime is such that randomness is dominating the behaviour of the system (e.g. all
three parameters n, § and k are low), approximating the average trajectory of the IBM is very
challenging, as can be seen in Figure Indeed, in this setting, computing the incidence function
Fp(S(t),I(t);n, B, k) is particularly sensitive to errors. In addition, this range of parameters is
scarcely represented in the initial data set Dy (see Table . The latter could partially explain the
difficulties observed in Figure However, enriching Dy may not be recommended because the
previous examples showed that, in a second step, the reduced model would probably have difficulty
specializing around the controlled trajectory.
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Figure 21: n = 0.15, By = 0.7, kg = 0.4, 33 iterations

5 Conclusion and perspectives

In this work we have proposed a control method for an individual-based, stochastic epidemic model
taking into account super-spreaders. For this purpose, we proposed a model-based reinforcement
approach where we alternate between the learning phase of a reduced model and the control phase.
Our approach can be interpreted as a Model Predictive Control (MPC) type method. In the literature
on model-based methods, it is common to use global models for all states, or linear and local models
around the current state. Here we propose a compromise by building a non-linear model valid for
a certain sub-region of the possible values of the controls. Then the reduced model is solved by
optimal control approaches for ODEs. The iterative algorithm allows us to build a control for the
original IBM based on the one computed for the learned reduced model. The results show the ability
of the algorithm to compute efficient controls in classical regimes (low dispersion, large population)
as well as in more complicated regimes, as they are generally more stochastic, when the population
size ratio is small and contact heterogeneity large. This algorithm involves building a reduced SIR
model, relying on a neural network, which takes into account the effects of small population and
dispersion effects associated with super-spreaders. Constructing the latter model also provides tools
to study the effects of contact heterogeneity (dispersion) in epidemics. Indeed, since we learn a
SIR-type model where the incidence function Fy(S, I;n, k, 3) is differentiable, we could, for instance,
derive by analytical means a formula for the basic reproduction ratio Rg. Hence, it is possible to
investigate the dependence of the latter on the dispersion and the population size, which is difficult
to estimate for individual-based models. In a general way, building a reduced SIR-type model with a
neural network from heavier simulations may be an interesting way to study phenomena that are not
easily understood in large models such as the epidemic threshold, the group epidemic threshold, etc.
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One of the limitations of our approach is that we only aim at controlling the mean trajectory of the
individual-based model, but it could be relevant and interesting to take into account the variance.
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Appendices

Appendix A Averaging the IBM output

Suppose we are interested in averaging P € N* runs of the IBM over the time interval [0, 7] and let
M > 2 be the number of points of a regular subdivision of this time interval with time-step At.
For each trajectory p € {1,2,..., P}, run the IBM and refer to the resulting discrete output as
Sp and I, both of which are elements of RM . Their values at time mAt are respectively denoted
Syt and I for m € {1,2,..., M}. Note that we have R, =1 — .S, — I),.
The p-th trajectory is considered an outlier whenever the size of recovered population ends up
being underestimated in the following sense

R) — R) < 0.8 X Runax,

where Rpax = maX{RIJ,” ,p = 1,...,P}. In other words, all trajectories leading to immediate
extinction are excluded since they would otherwise pull down the pointwise values of the mean
trajectory.

Next step is to find the average time of the first epidemic onset. For each p, let
7p =min{mAt : ' = I > 107%, m =1,..., M}, (9)

if the involved set is non-empty and zero otherwise. Based on these values, compute the mean time

1 P
T = FZTP’
p=1

and find for each trajectory p the number of time-steps d, € Z by which the outbreak time is delayed
(or in advance) with respect to the mean value 7, that is

Tp — T
s dp:{pAt J

_ Before averaging the trajectories, time-translate each trajectory p by dj, time-steps At and denote
Sp, I, the resulting vectors. To keep vectors of the same size, we extend the vector by constant values
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on the left or right depending on the sign of the translation:

for d, > 0, for d, <0,

Gm _ Sdvtm if 1 <m < M —dp, e S0 if 1 <m <|dpl,
Tl sM if M —d,+1<m< M, Sldplm i |d,| +1 < m < M.

We therefore implicitly assume that the trajectories do not vary too much at the beginning and end
of the simulations on a time scale |d,|At. Lastly, we compute the point-wise average according to

_ 1 - 1 «— -
vm e {1,2,..., M}, ST=2N S Im=Sy I

Note that in Definition @, the threshold 10~3 offers a decent compromise. Indeed, the higher
this value is, the more accurate the estimation of the family (7,), is, but at the same time, the higher
the risk that some very stochastic trajectories reach the threshold much later (or earlier) than the
others, resulting in a biased mean value 7.

We wish to draw the reader’s attention to the following observation: when we run the IBM
with piece-wise constant parameters 8 and x, epidemic rebounds may occur several times in a given
simulation, e.g. in Figures[7h]and Nevertheless, since it is in the early stage of the epidemic that
immediate extinctions are the most likely (due to stochasticity and very low proportions of infected
people), translating the individual trajectories solely based on the time of the first epidemic onset
remains a priori a reasonable assumption.

Appendix B More careful derivation of R,

The derivation proposed in Section [2.5]is incomplete because one of the hypotheses required for
applying the next-generation matrix theory is not satisfied by the reduced model . The fifth
assumption stated in the paper of P. van den Driessche and J. Watmough [35] is lacking: in our case,
it states that the ODE should have, provided no infected individuals (I = 0), a unique asymptotically
stable equilibrium point, the so-called disease-free equilibrium (DFE). However, in the model ,
there exists an infinite number of equilibrium points of the form (S*,0) for any S* € R and none
of them is asymptotically stable. Nevertheless, in order to fit to the theoretical framework, we can
add demographic dynamics, through birth and death rates, leading to a stabilizing population size
ratio and such that the only disease-free equilibrium point is (S*, I*) = (1,0). Given the uncertainty
about the long term accuracy of the reduced model, the order of magnitude of the time horizons up
to which the model is to be run is about 100 days. Moreover, since the demographic dynamics occur
on a much large time scale (years if not decades), this modelling assumption seems reasonable and
will not strongly affect the dynamics arising from the reduced model .

Therefore, we insert birth and death dynamics into the model:

S/ = _fe(S7I’nuﬁ7ﬁ)SI+H_HS,

I/ = fg(S,[;n,ﬂ,/i)SI—’}/I—/.LI, (10)

where 1 > 0 stands for the population constant birth and death rates. First, observe that (S*, I*) =
(1,0) is indeed the only disease-free state value making the dynamics of stationary. Moreover,
any solution with initial condition (Sin,0), with Sj, € R converges to the unique equilibrium point
(1,0).

Then for any p > 0, the next-generation matrix theory, can be applied to model , leading
to an expression of the threshold number, say R = Rg (). Indeed, let F denote the rate at which
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secondary infections increase in the infected compartment and V the sum of the rates at which the
disease progresses and infected individuals die. We have that

I' = F(S,1) - V(I), with {fé?‘};) - fa(S,(ffy;j:,Mﬁ),I/?)SI,

Among the four other assumptions stated in [35], three of them are straightforward to verify. The
last one states that the rate of secondary infections be positive or zero whenever susceptible or
infected individuals remain (F(S,I) > 0 for any S,I > 0). The latter was checked numerically for
more than 10,000 randomly chosen different combinations of positive values. The requirement did
not fail to hold and we can thus define the threshold number.

In the particular case of model , the next-generation matrix is actually a scalar and coincides
with the threshold number:

OrFy
Ri(n) = -2 -
Y F Bl (5=1,1=0n,8,x)

As p — 0, we recover the expression of Ry given by Eq. .

Appendix C Properties of the controlled model

Well-posedness and qualitative properties

It is notable that if Fp is assumed to be locally Lipschitz with respect to (.S,I), continuous with
respect to its other variables, then System is well-posed according to the Carathéodory’s existence
theorem [6, Theorem 1.1 of Chapter 2]: it has a unique solution that belongs to W (T, T;R?).

Since we are interested in implementing an algorithm based on gradient like iterations, and in
particular at deriving first order optimality conditions, we will further assume in what follows that
Fy satisfies .

The qualitative properties on (S,I) follow from the uniqueness property above and the fact
that Fy is of the particular form (1. Indeed, since Fy(0,-,-,-,-) = Fy(-,0,-,-,-) = 0, the semi-axis
{S =0, I>0}and {S >0, I =0} correspond to particular orbits of System . Therefore, a
component of the solution (5, I) associated with positive initial data cannot vanish. Furthermore,
since initial data have been chosen in such a way that S+ 1+ R = 1 at every time, and since R is
obviously non-negative, we infer that max{S, I} <1— R <1 at every time.

Analysis of the optimal control problem (OCP;))

Before stating the first order optimality conditions for Problem (OCPy)), let us first investigate
existence properties for Problem (OCPj)).

Lemma C.1. Let § > 0. Problem (OCPs)) has a solution (bs, ks).

Proof. Let (bp, kp)pen denote a minimizing sequence for Problem . Since all terms of the
cost functional are non-negative, the sequence (TV(by) + TV (kp)pen is bounded. Since (b,)pen and
(kp)pen are uniformly bounded in L>(T¢, T), it follows that (||(bp, kp)|lBv(z.,1))peN is bounded, and
we infer that (by,kp)pen converges up to a subsequence to some element (bs, ks) € BV (1., T) in
LY(T,,T) and in particular pointwisely. In what follows, when there is no ambiguity, we will denote
similarly a sequence and a subsequence with a slight abuse of notation. The pointwise convergence
implies that byin < bs(-) < 1 and 1 < ks(+) < kmax a.e in (T, T) which yields that (bs, ks) belongs
to U.

33



Let us denote by (Sp, Ip, Rp) the solution to for the control choice (b, k) = (bp, kp). Since
Sp + Ip + R, is constant in [T¢,T] and since S, and I, are non-negative because of the particular
form of Fy given by and according to , it follows that (Sp)pen and (Ip)pen are uniformly
bounded in L*>®(T.,T). Since fp is assumed to be continuous with respect to each variable, it
follows from () that (Sp)pen and (I,)pen are uniformly bounded in W*°(T,, T'). According to the
Ascoli theorem, up to a subsequence, (S,)pen and (I,)pen converge in CO([T., T]) to some element
(55,15) S Wl’OO(TC,T).

Now, let us recast (4)) as

Sp(t) = Sc;f:ﬁc Fy(Sy, I; n, Bobyv(kp), koky), a1)
L(t) = Ic+fTC Fo(Sp, Ipin, Bobpv(kp), kokp) — v1p,

for all t € [T¢,T]. Since Fy is assumed to be (at least) continuous with respect to any of its vari-
able, passing to the limit in these equation follows straightforwardly from the Lebesgue dominated
convergence theorem. We get

{ Ss(t) = Se— [y, Fo(Ss. Is;n, Bobsv(ks), oks), (12)

Is(t) = I.+ fqtc Fy(S5,Is;n, Bobsv(ks), koks) — 715,

for all t € [T¢,T], yielding that (Ss, I5) satisfies . We conclude by noting that, according to the
Lebesgue dominated convergence theorem, one has

lim J(by, kp) = J(bs, ks).

p—r+00
By semicontinuity of the TV seminorm for the L' convergence, one has

TV[bs] + TV [ks] < lim in(TV[b,] + TVIk,]),
P o)

leading to

Jslbs, ks| < liminf Js[b,, k] = inf Js[b, k].
5(bs, 5]*%& 5[0ps Ky ont 5[0, k]

This concludes the proof. ]

Computation of the differential of J and first order optimality conditions

Proof of Theorem[3.1. The first claim of the statement, related to the differentiability of S and I
with respect to [b, k| follows directly from the so-called Pontryagin maximum principle (see e.g.
[22]). The differentiability of J is hence straightforward. Let [b, k] € U and [h1, ha] be an admissible
perturbation. It remains to compute (dJ[b, k|, [h1, ha]).

Let us introduce §1, fl (resp. §2, fg) as the differentials of the mappings b — S, b — [
at b in the direction h; (resp. the differentials of £k +— S, k — I at k in the direction hgz). In
what follows, we will temporarily drop the variables (S, I'; n, Bobv(k), kok) in the quantities involving
Fy(S, I;n, Bobu(k), kok) in order to alleviate notations.

These functions solve the following ODE system:

d (S) S —Bov(k)OsFy
dt <ﬁ> i <f1> o ( Bov(k)0sFp ) 13)
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and

>

d (S, S5
_ - = M, &

completed with the initial conditions

—Bobv’ (k)04 Fy — ko5 Fy (14)
2\ Bobv! (k)0sFy + k05 Fy

where Mjy is given by @
By using standard differentiation rules, one gets

T

(dJlb, K], [, ho]) = /T wihn (b—1) +wphs (k — 1)

T
Whosp ;5 =~ 1 1 =~ = 1
—|—/ hosP(h—l—Ig)( —1) + (Il+_[2)< —1) .
- Ihosp Ihosp + Imaxe Inax +
Now, let us multiply System by (p1,q1) and System by (p2,q2) in the sense of the inner
product. By integrating by parts, one gets successively

P Si T d(p\ 7 (m Sy _ (T, (m —Bov(k)0sFy
N S + MG N S = h1 .
a1 LJ|,_, Jr. \ dt\a ¢ I T ¢ Bov(k)OsFp
and
<P2> . Siz +/T <_d <P2) T <p2>>. 322 _ /T hy (Pz)(-ﬁobvl(k)v(k)@l’e - K055F0>
@) \I)|_, Jr. \ dt\a " \a I 2\ )\ Bobv! (k)v(k)OuFp + rodsFy )
Using that (p1, q1,p2,q2) solves the linear system yields
T
Whosp ~  ~ [ I 1 o~ o~ (I
— (I + I ( - 1> + I + I ( -1 =
/Tc Ihosp( ! 2) Ihosp + Imaxg( ! 2) Tmax +
/T hy <P1> ' (-501)(/6)34F9> n /T hy <p2) _ <—ﬁ0bv’(k)64F9 - H035F0>
X q Bov(k)OsFy 3 Q2 Bobv' (k)OsFp + ko5 Fy )’
whence the desired expression of the differential.

Let us now prove the last statement of this theorem. Let [b, k] denote a solution to Prob-
lem (OCPs)). Let us introduce the so-called indicator function ¢ to the set U, given by

Lu(x):{o ifrelid

+o0o else.

The functional Js is not differentiable in a standard sense because of the TV terms. For this
reason, we will use subdifferentials to derive first order optimality conditions. We first claim that
Problem (OCPys)) is equivalent to the optimization problem

o T+ STV + TVIR]) + (b, R))

The standard first order optimality condition reads

0 € (Jb, k] + 6(TV[b] + TV[K]) + s (b, k))) .
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which rewrites
—0yJ € OTV(b) + Oy, 1]
=0k € OTV(E) + Oy o]

and therefore, there exist Tj, € 0 TV (b) and T}, € 9 TV (k) such that the Euler inequation

(Op = Ty, B=b)2(1,,7) > 0

(B, K) € L(Te, T; [buain, 1]) % L(Te, T [L, Kumax]), { T —ToJ6 — Kooy 2 0

holds true and the expected conclusion follows. Note that, since it is not our main purpose, we do
not provide details in this article but refer for instance to [I7] for explicit characterizations of such
sets. O

Appendix D Numerical implementation

Since the adjoint system is state-dependent, given an initial estimate of the control, we first determine
the set of {(S,I)(t), t € S} (e.g., using an explicit fourth-order Runge-Kutta numerical scheme),
and then {(p1, q1,p2,q2)(t), t € S}.

The regularization term appearing in the problem is computed using the following ap-
proximation of the total variation (see [14], §1.30]:

TV[g] ~ > [q(t™) — q(t™ )],

where the family of points (¢"*) belongs to S. Note that, in the expression of the total variation, the
partition used for the calculation is not arbitrary.

In addition, notice that the resulting regularisation term involves the non-differentiable absolute
value function. Since this term contributes to the gradient of the cost functional J5, we use the
following computationally efficient smooth approximation [33]: |z| ~ /1 + 22, for all z € R, where
n is taken equal to 1076,

A concise description of the optimal projected gradient approach is given in Algorithm (1| where
u € RIS denotesﬁ the current (discrete) control approximation to the vector-valued solution of
the problem . In addition, the input ug is an initial guess for the control values whereas
the parameters Ny and 7, are respectively the maximum number of iterations of the algorithm and
a tolerance. Lastly, Py refers to the map which projects the discrete components b € RIS and
k e R™IS| of 4 according to

bl,bg,...,b|8|> (Pb(bl),--.7pb(b|g|))
Py u= — ,
u-t <klak27"'7k8| Pk(kl),,Pk(k‘SO

where Py : x — min (1, max (bmin, )) and Py :  — min (kpayx, max (1,2)) are defined on R.

5|S| denotes the cardinality of the set S.

36



Algorithm 1: Optimal step size projected gradient

Require: Partition S of [T¢, T1.
Inputs: ug € R2¥ISI, Ng € N*, 75 > 0.

D — 0,

u <— uo,
Jold <  +o00,
Jnew,Jo < Jsluol,
Vi +— VJs [uo].

while p < Ng and (jold — Jnew) > Tgjo do

Golden-section search to find p* a local minimizer of p — Js [Py (u — pVj)],

Update :
u 4 Py(u-—p*Vyj),
jold — jnewa
jnew — Jg[u],
Vi <« VJslu].

if Vj # 0 then
t Normalise Vj «+ Vj/||Vjll,
L p<p+1

Return: w.
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