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Abstract
Recently, there have been attempts to obtain high-dynamic range (HDR) images from single exposures and efforts to reconstruct
multi-view HDR images using multiple input exposures. However, there have not been any attempts to reconstruct multi-view
HDR images from multi-view Single Exposures to the best of our knowledge. We present a two-step methodology to obtain
color consistent multi-view HDR reconstructions from single-exposure multi-view low-dynamic-range (LDR) Images. We define
a new combination of the Mean Absolute Error and Multi-Scale Structural Similarity Index loss functions to train a network
to reconstruct an HDR image from an LDR one. Once trained we use this network to multi-view input. When tested on single
images, the outputs achieve competitive results with the state-of-the-art. Quantitative and qualitative metrics applied to our
results and to the state-of-the-art show that our HDR expansion is better than others while maintaining similar qualitative
reconstruction results. We also demonstrate that applying this network on multi-view images ensures coherence throughout the
generated grid of HDR images.

CCS Concepts
• Computing methodologies → Computational photography; Machine learning; 3D imaging;

1. Introduction

In the last two decades, creative industries and researchers pro-
posed significant advances in media content acquisition systems in
three main directions: increase of resolution and image quality with
the new ultra-high-definition (UHD) standard that uses 3840x2160
pixels resolution (also called 4K resolution); stereo capture for
3D content (depth information); and high-dynamic range (HDR)
imaging raising the dynamic range of the image to at least 16-
fstops. These recent advances addressed the full media production
pipeline: acquisition, image data enhancement, and display, with
the development of 3D and grid cameras, HDR imaging, UHD res-
olution, autostereoscopic displays, immersive VR headsets, HDR
displays. These new technologies raise incontestable enthusiasm
by both professionals and end users, but are currently limited by
low creative content potential. For instance, todays offered 360◦

panoramic image for VR immersive visualization would not be
convincing for a natural light outdoor landscape. The user would
be perceptually limited in the range of intensity and restricted to
rotating navigation.

1.1. Project context

The ANR ReVeRY project is a collaborative project addressing,
among other objectives, solutions to enable user perception of high
intensity ranges as well as free navigation inside the scene in an

embedded distributed media adaptive to the diversity of nowadays
displays. In other words, there should be no capability difference
when virtually visualizing real or synthetic scenes.

The ReVeRY project conducts fundamental research to address
the full pipeline from acquisition to display. Our team focus on the
acquisition step, in order to deliver a depth+HDR point cloud. In
this paper, we concentrate on the acquisition step targeting high-
resolution, HDR values. Key limitations addressed are:

1. Higher resolution is still requested (for example, to increase def-
inition of small objects in large views);

2. Stereo streams are shot under fixed geometrical choices (i.e.,
rig-to-scene distance, inter-ocular distance, and baseline orien-
tation) restraining or focusing their use according to specific
display geometries (movie theater vs. 3DTV) and limiting the
postproduction reframing possibilities (i.e., frame rotation de-
stroys depth effect as image rows are no longer parallel to the
rig baseline);

3. HDR imaging technology, whose deployment to HDR-enabled
home TVs is imminent, is still nowadays limited by too few
HDR video acquisition solutions;

4. Capturing different images with varying exposure times remains
challenging in the case of dynamic scenes with movement or
light changes.
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Figure 1: The ReVeRY camera built by our partner, XD Produc-
tions. It is a 16-image synchronised camera system. It is a wide-
baseline camera array, with cameras apart of 20cm.

The ReVeRY project aim is to overcome the following current
limitations of current media to the creative industries:

1. The traditional acquisition pipeline uses and outputs video
streams, either UHD, stereo, or HDR. After shooting, possible
changes on the media (i.e., viewpoint, framing, aperture, light-
ing) are limited, which may force a film director to shoot the
scene again if any changes are necessary;

2. For now, a pre-shooting choice is made according to the nature
of the media to capture (2D, stereo, or HDR) depending on the
foreseen use. However, these choices are currently never jointly
offered.

3. Advanced acquisition systems for specific displays (autostereo-
scopic, HDR, VR headset) are often at the stage of prototype.
Quality delivery often implies the industries to limit themselves
to traditional content converted with heuristics to specific out-
puts, with the risk of visible artifacts and user discomfort.

The ReVeRY project ambitions are to propose the ReVeRY me-
dia, a joint embedded UHD, HDR, and 3D information in a ded-
icated format, along with one or more suitable representations, to
develop a demonstrative prototype of a dedicated acquisition sys-
tem, and to prove their benefits to the media creative industry. The
main project objective is to manage and process specifically de-
signed multi-video data, in order to compute, manipulate, and de-
liver an innovative, rich high quality (HDR, UHD) video+depth
media.

In this project, a new camera-grid system prototype was built for
acquiring a multiview/multiexposed video. The 16-camera system
is illustrated in FIGURE 1. It is a cost-efficient, camera-grid system
to acquire at once several viewpoints under several exposures. One
objective of the reVeRY project is to provide new algorithms ded-
icated to HDR+depth reconstruction from multiview/multiexposed
raw data, and converting this reconstruction output into an easy-to-
use HDR UHD video+depth media.

1.2. Research statement

Multi-view images have been used for many areas in Computer
Graphics and Computer Vision, with 3D content reconstruction

and lightfield imaging being the most extensively used applica-
tions. A major targeted breakthrough of the project was to resolve
jointly HDR and Depth reconstruction. 3D reconstruction by stere-
ovision relates to the automatic depth extraction of a 3D scene
structure from different viewpoints (2 to n) acquired at the same
time. It comes down to match all homologous pixels from the 3D
point projections on the n images. The ReVeRY project consid-
ers simplified multi-epipolar geometry, reached either by using di-
rectly a capture configuration in parallel geometry or applying a
pre-processing step of rectification on each image [HZ04], lead-
ing to epipolar lines parallel to image columns or rows. A match-
ing scheme defines data similarity (or dissimilarity) within a given
neighborhood between potential homologous pixels, rendered dif-
ficult by lack of information in images (such as occlusions) or am-
biguous information (such as homogeneous/repetitive area or lu-
minosity variations). Two classes of methods have been proposed:
hybrid and multiscopic matching. Hybrid methods combine a pixel-
per-pixel matching with structured primitives such as regions ob-
tained by per-image segmentations the quality of depth estimation.
However, this is almost dedicated to the binocular case and the risk
of inconsistency between regions in different images increases with
the number of views. Multiscopic methods usually gain robustness
with information redundancy by computing simultaneously the n
depth maps and a minimum of four views is needed [NPR10a]
[NPR10b]. The ReVeRY camera array system, a regular rectangu-
lar grid, provides simplified multi-epipolar geometry and enough
redundancy.

Combining HDR with stereovision enables high-quality depth
perception reproduction of real-world scenes, but few contributions
have been made in this domain. Lately, solutions were proposed
for 3D HDR images with stereo cameras [LC09] [SMW10] or
multi-stereo cameras [BLV∗12] following stereovision-based pro-
cedures, with remaining inaccuracies in under- or over-exposed ar-
eas [BVL19]. This can be improved using patch-matching along
the epipolar line [OLMA13] but spatial coherence is lost.

There were several solutions envisaged. The first solution was to
acquire in a single shot different exposures per view and to solve
for HDR and depth in a same algorithm. However, this kind of
algorithm was overruled at the mid-point of the project. First, it
is difficult to synchronize camera which have a different exposure
time. Second, solving depth with varied exposures has proven dif-
ficult [BVL19] [OLMA13]. With the raise of machine learning al-
gorithms, it was soon realized that we could investigate towards
other solutions. We decided to work separately on two types of al-
gorithms, one to solve depth and the other one to solve HDR imag-
ing. With the upgrade of sensor dynamic range, we bet on the fact
that there could be sufficient information to solve for depth. As
we will analyse in the previous work SECTION (see SECTION 2,
there are now possibilities to use machine learning to estimate HDR
values from a single exposure image.

1.3. Contributions

Our work focuses on reconstructing consistent multi-view high-
dynamic range (HDR) images in addition to reconstructing single
view images to feed a multi-view camera system with HDR con-
tent. It is very likely that using multi-view HDR images would en-
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hance the 3D reconstruction, as long as we provide calibrated and
consistent inputs.

We propose a CNN-based approach for reconstructing HDR im-
ages from just a single LDR exposure per view, described in SEC-
TION 3. This prevents difficulties linked to multi-exposure acqui-
sition like synchronizing video input. It predicts the saturated areas
of LDR images and then blends the linearized input with the pre-
dicted outputs. Two loss functions are used: the Mean Absolute
Error and the Multi-Scale Structural Similarity Index. The choice
of these loss functions allows us to outperform previous algorithms
in the reconstructed dynamic range. Once the network is trained,
we input multi-view images to it to output multi-view consistent
images. Our results are described in SECTION 4.

2. Related work

The current reconstruction of Single View High Dynamic Range
Images primarily rely on techniques using either inverse tone map-
ping operators (iTMO), generating multi-exposure stack and by di-
rectly passing the single LDR Image to a function which recon-
structs the HDR equivalent. Multi-View reconstructions often rely
on Multi Exposure LDR Inputs which could possible cause difficul-
ties in relation to the lack of availability of multiple exposures or
pixel misalignment across multiple views and exposures. We pro-
vide a study of the current techniques in relation to our proposed
methodology.

2.1. Single-View HDR Reconstructions

Using inverse tone mapping operators such as introduced in Ban-
terle et al., 2007 [BLDC06] is one way to retrieve HDR Content.
Tone mapping operators are generally used to retain the contrast
of the image while compressing the range of illuminance in order
to display HDR Images on typical display devices. Inverse tone
mapping operators aim to achieve the opposite, to produce an HDR
Image from an LDR one, like using the median cut algorithm by
Debevec et al. [Deb08].

Another method to generate HDR Content arises from Debevec’s
[DM08] method to merge multiple exposures of LDR images. This
is exemplified in the research proposed by Lee et al [LAK18]. They
propose the use of Generative Adversial Networks loss coupled
with the L1 loss to generate multiple exposures of an image in or-
der to merge them and form the HDR image. Endo et al. [KK19]
synthesizes bracketed LDR Images by learning the relative change
of each pixels when the exposure is increased/decreased.

Yet another method is to generate HDR Images directly from a
single exposure LDR Image. This is exhibited in the work by Eil-
erstsen et al. [EKD∗17] which uses a U-NET based architecture to
predict the saturated regions and uses a blending function to com-
bine the original image with the predicted one. They optimize the
illuminance and reflectance cost functions to achieve their results.
Santos et al [SRK20a] propose a feature masking mechanism that
reduces the ambiguities caused by invalid information in the satu-
rated areas, and makes use of a combination of L1, VGG and the
Style loss to optimize their network. Our results would be primar-
ily displayed and evaluated against the two algorithms mentioned
above.

Our work approach most relates to [EKD∗17] and [SRK20a] be-
cause it uses neural networks to predict saturated areas from single
exposures. However, we propose different loss functions, and ex-
tend to multi-view data.

2.2. Multi-View HDR Reconstructions

A method to obtain multi-view images with a High Dynamic Range
Texture by Lu et. al [LJDE11] relies on multi exposure capturing - a
constraint we would tackle in our research. One of the reasons why
reconstructing Multi-View Stereo HDR using multi exposure is not
very practical is because they require the conversion of pixel values
to relative scene radiance values to accurately model the saturated
regions. For this conversion, highly accurate pixel alignment is re-
quired across the multiple exposures which is not always a guaran-
tee in the case of Multi View Stereo systems.

Troccoli et. al [TKS06] explains how there is a lack of HDR Tex-
ture 3D Reconstructions due to the possible violation of the bright-
ness constancy constraint among multiple exposures and proceeds
to introduce an exposure invariant matching technique to create 3D
Reconstructions. However, the reliance on multi-exposure images
is still a problem since the availability of different exposures of the
same image is not always guaranteed, and poses acquisition issues.

3. CNN-Based Single-View HDR Reconstruction

We propose a CNN-based approach to obtain consistent multi-view
HDR outputs. Our pipeline is shown in FIGURE 2. An initialisation
step predicts the saturated regions of an input LDR image. In a first
step, it feeds a learning network to obtain HDR values. In a second
step, this trained network is then run on a multi-view LDR map to
infer coherent HDR images of a multi-view camera grid.

Figure 2: Our two-stage pipeline for consistent multi-view HDR
reconstructions. First step: training HDR reconstruction for a sin-
gle view. Second step: ensuring color consistency between views by
predicting through a map containing all views. Here, V i

j implies
the jth view of the results of the ith step.
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Figure 3: Patch sampling result, the top row shows patch cropping
result in a same HDR image, the second row is the related mask
for overexposed area, the third row is detected texture with patch
sampling algorithm [SRK20b], and the number in the bottom is the
texture score for each patch, from left to right, the smaller the score,
the fewer textures it contains.

3.1. Dataset

In order to train our neural network, we collected 3948 HDR im-
ages on the website according to the source list in [MYK18], then
used a virtual camera [EKD∗17] and patch cropping [SRK20b] to
generate training data. In a picture layout, the principal component
usually contains the saturated area in the middle, and the edges
contain the background information.

Due to the randomness of cropping, there is no guarantee that
each generated training data can contain enough texture. Therefore,
we apply a patch sampling algorithm [SRK20b] to detect texture in-
formation, this algorithm returns a gradient score for each patch,
the higher score stands to include more texture as shown in FIG-
URE 3, the patch whose score is more than 0.1 will be selected as
training data. Finally, 281895 image pairs are selected as training
data, example shows in FIGURE 4.

3.2. Architecture

The CNN architecture used is similar to the one used in the paper
by Eilertsen et al. [EKD∗17]. It contains an autoencoder with skip
connections in between. The encoder converts an LDR input to a
latent feature representation, and the decoder reconstructs this into
an HDR image in the log domain while the skip connection is used
to transfer each level of the encoder to the corresponding level on
the decoder side.

3.3. Loss Functions

Zhao et al. [ZGFK17] suggests a combination of the Multi-Scale
SSIM (MS-SSIM) and the Mean Absolute Error (MAE) loss func-
tions in image restoration. Since these loss functions are used to

Figure 4: Samples of selected training data.

improve the quality of reconstructions, we adopted a similar ap-
proach in our research.

Loss functions will be applied to specific areas of the images.
We want to find the loss between images which give a substantial
amount of intensity information which would be where the HDR
and LDR images differ. To achieve this, we obtain the intensity of
the image by subtracting the RG Chromaticity (Normalized RGB
image) from the image. The RG Chromaticity when used alone
provides information about the apparent colors of the scene rather
than the intensity information. Therefore, subtracting this from the
original image would give us more intensity information to apply
our loss function on. The RG Chromaticity is represented by the
proportion of the red, green and blue in the color. The difference
between the original and the transformed color space to which we
would be applying the loss function to is shown in FIGURE 5.

Mean Absolute Error: The first loss function taken into consid-
eration is the Mean Absolute Error (MAE), or the L1 loss function
- a pixel-wise loss function which gives the absolute distance be-
tween two corresponding pixels of two images and gives relatively
higher quality images. The L1 loss is given by:

MAE =
∑c,i

∣∣ŷc,i − yc,i
∣∣

3 ·n (1)

Here, ŷc,i is the ith pixel of the cth color channel of the predicted
image and yc,i is the ith pixel of the cth color channel of the ground
truth image.

Multi-Scale Structural Similarity Index: The Multi-Scale
SSIM (MS-SSIM) [WSB] was introduced to tackle a dependency
that the Structural Similarity Index (SSIM)s metric was bound to -
that SSIM was dependent on the scale of the image, and therefore,
changes in viewing distance from the image to observer would have

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

40



A. Mohan, J. Zhang, R. Cozot, & C. Loscos / Consistent Multi- and Single-View HDR-Image Reconstruction from Single Exposures

Figure 5: From Left to Right: Input Low Dynamic Range Image, Intensity Image on which the loss functions are computed, Image Mask
after extracting the saturated regions of the image.

an impact on the score. MS-SSIM, however, downsamples the im-
ages through the application of low-pass filters. The equation, in
terms of luminance, contrast, and structure is given as:

MS−SSIM(x,y)=
[
lM(x,y)

]αM
·

M

∏
j=1

[
c j(x,y)

]β j
[
s j(x,y)

]γ j (2)

Here, M is the number of scales over which we iterate the func-
tion. We chose this particular metric as the perceptual loss because,
given its scale invariance, the metric is proven to perform equally
or better than the other evaluation criteria.

Finally, we combine both of these concepts to formulate our loss
function, which is given by:

L(y, ŷ) = λ1(MAE)+λ2(1−MS−SSIM) (3)

λ1 and λ2 were experimentally chosen as 0.5 each. Using a com-
bination of MAE and MS-SSIM as a cost function for the recon-
struction produces satisfactory results because they perform com-
plementary tasks used to preserve important aspects of the image.
The pixel-wise function MAE accurately models the colors and lu-
minance while the perceptual loss MS-SSIM preserves the contrast
of high-frequency regions - both of which are essential to recon-
structing HDR textures. The outputs of the Neural Network con-
taining the predictions in the saturated area are mixed with the lin-
earized input using a blending equation. The saturated regions are
extracted through a mask which we define as msk, where

msk =
max(0,xin − thr)

1− thr
(4)

The threshold value thr was chosen as 0.95 to give the best satu-
rated area mask. msk is involved in the prediction of the final HDR
Image through equation 5:

yout = (1−msk)xlin +msk(ypredict) (5)

Input linearization is approximately evaluated by the equation:
xlin = x2 where x is the input and xlin is the linearized output.

3.4. Extending to multi-view HDR image reconstruction

We extend our network to reconstruct multi-view camera grid im-
ages so that the adjacent images are color consistent.

Passing each of the single views of the multi-view images into
the network would not be optimal because (i) predicting views sep-
arately would lead to some redundant computations and (ii) it will
not take into account neighboring image information, thereby ren-
dering the set of images inconsistent with respect to color among
different views. Therefore, we rely on passing image grids to the
network to reconstruct the saturated regions. However, predicting
the image grid as a whole can cause problems since (i) predicting
information for such a large image would require enormous com-
putational power and resources, and (ii) the down scaling carried
out in the network internally, may lead to loss of some resolution.
As a trade-off between these two aspects, we divide the grid into
sub-grids - generally consisting of four images, as shown in 7 to
carry out the prediction. Due to the network’s downscaling, con-
volutional and pooling capabilities, the pixel-wise prediction of the
downscaled images are affected by its neighbouring pixels, thereby
improving coherence among multiple views.

4. Results

To evaluate our algorithm that predicts HDR images for single-view
inputs, we make use of the SSIM, PSNR, HDR-VDP [MKRH11]
metrics which usually quantify the HDR quality. Additionally,
we use the Harmonic_HDR_IQA metric by Rousselot et al.
[RDMC19] - a full reference quality metric developed which is tai-
lored to compare HDR content.

4.1. Comparison with state-of-the-art

We compare our algorithm with two other state-of-the-art algo-
rithms for HDR reconstruction using single exposure: HDRCNN
[EKD∗17] and MaskCNN [SRK20a]. Table 1 shows the metrics
computed over 40 different images. We have observed that our al-
gorithm performs well in reconstructing the intensities of the HDR
Samples. Example of results are show in FIGURE 6. Our algorithm
turns out to be more robust in terms of quality metrics and produces
a better score using the HDR-VDP metric as compared to the other
algorithms. This is illustrated in FIGURE 7 where errors are en-
coded from red (biggest) to blue (least).
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Figure 6: Comparing our HDR Reconstructed outputs with those of two other algorithms. From Left to Right: Input LDR Image, Ground
Truth Image, HDRCNN Output, MaskCNN Output, Our algorithm. Results are tonemapped for display purpose using [RD05].

Figure 7: The input grid image consisting of 16 views, used to
evaluate our algorithm. The black box includes the sub-grid passed
through the network for prediction.

Metric HDRCNN MaskCNN Our
HDR-VDP 33.75 34.02 34.43
PSNR 57.59 57.54 58.60
Harmonic-IQA 0.314 0.315 0.310
SSIM 0.29 0.29 0.29

Table 1: Scores averaged over 40 images of different exposures and
scenes. HDR-VDP, the most commonly used metric, gives a slightly
better score for our algorithm.

Figure 8: HDR-VDP visual results when compared to the reference
image for images of FIGURE 6. From Left to Right: HDRCNN Out-
put, MaskCNN Output, Our algorithm.

Our algorithm outperforms the state-of-the-art in single-view
HDR Reconstruction when it comes to dynamic range retention.
Retention here refers to obtaining dynamic ranges comparable to
those of the ground truth HDR Images. The dynamic range of
an image is generally calculated by taking the base-2 logarithmic
value of the absolute difference between the maximum valued and
minimum valued pixels in the image. The results, summarized in
Table 2, show that our algorithm achieves a lower error than the
HDRCNN and MaskCNN algorithms, thereby indicating that the
images obtain a dynamic range which is close to the ground truth
one.

Metric HDRCNN MaskCNN Our
Dynamic Range Error 1.051 1.026 0.921

Table 2: Average of the absolute errors between the Dynamic
Range of the ground truth images and the Dynamic Range of the
images predicted through our algorithm.
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4.2. Multi-view Consistency Assessment

We ran our consistency test on a set of real images captured using
the ReVeRY camera array at 2 different exposures to build an HDR
ground truth image [DM08]. We ran the algorithm on a set of four
LDR images as described in SECTION 3.4. Our original training
algorithm inputs images of 2500×2100. We adapt it to fit a size of
5000× 4200 of input LDR; this upper limit is set by the memory
buffer size of our testing GPU, a NVIDIA Tesla P100 GPU. Four
of these GPUs were also used for training. Results are shown in
FIGURE 9 (toned map pictures) and Table 3. As seen in the table,
the metrics of Sum of Absolute Difference and Normalized Cross
Correlation metrics, which are used for coherence evaluation, score
better in prediction through a grid view.

Figure 9: From top to bottom: LDR Inputs, multi-view outputs of
single view inputs, multi-view outputs of grid inputs, ground truth
HDR images. All of the above images are operated on views 1,6, 11
and 16 of the camera array.

Metric Independent Views Grid Views
SAD 3831483.42 1388318.70
NCC 0.014 0.22

Table 3: Results of the consistency evaluation.

5. Conclusion

We presented a new methodology for a three-stage multi-view
HDR reconstruction and evaluated its efficiency with respect to
state-of-the-art algorithms. The loss functions we have incorpo-
rated provide an alternative method to obtain the HDR reconstruc-
tions with a better dynamic range retention when compared to ex-
isting algorithms. We demonstrate that such a network is adapted
to multi-view imaging, allowing to achieve consistency among
the multiple views. With this approach, we successfully provide

a pipeline to multi-view HDR Images tailored for a wide range of
applications.

5.1. Future work

A new machine-learning-based depth reconstruction approach was
proposed in the ReVeRY project [BGPC22]. It is tailored for wide-
baseline camera systems, like the ReVeRY camera (each camera
is distant of 20cm). The next step is now to adapt this depth-
reconstruction to a the HDR multiview input proposed in this paper.
This will allow us to study how Barrios et al. [BGPC22] performs
on HDR images, but also whether our HDR reconstruction is of
sufficient quality for depth reconstruction. An excellent outcome
would be that using HDR images as input improves depth recon-
struction accuracy.

Another interesting approach would be to use the recovered
depth to guide the HDR multiview consistency step. Typically,
based on ReVeRY camera configuration, depth values are associ-
ated to disparity values which represent the offset in number of
pixels between adjacent images like it was done in Bonnard et al.
[BLV∗12] [BVL19]. One drawback of these previous approaches is
that disparity was computed on differently exposed images, which
would be overcome with the current approach. However, this would
not directly solve for overexposed areas. An additional final step
could refine iteratively both depth and HDR values.
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