
HAL Id: hal-03664198
https://hal.science/hal-03664198

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction to computer graphics: a visual interactive
approach
Céline Loscos

To cite this version:
Céline Loscos. Introduction to computer graphics: a visual interactive approach. Eurographics 2022,
Education Program, Apr 2022, Reims, France. �10.2312/eged.20221039�. �hal-03664198�

https://hal.science/hal-03664198
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2022/ J.-J. Bourdin and E. Paquette Education Paper

Introduction to computer graphics: a visual interactive approach

C.Loscos

IUT of Reims, LICIIS laboratory, University of Reims Champagne-Ardenne, France

Abstract
Computer graphics is a difficult topic, requiring associating mathematics and programming skills. When initially taught at
undergraduate levels, there are several factors which discourage students. First, programming a first computer graphics pro-
gram requires a substantial initial framework which can be intimidating for many of them. Second, understanding and applying
mathematical concepts is very often overwhelming.
To counter this intimidating feeling, a new teaching approach was proposed in 2018 to 3rd year undergraduate computer
science students. The course was split into two parts, theory and practice. The theoretical concepts were seen in class, with
course handouts and table exercises resembling closely to traditional computer graphics learning. The originality of the course
comes from a new way of practicing 3D programming. Practical labs were built upon the Unity game engine programming
platform, adapted to match the theoretical concepts seen in classroom.
Conclusions are drawn over 4 years of teaching this course. When taught using an accompanying easy-to-access graphics
programming platform, computer graphics becomes a more attractive course for students with lower mathematics and pro-
gramming skills. It is also very satisfactory for skillful students as it enables them to grab and master concepts quickly to reach
interesting final lab achievements.

CCS Concepts
• Computing methodologies → Computer graphics; • Applied computing → Interactive learning environments;

1. Introduction

Computer graphics is a difficult topic, both to teach and to practice.
It requires skills both in mathematics and computer science, with
quite advanced programming competences. It is often taught only
from the graduate level, when students have validated strong com-
petences in advanced programming. Introducing computer graph-
ics at earlier learning stages, like at undergraduate levels, requires
adapting in order to keep motivation and attractiveness. Otherwise,
students may rapidly feel overwhelmed and discouraged.

In this paper, we propose a new teaching methodology which
builds on Unity [Uni], a pre-existing graphics programming plat-
form, a game engine development framework. There exist many
online tutorials to learn to use Unity. They are dedicated to spe-
cific tasks and need pre-knowledge of computer graphics. Far from
being a dedicated tutorial to the Unity platform, the pedagogical
approach of the course makes use of the offered facility while in-
troducing graphics concepts with immediate visual feedback and
interactive manipulation.

1.1. Motivation

While mathematics prerequisite may first feel accessible, today’s
students who reach computer science do so often because they do

not want to pursue a degree in mathematics. Addressing mathemat-
ically concepts in classroom often leads to disinterest.

Computer graphics programming requires most of the time to
master iterative and recursive algorithms, and object-oriented lan-
guages. Addressing graphics libraries and accelerated program-
ming together with basic concepts would necessitate an extremely
well-defined pedagogical method to keep the students’ full atten-
tion. One may even consider the difficulty of approaching current
graphics shader programming, which can be very abstract for com-
puter scientists in their early learning years. Adding mathematical
concepts in the programming content results often in the automatic
copy of line coding without the real understanding of concepts.

A possible approach is to build the whole graphics framework
or by providing a first framework skeleton to students. Reaching
first programming steps after a substantial initial framework de-
velopment may leave an overwhelming feeling to students and the
impression that the topic is out of reach.

The course is designed to deliver basic computer graphics con-
cepts in very few hours (30h in total) to 3rd year undergraduate
students. This course is one of the two optional classes students
need to pick out of three. Most students chose it by default with-
out any pre-knowledge of the field nor the intention of pursuing it.
At the end of the course, we expect that: (1) All students are capa-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/eged.20221039 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0520-6249
https://doi.org/10.2312/eged.20221039

C. Loscos / Introduction to computer graphics: a visual interactive approach

ble of describing the basic concepts of computer graphics, and they
should understand what it takes to pursue in this area; (2) Students
understand that even if some mathematics are necessary in com-
puter graphics, they are capable of grabbing concepts quickly and
they can pursue in this area.

1.2. Originality

To fulfill our objectives and to counter the above-described intim-
idating feeling, a new teaching approach have been proposed to
students since 2018. The course is split into two parts: theory and
practice. The theoretical concepts are seen in classroom, linking
in a classical manner lectures and table exercises. The originality
of the course comes from a new way of practicing 3D program-
ming. Practical labs are built upon the Unity game engine [Uni],
adapted to match with the theoretical concepts seen in lectures. It is
not a course to learn to program the Unity game engine but rather
a roundabout way to use Unity and its programming interface to
teach computer graphics.

The choices made for this course partly follow the construc-
tive approach to learning [BO15] [Sim93]. The teacher is there
to provide a theoretical background which students can then learn
through manipulations on the unity game engine. While follow-
ing a few guidelines, they can make personal choices thus going to
very subjective add-ons. The swap between theoretical and practi-
cal learning session could also be seen as active learning [FB09]
although this is not done within a same session. The way the prac-
tical labs build up can also be seen as project-based learning.

1.3. Paper overview

In the following, we first review other approaches to introductory
computer graphics programming in section 2. We detail the course
scope, objectives, and public in section 3. We describe the course
setup and delivery conditions in section 4. We give details on the
Unity-based practical exercises in section 5. Finally, we give ex-
amples of achievements and evaluate the success of the course in
section 6, before concluding in section 7.

2. Positioning against other teaching approaches

Teaching introduction to computer graphics have always needed
adjusting topic focus and programming support. It was surveyed in
[BWF17] where different methodologies were outlined, and topics
like graphics pipeline, rasterization, lighting, etc., were ranked by
most taught in introductory courses. This survey also depicts the
choice of programming languages. Unlike most teaching methods,
our aim is to address the full computer graphics pipeline, and its
main steps (modeling, navigating, animating, and lighting).

Most of the time, introduction to computer graphics is set with
a consequent teaching hour range (often at least 60h) and targets
master students. However, teaching graphics programming start-
ing from hardware understanding has been challenged in many
ways [CXR18]. While it could be acknowledged that starting with
ray tracing gives a nice insight to 3D programming [CXR18], some
courses have based programming efforts on using already existing

platforms, like [AG16], or by providing a purposely built program-
ming platform like [BSP17]. Others have adapted to WebGL and
ThreeJS, like [AB15]. The course described in this paper is set
only to be taught in few hours (10h of practical labs) while most
classes previously addressed targets 60h to 100h. When setting up
the class, we considered several choices (ThreeJS, introduction to
OpenGL, own teaching platform, ray tracing). However, our choice
was to go visual and interactive like offered by the Unity game en-
gine development platform. The Unity game engine has already
proven to be a successful platform to teach computer game pro-
gramming to students [Dic15].

When teaching to undergraduate students, similar pedagogical
approaches to master levels are often implemented. Designing an
introductory course [DC17] for first year students is even more
challenging, and simplification associated to the programming lan-
guage (here java), and 2D formulations can be made. It is more
and more common to face undergraduate computer science students
with low confidence, low performance, or low interest in mathe-
matics. Shesh [She15] explains that although students may be re-
luctant to maths, they still show interest to computer graphics. He
proposed one way to teach students both maths and programming
while keeping their interest. Our decision was to use the Unity in-
terface to display polygon coordinates, coordinate systems, trans-
formations, material properties, etc. and have it accessible through
easy interactive manipulation.

Finally, the sanitary pandemic situation brought significant
teaching challenges the last two years, with remote teaching be-
coming compulsory to many of us. Several solutions were pro-
posed, as in [RMV∗21]. We show in section 6 that the practical
lab setup well adapted to remote teaching.

3. Course scope, objectives and public

3.1. Context and public

In our university, the computer science undergraduate program of-
fers, in the last semester of the 3rd year syllabus, the choice be-
tween three options: Introduction to computer security, Introduc-
tion to digital imaging, Introduction to artificial intelligence. This
aims at giving an incentive to students to open up their possible ap-
plication to the three master programs offered in our university. As
it is an introductory class, the total teaching volume is only of 30h.

The third-year undergraduate students follow a computer science
program. They are every year around 40 students who enroll the in-
troduction to digital imaging option, the course discussed in this pa-
per. They have a shallow knowledge in mathematics and have good
programming and algorithmic background. They are taught Java
and C programming languages. One can note that Unity scripting
is done in C#, language not taught to our students. Some students
integrate the 3rd year program after successfully obtaining a 2-year
technological degree, and may have learnt other languages (Python,
C++, C#). These students are particularly reluctant to mathematical
equations and concepts.

3.2. Course scope and objectives

The course was designed to reach the two following learning ob-
jectives at the end of the course. First, students should have un-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

2

C. Loscos / Introduction to computer graphics: a visual interactive approach

derstood the different components of a 3D software. Second, they
should know how the different graphic elements can be manipu-
lated to reach an interactive 3D content.

At the end of the course, we expect students to reach the follow-
ing competences:

1. To be able to define the different 3D components: scene model-
ing, interaction and navigation, rendering, and simulation.

2. To know the properties to program each 3D graphics com-
ponent: model structures, dynamic scene and camera motion,
physical object interactions.

3. To understand and be able to program in a 3D graphics game
engine like Unity [Uni].

More generally, the course should open to programming compe-
tences to bring students to more autonomy, typically such as:

1. To quickly adapt to a new programming language (here C#).
2. To know to program scripts and short programming components

in existing software.
3. To learn to use programming game engines.

4. Course syllabus and setup

4.1. Course syllabus

The course syllabus is as follows:

1. Elements composing a 3D scene for 3D imaging.
2. Useful maths
3. Scene and objects:

• What is a 3D scene?
• What are the components of 3D objects: points, lines, poly-

gons, polyhedrons, normals.
• How to build 3D content: topology, volumes, surfaces, scene

graph.

4. Camera models: 3D coordinate systems (scene and camera),
transformations.

5. Rendering:

• The local illumination equation and the different types of re-
flections.

• Shadow properties and algorithms.
• Rasterizing, texturing.

6. Animation:

• Animating cameras.
• 3D interaction between objects.
• Physical properties (collision, gravity).

4.2. Teaching modalities

The course is taught in three types of classrooms: 10h of lecturing,
10h of table exercises, 10h of practical labs. Each are given every
week by steps of 2h, thus students have each week 6h in this course
on average (see table 1). All students are in a single classroom for
lectures and table exercises, but they are spit into smaller groups for
practical labs (between two or three groups depending on the year).
When possible, lecturing is given upfront, to leave a week between

practical exercises and lecturing. The course attendance is compul-
sory only for the table exercises and the practical labs. Students can
choose to install Unity on their own laptop and come in the class-
room with their personal laptop, while Unity is also installed on
University lab computers.

The course is accessible on the moodle server of the university
to which students are automatically registered. There, students find
the lecture hand notes and the exercise statements. Lectures and
table exercises are based and adapted to teaching content from the
book [SSC02]. On the moodle website, there is a special section for
practical labs. At each session, students access a lab session form,
which is composed of a description of the work to do and a section
to fill in directly in the form. They can enter text, screen shots, and
code. Practical labs are performed by pairs. Lab sessions are set so
that they can be accomplished each within the 2h dedicated time.
Students may continue this work outside the lab sessions. However,
personal work time is planned to be dedicated to theoretical learn-
ing and finalizing lab work.

The evaluation is twofold. Students are evaluated on the theoret-
ical part via a written test (2h) which counts for 60% of the overall
grade. Reports of practical labs are marked per pair of students and
count for 40% of the overall grade.

It should be noted that during the 2020/2021 university year, the
course was given fully remotely and taught using the Microsoft
Teams video conferencing platform [Mic].

4.3. Cross-pedagogical links

The course follows the syllabus described in section 4.1. Lectures,
table exercises, and lab sessions are set to synchronize learning in
this order. Each concept is first seen in lectures, worked on table
exercises, and then experimented in practical labs. Table 1 shows
how learning topics are synchronized.

Week Lectures Exercises Labs
Preamble Unity install

Week 1
(2h/2h/)

Introduction
Mathematical
basics
Planes, Poly-
gons

Mathematical
basics
Polygons

Week 2
(2h/2h/2h)

Data structures
Scene graphs
Camera models

Polyhedrons
data structures
Scene graphs
Camera trans-
forms

Unity discov-
ery

Week 3
(2h/2h/2h)

Local lighting
Shadows

Local lighting
Shadows

Scene model-
ing
Complex ob-
jects

Week 4
(2h/2h/2h)

Rasterization
Gouraud/Phong
shading

Rasterization
Gouraud/Phong
shading

Camera set-
tings and scene
navigation

Week 5
(2h/2h/2h)

Recap Recap Lighting and
shading

Week 6
(/ /2h)

Animation
Gaming

Table 1: Per-week synchronization of topics.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

3

C. Loscos / Introduction to computer graphics: a visual interactive approach

5. Learning steps

In this section, we give details of the teaching labs based on Unity
programming. Each following section corresponds to a 2h lab ses-
sion, to be done in this order. Each lab builds on the results of the
previous one. Each lab description is a step-by-step exercise state-
ment which leads the students towards a final solution. Students
provide intermediate answers to questions and upload screen cap-
tures and programming code files at the different steps when appro-
priate and asked.

5.1. Introduction to Unity and first modeling

The objective of the first lab session is to globally grab the pro-
gramming environment. The aim is for all students to get the or-
ganization of the Unity programming platform and to identify the
3D graphics elements as seen in lectures. In particular, they need to
identify how coordinate systems are in place, and check for cam-
eras and light sources. They also need to make the difference be-
tween the editing and the running modes. The basic Unity window
development system is shown in figure 1(a).

They are then asked to add simple objects to the scene, including
loading a more complex object (here a bunny) from a file. They can
identify how to replicate objects (prefab). An example is shown in
figure 1(b).

(a)

(b)

Figure 1: (a) The Unity programming platform before any pro-
gramming. (b) After adding a prefab (tree), replicate it, and adding
a rabbit model from a file.

5.2. Scene graphs and physical interactions

In a second lab session, students are asked to replicate an articu-
lated object (we call it "robot") as seen in the second week lecture.
Whereas Unity does not have scene graphs per say, it is possible
to build a complex object made of simple objects which all have
a relative position one-to-another, with a hierarchical description
(see an example in figure 2(a)). Students need to identify how a
local coordinate system is associated to each object and that it is
possible to compute the necessary rotation/scale/translation. While
Unity offers the possibility to place objects using mouse interac-
tion, it is specifically required that students give precisely the ob-
ject position relatively to the previous one, by hand-typing values.
Therefore, they need to apply in a practical way the mathematical
concepts seen in lectures and classroom tutorials. This also helps
them understand the difference between the global scene coordi-
nate system and the local coordinate systems. At an intermediate
step, they upload both a picture of their final hierarchical model of
the robot and the set of parameters entered manually in the inter-
face. The final expected results is shown in figure 2(b).

In a second part, they add interaction and physical properties.
They enable collision and gravity, and start programming in C#
to animate the robot. They are asked to move the robot on a plane,
pushing a small cube, which changes color when reaching locations
identified by squares. In this manner, they learn scripting and grab
notions of spatial motion programming. They also know to change
states of objects (in this case, position and color). An example is
seen figure 3. The small cube changes color when entering a col-
ored squared area. At the end of this step, they are asked to upload
screen captures and their C# code files.

5.3. Interactive viewing and navigation

In a third lab session, students are asked to control three cameras.
One is a first-person camera attached to the robot, one is a camera
that follows the robot at a certain distance, and the last camera al-
ways points at the cube. An example of camera transform interface
is shown in figure 4. They need to interact with the camera controls,
enabling to switch cameras, and they also need to attach a C# script
to each camera when the robot or the cube change position. They
can then explore the "look at" profile of a camera and explore the
different rotation/translation modes of navigation.

5.4. Lighting simulation

The fourth lab session is dedicated to lighting (see figure 5). In
this session, students explore different types of light sources (point,
polygonal, directional, spot). They can edit object materials and
add textures. They attach a spotlight to the robot to illuminate in the
direction of sight. They also explore the different types of shadow
(hard, soft). This is also supported by c# scripting.

5.5. Going further - interaction and gaming

In their last lab, students’ creation is let out. They are asked to use
the learnt concepts to design an interactive game scenario. For the
most advanced students, this was already started at previous lab ses-
sions if they had finished the required tasks before the end of the

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

4

C. Loscos / Introduction to computer graphics: a visual interactive approach

(a) (b)

Figure 2: (a) An example of hierarchy in Unity. (b) Coordinates of each node object of the hierarchy with its local coordinate system.

Figure 3: Example of setup with the robot, the cube, and the colored square areas.

session. Here, they can explore the addition of objects, lighting, in-
teractions, display score, and implement targeted actions. Example
of productions are presented in section 6.

6. Learning quality analysis

6.1. Students’ productions

Most students who worked regularly achieved the first four lab ses-
sions. About 25% of students uploaded a game simulation. Exam-
ples of student achievements are shown in figure 6. Here we can
see that some students use the elements already programmed to up-

grade it to a game. Some others worked on improving appearance.
A few of them used what they have learnt in order to build a com-
pletely new world, loading complex objects. Some game involved
reaching a target, others making objects fall, some adding a timer.
Additional results (video produced by the students) are shown in
the supplementary material.

6.2. Students’ results

Most student succeeded, passed this class and graduated. It is clear
that what they preferred was the Unity programming labs. How-
ever, keeping in mind the reward of programming in Unity, it was

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

5

C. Loscos / Introduction to computer graphics: a visual interactive approach

Figure 4: Example of camera setup.

possible to get their attention for the table exercise sessions. Ta-
ble 2 summarises their results, showing the min, max and average
grades. Every year, only a single pair of students did not validate
the practical labs. Applying the weighted average on practical labs
and theory results, only around 25% did not validate the course.
However, half of them had a grade which allowed them to com-
pensate with other courses to validate their overall degree, and the
other half did not pass the degree and needed to retake the year.

It is to be noted that year 2020/2021 was taught fully remotely
due to the sanitary conditions. We can notice no effect on the prac-
tical labs, and even, grades are higher. Students all learnt with a
strong motivation and probably worked outside lab sessions. How-
ever, theoretical sessions were not as effective and there is a strong
drop of grade performance for the written exam.

Year Theory Practice
Top Lowest average Top Lowest Average

2018-2019 17.6 3.1 10.8 20 8.5 14.2
2019-2020 19.75 2.5 9.9 18 5 16
2020-2021 20 0.5 7 20 3.5 16.3

Table 2: Average grades over the last three university years.

6.3. Overall conclusions

After teaching this course for 4 years (3 years evaluated), our con-
clusion is that the offered pedagogical approach for lab sessions en-
abled computer graphics to become a more attractive class for stu-
dents with lower mathematics and programming skills (enrollment
increased this year, with 48 students registered). It is also very sat-
isfactory for students with shallow skills as it enables them to grab
and master concepts quickly to reach interesting final lab projects.
They often give spontaneous positive feedback on the Unity-based

labs. Although often questioned in the first lecture, none of them
complain about having to program with C# when getting to prac-
tical labs. Every year, several students decide to pursue computer
graphics related master’s degrees.

It is not compulsory to attend lectures. Since handouts are pro-
vided on the course moodle website, some students decide not to
attend the lectures. This clearly affects the learning effect of the
theoretical background since the first time they discover concepts is
through the table exercise class. Unfortunately, with the university
regulation in place, it is not possible to make the lecturing sessions
compulsory.

7. Conclusions

This paper presents a new way of teaching practical programming
of computer graphics to get away from heavy framework program-
ming and mathematical complexity. The course was designed to
use the Unity game engine to illustrate computer graphics concepts
and help students grabbing quickly a first insight, in only 10h of
practical labs (30h of teaching in total).

The course is designed to introduce computer graphics to under-
graduate students who have no previous knowledge of computer
graphics and shallow mathematical skills. Many of them take this
course by default out of two other options, without any solid mo-
tivation. Obviously, the overall concept could be adapted to longer
project-type classes or to other types of graphics game engine.

Results show that the course is attractive to students and that
most of them reach a basic computer graphics level. The course
helps them outlining the programming and mathematical skills nec-
essary to pursue further studies in master and to target a career in
this area.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

6

C. Loscos / Introduction to computer graphics: a visual interactive approach

Figure 5: An example of lighting, shadows, and texturing.

This paper is a first study. It would be interesting to pursue this
with other types of validations. For example, it could be taught in
parallel of a more traditional class (i.e., OpenGL) for comparison.
A reviewer also suggested to swap the order of practical labs and
theoretical sessions, thus engaging learning more through inverse
classes.

8. Ackowledgement

This work is the result of teaching with the mathematics and com-
puter science departement of the UFR exact and natural sciences
of the University of Reims Champagne-Ardenne. I would like to
thank Jessica Jonquet, Théo Barrios, and Sébastien Erckelbout for
helping me supervising lab sessions and giving feedback on the
teaching content. I would also like to thank the reviewers for their
valuable feedback.

References

[AB15] ACKERMANN P., BACH T.: Redesign of an introductory com-
puter graphics course. In 36th Annual Conference of the European As-
sociation for Computer Graphics, Eurographics 2015 - Education Pa-
pers, Zurich, Switzerland, May 4-8, 2015 (2015), Teschner M., Bronstein
M. M., (Eds.), Eurographics Association, pp. 9–13. doi:10.2312/
eged.20151021. 2

[AG16] AMADOR G., GOMES A. J. P.: A video games technologies
course: Teaching, learning, and research. In 37th Annual Conference of
the European Association for Computer Graphics, Eurographics 2016
- Education Papers, Lisbon, Portugal, May 9-13, 2016 (2016), Santos
B. S., Dischler J., (Eds.), Eurographics Association, pp. 45–48. doi:
10.2312/eged.20161027. 2

[BO15] BADA S. O., OLUSEGUN S.: Constructivism learning theory: A
paradigm for teaching and learning. Journal of Research & Method in
Education 5, 6 (2015), 66–70. 2

[BSP17] BÜRGISSER B., STEINER D., PAJAROLA R.: brenderer: A flex-
ible basis for a modern computer graphics curriculum. In 38th Annual
Conference of the European Association for Computer Graphics, Eu-
rographics 2017 - Education Papers, Lyon, France, April 24-28, 2017
(2017), Bourdin J., Shesh A., (Eds.), Eurographics Association, pp. 27–
34. doi:10.2312/eged.20171023. 2

[BWF17] BALREIRA D. G., WALTER M., FELLNER D. W.: What
we are teaching in introduction to computer graphics. In 38th Annual
Conference of the European Association for Computer Graphics, Eu-
rographics 2017 - Education Papers, Lyon, France, April 24-28, 2017
(2017), Bourdin J., Shesh A., (Eds.), Eurographics Association, pp. 1–7.
doi:10.2312/eged.20171019. 2

[CXR18] CHEN M., XU Z., RIPPIN W.: On the Pedagogy of Teaching
Introductory Computer Graphics without Rendering APIs. In EG 2018
- Education Papers (2018), Post F., Žára J., (Eds.), The Eurographics
Association. doi:10.2312/eged.20181007. 2

[DC17] DODGSON N. A., CHALMERS A.: Designing a computer graph-
ics course for first year undergraduates. In 38th Annual Conference of
the European Association for Computer Graphics, Eurographics 2017

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

7

https://doi.org/10.2312/eged.20151021
https://doi.org/10.2312/eged.20151021
https://doi.org/10.2312/eged.20161027
https://doi.org/10.2312/eged.20161027
https://doi.org/10.2312/eged.20171023
https://doi.org/10.2312/eged.20171019
https://doi.org/10.2312/eged.20181007

C. Loscos / Introduction to computer graphics: a visual interactive approach

Figure 6: From top to bottom, example of student results, from simple extensions to the the practical labs to more complex game scenarios.

- Education Papers, Lyon, France, April 24-28, 2017 (2017), Bour-
din J., Shesh A., (Eds.), Eurographics Association, pp. 9–15. doi:
10.2312/eged.20171020. 2

[Dic15] DICKSON P. E.: Using unity to teach game development: When
you’ve never written a game. In Proceedings of the 2015 ACM Con-
ference on Innovation and Technology in Computer Science Education
(New York, NY, USA, 2015), ITiCSE ’15, Association for Computing
Machinery, p. 75–80. doi:10.1145/2729094.2742591. 2

[FB09] FELDER R. M., BRENT R.: Active learning: An introduction.
ASQ higher education brief 2, 4 (2009), 1–5. 2

[Mic] Microsoft teams: Microsoft video conferencing tool. https:
//www.microsoft.com/en-us/microsoft-teams/
group-chat-software. 3

[RMV∗21] RODRIGUES R., MATOS T., VALLE DE CARVALHO A.,
BARBOSA J. G., ASSAF R., NÓBREGA R., COELHO A., DE SOUSA
A. A.: Computer graphics teaching challenges: Guidelines for balanc-
ing depth, complexity and mentoring in a confinement context. Graphics

and Visual Computing 4 (2021), 200021. doi:https://doi.org/
10.1016/j.gvc.2021.200021. 2

[She15] SHESH A.: Teaching graphics to students struggling in math:
An experience. In 36th Annual Conference of the European Association
for Computer Graphics, Eurographics 2015 - Education Papers, Zurich,
Switzerland, May 4-8, 2015 (2015), Teschner M., Bronstein M. M.,
(Eds.), Eurographics Association, pp. 23–29. doi:10.2312/eged.
20151023. 2

[Sim93] SIMONS P.: Constructive learning: The role of the learner. In De-
signing environments for constructive learning. Springer, 1993, pp. 291–
313. 2

[SSC02] SLATER M., STEED A., CHRYSANTHOU Y.: Computer Graph-
ics and Virtual Environments: From Realism to Real-time. Addison-
Wesley, 2002. 3

[Uni] Unity real-time development platform. https://unity.com/.
1, 2, 3

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

8

https://doi.org/10.2312/eged.20171020
https://doi.org/10.2312/eged.20171020
https://doi.org/10.1145/2729094.2742591
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://doi.org/https://doi.org/10.1016/j.gvc.2021.200021
https://doi.org/https://doi.org/10.1016/j.gvc.2021.200021
https://doi.org/10.2312/eged.20151023
https://doi.org/10.2312/eged.20151023
https://unity.com/

