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Figure 1: The ReVeRY project.

Abstract

The collaborators of the ReVeRY project address the design of a specific grid of cameras, a cost-efficient system that acquires
at once several viewpoints, possibly under several exposures and the converting of multiview, multiexposed, video stream into a
high quality 3D HDR point cloud. In the last two decades, industries and researchers proposed significant advances in media
content acquisition systems in three main directions: increase of resolution and image quality with the new ultra-high-definition
(UHD) standard; stereo capture for 3D content; and high-dynamic range (HDR) imaging. Compression, representation, and
interoperability of these new media are active research fields in order to reduce data size and be perceptually accurate. The
originality of the project is to address both HDR and depth through the entire pipeline. Creativity is enhanced by several tools,
which answer challenges at the different stages of the pipeline: camera setup, data processing, capture visualisation, virtual
camera controller, compression, perceptually guided immersive visualisation. It is the experience acquired by the researchers
of the project that is exposed in this tutorial.

CCS Concepts
¢ Computing methodologies — Computational photography; Image processing; Virtual reality; Perception; 3D imaging;

1. Introduction image for VR immersive visualization would not be convincing for
a natural light outdoor landscape. The user would be perceptually
limited in the range of intensity and restricted to rotating naviga-
tion. Among other objectives, the ReVeRY project wants to address
solutions to enable user perception of high intensity ranges as well
as free navigation inside the scene in an embedded distributed me-
dia adaptive to the diversity of nowadays displays. In other words,

there should be no capability difference when virtually visualizing

In the last two decades, industries and researchers proposed signif-
icant advances in media content acquisition systems in three main
directions: increase of resolution and image quality with the new
ultra-high-definition (UHD) standard that uses 3840x2160 pixels
resolution (also called 4K resolution); stereo capture for 3D con-
tent (depth information); and high-dynamic range (HDR) imaging

raising the dynamic range of the image to at least 16-fstops. These
recent advances addressed the full media production pipeline: ac-
quisition, image data enhancement, and display, with the devel-
opment of 3D and grid cameras, HDR imaging, UHD resolution,
autostereoscopic displays, immersive VR headsets, HDR displays.
These new technologies raise incontestable enthusiasm by both
professionals and end users, but are currently limited by low cre-
ative content potential. For instance, todays offered 360° panoramic
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real or synthetic scenes. The ReVeRY project has conducted fun-
damental research to address the full pipeline from acquisition to
display. Its aims are to answer to currently known limitations:

1. Rig capture still presents major chalenges, both in terms of
equipment set up and data flow management,

2. Depth and HDR content is now predominant in many applica-
tions but higher resolution shouldn’t be neglected,
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3. Compression, representation, and interoperability of these new
media are active research fields in order to reduce data size and
to be perceptually accurate.

4. Displaying such content on current restitution equipment needs
adapted solutions.

This tutorial presents a complete pipeline to create 3D immer-
sive content from a grid of production cameras. It summarizes the
work produced for 4 years in a french funded multi-partner project,
the ANR ReVeRY project. It is the experience acquired by the re-
searchers of the project that is exposed in this tutorial. The pipeline
is complete, from the camera set up to immersive viewing through
data processing, content creation and perceptually-driven encoding.

2. Speakers
Tutorial organizer:

e Céline Loscos, LICIIS laboratory, University of Reims
Champagne-Ardenne, celine.loscos @univ-reims.fr, https://
cv.archives-ouvertes.fr/celine-1loscos
Celine Loscos has been a Professor of computer science at
University of Reims Champagne-Ardenne since 2010. She ob-
tained her PhD in computer science at Joseph Fourier Univer-
sity (Grenoble, France) in 1999. After a postdoctoral fellowship
(2000-2001) at University College London, United Kingdom,
she was appointed lecturer. In 2007, she joined the University
of Girona, Spain. She conducts her research in the LICIIS lab-
oratory. Her research topics focus on computational photogra-
phy, 3D imaging, and virtual reality. She is the coordinator of
the ANR ReVeRy project (2017-2022).

Other speakers in presenting order:

o Philippe Souchet, XD Productions,
philippe.souchet@xdprod.com, https://www.xdprod.
com/

Philippe Souchet has been Chief Technology Officer at XD
Productions since 1999. He got an MSc in computer vision
at Paris VII Jussieu in 1993. As a former game developper
for Sony Psygnosis between 1994 and 1999, he participated
in the first soccer simulations using motion capture for the
video games series "Adidas Power Soccer". He leads Research
Developpemnt efforts of XD Productions in markerless motion
capture, 3D reconstruction and volumetric capture, along with
their dissemination in the broadcast industry, XD also being a
producer of TV Shows and Motion Pictures.

e Giuseppe Valenzise, Universit¢é Paris-Saclay, CNRS,
CentraleSupélec, Laboratoire des signaux et systémes,
giuseppe.valenzise @[2s.centralesupelec.fr, https://12s.
centralesupelec.fr/u/valenzise-giuseppe/
Giuseppe Valenzise is a researcher at the Centre National de la
Recherche Scientifique (CNRS) in the Laboratoire des Signaux
et Systemes, CentraleSupelec, University Paris-Saclay, France.
He completed a Ph.D. in Information Technology at the Politec-
nico di Milano, Italy, 2011. From 2012 to 2016 he was with
the Laboratoire Traitement et Communication de I’'Information
(LTCI) of Telecom Paristech. He got the French “Habilitation
a diriger des recherches” from Université Paris-Sud in 2019.

His research interests span different fields of image and video
processing, including traditional and learning-based image
and video compression, light fields and point cloud coding,
image/video quality assessment, high dynamic range imaging
and applications of machine learning to image and video
analysis. He is co-author of more than 100 research publications
and of several award-winning papers. He is the recipient of the
EURASIP Early Career Award 2018. Dr. Valenzise serves as
Associate Editor for IEEE Transactions on Image Processing as
well as for Elsevier Signal Processing: Image communication.
He was program co-chair of the EUVIP 2021 conference. He is
a member of the MMSP and IVMSP technical committees of
the IEEE Signal Processing Society, as well as a member of the
Technical Area Committee on Visual Information Processing of
EURASIP.

e Théo Barrios, LICIIS Ilaboratory, University of Reims
Champagne-Ardenne, theo.barrios @univ-reims.fr
Théo Barrios has been a PhD student at University of Reims
Champagne-Ardenne since 2018. He obtained a Master Degree
in Computer Science and Applied Mathematics at ENSEEIHT
enigneering school. His Master project covered room mapping
from LiDAR point clouds. His PhD research topic is on 3D re-
construction from color images from camera arrays.

e Rémi Cozot, University of Littoral Cote d’Opale, IMAP Re-

search Group / LISIC Laboratory, remi.cozot@univ-littoral.fr,
http://cozot.free.fr/
Rémi Cozot is a full professor at the University of Littoral Opal
Cost located in Calais, France. Before that, he completed a PhD
from the University of Rennes in 1996. He got an associate pro-
fessor position at the University of Rennes in 1997, until 2019.
His research focusses on image appearance modeling, visual
perception, image aesthetic, and especially style/aesthetic aware
HDR image processing. He has been involved in many french
national projects and European projects in the field of HDR im-
age processing and visual perception. He is the associated editor
of the visual computer journal.

3. Tutorial details
3.1. Keywords

This tutorial frontiers 3D vision, data compression, and computer
graphics.

3.2. Tutorial length

We proposed a half-day tutorial, with four presentations of 45-
minute each.

3.3. A detailed outline of the tutorial

The tutorial is composed of four parts, each part presenting a step of
the pipeline, going from acquisition to display. Each part is planned
for 45 minutes.

1. Camera grid setup and camera controller - speaker:speakers:
P. Souchet.

© 2022 The Author(s)
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Figure 2: Pipeline used to reconstruct a 3D point cloud from camera grid pictures [BGPL22].

a. Multi-view, multi-exposure camera grid

The role of XD Productions, as industrial partner with a long
experience of multiview capturing systems, was to specify,
design and build the prototype of a grid of 4x4 UHD cam-
eras, allowing real time 3D Reconstruction of HDR point
clouds from synchronized multi-exposed video streams (see
Figure 3).

The images can be processed in real time or recorded on disk
for more complex algorithms, demanding a lot of process-
ing power along with important storage and network band-
width. Therefore, the system is composed of several acqui-
sition units, linked to one multi GPU computing unit. The
units communicate through 10GB ethernet connections, to
allow the transfer of 16 4K-video streams in real time.

Figure 3: Camera and camera capture setup.

b. Controlling software The development of the software layer
was designed to allow each partner to add its personal brick,
best fitting its needs. Thus, a modular architecture was cho-
sen, allowing easy testing of different algorithms and render-
ing techniques, and greater adaptability to coming states of
the art.

The main modules of the REVERY software include:

e display of the 16 video streams (see Figure 4),

e remote control of the camera (for parameters such as
gamma, zoom, focus, exposure, ...),

e camera calibration,

© 2022 The Author(s)
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e rectification,
e 3D interactive rendering of resulting point clouds.

Figure 4: Display of 16 multi-exposed, video streams.

2. 3D HDR content reconstruction - speakers: C. Loscos and T.

Barrios.

In this part, we will expose advances in depth reconstruc-
tion from grid of cameras, HDR reconstruction for single and
multiple view, and how it combines to produce a 3D HDR
point cloud. Recent advances show that machine learning, like
[KFR*18], helps robustly producing 3D point clouds. We show
that it is possible to extend the concept to camera grid with large
baselines [BGPL22] (see Figure 2. We specifically address cam-
era grid configuration, and the challenges associated to large
baselines. We review previous work on HDR imaging, espe-
cially those combing depth and HDR reconstruction [BLV*12]
[BVL19] [OLMA13], and more recent machine learning-based
approaches which need only one image as an input to gener-
ate an HDR image [EKD*17] [SRK20] and can be adapted to
multiple views [MZCL22]. Examples of results are shown in
Figure 5.

. 3D point cloud coding and quality assessment - speaker: G.

Valenzise.
‘We present the state-of-the-art coding methods for point clouds,



C. Loscos & R. Cozot& T. Barrios & P. Souchet & G. Valenzise / From capture to immersive viewing of 3D HDR point clouds

Figure 5: HDR reconstruction results after machine learning from
one view of [EKD*17], [SRK20], and [MZCL22] compared with
the reference on the left hand side (LDR and HDR images).

and in particular the new MPEG G-PCC and V-PCC stan-
dards [CPZ*21], as well as recently proposed learning-based
compression approaches [QVD, QVD20, NQVD21]. The latter
have been shown to provide substantial coding gains compared
to conventional methods, see Figure 6. We will then discuss
briefly how to assess the quality of compressed point clouds,
from simple distance metrics for geometric distortion [T*17] to
more recent data-driven approaches [CQVD21,QCVD21].

(a) Original (b) (©)

Figure 6: Qualitative evaluation of geometry compression on
“soldier”. (a) Original point cloud. (b) Learning-based method
in [QVD20]. (c) G-PCC (Trisoup). The errors are displayed accord-
ing to the color scale on the right. The learning-based method has a
better point-to-point error than G-PCC (66.59dB vs. 65.87dB) for
the same bitrate (0.19 bits per point).

4. Immersive 3D HDR visualisation - speaker: R. Cozot
In this part, we will expose solutions to display HDR 3D point
clouds on display units of various characteristics. The objec-
tive of these solutions is twofold. The first objective is con-
cerned with the rendering of HDR 3D contents on mainstream
displays. The solutions we propose allow improving the qual-
ity of the rendering of contents (HDR 3D point clouds) on
mainstream displays and HMDs (Head Mounted Displays). This
improvement result from subjective evaluations we have con-
ducted on the perception of color on HMDs. In this first part,
we will detail, first, a solution to tone mapping 360° HDR Im-
ages [GCB19] [GCLM20]. Then we will move to the challenge
of tone mapping 3D dynamic scenes [GLC20]. The second ob-
jective is the stylization of 3D contents represented by point
clouds. While there exist many stylization techniques applied
to images (filters, blurring or vignetting effects, etc.), the styl-
ization of 3D contents has aroused little interest. For this rea-
son, we will present a stylization method consisting of trans-

ferring the color of a point cloud to another [GCLMB21]. This
method is example-based and accounts for the geometry of the
point clouds. Our results, illustrated in Figure 7, and evalua-
tions have shown a significant improvement compared to exist-
ing color transfer methods.

3.4. Necessary background

We expect participants to know basics of computer vision and 3D
imaging. It is addressed to researchers interesting in comprehend-
ing a set of issues which could be encountered when addressing the
creation of immersive content from real capture.

3.5. Historical context

This tutorial was never given before. However, the tutorial orga-
nizer, C. Loscos, has given twice a tutorial on "3D Video: from
Capture to Interactive Display", at Eurographics 2014 and 2015.
This tutorial addresses similar problems, but exposes advanced, re-
cent solutions. In addition, G. Valensize recently presented the tuto-
rial "Learning-based Point Cloud Processing and Codings" at ICIIP
2021 (https://www.2021.ieeeicip.org/Tutorials.
asp) from which content is going to be selected to compose the
3rd part of the tutorial.

4. Acknowledgements

The work presented in this tutorial is part of the ReVeRY
project (https://revery.univ-reims.fr). The project
was funded by the Agence National pour la Recherche (Projet-
ANR-17-CE23-0020).
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INTRODUCTION

* Context

* 3 main capture types :
Ultra-high-definition (UHD) : image definition and quality
Stereo capture for 3D : depth, multi-view
High-dynamic range (HDR) : higher luminance range
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INTRODUCTION

* Context
* 3 main capture types
e Current limits:

No uniform representation
Limits creative industries to chose one format (UHD, HDR or 3D).

INTRODUCTION

* Global objective

* Replace the traditional video stream by a rich UHD, HDR lightfield represented as a 3D point
cloud in a dedicated format
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OVERVIEW OF THE PROJECT PIPELINE

* Multiview/multi exposure acquisition

* HDR/Point cloud reconstruction

* Data representation and encoding of HDR point clouds
* Visualisation on various display devices

* Quality of experience

|®&:IRISA

4x4 grid of cameras

4K video streams

Genlock sync

Multi-exposure patterns

Cluster of PCs + software :
Remote control
Recording
Real time visualization
Interactive tools for directors
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PART | : MULTI-EXPOSED SHOOTINGS

Various challenging scenes L\N
For reconstruction and HDR ‘ {

Multiple objects sparsed in
depth

Overexposed & shadows
Repetitive patterns
Transparent and shiny objects

3D HDR RECONSTRUCTION
Jennifer Bonnardl, Gilles Valette!, Raissel Ramirez2, Ignacio Martin2, Alessandro Artusi2, Céline
Loscos?

1Université de Reims Champagne-Ardenne, France
2University of Girona, Spain
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IMETHOD CLASSIFICATION - 3 AXIS

=& IRISA

3D HDR VIDEO

* 3D point cloud colors in HDR format




GENERAL PIPELINE FOR HDR IMAGING

Set of differently

exposed images
I:

Matching/Registration

HDR Reconstruction

__(o) IRISA
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IMATCHING/ REGISTRATION

* From one view point
* Static scenes
Image alighement
* Dynamic scenes

Motion estimate,

2 solutions:
Removing the
dynamic object
Aligning moving
parts

* Multiscopic images
— Pixel registration
* Belief propagation
[LIN 09]
* 3D estimation [LU
11]
* Disparity [BONNARD
12]
* Patch based
[RAMIREZ 15]

;(.) IRISA
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HDR RECONSTRUCTION

* HDR Reconstruction
* Weighted average |
* Exposure fusion merensor ]

LGS & & IRISA

(]

i & IRISA
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PIXEL REGISTRATION

* Using disparities

HDR RECOVERY

;(.) IRISA




13/04/2022

RESULTS

Middlebury

__(o) IRISA

PATCH-BASED 3D HDR IMAGES

* Random patch match guided by the epipolar line

(b) B:

|®&:IRISA
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CONCLUSION

It is possible to generate an HDR point cloud from multi-view, multi-exposed images

Difficulties raised:
* Processing of all images
* Alighment

[Bonnard 12] based on the disparity estimate
* The use of disparity for image alignment
* Complexity of the resolution for under- or over-exposed areas
* The quality of the disparity resolution directly impacts the HDR reconstruction

Finally, is it a good idea to address depth reconstruction and HDR at the same time?
* Nowadays, sensors have increased their capture capacity

» Decision of the ReVeRY project: proposal of two separate learning-based approaches for multi-view systems
One for HDR reconstruction
Another for depth resolution

CONSISTENT MULTI- AND SINGLE-VIEW HDR-IMAGE RECONSTRUCTION FROM
SINGLE EXPOSURES

Aditya Mohan?, Jing Zhang!, Rémi Cozot! and Céline Loscos?

1 Université du Littoral Céte d’Opale
2 Université de Reims Champagne-Ardenne

A. Mohan, J. Zhang, R. Cozot, C. Loscos: Consistent Multl- and Single-Vliew HDR-Image Reconstruction from Single
Exposures. Eurographics Workshop on Intelligenent cinematography and Editing. April, 2022.




INTRODUCTION

* HDR image = Image with higher luminance range
AR Fo D

Images LDR

Images HDR

Codage

8 bits

16-32 bits

Données

Integer

Floating point

Informations

INTRODUCTION

Input:
LDR multi-view images

Colors

Luminance

13/04/2022

16 images of same exposure

organized in a 4X4 camera grid

HDR multi-view images Output:

16 HDR images

Proposition of a LDR-to-HDR algorithm

Target: results as close to the ground truth as possible




OVERALL PIPELINE

0
VO
LDR Single
Exposure Image Step 1:

HDR
reconstruction
Loss:
0 MAE + MSSIM
Vﬂ

LDR Single
Exposure Ima;

Vo
HDR Single Image
Step 2:

Inter-views
Color

2

Vo
HDR Consistent
Multiview Image

Ci

Vi
HDR Consistent
Multiview Image

METHOD - STEP 1

Pipeline

Vo
LDR Single
Exposure Image Step 1:

HDR
reconstruction
Loss:
0 MAE + MSSIM
Vn

LDR Single

Vo
HDR Single Image
Step 2:

Inter-views
Color

Vo
HDR Consistent
Multiview Image

Cc v

HDR Single Image

Vi
HDR Consistent
Multiview Image

[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR Image reconstruction from a single

CNNs. 1-15

13/04/2022




13/04/2022

METHOD - STEP 1: TRAINING DATABASE

= ™
—RY

-

‘

ﬂ

P o~ E‘l
g
Caméra virtuelle ‘ g i

h ‘illlll

281 895 paires d’images | Trenii M "
HDR / LDR ™ Im 3

th TR HEESS P e 1RISA

® 5

METHOD — STEP 1: PREPROCESSING

Masks on over-exposed areas

Original After substracting rg Alpha masks
chromaticity

& |© IRISA
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METHOD - STEP 1: LOSS FUNCTIONS

Training loss functions : MAE + MSSIM

Combining To preserve colors and
Mean Absolute Error MAE) : luminance

. Lo To preserve contrasts in
Multi-scale Structural Similarity Index : .
I high frequence areas
MS-SSIM(z. y) = [Iar (. y)] "™ - T T les (2. )] Vs (e )]
j=1

|&:IRISA

LDR input HDR groundtruth HDRCNN MaskCNN

&l IRISA
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STEP 1 - RESULTS

HDR-VDP —visual result Metric HDRCNN | MaskCNN | Our
« = 1 " Dynamic Range Error | 1.051 1.026 0.921

] -

= : Metric HDRCNN | MaskCNN | Our
HDR-VDP 33.75 34.02 3443
i PSNR 57.59 57.54 55.64
| S ; n3 . Harmonic-IQA | 0.314 0.315 0.310
SSIM 0.29 0.29 0.29

HDRCNN MaskCNN Ours
Average scores over 40 images of different scenes

METHOD - STEP 2

Vg v A
5 0 o
LDR Single HDR Single Image HDR Consistent

Exposure Image Step 1: Multiview Image
: Step 2:

HDR )
; Inter-views
reconstruction Colo
r
Loss:
Consi: v

0 MAE + MSSIM b 2
Vn Vn

LDR Single . HDR Consistent
HDR Single Image A -
Exposure Image Multiview Image |

[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR Image reconstruction from a single
exposure using deep CNNs. 1-15.




METHOD - STEP 2

Multiview coherence

Images are downsampled, gathered as a group of pictures and passed again in the network as a

The output is a corrected coherent HDR value for the group of picture

Images are upsampled

13/04/2022

RESULTS - STEP 2

| Metric

Independent Views

Grid Views

SAD

3831483.42

1388318.70

NCC

0.014

0.22

Multiview consistency evaluation(step 2)
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CONCLUSION

Neural network solution to extend LDR to HDR values

Improve the state of the art
Extend luminance to closer values to ground truth HDR
Multiview coherence consideration
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DISPARITY INFERENCE FOR WIDE-BASELINE LIGHTFIELD CAMERA ARRAY

Théo Barrios, Julien Gerhards, Stéphanie Prévost, Céline Loscos

Université de Reims Champagne-Ardenne

__(o) IRISA

DEFINITION OF THE PROBLEM TO SOLVE

Estimating depth from images on a 4x4 grid

Process all images in the grid

Propose floating-point disparities for more precision
Process the highest resolution possible (UHD, 4k)

Offer rapid treatment (1-n fps)

Adapt to high camera spacing (Disparity values> 100)
Vertical and horizontal disparities

Additional difficulties: images located at edges and corners
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APPROACH BASED ON NEURAL NETWORK

*For each image I, of the 4X4 grid
sinput : | _+2-4 images (lt) in a cross around I,
*Output : Disparity map (1)

*Solution : Deep-learning

Feature
computation

Cost Bilinear Residual
aggregation upsampling disparity

~
<
’—* ‘1" — R ©- F
|
Cost Disparity Concatenation
volume regression

Convolution & Conv2D+BatchNorm+ l

Pipeline
Downsampling RelLU blocks

{| © Non-trainable parts part

HLCS & & IRISA
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First step : One cost-volume for each I;
Averaging cost on the horizontal / vertical part of the cross -
two costs concatenated for cost aggregation.

Can be used with any width and height camera array at any position with a given set of
weights

|®&:IRISA

RESULTS

. Speed
-1,5s per view in 4k
- 3fps in fullHD
- 6fps in 960x540
. Quality
- Good within the required FO '

|®&:IRISA
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CONCLUSION

3D reconstruction for large-baseline camera grids
One disparity map per grid image
Interactive time
Can handle high resolutions (4K) and various array width and heights.
Precise results, requires a denoising pass for application
Different array width and heights require fine-tuning for better performance.

|®&:IRISA

CODING TECHNIQUES FOR POINT CLOUDS

Giuseppe Valenzise, Centrale Supelec, CNRS

NR Il HECS & & IRISA
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OUTLINE

Outline
* Coding techniques for point clouds
* Quality assessment and benchmark of the different approaches

* Trends and summary

‘NR W #UCS & IRISA

CODING TECHNIQUES FOR POINT CLOUDS

* Introduction and basic coding tools
* MPEG PCC standardization
* Learning-based techniques

HLCS & @ IRISA
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IVIOTIVATION

* Typical point cloud video size:
* 1 million points per frame
* 30 frames/second

color -> ~ 3.6 Gbps

* Example: Velodyne HDL-64 LiDAR sensor
* Over 100k points per sweep
* 3 billion points per hour

Licts &

LRC CEA D G T

_®:IRISA

B E

WHY CODING POINT CLOUDS IS DIFFICULT?

* Non-regular sampling
* Geometry is expensive to code

 Spatially varying density
* “Holes” in some regions

* Sparsity
* Lack of spatial correlation

HLCS & @ IRISA
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* 2D projections

* Voxelization

* Octrees

* Graphs

SOME GENERAL CODING APPROACHES

Some references to recent surveys on Point Cloud
Compression

¢ C.Cao, M. Preda, V. Zakharchenko, E. S. Jang, and T.
Zaharia, “Compression of Sparse and Dense Dynamic Point
Clouds—Methods and Standards,” Proceedings of the IEEE,
pp. 1-22, 2021

¢ F. Pereira, A. Dricot, J. Ascenso, and C. Brites, “Point cloud
coding: A privileged view driven by a classification
taxonomy,” Signal Processing: Image Communication, vol.
85, p. 115862, Jul. 2020

¢ Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T.
and Tabatabai, A., 2020. An overview of ongoing point
cloud compression standardization activities: video-based
(V-PCC) and geometry-based (G-PCC). APSIPA Transactions
on Signal and Information Processing, 9.

_ & IRISA

R W #bcs &

3D 10 2D PROJECTION

projections
* Used in MPEG \ ‘

Estimate
Normal

* Reduce the problem to multiple 2D image coding instances
* Effective when the point cloud is dense enough to get smooth

Initial
Segmentation

Components

Refine Connected
Segmentation

¢ @

(A

S

aziosi, D., Nakagami, 0., Kuma, ., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud compression

Q \
2

4

3

standardization activities: video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on

-{»;.L.C
LRCCEAD GIT

signal and Information

_®:IRISA
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VOXELIZATION

* Quantize the 3D coordinates of points to a given bit depth
* Define the point clouds on a regular 3D lattice
* Geometry represented as binary occupancy maps
* Attributes resampled over the voxel grid

Decrease bit depth

* Introduce distortion wrt original point cloud

* Highly inefficient to deal with sparsity!
. Most of the 3D space is empty

DEALING WITH SPARSITY: TREE-BASED PARTITIONING

* Divide the space hierarchically
* E.g., KD-tree or typically octree
* Remove empty space

* Octree
* Recursive ¢
* Each octre¢

=> 10010010

D

"z

Image credit: Graziosi, D., Nakagami, 0., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud i ization activities: video-based (V-PCC) and geometry-
based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.

NR N #LGS & @ IRISA
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DEALING WITH SPARSITY: TREE-BASED PARTITIONING

* Divide the space hierarchically
* E.g., KD-tree or typically octree
* Remove empty space

* Octree

. Recursive cithdivicinn Af tha enanra intAa Antante

Y
- Ll

Df2

* Each octre

10010010

~

01010111 00000101 00010101

OCTREE-BASED CODING

* Widely used since the early PC coding methods
* E.g., the Point Cloud Library (PCL)t
« Benchmark codec in the MPEG G-PCC CfP (2017)2

» Essential coding tool in MPEG G-PCC

» Basic functionalities:
» Arithmetic coding of voxel occupancies using previous nodes as context
* Detail encoding (e.g., residuals) or surface approximations
* Attributes averaged over the points in the leaf nodes
» Temporal prediction possible by matching nodes
1). Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz and E. Steinbach, "Real-time compression of point cloud streams," IEEE International Conference on Robotics and Automation, 2012, pp. 778-785

2R. Mekuria, K. Blom and P. Cesar, "Design, Implementation, and Evaluation of a Point Cloud Codec for Tel ive Video," in IEEE i on Circuits and Systems for Video Technology, vol. 27, no. 4,

pp. 828-842, April 2017
Image credit: Castro, R., Lewiner, T., Lopes, H., Tavares, G. and Bordignon, A., Sep. 2008. Statistical optimization of octree searches. In Computer Graphics Forum (Vol. 27, No. 6, pp. 1557-1566). Oxford, UK:

Rn HiLiChS 405’ o IRISA
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GRAPH METHODS Motion Estimation

* Graph construction x| x

B, — B;_;— Temporal Connection

o Thna nnnnnantinee hohunne uasinas ~os ohtained by k-NN

]
ol

¢

Optimal Inter-Prediction and Transform
* Generalized Graph Fourier Transform

(GGFT)

Graph construction
D. Thanou, P. A. Chou and P. Frossard, "Graph-Based Compression of Dynamic 3D Point Cloud " in IEEE i on Image ing, vol. 25, no. 4, pp. 1765-1778, April 2016
Y. Xu et al., "Predictive Generalized Graph Fourier Transform for Attribute Compression of Dynamic Point Clouds," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 5, pp. 1968-
1982, May 2021

LIDAR DATA: LEVERAGE THE ACQUISITION MODEL

* Structured:
* If metadata available (GPS data, timestamps, sensor information, etc.)
* The point cloud becomes an ordered set
* Sequential scan lines _
* D=ito “ﬁ*%\*ﬁ?ﬂtf“"“‘“ates along thesca ™ - - -P?ujts_ \“\
COLESy m— e T
Trajectory of the laser beam e . '. \‘mf’*

Scan-lines

Kohira, K. and Masuda, H.: Point-cloud C ion For Vehicle-based Mobile Mapping Systems Using Portable Network Graphics, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W4, 99-106,
2017.
Xianxiong Liu, Yue Wang, Qingwu Hu and Dengbo Yu, "A scan-line-based data compression approach for point clouds: Lossless and effective," 2016 4th i on Earth Of ion and Remote

Sensing Applications, 2016
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LIDAR DATA: LEVERAGE THE ACQUISITION MODEL

Quadtree decomposition of a
range image!

Bfeemeeeeeeeeeeend P(r 0, )

1), Ahn, K. Lee, J. Sim and C. Kim, "Large-Scale 3D Point Cloud Compression Using Adaptive Radial Distance Prediction in Hybrid Coordinate Domains," in IEEE Journal of Selected Topics in Signal Processing, vol.
9, no. 3, pp. 422-434, April 2015

C. Tu, E. Takeuchi, C. Miyajima and K. Takeda, "Continuous point cloud data compression using SLAM based liction," 2017 IEEE i Vehicles i (IV), 2017, pp. 1744-1751

X. Sun, H. Ma, Y. Sun and M. Liu, "A Novel Point Cloud Compression Algorithm Based on Clustering," in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2132-2139, April 2019

NR W #LCS & IRISA

CODING TECHNIQUES FOR POINT CLOUDS

* MPEG PCC standardization
* Learning-based techniques

FELCHS & @ IRISA
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MPEG PCC STANDARDIZATION TIM

October 2018: New AhG
First Committee Al-based
Draft coding for
graphics

y

MPEG starts working
on G-PCC v2 (advanced
compression tools)

MPEG initiated
the work on PCC

April 2017: Call for
Proposal

October 2017:
Evaluation of 9

technologies
3 Use Cases:

responding the CfP | | G-PCC
TMC1: static point clouds for GIS and cultural

{ Geometry-based PCC
heritage objects and collections \/7

TMC2: dynamic point clouds for VR/AR and tel

TMC3: dynamically acquired or fused point clouds, V-PCC
such as autonomous navigation based and large- ~ =————————-{ T Video-based PCC
scale 3D dynamic maps

MPEG V-PCC

* Video-based Point Cloud Compression
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PROJECTION-BASED G PRINCIPLE

Occupancy map

Patch Plane

Geometry

Attribute
images

Source code:
https://github.com/MPEGGroup/mpeg-
pce-tme2

activities: video-based (V-PCC) and g y

Graziosi, D., Nakagami, 0., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud
based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.

:LiCllS
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RES

V-PCC CODEC ARCHITECTURE (TMC2)

—>] Geom y
Geometry image | mage Group Video sub-bitstrea
™ image > diation compression
generation | padding
Padded Attribute
L:m > B (m-wlmm e sub-bitstream
Patch Patch N nage Image Group Video
N Altribute > " "
doud generation [ > packing 7 image padding [~ diation compression
generation
f Decoded attr
P — '| gcumctrvl V-PCC
o] ancy Smoothed N bitstream
| m Il v | awbure o ge0metry | Geometry | Ll | pupicates [€ 30 Multiplester
oint "
P — = doud | Smoothing Smocthing cloud | PrUning Reconstruction
: frame
v frame
v _
Atlas Point
| info cloud | Re-coloring
— — Post-processing frame
Video
compression | pecupancy map|
Atlas
N Atlas sub-hltstreanl
compression »
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V-PCC CODEC ARCHITECTURE (TMC2)

* Estimate projection direction for each patch
* Based on normals
* The 3D patch is projected orthogonally to one of the six
st [ faces of the axis-aligned bounding box

HLCS & @ IRISA

V-PCC CODEC ARCHITECTURE (TMC2)

* Placement of projected 2D patches in a 2D image

* [terative and heuristic process

* Enforce temporal consistency

Patch
packing

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019.

_ ) IRISA
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V-PCC CODEC ARCHITECTURE (TMC2)

Image

,| padding

Image |

4 padding

* Fill the empty space between
patches using a padding function

* Generate piecewise smooth
image easier to code

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019.

V-PCC
bitstream

V-PCC CODEC ARCHITECTURE (TMC2)

Video
‘ ‘ compression
‘7 ) ‘7 ‘ 1 Attribute
‘ ‘ : : | sub-bitstream
.‘ | | N Video
‘ | | | compression | ..........
]
|
|
‘ ]
| Recongiructs
| pascy map
e Video =
compression | gecupancy map|
Atlas
Atlas sub-bmni
compression 4

4| Muttiplexer

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019,

LC:S &

A.»»,HR *,.
RWILBCSANST @ %

V-pCC
bitstream
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MPEG G-PCC

* Geometry-based Point Cloud Compression

-*;.L-C
LRCCEADGT

_®:IRISA

OCTREE-BASED APPROACH

anSPREA

attributes

* Geometry and attributes are encoded
* Attribute coding depends on decoded ¢

* Workflow:
» Coordinate transformation + voxelizatig
* Geometry coding (octree/pred)
* Transform (attributes)

e Arithmetic coding

MPEG 3DG, V-PCC codec description, ISO/IEC JTC 1/SC 29/WG 7 N 0099, April 2021

Transform
coordinates

geometry attribute
bitstream bitstream
|
ri ic decode | I Arithmetic decode
e I |
Inverse quantize

e
ee
hesize surface
e

L
1l

Analyze surface
approximation

Reconstruct geometr

| Arithmetic encode | Arithmetic encode |
geometry auan
bitstream bitstream

‘NR N #ucs &

positions

[Generate]
LOD
Inverse
lifting

..............

attributes

() IRISA




13/04/2022

GEOMETRY CODING IN G-PCC

* Two basic approaches:

1/ * Limitations of a vanilla octree coding:

* |solated points are expensive to code

* Number of points exponentially
decreasing at low bitrates

* Does not use the local geometric
structures

* Does not use structure/side information

when available

GEOMETRY CODING IN G-PCC

* Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode (for isolated points)

TRl S &6 Rish

@ “
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GEOMETRY CODING IN G-PCC

* Two basic approaches:

1. Octree coding augmented with several modes | |
(Inferred) Direct coding mode
Triangle soup (trisoup)

Orecons 1ruucd points

, "Hybrid Octree-Plane Point Cloud Geometry Coding," 2019 27th Europea Sg IP ces CO)#L].C"S @ ( I R | S I\
LRCCEA DiG'T ‘g ) re

GEOMETRY CODING IN G-PCC

* Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode
Triangle soup (trisoup)
Planar modes

_ @ IRISA
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GEOMETRY CODING IN G-PCC

* Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode

Trisoup -
-
Planar modes ~
Angular modes ﬁ]

Rl #5CS @ _ 6 IRISA

GEOMETRY CODING IN G-PCC

* Two basic approaches:

1. Octree coding augmented with several modes .ﬁ.\:ﬁ;‘;‘vy;(vy;;‘r[;;;n oo,
(Inferred) Direct coding mode Root vertex. @ ,/O’B;:chwm/.
Trisoup ‘\t o’ ,\o“.“j’ o |
Planar modes Bt:“l;h ®
Angular modes ‘.

Leaf vertex

L:C::S @

LRC CEA D G T
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ATTRIBUTE CODING IN G-PCC

* Two tools:

1. Region-Adaptive Hierarchical Transform (RA
Haar-inspired transform on octree structure

Graziosi, D., Nakagami, 0., Kuma, S.,

level 3

level 2

level 1

level O

Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An
i ization activities: video-based (V-PCC)

overview of ongoing point cloud

and geometry-based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.

S

(o IRISA

3 =

ATTRIBUTE CODING IN G-PCC

* Two tools:

1. Region-Adaptive Hierarchical Transform (RAHT)
Haar-inspired transform on octree structure

2. Predicting/Lifting Transform

LoDO

B P4 P3
e ® O
6 g p7
L
® P9 ® o
P8

Distance-based prediction
LoD1

Employs a Level of Detail (LoD) representation that distributes tl o

Graziosi, D., Nakagami, 0., Kuma, S,

, Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An

overview of ongoing point cloud

and geometry-based (G-PCC). APSIPA ions on Signal and g 9.

S P

ion activities: video-based (V-PCC)

o IRISA

@ 5 =




13/04/2022

TAKE-AWAY ON MPEG STANDARDIZATION

* Two standards . G-PCC:

Mostly octree-based + many
optimizations

V-PCC: o « Static content
* 2D projection-based « Low-to-high density
* Dense PC * Wide range of applications:

AR/VR, cultural heritage,
LiDAR (fused and scans), etc.

* Dynamic content
* AR/VR applications

Rl #5CS @ _ 6 IRISA

CODING TECHNIQUES FOR POINT CLOUDS

* Introduction and basic coding tools
* MPEG PCC standardization
* Learning-based techniques

R #LCS & @ IRISA
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TAXONOMY

Attributes

Geometry Geometry & attributes

Component

Lossy Static

Motion

Learning-based
PCC

Dynamic
Lossless

Encoding
domain

Prior

. . Unstructured
information

Sensor @
S T

Voxel-based Point-based

dense _=> sparse

(o IRISA
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o = Py st o
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* Adapted to dense point clouds

* Similar to learning-based 2D image compression
* Auto-encoder based approach

* Entropy bottleneck and quantization

Rl EiCES &

VOXEL-BASED LOSSY CODING OF PC GEOMETRY

_®:IRISA

*Var

reconstruction
L

input image
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BACKGROUND: LEARNING-BASED IMAGE COMPRESSION

* Optimized end-to-end
* Quantization

* Non differentiable
* Backward pass (in training):

)’L+u[—§ >

* Inference:
¥; = round(y;)

* Entropy coding

» Differential entropy for training

* What is learned:

* Analysis transform
* Synthesis transform

* Probability distribution of latent
variables

HELICHS &P

LRC CEA D G T

_®:IRISA




13/04/2022

BASED IMAGE COMPRESSION

LEARNING-
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.In

image

i, E., “End-to-end

Learning Representations. 2016
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LEARNING-BASED POINT CLOUD GEOMETRY
CoMPRES~~"1 (PCGC)

Pre-processing | Post-processing

point cloud
Classification
Extraction
Decoded
point cloud

Original
Partition

£
S
8
£
o
>

J. Wang, H. Zhu, H. Liu and Z. Ma, "Lossy Point Cloud Geometry Compression via End-to-End Learning," in IEEE Transactions on Circuits and Systems for Video Technology, 2021

"NR W #UCS & IRISA

CLASSIFICATION

» Cast the reconstruction problem as a classification one

* Loss function

"o “ethe prob bility t a(f a voer is occupied
e { 5B Voxe] wwas In occupied  <ummmm Probability of assigning the correct class
1-p

otherwise

Binary Cross Entropy (BCE):

BeE() =~ n 1

Licts &

LRC CEA D G T

_®:IRISA
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CLASSIFICATION: WEIGHTED BINARY CROSS-ENTROPY

p if the voxel was indeed occupied

4= Probability of assigning the correct class
1—p otherwise

P =

» Binary Cross Entropy (BCE):

BCE(p;) = —logp;

. . . e, Balances the importance of
* Take into account class imbalance in the minimization (most voxels are e \/ p

- Weighted Binary Cross-Entropy (WBCE) occupied,/not occupied
voxels
WBCE (p,) = —a; logp;

with a; = «a if the voxel ground-truth occupation is 1, and a; = 1 — a otherwise. x Does not differentiate

between easy/hard
total num. voxels SR ,
Typically o - Most of the empty voxels are easily
num. OCCUpled voxels classified and do not bring much

information to learning

d Z. Ma, "Lossy Point Cloud Geometry Compression via End-to-End Learning," in IEEE Transactions on Q*F% ‘gc&!s @ (
LRCCEADIGT ‘g ) IIQISI\

CLASSIFICATION: FOCAL LoOSS

p if the voxel was indeed occupied

4= Probability of assigning the correct class
1—p otherwise

P =

CE(p) = —log(p) —
FL(p) = —(1 — p)" log(p1)

2}

wewnonon
wm-— oo

222

* Binary Cross Entropy (BCE):

BCE(p,) = —logp;
* Take into account class imbalance in the minimization 1
* Focal Loss (FL) o;

well-classified
examples

0.2 0.4 06 0.8 1
D

FL(pt) = —a; (1 — py)” logp;

Voxels easy to classify have less
with a; = « if the voxel ground-truth occupation is 1, and a; = 1 — a oth weight in the loss
y is a focusing parameter

Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Learning Convolutional Transforms for Lossy Point Cloud y ion. IEEE ional C on Image ing (ICIP'2019), Sep 2019,
Taipei, Taiwan.
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Dealing with variable spatial density
DEALING WITH VARIABLE SPATIAL DENSITY

* Adaptive thresholding

» Use a threshold to binarize the estimated occupancy probability 0 vt
* Fixed threshold (e.g., 0.5)1is suboptimal
« Optimized over the whole PC and transmitted?
» Optimized block by block and transmitted?
« Adaptive model (ADL-PCC#)
* Train a different network for each « in the focal loss

IMaurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Leammg Convulutlunal Transforms for Lossy Point Cloud Geometry

. 5\?1? Ew W Sep 2019, Taipei, Taiwan.
fan u, H. L and 27Ma Lolssl yl poqg)u Somet RBO

mplesslon via End-to-End Learning," in IEEE Transactions on Circuits
d Systems ior Video Technology, 202¢

- Bignalthem dex inrthe bitatreampameson e
on imedia Signal Processlng (MMSP'2020), Sep 2020, Tampere, Finland.

4A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, "Adaptive Deep Learning-Based Point Cloud Geometry Coding," in IEEE Journal of
Selected Topics in Signal Processing, vol. 15, no. 2, pp. 415-430, Feb. 2021

DL-based Block,  DL-based Block
Encodmg and Encedmg and |

Input PC

Reconstructed PC
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VOXELDNN

- * AiRalegrtitaRieftyeecupancy probabilities to use in a context-based

arithmetiekagesonn: “
* Factorize the joint probability of voxel . e

occupancy _— *m

I 00 0 0

d3 0.0 0~ 00 0

p(U) = _H p(’Uz'|’Uz'_1,’Uz'_2, . ,’U]_) 000 D
=1 \_

N\ J ~0 0 0

Y .--..l' 000

Modeled with a DNN (a) 3D voxel context (b) 3D type A mask

* Masked convolution to enforce causality for
correct decoding

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

VOXELDNN

o ALtk galbniatentad @lecupancy probabilities Traimedwithh cross entropy

arithspiedicgedecnn: loss
* Factorize the joint probability of voxel &
ceenpaney H(p,p) = Epupioy | — log p(vi)
) = TLp(o, ) =
plv) = p 5 U1 -
\ - ) - H(p) DKL(p”p)

* Minimizes the distance between the

MOdel_ed with a DNN _ estimated occupancy probability and
* Masked convolution to enforce causality for the ground truth
correct decoding + Different from the lossy case!

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

NR N #LGS & @ IRISA
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VOXELDNN: GENERAL ARCHITECTURE

<o [ TN N Output buffer l o
[ ] a
Hybrid v— prediction

I Partition signals
L4 VoerD Octree bits
A } : Mode selection ‘ Arithmetic Coder :
Octant: 10000010 « 000000 i o '
_§0000080  OLRO0GOD ' :
CGGOes0E  CO08008D  ooecowwy) | flagl =[10001101"  flag2="1 . o
= i + ] ‘ b 0 1

Pl ﬁ(”nlvi-l.”i-Z-----”‘x)E

B, B; By | P e md
96| ol W o
n bits depth PC , & @ P

(a) High level partitioning (b) Multi-resolution encoder (c) Context model — VoxelDNN

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

VOXELDNN

G-PCC Baseline + DA + CE

Dataset | Point Cloud bpov bpov | Gain over

G-PCC

, Phil 1.1599 || 08252 | -28.86%

* Pro’s: MVUB | Ricardo 10673 || 07572 | -29.05%
o . . Average 11136 || 0.7912 | -28.95% |

* Significant bitrate reductions Redandblack 10893 || 0.7003 | -35.71%

. . Loot 09524 || 0.6084 | -36.12%

* Flexible to be extended with larger contexts| g; Thaidancer 09990 T 06627 | -33.66%

Boxer 09492 || 05906 | -37.78%

Average 0.9975 0.6405 -35.79%

, Frog 1.8990 1.7071 -10.11%

* Con’s: CAT| |_Arco Valentino | 4.8531 4,9900 +2.82%

Shiva 36716 || 35135 431%
* Poorer performance on sparser PCs Average 34746 || 3.4035 3.86% |

. . BumbaMeuBoi 5.4068 5.066 -6.29%

* Sequential voxel-by-voxel decoding USP [ RomanOiLight | 18603 || 16231 | -12.76%

Average 3.6336 || 3.4855 9.52%

High computational complexity
Approximations (MSVoxelDNN)

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021
Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Multiscale deep context modeling for lossless point cloud geometry compression. JEEE Conference on & Expo Workshops
(ICMEW), Jul 2021, Shenzhen (virtual), China.




13/04/2022

Point-based

OCTSQUEEZE

Input LiDAR Point Cloud

Octree Construction

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LIDAR Compression," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020,

pp. 1310-1320

Octree Structure

Location: (x, y, z)
Octant: 01010011
Level: 2

Parent: 00001001

Tree-Structured Entropy Model

U MLPY ML
3 bl

ff

pepies |
e |

Cond. Prob
Estimation

Emropy Encoding

Final Bit Stream

u (P,) = Ex~p[—log (x)]

X;: occupancy of a
node (1 byte)

X = [Xxq, X2, ..., Xpn]:
octree structure

p(X): real occupancy
distribution

q(x): estimated
distribution

Goal: minimize CE

LiCS@

LRC CEA D

CTMAGE POUR LA SMULATON

_ & IRISA
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OCTSQUEEZE

Input LiDAR Point Cloud Octree Structure Tree-Structured Entropy Model
wpe O\ v\ M B * Factorize q(x) as
3 “

j M gl = I:[qi(xi | Xan(i), €1 W)
; i Rt
|

where:

Location: (x, y, z) O b
Octant: QJ0IOON |
Level: 2

|_’ Entropy Encoding | <

Parent: 00001001
Octree Construction Final Bit Stream

* ¢; is additional context
(spatial location, level
in the octree, etc.)

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LIDAR Compression," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020,

CCEA DIG!T ‘g m i 8 e
(]

£ T /MAGE POUR LA SMULATON b H

& IRISA

OCTSQUEEZE

Input LiDAR Point Cloud Octree Structure Tree-Structured Entropy Model
Cond. P * Estimation of
) i) 2) Lt ey
N M\ B conditional

1. Embedding of the

| % [ Q current node using
MLP

/ = & hgﬂ) = MLP(O)(C,‘)
Ocnt00i001 | - - 2. Adding the

Level: 2
Parent: 00001001 information of previos
encoded nodes

' c A\ probabilities q(x;)
=

Entropy Encoding |«

l through parent

& h(k) = MLP(k) (_k— 1)’ (k—_l)
Octree Construction Final Bit Stream x ([h‘ hpa(i) )

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LIDAR Compression," 2020 IEEE/CVF Conference
oon Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1310-1320
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EXTENSION TO DYNAMIC POINT CLOUDS AND
ATTRIBUTES

Input Point Cloud = Octree Occupancy Entropy Model Intensity Entropy Model

1 "
Octree (Sec 2.1) | E
1 .
it ; --L?i e ) T i (2) Prior Octree Dependence (l)Ances:Sa_ll\I_nflfPf\pendencc E 2 2
I g ’;3 N 3 c lﬁ *ﬂ | (a) Top-down Pass H E : O
tam ' "{ S " 5 1 (b) Bottom-up Pass (3) Spatio-Temporal | ! : _____
7 £ ? PO Aggregation | i Probability 1 . ® R T Probability
i __7‘//__.\\“__\ H E Estimation ' : O O: Continuous . O Estimation
1 ’ | H ! H
i : | Continuous E :— M ! O I\‘__ _O_ _J Convolution) \ ML
’fi@ @ i | 1 Convolution l ' O y
i —— H
I ! v (T T DZ-HI
. {
. ! / \ Z\ Geometry E O Intensity
g@' @ ' O O O O Bitstream 1/ 4 Bitstream
| "
‘ ! :
Sweep£-1 Sweep ¢ ! Sweep -1 Sweep ¢ ! Sweep z-1 Sweep ¢

Biswas, S., Liu, I, Wong, K., Wang, S. and Urtasun, R., 2020. MuSCLE: Multi Sweep Compression of LIDAR using Deep Entropy Models. Advances in Neural Information Processing Systems, 33.

HLCS & (:IRISA
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DEepP-PCAC

Geometry. Eorssy G Geometry || Geometry
nx3 =x3 +X%3 nex3 | =Ex3
2 4 2
" " TChannels (T664128236517) "~ T T T[T T T T T T T T TR Auribue Encoder 17T T T T | e A Eneader !
1 I
° MLP(16) DPIB(16) MLP(512) DPIB(S12) DPIB(256) DPIB(128) DPIB(64) MLP(8) ] MLE(6,6,6)

1
1
1 1
—_— 1. '
=1 G 1 ! . !
& * = = . = - ! = > . :
5|1 5 = = 1
<l : &g Eg - E3 o | B Be -
& lShnred Shared Shared Shared o ‘)“' Shared 2 % Shared % X Shared Shalcdl &3 ' (2.; X % X Shared s
o . . gt_l,»a Bale - G f Sl Bl . |
x|y . . ~ L = ' & = . '
=1 . . . 1 - '
I ey O T - g g I e, B B T — T
___________________________________________________________________ 4
:— T 7 7 Chamnels (3,16,64,128256) ~ ~ C T T T T T T TTTTTTTTTTTTT Attribute Decodery T =~ Hyper Attribute Decoder!
1
1| DPIB(3) MLP(3) DPIB(256) MLP(256) DPIB(512) DPIB(256) DPIB(128) MLP(@): 1 MLP(8) MLP(24) I
| o]
=1 = i 1
aly . > > > : 3 Shared 5 2 1
g . g8 Eg Eg H . Eq § &
2| g g g N HE ' 83— 2 =
= lSharcd Shared Shared Shared Shared e x  Shared e %  Shared e % Shared, x“ "'mips) |Shared 2 x Q X 11
o ! - g & Srin Erir 1| & a - Eg E&N
1 . 5 & ) 3 1 © . s& 5
§ 1 ) A [ [ H Bl x| Shired = e ]
] wl v 1
-

TAKE-AWAY ON LearNING-BASED PCC

* Significantly inspired by recent advances in 2D learning-based
compression

* VAE, generative models (auto-regressive)
* Mainly two kinds of encoding backbones employed

* Voxel-based convolution (sparse convolution possible)

* Point-based (PointNet/PointNet++) convolution
* Geometry (occupancy) coding is cast as a classification problem
* Adapting to varying spatial density is fundamental
e done on dynamic PCs

AR scans: special case

-{»;.L.C
LRCCEAD GIT

_ G IRISA
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QUALITY ASSESSMENT AND BENCHMARK

* Objective quality metrics
* Performance of PC codecs

R R #LCS & @ IRISA

APPROACHES TO ASSESS POINT CLOUD QUALITY

Attributes

Geometry Geometry & attributes

Component .
2D projections

Geometric

Human
(perceptual)

Machine
(downstream application)

LRC CEA D G T

domain
Point-based »
Point Cloud g
Quality Metrics 3D 2
<
(9]

Surface-based

_®:IRISA
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* Same principle as V-PCC
* Joint geometry & texture

* Fuse the score!

* Well-correlated wi '

() K=6

Torlig, E.M., Alexiou, E., Fonseca, T.A., de Queiroz, R.L. and Ebrahimi, T., 2018,
XLI (Vol. 10752, p. 107520I). International Society for Optics and Photonics.
E. Alexiou and T. Ebrahimi, iting user i ivity in quality

* Use conventional 2D quality metrics on views

2D PROJECTION-BASED APPROACH

]

A
“~ 4,
Pad
2
Jir:4 N
'~ H._‘
i .
v N
B
L.
1
(b) K =12 (c) K =42
A novel for quality of voxelized point clouds. In Applications of Digital Image Processing

of point cloud imaging," 2019 Eleventh

on Quality of

NR S '*Pkg&m

(QOMEX), 2019, pp. 1-6

_®:IRISA

3D DISTANCE METRICS

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud
3464

................. -

Distorted .
PC_ X O L]

.......... P

L4
[ — @ i@
Reference i o... . °. P a—
o @ :
PC X -
L ]
" 2017 IEEE [ on Image ing (ICIP), 2017, pp. 3460-

-{;.L.C
n LRCCEADGT

_®&:IRISA




13/04/2022

3D DISTANCE METRICS

Dlstorted
X O L}

...... o \
Pomt to- surface

* Point-to-surface (a k.a. cloud-to- mesh)

* Heavily dependent on the surface recopgtructlo‘

PC X

* Difficult to use for PC compression e,

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, .-Geathetvi;: dlstom .*FsL‘Cl! 'Esmte@onference orﬁ ‘e Prcu:lssRlClI’)v SZAa
3464 LRCCEADIGT ‘=== -
. =

3D DISTANCE METRICS

Nearest nelghbor ............. @
Distorted point j©
. PGy X . .,
* Point-to-surface (a.k.a. cloud-to-mesh) et 18G)
. . Point-to-surface ! Point-to-point (]
* Point-to-point (a.k.a. cloud-to-cloud) distance | ! distance
+ For each point in X, find the nearest point if X ® ¢
Reference t ®. :". .................... s
PC X

* Euclidean distance in the 3D space

» The average or maximum (Hausdorff) distance is used to characterlze the PC
distortion .

* Fails to account for surface structures

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, “Gea}ﬁeni;:‘dlstom .*FsL‘Cl! 'Esmte@onference orﬁ e ProclssRlClI’), SZp.\a
3464 LRC CEA DiG!T ; = )
n -
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3D DISTANCE METRICS

Nearest nelghbor ............ —
Distorted point ] _____________
. P'Qo.. x i."-,,
* Point-to-surface (a.k.a. cloud-to-mesh) ~-e- e .
Point-to-surface " dP;)s‘t‘:nt:epo'm .
* Point-to-point (a.k.a. cloud-to-cloud) distance '\
@ o d
® POlnt'tO'plane Reference i .. g W '
. PCX .
+ For each point in X, find the nearest point in X’ /(.E(‘ N
-4 Point-to-plane
* Project the error vector on the local normal tangent .. distance .

» Errors that push points away from the local surface are perceived more ‘than those movmg pomts
along the surface ;

* Approximate the local surface with a plane '

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geom‘enic alstom .*FsLic! 'Esmm@onference orﬁ ‘e ProclssRClI’), SZP.\a
3464 LRCCEADIGIT g gt mop = 4
. =

3D DISTANCE METRICS

\ _______________ -
Distorted e

7 Nj g .
PC_ X e o,

plane Y

* Compare the normals at the two points to obtain a S|m|Iar|ty measure
» Better correlations on octree compression

* Point-to-surface (a.k.a. cloud-to-mesh) O et
°
* Point-to-point (a.k.a. cloud-to-cloud) N_I
R P0| nt-to_p|ane R;eren S L ... ‘
ce Te. .
* Plane-to-plane 7 ..
+ For each point in X, find the nearest point in X tangent .

E. Alexiou and T. Ebrahimi, "Point Cloud Quality Assessme“n‘iﬁ;:vl; Base R*FEL‘C. . nfe@ulumedla an (ICMEI R | S /\
pp. 16 LRC CEA DiG!T - A
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3D DISTANCE METRICS

* Point-to-Point > D1 metric
* Point-to-Plane = D2 metric

* Error pooling
* Mean squared error

1
Dy _ N2
MSER'e = 1 Z IEG,N)IZ
VIiEX
M = " IIEG.j) - Ml
xvx nx / ’ 13
VIiEX

* Asymmetric!

MSEy ¢ # MSEx y

IRISA

PSNR FOR GEOMETRY METRICS

* Traditionally, the Peak Signal-to-Noise Ratio is used in 2D image/video

o\ p?
PSNRgym (X,X) = 1010810 7557 SEon 55
* Normalization w.r.t. peak value p
* The peak value should represent the energy of a pure noise signal
» Easy to define for intensity, not for geometry...
* Signal dependent
» Several solutions
* For a voxelized PC with b bit-depth precision, p = 2b 1
* Diagonal distance of bounding box
* Intrinsic resolution (max or avg nearest neighbor distance)
D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud ion," 2017 IEEE i C on Image ing (ICIP), 2017, pp. 3460-3464
A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Improving PSNR-Based Quality Metrics Performance For Point Cloud metry," IEEE i C on Image Processing (ICIP), 2020, pp. 3438-3442

&L

@ 5 =
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3D METRICS FOR GEOMETRY AND ATTRIBUTES

4 ( .Reference -"..
+ Example: PCQM h R E
* quadric approximation for point matching (point-to-surface) ‘.
* Geometry-based features = L
* Curvature comparison, contrast and structure o o }\
« Color-based features ™~ painteoue ]
* Lightness comparison, contrast and structure ' /
* Chroma, hue comparison hu .

. . . — — _ _ Quadricsurf
« Linear combination of the features to obtain the global qua uadriesiriacs
® ® ® ® ® Nearest neighbors
® Reference point p

® Projected point §

G. Meynet, Y. Nehmé, J. Digne and G. Lavous, "PCQM: A Full-Reference Quality Metric for Colored 3D Point Clouds,” Twelfth International Conference on Quality of Multimedia Experience (QOMEX), 2020, pp. 1-6

R

PERFORMANCE OF PC QUALITY METRICS

Alexiou et al. SJTU dataset?

* 54 stimuli * 420 stimuli

* 20 subjects * 64 subjects

* compression artifacts * compression, noise, subsampling

Inanimate objects Human bodies 3D metrics
PCC SROCC RMSE OR | PCC SROCC RMSE OR Model PLCC | SROCC | RMSE

po2pointyjg 0740 0769 0812 0889 | 0732 0789 0621 0778 MSE-p2point 0.0466 | 0.7009 | 24081
po2pointppusdorif | 0735 0758 0819 0.889 | 0732 0781 0621 0778 MSE-p2plane 00462 | 0.6881 | 2.4081
po2planeysp 0.692 0684 0872 0889 | 0.717 0762 0636 0741 Hausdorff-p2point 0.6548 | 0.6189 | 1.8221
po2plane,ucdorfe | 0732 0701 0824 0889 | 0.734 0788 0620 0778 Hausdorff-p2plane 0.6325 | 0.6233 | 1.8673
pl2planeg g 0668 0723 0900 0778 | 0782 0813 0568 0.741 PSNR-MSE-p2point 0.6699 | 0.7181 | 1.7898 |
pl2planepsgp 0664 0723 0903 0815 | 0782 0.813 0568 0.741 PSNR-MSE-p2plane | 0.6270 | 0.6669 | 1.8779
Color - PSNRypy | 0791 0751 0739 0778 | 0.668 0618 0678 0741 PSNR-Hausdorff-p2point_| 0.5988 | 0.5831 | 1.9307
PSNR 0.739  0.672 0.814 0704 | 0.740  0.771 0613  0.815 PSNR-Hausdorff-p2plane | 0.6129 | 0.5983 [ 1.9048
SSIM 0823 0817 068 0741 | 0619 0600 0716 0.889 PSNR-YUV 0.6311 | 0.6207 | 18701
MS-SSIM 0884 0855  0.566 0.630 | 0727 0757 0626 0.852 PCQM [ 0.8603 | 0.8465 | 1.2291
VIFP 0693 0645 0871 0778 | 0.662 0566 0683 0778 Proposed 0.6076 | 0.6020 | 1.8635

1E. Alexiou and T. Ebrahimi, iting user i ivity in quality of point cloud imaging," 2019 Eleventh ional C on Quality of Multimedi i (QOMEX), 2019, pp. 1-6
2Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based ion," in IEEE i on il ia, Oct. 2020




13/04/2022

Alexiou et al.1 SJTU dataset?

* 54 stimuli * 420 stimuli

* 20 subjects * 64 subjects

* compression artifacts * compression, noise, subsampling
Inanimate objects Human bodies 2D metrics
PCC SROCC RMSE OR | PCC SROCC RMSE OR Model MOS
- PLCC [SROCC [RMSE
poZpomlMSE 0.740 0.769 0.812 0.889 | 0.732 0.789 0.621 0.778 PSNR 0.2481| 0.2512 |2.3354
PO2pointyya cdorff 0.735 0.758 0.819  0.889 | 0.732 0.781 0.621 0778 PSNR-HVS-M [0.2382 | 0.2615 |2.3413
po2planep g 0.692 0.684 0.872  0.889 | 0.717 0.762 0636 0.741 SSIM 0.3654 | 0.2789 |2.2440
po2planeysdorff | 0732 0.701 0.824  0.889 | 0734  0.788 0620 0.778 MS-SSIM | 0.3659| 0.2592 |2.2437
pl2planegps 0.668 0.723 0.900 0.778 | 0.782 0.813 0.568 0.741 TW-SSIM | 0.4339] 0.3285 |2.1720
pl2planey;sp 0.664 0.723 0.903  0.815 | 0.782 0.813 0.568  0.741 FSIM 0.3196| 03019 |2.2843
Color - PSNRyyy | 0.791 0.751 0.739  0.778 | 0.668 0.618 0678  0.741 VIF 0.5243] 0.5647 |2.0653
PSNR 0.739 0.672 0.814  0.704 | 0.740 0.771 0.613  0.815 NIQE 0.3262 | -0.1149 |2.2788
SSIM 0.823 0.817 0.686  0.741 | 0.619 0.600 0.716  0.889 IL-NIQE |0.2703]-0.0478 |2.3210
MS-SSIM 0.884 0.855 0.566  0.630 | 0.727 0.757 0.626  0.852 OG-IQA  [0.1163[ 0.0214 [2.3943
VIFP 0.693 0.645 0.871  0.778 | 0.662 0.566 0.683  0.778 Proposed | 0.6076 | 0.6020 | 1.8635
1€, Alexiou and T. Ebrahimi, iting user i ivity in quality of point cloud imaging," 2019 Eleventh ional C on Quality of Multimedi ience (QOMEX), 2019, pp. 1-6

2Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based ion," in IEEE i on i ia, Oct. 2020

QUALITY ASSESSMENT AND BENCHMARK

* Objective quality metrics

* Performance of PC codecs
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PERFORMANCE ASSESSMENT: G-PCC vs. V-PCC

a o
3 B
g7 23 g

p i 2

C
1 1 'C{Cctree) i
| C{Tri
T3 0omOTOT 03 0300807 1 2 3 456 001 GODATOT 03030807 1 2 8 456 0o GaBOTOT 03 030807 5 5 i3  GH GEBGET 01 0I0B5eT 1 5 3 486
bpp bpp bpp bpp
(a) Long Dress (b) Loot (c) Soldier (d) Red and Black

S. Perry et al., "Quality Evaluation Of Static Point Clouds
Encoded Using MPEG Codecs," 2020 IEEE International
Conference on Image Processing (ICIP), 2020, pp. 3428-
3432, doi: 10.1109/ICIP40778.2020.9191308.

Alexiou, E., Viola, 1., Borges, T., Fonseca, T., De Queiroz,
R., & Ebrahimi, T. (2019). A comprehensive study of the
rate-distortion performance in MPEG point cloud
compression. APSIPA Transactions on Signal and
Information Processing, 8, E27.
doi:10.1017/ATSIP.2019.20

Bitrate [bpp] Bitrate [bpp]

(e) loot (f) longdress
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PERFORMANCE ASSESSMENT: G-PCC vs. V-PCC

Arco Valentino Geometry D1 BD-rate
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a 70

T

© -
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w) 4

n‘- 30

B' 20 —e—arco_valentino_V-PCC
13 —e—arco_valentino_G-PCC

o 500 1000 1500 2000}
Fagade Arco Valentino House without a roof Bitrate (Mbits/s)

Objects (sparse to dense 11- 20 blts per coordinate)
Staue Klimt Geometry D1 BD-rate

QN ®Y
€0

D1-PSNR (dB)

30 —e—statue_klimt_V-PCC
20
10 —e—statue_klimt_G-PCC
0
0 100 200 3 400 500

300
Bitrate (Mbits/s)

Egyptian mask Shiva Klimt statue Frog

C. Cao, M. Preda, V. Zakharchenko, E. S. Jang and T. Zaharia, "Compression of Spavse“a'r{a Dense
Dynamic Point Clouds—Methods and Standards," in Proceedings of the IEEE, vol. 109, no. 9, pp. 153
1558, Sept. 2021
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GEOMETRY CODING: LEARNING-BASED CODECS VS.

RAMM™/A

longdress
85
80
25
£
Ses
8
04 1
bpip
—a—TMC134 —8—TMC13-lossy+SR —8—TMC13-ossk
—e—n0L —-— ¢
redandblack
8
80
3 e
0
0 1 3
bpip
—e—TMCI3losy  —e—TMCl
—a— ADLPCC o pcc_ge

MPEG 3DGC, Performance analysis of currently Al-based available solutions for PCC, ISO/IEC JTC 1/SC 29/WG 7 N233, October 2021
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D1 PSNR

—8— ADI-PCC

—&—pcc_geo_cnn_v2

loot
N ——
11
pip
—a— TMC13k —8— TMC13-lossy+SR —8—TMC13-lossle
—a— ADLF - pec 2 —a—PCGCN2
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-
o os 1
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—a—TMC13l0sy  —8—TMC13Josey+SR —8— TMC1 2 lossless

PCGONZ

D2 PSNR

D1PSNR

house

SA

uncompressed

MPEG 3DGC, Performance analysis of currently Al-based available solutions for PCC, ISO/IEC JTc 1/sc 29/WG 7 N233, October 2021
Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Improved Deep Point Cloud

Finland.

GPCC (TMC13v14)
0.28 bpip
D1-PSNR: 63.21 dB
D2-PSNR: 68.46 dB

Quach et al. (2020)
0.27 bpip
D1-PSNR: 71.41 dB
D2-PSNR: 74.99 dB

| FARNING-RASED GEOMETRY CODECS: OUALITATIVE RESII TS

Wang et al. (2021)
0.25 bpip
D1-PSNR: 73.60 dB
D2-PSNR: 77.41 dB

J. Wang, D. Ding, Z. Li and Z. Ma,

Point Cloud

" Data C¢

(DCC), 2021

ia Signal

ing (MMSP'2020), Sep 2020, Tampere,
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ATTRIBUTE CODING: LEARNING-BASED METHODS VS. MPEG

Shiva i " Frog ) Staue Klimt
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X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li and F. Wu, "Deep-PCAC: An End-to-End Deep Lossy Compression Framework for Point Cloud il ," in |IEEE T i on il ia, doi: 10.1109/TMM.2021.3086711.

"NR W #UCS & IRISA

TAKE-AWAY ON PC QUALITY ASSESSMENT AND PCC
BENCHMARK

* Quality metrics

* 2D metrics appropriate for dense PC and distortions that do not significantly change
density

* Point-to-point easier to embed in end-to-end learning-based codecs
* No clear consensus on which is the good metric to use!

* Benchmark of PC coding approaches
* V-PCC outperforms G-PCC (only) on dense point clouds

* Voxel-based VAE coding methods achieve state-of-the-art performance in coding
geometry of dense PC

A+ MPEG codecs achieve state-of-the-art performance on attribute compression

A thoroudh hiective-evaluation of learni - 0 ilLm d

“*!—!;:EADGT _ & IRISA
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TRENDS AND SUMMARY

NR N H#LCS & IRISA

OPEN CHALLENGES IN POINT CLOUD CODING AND QUALITY
ASSESSMENT

» Capture the underlying geometric structure
* Variable spatial density
* Extremely sparse sampling
» Prior information: joint semantic interpretation and coding?
* Modeling the acquisition
* Perceptual loss?
* Joint geometry and attribute coding
* Interdependence
* Perceptual quality assessment
* Methodologies
» Large dataset construction

HLCS & @ IRISA
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Q&A

giuseppe.valenzise@centralesupelec.fr

T NR Il #ESES @ o IRISA

Immersive 3D HDR
visualisation

Ific Goudé, Rémi Cozot (speaker)

Rl S5 &b iRisA
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» Evaluation of lightness and color
perception on HMDs

A TMO for visualization of HDR
panoramas on HMDs

« ATMO for HDR 3D scenes

R n .‘}.‘_LC.CC"GS ‘? i (0) IRISA

Human eye perception on Head
Mounted Display

j EEGS & & IRISA
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The minimal perceptible threshold is
proportional

to the background luminance

a

AY=YS—Yb =kYb

k=>=1%
on 2D screen

background luminance Y,
[cd/m?]

R ELCS & @ IRISA

perceptible threshold AY

[cd/m?2]
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The derivate of the response relative to the
luminance: lightness

7 = 37

Yp 1
L(Yb) = j;) AY(Yb) dY% weber: AY = kYb

1
L(Yb) = kab dYb = kx lOg(Yb) +a

MR R #ELcs &

_®:IRISA

Our sensitive response is logarithmic

L(Y) = —log(Y)

lightness L

luminance Y [cd/m? L

NR N #LCS & IRISA
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R ‘ HELICHS ;:E’ _®:IRISA

Do we have the same perception on HMD?

— Linearly proportional to the background?
— Logarithmic response?

— Same constant factor?

* k =~ 1% for screen visualization
dELiCS &P

) .

_ & IRISA
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Lightnhess perception on HMD

CIECAMO2 HMD

Background

A

Stimulus

Stimulus: 2°/ 4° * Stimulus: 2°/ 4°
Background: 20° * Background: 100° (HMD FoV)
Surround: Field of view *  Surreund:Nene

perceptible threshold AY [cd/m2]

0.0

users JND
— k=0.022
— k=10.01

background luminance
Ypled/m2]

0 20 40 GO 80 100

Rl S & & iRisA
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The sensitive response is still logarithmic

n
»

k=1%

lightness L

luminance Y [cd/mzL

"NR R LGS & - IRISA

Not anymore
on HMD

Stimulus is
perceptible on

2D screen

Rl HESE @ 6 irisA
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 Comparing two stimuli for a solid
background

$AV

Fechner (1860)
- L= %log(Y) +a

CIELAB (1976)

- Ir= 116f(yi)—16

CIECAMO2 (2002)

100 (ﬁ)

1/3 . i 3
Withf@):{ ehrsit < (2)

2
129 4 .
—(—) t + — sinon
3\6 29

with z = 1.48 + %

w

0.590 for Dim env

0.525 for Dark env
and ¢ =
0.690 for Avg env

HELC:S &

@ 5 =

& IRISA
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Visualization conditions
CIECAMO2 HMDCAM

—] =100 (Ai)cz — ] =100 (_

w

A

)CL.Z

Aw

EY
A CL.Z Y,
e J =100 (A—) withz = 1.48 + \/Y:, and ¢, =
c.r.AYa|ya=50W W
AYy,
« AY, =188Y,%% —7.24Y7,%" +826
c Y, =F.Y%+02(1-FY,
F = )0.7379 + 0392 (1 — exp(0.0221Y,)),  if ¥, <50 cd /m?
1 , otherwise
. po001
Tk
« k=0.022
CNR il #EGS € o IRISA
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------ CIECAMO2 dark /
~~~~~ CIECAMO2 dim
gt CIECAMO2 avg i
—— HMDCAM

10 1

perceived lightness difference
N

0 20 40 60  backggund lumipggpe ¥, 190 140

[cd/m?]

NR W #YCS & IRISA

Error of the estimated perception for
luminance and color coude20]

Background luminance
[cd/m?]

CIECAMO2 (avg) error [%] 131 18.9

HMDCAM error [%] 3.8 71 8.2 5.2
_m—mm_
CIECAMO2 (avg) error [%] 1.3

HMDCAM error [%] 0.7 0.5 1.7 28

NR N #LGS & @ IRISA
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* Evaluation of lightness and color
perception on HMDs

A TMO for visualization of HDR
panoramas on HMDs

« ATMO for HDR 3D scenes

R n .‘}.‘_LC.CC"GS ‘? i (0) IRISA

Tone Mapping High Dynamic
Range 3D point cloud

j EEGS & & IRISA
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HDR viewport

W, A |, e e 3/ /L 57 e e -
AR LT TS e 2|
R MBS g
— - - ' —pm =t T
F : - i
ST LLLLELLT Ty R L S =
L ar
T » ;
e il 2
i . A 3 . |
¥ ) AR i "]
Tay i i i U
Y e = |
4 4 ¢
¥ ‘ i N Jo
g

=g

Viewport TMO (reinhardo2]

y Lw(t) = _exp(nylog(Y (x,y,t) + 6))

is a user-defined
paramptpr

L., is the key-value
 L(x,y,t) = (t) Y, (x,y,t) J

L(x,y,t) ><<1+ Lyt 2>

YWmax (t)

Ya(x,y,t) = 1+ L(xy.t)

R N

Licts &

LRC CEA D G T

_ & IRISA
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Viewport TMO

Viewport TMO + eye adaptation [Yul5]

L, = tl,) + (1-0.L,¢-1)
Y, (&)=1t%, () +0-1).Y, (-1

L(x,y,t) = %Lw (x,y,t)

L(x,yt) ><<1+ M)

7
YWmax ®)*

1+ L(xyt)

Rl S5 &b iRisA

Yd(xi Y, t) =
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Viewport TMO + eye adaptation

&L

R s 2

& IRISA

Viewport TMO + eye adaptation
— Spatial coherency is not preserved

A

N ‘\ \ A\

R S 2
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Global TMO

NR W #YCS & IRISA

Global TMO [wardo7]

* The Cumulative Distribution Function of the log-luminance
histogram

P (log(YW (x, y)))

* Histogram ceiling based on our HMDCAM

* Scaled in the dynamic range of the display
Yd (x, y) = eln(ydmin) + (ln(ydmax)_ln(ydmin)) XP(Yw(x,y))

NR N #LGS & @ IRISA
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Global TMO

N ' allgl e =
*‘¥
’ {fﬁ% ’V"gﬁ‘

RS *!—L'C"S @ _( IRISA

HMD-TMO (coude19;

* Linear combination of both Viewport and
Global TMOs
in the logarithmic domain

« Yi(x,v,t) = a.log(G(x,y)) + (1 —
a). log(V(x, YV, t)) ﬁ a is a user-defined weight

e Yy(x,y,t) = G(x, y)* xV(x,y,t)1@

f LGS & IRISA
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HMD-TMO

HMD-TMO

— Spatial coherency is preserved
— Viewport contrasts are enhanced

— Objective metric shows a better TMO quality

T eiheroo2) | wardor) | vuas)

TMQI quality [TMQI] 0.798 0.854 0.865 0.887

CNR N HEGS & & IRISA
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* Evaluation of lightness and color
perception on HMDs

A TMO for visualization of HDR
panoramas on HMDs

« ATMO for HDR 3D scenes

MR #SS & 6 IRISA

Viewport TMO + eye adaptation

WlRISA
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Viewport TMO + eye adaptation
— Spatial coherency is not preserved

Global TMO

* What is the dynamic range of a 3D scene?
* Light field

—
ﬁ * Plenoptic function L(x,y,z, 0, ¢,t) [Adelson91]
ﬁ» * |Camera position (x,y, 2) |

* |Camera orientation (6, ¢) |

* To compute in real-time = impossible!

o 5
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Global TMO

H&{lll'@

LCS & IRISA

3D-TMO

R W

LiCLlS @

LRC CEA D G T et
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3D-TMO
— Spatial coherency is preserved
— Viewport contrasts are enhanced
— Subjective studies show that our TMO is

preferred
Fidelity _____|[Drago03] | Eye-adaptation (Unity) | 3D-TMO [Goude20bis] |
Scene 1 6.39 +1.82 6.56 + 1.89 7.50 +1.15
Scene 2 6.17 +1.69 7.00 + 1.64 7.39 +1.58
6.83 +2.20 6.94 + 166 744 +1.38

6.28 +1.81 7.22 +1.86 7.61 +1.65

RN #YS2 & 6 IRISA

n. —

FUTURE WORK

For the ReVeRY project
Combine 3D and HDR reconstruction
Add multiexposure
Add time coherence for video
Other directions

More general camera configurations

HLCS & |:IRISA
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