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Figure 1: The ReVeRY project.

Abstract
The collaborators of the ReVeRY project address the design of a specific grid of cameras, a cost-efficient system that acquires
at once several viewpoints, possibly under several exposures and the converting of multiview, multiexposed, video stream into a
high quality 3D HDR point cloud. In the last two decades, industries and researchers proposed significant advances in media
content acquisition systems in three main directions: increase of resolution and image quality with the new ultra-high-definition
(UHD) standard; stereo capture for 3D content; and high-dynamic range (HDR) imaging. Compression, representation, and
interoperability of these new media are active research fields in order to reduce data size and be perceptually accurate. The
originality of the project is to address both HDR and depth through the entire pipeline. Creativity is enhanced by several tools,
which answer challenges at the different stages of the pipeline: camera setup, data processing, capture visualisation, virtual
camera controller, compression, perceptually guided immersive visualisation. It is the experience acquired by the researchers
of the project that is exposed in this tutorial.

CCS Concepts
• Computing methodologies → Computational photography; Image processing; Virtual reality; Perception; 3D imaging;

1. Introduction

In the last two decades, industries and researchers proposed signif-
icant advances in media content acquisition systems in three main
directions: increase of resolution and image quality with the new
ultra-high-definition (UHD) standard that uses 3840x2160 pixels
resolution (also called 4K resolution); stereo capture for 3D con-
tent (depth information); and high-dynamic range (HDR) imaging
raising the dynamic range of the image to at least 16-fstops. These
recent advances addressed the full media production pipeline: ac-
quisition, image data enhancement, and display, with the devel-
opment of 3D and grid cameras, HDR imaging, UHD resolution,
autostereoscopic displays, immersive VR headsets, HDR displays.
These new technologies raise incontestable enthusiasm by both
professionals and end users, but are currently limited by low cre-
ative content potential. For instance, todays offered 360° panoramic

image for VR immersive visualization would not be convincing for
a natural light outdoor landscape. The user would be perceptually
limited in the range of intensity and restricted to rotating naviga-
tion. Among other objectives, the ReVeRY project wants to address
solutions to enable user perception of high intensity ranges as well
as free navigation inside the scene in an embedded distributed me-
dia adaptive to the diversity of nowadays displays. In other words,
there should be no capability difference when virtually visualizing
real or synthetic scenes. The ReVeRY project has conducted fun-
damental research to address the full pipeline from acquisition to
display. Its aims are to answer to currently known limitations:

1. Rig capture still presents major chalenges, both in terms of
equipment set up and data flow management,

2. Depth and HDR content is now predominant in many applica-
tions but higher resolution shouldn’t be neglected,
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3. Compression, representation, and interoperability of these new
media are active research fields in order to reduce data size and
to be perceptually accurate.

4. Displaying such content on current restitution equipment needs
adapted solutions.

This tutorial presents a complete pipeline to create 3D immer-
sive content from a grid of production cameras. It summarizes the
work produced for 4 years in a french funded multi-partner project,
the ANR ReVeRY project. It is the experience acquired by the re-
searchers of the project that is exposed in this tutorial. The pipeline
is complete, from the camera set up to immersive viewing through
data processing, content creation and perceptually-driven encoding.

2. Speakers

Tutorial organizer:

• Céline Loscos, LICIIS laboratory, University of Reims
Champagne-Ardenne, celine.loscos@univ-reims.fr, https://
cv.archives-ouvertes.fr/celine-loscos
Cèline Loscos has been a Professor of computer science at
University of Reims Champagne-Ardenne since 2010. She ob-
tained her PhD in computer science at Joseph Fourier Univer-
sity (Grenoble, France) in 1999. After a postdoctoral fellowship
(2000-2001) at University College London, United Kingdom,
she was appointed lecturer. In 2007, she joined the University
of Girona, Spain. She conducts her research in the LICIIS lab-
oratory. Her research topics focus on computational photogra-
phy, 3D imaging, and virtual reality. She is the coordinator of
the ANR ReVeRy project (2017-2022).

Other speakers in presenting order:

• Philippe Souchet, XD Productions,
philippe.souchet@xdprod.com, https://www.xdprod.
com/
Philippe Souchet has been Chief Technology Officer at XD
Productions since 1999. He got an MSc in computer vision
at Paris VII Jussieu in 1993. As a former game developper
for Sony Psygnosis between 1994 and 1999, he participated
in the first soccer simulations using motion capture for the
video games series "Adidas Power Soccer". He leads Research
Developpemnt efforts of XD Productions in markerless motion
capture, 3D reconstruction and volumetric capture, along with
their dissemination in the broadcast industry, XD also being a
producer of TV Shows and Motion Pictures.

• Giuseppe Valenzise, Université Paris-Saclay, CNRS,
CentraleSupélec, Laboratoire des signaux et systèmes,
giuseppe.valenzise@l2s.centralesupelec.fr, https://l2s.
centralesupelec.fr/u/valenzise-giuseppe/
Giuseppe Valenzise is a researcher at the Centre National de la
Recherche Scientifique (CNRS) in the Laboratoire des Signaux
et Systèmes, CentraleSupelec, University Paris-Saclay, France.
He completed a Ph.D. in Information Technology at the Politec-
nico di Milano, Italy, 2011. From 2012 to 2016 he was with
the Laboratoire Traitement et Communication de l’Information
(LTCI) of Telecom Paristech. He got the French “Habilitation
à diriger des recherches” from Université Paris-Sud in 2019.

His research interests span different fields of image and video
processing, including traditional and learning-based image
and video compression, light fields and point cloud coding,
image/video quality assessment, high dynamic range imaging
and applications of machine learning to image and video
analysis. He is co-author of more than 100 research publications
and of several award-winning papers. He is the recipient of the
EURASIP Early Career Award 2018. Dr. Valenzise serves as
Associate Editor for IEEE Transactions on Image Processing as
well as for Elsevier Signal Processing: Image communication.
He was program co-chair of the EUVIP 2021 conference. He is
a member of the MMSP and IVMSP technical committees of
the IEEE Signal Processing Society, as well as a member of the
Technical Area Committee on Visual Information Processing of
EURASIP.

• Théo Barrios, LICIIS laboratory, University of Reims
Champagne-Ardenne, theo.barrios@univ-reims.fr
Théo Barrios has been a PhD student at University of Reims
Champagne-Ardenne since 2018. He obtained a Master Degree
in Computer Science and Applied Mathematics at ENSEEIHT
enigneering school. His Master project covered room mapping
from LiDAR point clouds. His PhD research topic is on 3D re-
construction from color images from camera arrays.

• Rémi Cozot, University of Littoral Côte d’Opale, IMAP Re-
search Group / LISIC Laboratory, remi.cozot@univ-littoral.fr,
http://cozot.free.fr/
Rémi Cozot is a full professor at the University of Littoral Opal
Cost located in Calais, France. Before that, he completed a PhD
from the University of Rennes in 1996. He got an associate pro-
fessor position at the University of Rennes in 1997, until 2019.
His research focusses on image appearance modeling, visual
perception, image aesthetic, and especially style/aesthetic aware
HDR image processing. He has been involved in many french
national projects and European projects in the field of HDR im-
age processing and visual perception. He is the associated editor
of the visual computer journal.

3. Tutorial details

3.1. Keywords

This tutorial frontiers 3D vision, data compression, and computer
graphics.

3.2. Tutorial length

We proposed a half-day tutorial, with four presentations of 45-
minute each.

3.3. A detailed outline of the tutorial

The tutorial is composed of four parts, each part presenting a step of
the pipeline, going from acquisition to display. Each part is planned
for 45 minutes.

1. Camera grid setup and camera controller - speaker:speakers:
P. Souchet.
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Figure 2: Pipeline used to reconstruct a 3D point cloud from camera grid pictures [BGPL22].

a. Multi-view, multi-exposure camera grid
The role of XD Productions, as industrial partner with a long
experience of multiview capturing systems, was to specify,
design and build the prototype of a grid of 4x4 UHD cam-
eras, allowing real time 3D Reconstruction of HDR point
clouds from synchronized multi-exposed video streams (see
Figure 3).
The images can be processed in real time or recorded on disk
for more complex algorithms, demanding a lot of process-
ing power along with important storage and network band-
width. Therefore, the system is composed of several acqui-
sition units, linked to one multi GPU computing unit. The
units communicate through 10GB ethernet connections, to
allow the transfer of 16 4K-video streams in real time.

Figure 3: Camera and camera capture setup.

b. Controlling software The development of the software layer
was designed to allow each partner to add its personal brick,
best fitting its needs. Thus, a modular architecture was cho-
sen, allowing easy testing of different algorithms and render-
ing techniques, and greater adaptability to coming states of
the art.
The main modules of the REVERY software include:

• display of the 16 video streams (see Figure 4),
• remote control of the camera (for parameters such as

gamma, zoom, focus, exposure, ...),
• camera calibration,

• rectification,
• 3D interactive rendering of resulting point clouds.

Figure 4: Display of 16 multi-exposed, video streams.

2. 3D HDR content reconstruction - speakers: C. Loscos and T.
Barrios.
In this part, we will expose advances in depth reconstruc-
tion from grid of cameras, HDR reconstruction for single and
multiple view, and how it combines to produce a 3D HDR
point cloud. Recent advances show that machine learning, like
[KFR∗18], helps robustly producing 3D point clouds. We show
that it is possible to extend the concept to camera grid with large
baselines [BGPL22] (see Figure 2. We specifically address cam-
era grid configuration, and the challenges associated to large
baselines. We review previous work on HDR imaging, espe-
cially those combing depth and HDR reconstruction [BLV∗12]
[BVL19] [OLMA13], and more recent machine learning-based
approaches which need only one image as an input to gener-
ate an HDR image [EKD∗17] [SRK20] and can be adapted to
multiple views [MZCL22]. Examples of results are shown in
Figure 5.

3. 3D point cloud coding and quality assessment - speaker: G.
Valenzise.
We present the state-of-the-art coding methods for point clouds,

© 2022 The Author(s)
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Figure 5: HDR reconstruction results after machine learning from
one view of [EKD∗17], [SRK20], and [MZCL22] compared with
the reference on the left hand side (LDR and HDR images).

and in particular the new MPEG G-PCC and V-PCC stan-
dards [CPZ∗21], as well as recently proposed learning-based
compression approaches [QVD, QVD20, NQVD21]. The latter
have been shown to provide substantial coding gains compared
to conventional methods, see Figure 6. We will then discuss
briefly how to assess the quality of compressed point clouds,
from simple distance metrics for geometric distortion [T∗17] to
more recent data-driven approaches [CQVD21, QCVD21].

(a) Original (b) (c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0+

Figure 6: Qualitative evaluation of geometry compression on
“soldier”. (a) Original point cloud. (b) Learning-based method
in [QVD20]. (c) G-PCC (Trisoup). The errors are displayed accord-
ing to the color scale on the right. The learning-based method has a
better point-to-point error than G-PCC (66.59dB vs. 65.87dB) for
the same bitrate (0.19 bits per point).

4. Immersive 3D HDR visualisation - speaker: R. Cozot
In this part, we will expose solutions to display HDR 3D point
clouds on display units of various characteristics. The objec-
tive of these solutions is twofold. The first objective is con-
cerned with the rendering of HDR 3D contents on mainstream
displays. The solutions we propose allow improving the qual-
ity of the rendering of contents (HDR 3D point clouds) on
mainstream displays and HMDs (Head Mounted Displays). This
improvement result from subjective evaluations we have con-
ducted on the perception of color on HMDs. In this first part,
we will detail, first, a solution to tone mapping 360o HDR Im-
ages [GCB19] [GCLM20]. Then we will move to the challenge
of tone mapping 3D dynamic scenes [GLC20]. The second ob-
jective is the stylization of 3D contents represented by point
clouds. While there exist many stylization techniques applied
to images (filters, blurring or vignetting effects, etc.), the styl-
ization of 3D contents has aroused little interest. For this rea-
son, we will present a stylization method consisting of trans-

ferring the color of a point cloud to another [GCLMB21]. This
method is example-based and accounts for the geometry of the
point clouds. Our results, illustrated in Figure 7, and evalua-
tions have shown a significant improvement compared to exist-
ing color transfer methods.

3.4. Necessary background

We expect participants to know basics of computer vision and 3D
imaging. It is addressed to researchers interesting in comprehend-
ing a set of issues which could be encountered when addressing the
creation of immersive content from real capture.

3.5. Historical context

This tutorial was never given before. However, the tutorial orga-
nizer, C. Loscos, has given twice a tutorial on "3D Video: from
Capture to Interactive Display", at Eurographics 2014 and 2015.
This tutorial addresses similar problems, but exposes advanced, re-
cent solutions. In addition, G. Valensize recently presented the tuto-
rial "Learning-based Point Cloud Processing and Codings" at ICIIP
2021 (https://www.2021.ieeeicip.org/Tutorials.
asp) from which content is going to be selected to compose the
3rd part of the tutorial.

4. Acknowledgements

The work presented in this tutorial is part of the ReVeRY
project (https://revery.univ-reims.fr). The project
was funded by the Agence National pour la Recherche (Projet-
ANR-17-CE23-0020).
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FROM CAPTURE TO

IMMERSIVE VIEWING OF 3D
HDR POINT CLOUD

• Context
• 3 main capture types :

Ultra-high-definition (UHD) : image definition and quality

Stereo capture for 3D  : depth, multi-view

High-dynamic range (HDR) : higher luminance range

INTRODUCTION
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• Context
• 3 main capture types 

• Current limits: 
No uniform representation

Limits creative industries to chose one format (UHD, HDR or 3D).

INTRODUCTION

• Global objective
• Replace the traditional video stream by a rich UHD, HDR lightfield represented as a 3D point 

cloud in a dedicated format

INTRODUCTION
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• Multiview/multi exposure acquisition

• HDR/Point cloud reconstruction

• Data representation and encoding of HDR point clouds

• Visualisation on various display devices

• Quality of experience

OVERVIEW OF THE PROJECT PIPELINE

PART I: CAMERA GRID PROTOTYPE

- 4x4 grid of cameras
- 4K video streams
- Genlock sync
- Multi-exposure patterns
- Cluster of PCs + software :

• Remote control
• Recording
• Real time visualization
• Interactive tools for directors
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- Various challenging scenes

- For reconstruction and HDR

- Multiple objects sparsed in 
depth

- Overexposed & shadows

- Repetitive patterns

- Transparent and shiny objects

PART I : MULTI-EXPOSED SHOOTINGS

Jennifer Bonnard1, Gilles Valette1, Raissel Ramirez1,2, Ignacio Martin2, Alessandro Artusi2, Céline 
Loscos1

1Université de Reims Champagne-Ardenne, France
2University of Girona, Spain

3D HDR RECONSTRUCTION
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METHOD CLASSIFICATION – 3 AXIS
Time

Exposition Viewpoint

3D HDR Video

2D Image

• 3D point cloud colors in HDR format

3D HDR VIDEO

HDR

DEPTH

3D HDR



13/04/2022

6

GENERAL PIPELINE FOR HDR IMAGING

I0

Ii

In

Set of differently 
exposed images

I0

Ii

In

P

P

P

(i0,j0)

(ii,ji)

(in,jn)

Matching/Registration

E0

Ei

En

HDR Reconstruction 

• From one view point
• Static scenes

Image alignement

• Dynamic scenes

Motion estimate, 
2 solutions:

Removing the 
dynamic object

Aligning moving 
parts

MATCHING/REGISTRATION
• Multiscopic images

– Pixel registration
• Belief propagation 

[LIN 09]

• 3D estimation [LU 
11]

• Disparity [BONNARD 
12]

• Patch based 
[RAMIREZ 15]

I0

Ii

In

Set of differently 
exposed images

I0

Ii

In

P

P

P

(i0,j0)

(ii,ji)

(in,jn)

Matching/Registration

E0

Ei

En

HDR Reconstruction 

Image 
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• HDR Reconstruction
• Weighted average [Debevec 97]

• Exposure fusion [Mertens07]

HDR RECONSTRUCTION

LDR input 

HDR 
output 

I0

Ii

In

Set of differently 
exposed images

I0

Ii

In

P

P

P

(i0,j0)

(ii,ji)

(in,jn)

Matching/Registration

E0

Ei

En

HDR Reconstruction 

Image 

MULTIVIEW ACQUISITION [BONNARD 12]

d = 0.3 d = 0.6d = 0.9 d =0 d = 0.3 d = 0.9 d = 0.6d =0

Real exposure time = 40 ms

Simultaneous acquisition of several 
exposures from different viewpoints
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• Using disparities

PIXEL REGISTRATION [BONNARD 12]

M

Scene 3D 
points 

LDR images

HDR RECOVERY [BONNARD 12]

M

Scene 3D 
points

LDR images

Resutling HDR images
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RESULTS [BONNARD 12]

Original 
images 

Disparity
maps

Tone mapped
HDR images

Middlebury CG OctoCam

• Random patch match guided by the epipolar line

PATCH-BASED 3D HDR IMAGES [RAMIREZ 15]
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• It is possible to generate an HDR point cloud from multi-view, multi-exposed images
• Difficulties raised:

• Processing of all images
• Alignment

• [Bonnard 12] based on the disparity estimate
• The use of disparity for image alignment
• Complexity of the resolution for under- or over-exposed areas
• The quality of the disparity resolution directly impacts the HDR reconstruction

• Finally, is it a good idea to address depth reconstruction and HDR at the same time?
• Nowadays, sensors have increased their capture capacity
• Decision of the ReVeRY project: proposal of two separate learning-based approaches for multi-view systems

One for HDR reconstruction
Another for depth resolution

CONCLUSION

Aditya Mohan2, Jing Zhang1, Rémi Cozot1 and Céline Loscos2

1 Université du Littoral Côte d’Opale 
2 Université de Reims Champagne-Ardenne

CONSISTENT MULTI‐ AND SINGLE‐VIEW HDR‐IMAGE RECONSTRUCTION FROM

SINGLE EXPOSURES

A. Mohan, J. Zhang, R. Cozot, C. Loscos: Consistent Multi- and Single-View HDR-Image Reconstruction from Single 
Exposures. Eurographics Workshop on Intelligenent cinematography and Editing. April, 2022. 
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Images LDR Images HDR

Codage 8 bits 16‐32 bits

Données Integer Floating point

Informations Colors Luminance

• HDR image  = Image with higher luminance range

INTRODUCTION

LDR multi‐view images 

HDR multi‐view images 

● Input: 

16 images of same exposure

organized in a 4X4 camera grid

●Output: 

16 HDR  images

INTRODUCTION

Proposition of a LDR‐to‐HDR algorithm

Target: results as close to the ground truth as possible
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OVERALL PIPELINE

[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR image reconstruction from a single 
exposure using deep CNNs. 1–15. 

METHOD – STEP 1

Pipeline

[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR image reconstruction from a single 
exposure using deep CNNs. 1–15. 

step 1
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281 895 paires d’images  
HDR / LDR

Caméra virtuelle

3 948 images HDR

METHOD – STEP 1: TRAINING DATABASE

METHOD – STEP 1: PREPROCESSING

Original After substracting rg
chromaticity

Alpha masks

Masks on over‐exposed areas
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Combining

●Mean Absolute Error (MAE) :

●Multi‐scale Structural Similarity Index :
To preserve contrasts in 

high frequence areas

To preserve colors and 
luminance

METHOD – STEP 1: LOSS FUNCTIONS

Training loss functions : MAE + MSSIM

STEP 1 - RESULTS

LDR input HDR groundtruth HDRCNN MaskCNN Ours 
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STEP 1 ‐ RESULTS

HDRCNN MaskCNN Ours

Average scores over 40 images of different scenes

HDR‐VDP – visual result

METHOD – STEP 2

Pipeline

[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR image reconstruction from a single 
exposure using deep CNNs. 1–15. 

Step 2
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Images are downsampled, gathered as a group of pictures and passed again in the network as a 

The output is a corrected coherent HDR value for the group of picture

Images are upsampled

METHOD - STEP 2

Multiview coherence

RESULTS - STEP 2

Multiview HDR Images (step 2)

Multiview consistency evaluation(step 2)
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CONCLUSION

●Neural network solution to extend LDR to HDR values

● Improve the state of the art

○ Extend luminance to closer values to ground truth HDR

○ Multiview coherence consideration

REFERENCES

[1] BANTERLE F., LEDDA P., DEBATTISTA K., CHALMERS A.: Inverse tone mapping. Proceedings of the 4th international conference on Computer graphics and interactive techniques in 
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[2] DEBEVEC P.: A median cut algorithm for light probe sampling.ACM SIGGRAPH 2008 classes on - SIGGRAPH 08 (2008). 
[3] DEBEVEC P. E., MALIK J.: Recovering high dynamic rangeradiance maps from photographs. ACM SIGGRAPH 2008 classes on -SIGGRAPH 08 (2008). doi:10.1145/1401132.1401174. 1
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[5] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R. K.,UNGER J.: HDR image reconstruction from a single exposure using deep CNNs. 1–15. doi:10.1145/3130800.3130816. 1, 2, 3
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Théo Barrios, Julien Gerhards, Stéphanie Prévost, Céline Loscos

Université de Reims Champagne-Ardenne

DISPARITY INFERENCE FOR WIDE-BASELINE LIGHTFIELD CAMERA ARRAY

• Estimating depth from images on a 4x4 grid

• Process all images in the grid

• Propose floating-point disparities for more precision

• Process the highest resolution possible (UHD, 4k)

• Offer rapid treatment (1-n fps)

• Adapt to high camera spacing (Disparity values> 100)

• Vertical and horizontal disparities

• Additional difficulties: images located at edges and corners

DEFINITION OF THE PROBLEM TO SOLVE
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•For each image Ir of the 4X4 grid

•input : Ir + 2‐4 images (It) in a cross around Ir
•Output : Disparity map (1)

•Solution : Deep‐learning

APPROACH BASED ON NEURAL NETWORK

NETWORK DESCRIPTION
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• First step : One cost‐volume for each It

• Averaging cost on the horizontal / verƟcal part of the cross →

• two costs concatenated for cost aggregation.

• Can be used with any width and height camera array at any position with a given set of 
weights

TWO-STEP COST VOLUME

● Speed

– 1,5s per view in 4k

– 3fps in fullHD

– 6fps in 960x540

● Quality

– Good within the required FOV

– Requires denoising for optimal result

RESULTS
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3D reconstruction for large‐baseline camera grids

• One disparity map per grid image

• Interactive time

• Can handle high resolutions (4K) and various array width and heights.

• Precise results, requires a denoising pass for application

• Different array width and heights require fine‐tuning for better performance.

CONCLUSION

42

Giuseppe Valenzise, Centrale Supelec, CNRS

CODING TECHNIQUES FOR POINT CLOUDS
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Outline
• Coding techniques for point clouds 

• Quality assessment and benchmark of the different approaches 

• Trends and summary

OUTLINE

44

• Introduction and basic coding tools

• MPEG PCC standardization

• Learning-based techniques

CODING TECHNIQUES FOR POINT CLOUDS
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• Typical point cloud video size:
• 1 million points per frame

• 30 frames/second

• 32 bit geometry, 8 bits color -> ∼ 3.6 Gbps

MOTIVATION

• Example: Velodyne HDL-64 LiDAR sensor
• Over 100k points per sweep

• 3 billion points per hour

46

• Non-regular sampling
• Geometry is expensive to code

• Spatially varying density
• “Holes” in some regions

• Sparsity
• Lack of spatial correlation

WHY CODING POINT CLOUDS IS DIFFICULT?
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• 2D projections

• Voxelization

• Octrees

• Graphs

• Using sensing structure

SOME GENERAL CODING APPROACHES

Some references to recent surveys on Point Cloud 
Compression

• C. Cao, M. Preda, V. Zakharchenko, E. S. Jang, and T. 
Zaharia, “Compression of Sparse and Dense Dynamic Point 
Clouds–Methods and Standards,” Proceedings of the IEEE, 
pp. 1–22, 2021

• F. Pereira, A. Dricot, J. Ascenso, and C. Brites, “Point cloud 
coding: A privileged view driven by a classification 
taxonomy,” Signal Processing: Image Communication, vol. 
85, p. 115862, Jul. 2020

• Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. 
and Tabatabai, A., 2020. An overview of ongoing point 
cloud compression standardization activities: video‐based 
(V‐PCC) and geometry‐based (G‐PCC). APSIPA Transactions 
on Signal and Information Processing, 9.

48

• Reduce the problem to multiple 2D image coding instances

• Effective when the point cloud is dense enough to get smooth 
projections

• Used in MPEG V-PCC

3D TO 2D PROJECTION

Image credit: Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on Signal and Information 
Processing, 9.
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• Quantize the 3D coordinates of points to a given bit depth
• Define the point clouds on a regular 3D lattice

• Geometry represented as binary occupancy maps

• Attributes resampled over the voxel grid

• Introduce distortion wrt original point cloud

• Highly inefficient to deal with sparsity!
• Most of the 3D space is empty

• It might require a very high bit depth to represent precisely sparse point clouds

VOXELIZATION

Image credit: Yong Zhou, Han Lu, Gongxian Wang, Junfeng Wang, Weidong Li, Voxelization modelling based finite element simulation and process parameter optimization for Fused 
Filament Fabrication, Materials & Design, Volume 187,2020.
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• Divide the space hierarchically
• E.g., KD-tree or typically octree

• Remove empty space

• Octree
• Recursive subdivision of the space into octants

• Each octree node describes the occupancy of its children (8 bits)

DEALING WITH SPARSITY: TREE-BASED PARTITIONING

Image credit: Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-
based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.
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• Divide the space hierarchically
• E.g., KD-tree or typically octree

• Remove empty space

• Octree
• Recursive subdivision of the space into octants

• Each octree node describes the occupancy of its children (8 bits)

DEALING WITH SPARSITY: TREE-BASED PARTITIONING

52

• Widely used since the early PC coding methods
• E.g., the Point Cloud Library (PCL)1

• Benchmark codec in the MPEG G-PCC CfP (2017)2

• Essential coding tool in MPEG G-PCC

• Basic functionalities:
• Arithmetic coding of voxel occupancies using previous nodes as context
• Detail encoding (e.g., residuals) or surface approximations
• Attributes averaged over the points in the leaf nodes
• Temporal prediction possible by matching nodes

OCTREE-BASED CODING

1J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz and E. Steinbach, "Real-time compression of point cloud streams," IEEE International Conference on Robotics and Automation, 2012, pp. 778-785
2R. Mekuria, K. Blom and P. Cesar, "Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 4, 
pp. 828-842, April 2017
Image credit: Castro, R., Lewiner, T., Lopes, H., Tavares, G. and Bordignon, A., Sep. 2008. Statistical optimization of octree searches. In Computer Graphics Forum (Vol. 27, No. 6, pp. 1557-1566). Oxford, UK: 
Blackwell Publishing Ltd.
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• Graph construction
• The connections between vertices are obtained by k-NN

• The edge weights are related to distance between points

• Attributes are interpreted as a function over a graph

GRAPH METHODS

D. Thanou, P. A. Chou and P. Frossard, "Graph-Based Compression of Dynamic 3D Point Cloud Sequences," in IEEE Transactions on Image Processing, vol. 25, no. 4, pp. 1765-1778, April 2016
Y. Xu et al., "Predictive Generalized Graph Fourier Transform for Attribute Compression of Dynamic Point Clouds," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 5, pp. 1968-
1982, May 2021

Graph construction

Motion Estimation

Optimal Inter-Prediction and Transform
• Generalized Graph Fourier Transform 

(GGFT)

54

Kohira, K. and Masuda, H.: Point-cloud Compression For Vehicle-based Mobile Mapping Systems Using Portable Network Graphics, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W4, 99–106, 
2017.
Xianxiong Liu, Yue Wang, Qingwu Hu and Dengbo Yu, "A scan-line-based data compression approach for point clouds: Lossless and effective," 2016 4th International Workshop on Earth Observation and Remote 
Sensing Applications, 2016

• Structured:
• If metadata available (GPS data, timestamps, sensor information, etc.)

• The point cloud becomes an ordered set

• Sequential scan lines
• Delta coding on coordinates along the scanning path

LIDAR DATA: LEVERAGE THE ACQUISITION MODEL

Trajectory of the laser beam
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Source: https://ouster.com/blog/the-camera-is-in-the-lidar/

𝜃

𝜙

1J. Ahn, K. Lee, J. Sim and C. Kim, "Large-Scale 3D Point Cloud Compression Using Adaptive Radial Distance Prediction in Hybrid Coordinate Domains," in IEEE Journal of Selected Topics in Signal Processing, vol. 
9, no. 3, pp. 422-434, April 2015
C. Tu, E. Takeuchi, C. Miyajima and K. Takeda, "Continuous point cloud data compression using SLAM based prediction," 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1744-1751
X. Sun, H. Ma, Y. Sun and M. Liu, "A Novel Point Cloud Compression Algorithm Based on Clustering," in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2132-2139, April 2019

• Bijective (up to noise) mapping to a 2D grid:
• Convert the PC to a range image (spherical coordinates + radial distance)

• Use 2D coding tools (e.g., depth coding tools in 3D-HEVC)

• Use 3D information, e.g., SLAM-based motion estimation

• Semantic segmentation of the scene (ground, objects, etc.)

LIDAR DATA: LEVERAGE THE ACQUISITION MODEL

Quadtree decomposition of a 
range image1

56

• Introduction and basic coding tools

• MPEG PCC standardization

• Learning-based techniques

CODING TECHNIQUES FOR POINT CLOUDS
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MPEG PCC STANDARDIZATION TIMELINE

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

April 2017: Call for 
Proposal

MPEG initiated 
the work on PCC

October 2017: 
Evaluation of 9 
technologies 

responding the CfP

October 2018: 
First Committee 

Draft

3 Use Cases:
TMC1: static point clouds for GIS and cultural 
heritage objects and collections
TMC2: dynamic point clouds for VR/AR and tele-
immersive applications
TMC3: dynamically acquired or fused point clouds, 
such as autonomous navigation based and large-
scale 3D dynamic maps

G-PCC
Geometry-based PCC

V-PCC
Video-based PCC

V-PCC G-PCC

MPEG starts working 
on G-PCC v2 (advanced 

compression tools)

New AhG
AI-based 

coding for 
graphics 

New AhG
AI-based 

coding for 
graphics 

58

• Video-based Point Cloud Compression

MPEG V-PCC
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PROJECTION-BASED CODING PRINCIPLE

Occupancy map

Geometry

Attribute 
images

Source code: 
https://github.com/MPEGGroup/mpeg-
pcc-tmc2

Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-
based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.

60

V-PCC CODEC ARCHITECTURE (TMC2)

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019. 
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V-PCC CODEC ARCHITECTURE (TMC2)

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019. 

• Estimate projection direction for each patch
• Based on normals

• The 3D patch is projected orthogonally to one of the six 
faces of the axis-aligned bounding box

62

V-PCC CODEC ARCHITECTURE (TMC2)

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019. 

• Placement of projected 2D patches in a 2D image

• Iterative and heuristic process

• Enforce temporal consistency
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V-PCC CODEC ARCHITECTURE (TMC2)

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019. 

• Fill the empty space between 
patches using a padding function

• Generate piecewise smooth 
image easier to code

65

V-PCC CODEC ARCHITECTURE (TMC2)

MPEG 3DG, V-PCC codec description, ISO/IEC JTC1/SC29/WG11 N18892, 2019. 
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• Geometry-based Point Cloud Compression

MPEG G-PCC

67

• Geometry and attributes are encoded separately
• Attribute coding depends on decoded geometry

• Workflow:
• Coordinate transformation + voxelization

• Geometry coding (octree/pred)

• Transform (attributes)

• Arithmetic coding

OCTREE-BASED APPROACH

MPEG 3DG, V-PCC codec description, ISO/IEC JTC 1/SC 29/WG 7 N 0099, April 2021
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• Two basic approaches:

1. Octree coding augmented with several modes

GEOMETRY CODING IN G-PCC

• Limitations of a vanilla octree coding:
• Isolated points are expensive to code
• Number of points exponentially 

decreasing at low bitrates
• Does not use the local geometric 

structures
• Does not use structure/side information 

when available

69

• Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode (for isolated points)

GEOMETRY CODING IN G-PCC
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• Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode

Triangle soup (trisoup)

GEOMETRY CODING IN G-PCC

Image credit: A. Dricot and J. Ascenso, "Hybrid Octree-Plane Point Cloud Geometry Coding," 2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1-5.

71

• Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode

Triangle soup (trisoup)

Planar modes

GEOMETRY CODING IN G-PCC
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• Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode

Trisoup

Planar modes

Angular modes

GEOMETRY CODING IN G-PCC

73

• Two basic approaches:

1. Octree coding augmented with several modes
(Inferred) Direct coding mode

Trisoup

Planar modes

Angular modes

1. Predictive geometry coding (low-latency)

GEOMETRY CODING IN G-PCC

Root vertex

Leaf vertex

Branch 
vertex with 
one  child

Branch vertex 
with 3 children

Branch 
vertex with 2 
children
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• Two tools:

1. Region-Adaptive Hierarchical Transform (RAHT)
Haar-inspired transform on octree structure

ATTRIBUTE CODING IN G-PCC

Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An 
overview of ongoing point cloud compression standardization activities: video-based (V-PCC) 
and geometry-based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.

75

• Two tools:

1. Region-Adaptive Hierarchical Transform (RAHT)
Haar-inspired transform on octree structure

2. Predicting/Lifting Transform
Distance-based prediction

Employs a Level of Detail (LoD) representation that distributes the input points in sets of refinements levels

ATTRIBUTE CODING IN G-PCC

Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T. and Tabatabai, A., 2020. An 
overview of ongoing point cloud compression standardization activities: video-based (V-PCC) 
and geometry-based (G-PCC). APSIPA Transactions on Signal and Information Processing, 9.
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• Two standards

• V-PCC: 
• 2D projection-based

• Dense PC

• Dynamic content

• AR/VR applications

TAKE-AWAY ON MPEG STANDARDIZATION

• G-PCC: 
• Mostly octree-based + many 

optimizations
• Static content
• Low-to-high density
• Wide range of applications: 

AR/VR, cultural heritage, 
LiDAR (fused and scans), etc.

77

• Introduction and basic coding tools

• MPEG PCC standardization

• Learning-based techniques

CODING TECHNIQUES FOR POINT CLOUDS
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TAXONOMY
Geometry

Attributes
Geometry & attributes

Encoding 
domain

Point-basedVoxel-based

Lossy

Lossless

Static

Dynamic 

Prior 
information

Sensor

Unstructured

Learning-based 
PCC

Component

Fidelity

dense sparse
LiDAR

Motion
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VOXEL-BASED LOSSY CODING OF PC 
GEOMETRY

Geometry
Attributes

Geometry & attributes

Encoding 
domain

Point-basedVoxel-based

Lossy

Lossless

Static

Dynamic 

Prior 
informatio

n

Sensor

Unstructured

Learning-based 
PCC

Component

Fidelity

dense sparse

LiDA
R

Motion
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• Adapted to dense point clouds

• Similar to learning-based 2D image compression
• Auto-encoder based approach

• Entropy bottleneck and quantization

VOXEL-BASED LOSSY CODING OF PC GEOMETRY

81

• Variational auto-encoder (VAE)-based compression

BACKGROUND: LEARNING-BASED IMAGE COMPRESSION

• Optimized end-to-end

• Quantization
• Non differentiable
• Backward pass (in training): 

𝑦̂௜ ൌ 𝑦௜ ൅ 𝒰 െ
1
2

,
1
2

• Inference:
𝑦̂௜ ൌ round 𝑦௜

• Entropy coding
• Differential entropy for training 

• What is learned:
• Analysis transform
• Synthesis transform
• Probability distribution of latent 

variables
Ballé, J., Laparra, V., Simoncelli, E., “End-to-end optimized image compression”. In International Conference on 
Learning Representations. 2016
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• The basic model assumes a fully factorized distribution 𝑝𝒚 𝒚 ൌ
∏𝑝௬೔ 𝑦௜

• In practice this simplification is not accurate

BACKGROUND: LEARNING-BASED IMAGE COMPRESSION

Ballé, J., Laparra, V., Simoncelli, E., “End-to-end optimized image compression”. In International Conference on 
Learning Representations. 2016

x y

83

• Variational auto-encoder (VAE) based compression

• Hyperprior to model residual spatial dependencies

BACKGROUND: LEARNING-BASED IMAGE COMPRESSION

Ballé, J., Minnen, D., Singh, S., Hwang, S.J. and Johnston, N., “Variational image compression with a scale hyperprior”. In International Conference on Learning Representations. Feb. 2018

side inform
ation
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LEARNING-BASED POINT CLOUD GEOMETRY

COMPRESSION (PCGC)

J. Wang, H. Zhu, H. Liu and Z. Ma, "Lossy Point Cloud Geometry Compression via End-to-End Learning," in IEEE Transactions on Circuits and Systems for Video Technology, 2021

85

• Cast the reconstruction problem as a classification one

• Loss function
• Let 𝑝 be the probability that a voxel is occupied

• Define:

• Binary Cross Entropy (BCE): 

𝐵𝐶𝐸 𝑝௧ ൌ െ log𝑝௧

CLASSIFICATION

if the voxel was indeed occupied
otherwise

Probability of assigning the correct class
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• Binary Cross Entropy (BCE): 
𝐵𝐶𝐸 𝑝௧ ൌ െ log 𝑝௧

• Take into account class imbalance in the minimization (most voxels are empty)
• Weighted Binary Cross-Entropy (WBCE)

𝑊𝐵𝐶𝐸 𝑝௧ ൌ െ𝛼௧ log 𝑝௧

with 𝛼௧ ൌ 𝛼 if the voxel ground-truth occupation is 1, and 𝛼௧ ൌ 1 െ 𝛼 otherwise.

Typically α∝
total num.  voxels

num. occupied voxels

CLASSIFICATION: WEIGHTED BINARY CROSS-ENTROPY

if the voxel was indeed occupied
otherwise

Probability of assigning the correct class

J. Wang, H. Zhu, H. Liu and Z. Ma, "Lossy Point Cloud Geometry Compression via End-to-End Learning," in IEEE Transactions on Circuits and Systems for Video Technology, 2021

Balances the importance of 
occupied/not occupied 
voxels

Does not differentiate 
between easy/hard 
examples
Most of the empty voxels are easily 
classified and do not bring much 
information to learning

87

• Binary Cross Entropy (BCE): 
𝐵𝐶𝐸 𝑝௧ ൌ െ log𝑝௧

• Take into account class imbalance in the minimization (most voxels are empty)

• Focal Loss (FL)

𝐹𝐿 𝑝௧ ൌ െ𝛼௧ 1 െ p୲ ఊ  log𝑝௧

with 𝛼௧ ൌ 𝛼 if the voxel ground-truth occupation is 1, and 𝛼௧ ൌ 1 െ 𝛼 otherwise;

𝛾 is a focusing parameter

CLASSIFICATION: FOCAL LOSS
if the voxel was indeed occupied
otherwise

Probability of assigning the correct class

Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression. IEEE International Conference on Image Processing (ICIP’2019), Sep 2019, 
Taipei, Taiwan.
T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object Detection," 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2999-3007, doi: 10.1109/ICCV.2017.324.

Voxels easy to classify have less 
weight in the loss
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• Adaptive thresholding
• Use a threshold to binarize the estimated occupancy probability

• Fixed threshold (e.g., 0.5)1 is suboptimal

• Optimized over the whole PC and transmitted2

• Optimized block by block and transmitted3

• Adaptive model (ADL-PCC4)
• Train a different network for each 𝛼 in the focal loss

• Select the best model using RDO

• Signal the model index in the bitstream

DEALING WITH VARIABLE SPATIAL DENSITY

1Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Learning Convolutional Transforms for Lossy Point Cloud Geometry 
Compression. IEEE International Conference on Image Processing (ICIP’2019), Sep 2019, Taipei, Taiwan.
2J. Wang, H. Zhu, H. Liu and Z. Ma, "Lossy Point Cloud Geometry Compression via End-to-End Learning," in IEEE Transactions on Circuits 
and Systems for Video Technology, 2021
3Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Improved Deep Point Cloud Geometry Compression. IEEE International Workshop 
on Multimedia Signal Processing (MMSP'2020), Sep 2020, Tampere, Finland.
4A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, "Adaptive Deep Learning-Based Point Cloud Geometry Coding," in IEEE Journal of 
Selected Topics in Signal Processing, vol. 15, no. 2, pp. 415-430, Feb. 2021

Dealing with variable spatial density

89

LOSSLESS COMPRESSION OF VOXELIZED

GEOMETRY
Geometry

Attributes
Geometry & attributes

Encoding 
domain

Point-basedVoxel-based

Lossy

Lossless

Static

Dynamic 

Prior 
informatio

n

Sensor

Unstructured

Learning-based 
PCC

Component

Fidelity

dense sparse

LiDA
R

Motion



13/04/2022

45

90

• Goal: estimate the occupancy probabilities to use in a context-based 
arithmetic codec

VOXELDNN

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

• Autoregressive model:
• Inspired by PixelCNN1

• Factorize the joint probability of voxel 
occupancy

• Masked convolution to enforce causality for 
correct decoding

Modeled with a DNN

91

• Goal: estimate the occupancy probabilities to use in a context-based 
arithmetic codec

VOXELDNN

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

• Autoregressive model:
• Inspired by PixelCNN1

• Factorize the joint probability of voxel 
occupancy

• Masked convolution to enforce causality for 
correct decoding

Modeled with a DNN

• Trained with cross-entropy 
loss

• Minimizes the distance between the 
estimated occupancy probability and 
the ground truth

• Different from the lossy case!
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• Hybrid use of octree partitioning and voxel-based probability prediction

• VoxelDNN used at multiple granularities

VOXELDNN: GENERAL ARCHITECTURE

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021

93

• Pro’s: 
• Significant bitrate reductions

• Flexible to be extended with larger contexts

• Con’s:
• Poorer performance on sparser PCs

• Sequential voxel-by-voxel decoding
High computational complexity

Approximations (MSVoxelDNN)

VOXELDNN

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Lossless Coding of Point Cloud Geometry using a Deep Generative Model. IEEE Transactions on Circuits and Systems for Video Technology, 2021
Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, Pierre Duhamel. Multiscale deep context modeling for lossless point cloud geometry compression. IEEE International Conference on Multimedia & Expo Workshops 
(ICMEW), Jul 2021, Shenzhen (virtual), China.
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OCTSQUEEZEGeometry
Attributes

Geometry & attributes
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Lossy
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• Deep entropy model over the octree

OCTSQUEEZE

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 
pp. 1310-1320

• 𝑥௜: occupancy of a 
node (1 byte)

• 𝐱 ൌ ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሿ: 
octree structure

• 𝑝ሺ𝐱ሻ: real occupancy 
distribution

• 𝑞ሺ𝐱ሻ: estimated 
distribution

• Goal: minimize CE
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• Deep entropy model over the octree

OCTSQUEEZE

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 
pp. 1310-1320

• Factorize 𝑞 𝐱 as

where: 

• 𝐱௔௡ is a set of 
ancestor nodes

• 𝐜௜ is additional context 
(spatial location, level 
in the octree, etc.)

98

• Deep entropy model over the octree

OCTSQUEEZE

L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun, "OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression," 2020 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1310-1320

• Estimation of 
conditional 
probabilities 𝑞 𝑥௜

1. Embedding of the 
current node using 
MLP 

2. Adding the 
information of previos 
encoded nodes 
through parent
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• MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models

EXTENSION TO DYNAMIC POINT CLOUDS AND

ATTRIBUTES

Biswas, S., Liu, J., Wong, K., Wang, S. and Urtasun, R., 2020. MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models. Advances in Neural Information Processing Systems, 33.

10
1

ATTRIBUTE CODINGGeometry
Attributes

Geometry & attributes
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• End-to-end compression of PC attributes using point convolutions

DEEP-PCAC

X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li and F. Wu, "Deep-PCAC: An End-to-End Deep Lossy Compression Framework for Point Cloud Attributes," in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2021.3086711.

10
7

• Significantly inspired by recent advances in 2D learning-based 
compression

• VAE, generative models (auto-regressive)

• Mainly two kinds of encoding backbones employed
• Voxel-based convolution (sparse convolution possible)

• Point-based (PointNet/PointNet++) convolution

• Geometry (occupancy) coding is cast as a classification problem
• Adapting to varying spatial density is fundamental

• Little done on dynamic PCs

• LiDAR scans: special case

R idl  l i g d i

TAKE-AWAY ON LEARNING-BASED PCC
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• Objective quality metrics

• Performance of PC codecs

QUALITY ASSESSMENT AND BENCHMARK

10
9

APPROACHES TO ASSESS POINT CLOUD QUALITY
Geometry

Attributes
Geometry & attributes

Geometric 
domain

3D

2D projections

Target

Human 
(perceptual)

Component

LiDAR

Point-based

Surface-based

Structure

Point Cloud 
Quality Metrics

Machine 
(downstream application)

VR/A
R
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• Same principle as V-PCC
• Joint geometry & texture

• Use conventional 2D quality metrics on views

• Fuse the scores of each view

• Well-correlated with human perception for dense point clouds

2D PROJECTION-BASED APPROACH

Torlig, E.M., Alexiou, E., Fonseca, T.A., de Queiroz, R.L. and Ebrahimi, T., 2018, September. A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing 
XLI (Vol. 10752, p. 107520I). International Society for Optics and Photonics.
E. Alexiou and T. Ebrahimi, "Exploiting user interactivity in quality assessment of point cloud imaging," 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 2019, pp. 1-6

11
1

3D DISTANCE METRICS

𝑖Reference 
PC 𝒳

Distorted 
PC 𝒳෡

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 3460-
3464
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• Point-to-surface (a.k.a. cloud-to-mesh)
• For each point in 𝒳, find the nearest point on the reconstructed surface

• Heavily dependent on the surface reconstruction approach

• Difficult to use for PC compression

3D DISTANCE METRICS

Point-to-surface 
distance

𝑖Reference 
PC 𝒳

Distorted 
PC 𝒳෡

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 34
3464

11
3

• Point-to-surface (a.k.a. cloud-to-mesh)

• Point-to-point (a.k.a. cloud-to-cloud)
• For each point in 𝒳, find the nearest point in 𝒳෡

• Euclidean distance in the 3D space

• The average or maximum (Hausdorff) distance is used to characterize the PC 
distortion

• Fails to account for surface structures

3D DISTANCE METRICS

Point-to-surface 
distance

𝑖

Point-to-point 
distance

𝐸 𝑖, 𝑗∗

𝑗∗
Nearest neighbor 

point

Reference 
PC 𝒳

Distorted 
PC 𝒳෡

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 34
3464
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• Point-to-surface (a.k.a. cloud-to-mesh)

• Point-to-point (a.k.a. cloud-to-cloud)

• Point-to-plane
• For each point in 𝒳, find the nearest point in 𝒳෡

• Project the error vector on the local normal

• Errors that push points away from the local surface are perceived more than those moving points 
along the surface

• Approximate the local surface with a plane

3D DISTANCE METRICS

Point-to-surface 
distance

tangent 
plane

Point-to-plane
distance

𝑁௜

𝐸 𝑖, 𝑗∗ ,𝑁௜

𝑖

Point-to-point 
distance

𝐸 𝑖, 𝑗∗

𝑗∗
Nearest neighbor 

point

Reference 
PC 𝒳

Distorted 
PC 𝒳෡

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 34
3464

11
5

• Point-to-surface (a.k.a. cloud-to-mesh)

• Point-to-point (a.k.a. cloud-to-cloud)

• Point-to-plane

• Plane-to-plane
• For each point in 𝒳, find the nearest point in 𝒳෡

• Compare the normals at the two points to obtain a similarity measure

• Better correlations on octree compression

3D DISTANCE METRICS

tangent 
plane

𝑁௜

𝑖Referen
ce PC𝒳

Distorted 
PC 𝒳෡

E. Alexiou and T. Ebrahimi, "Point Cloud Quality Assessment Metric Based on Angular Similarity," 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, 
pp. 1-6

𝑁௝

𝑁௜
𝑁௝

θ
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• Point-to-Point D1 metric

• Point-to-Plane D2 metric

• Error pooling
• Mean squared error

𝑀𝑆𝐸𝒳,𝒳෡
஽భ ൌ

1
𝑛𝒳

෍ 𝐸 𝑖, 𝑗 ଶ
ଶ

∀௜∈𝒳

𝑀𝑆𝐸𝒳,𝒳෡
஽మ ൌ

1
𝑛𝒳

෍ 𝐸 𝑖, 𝑗 ⋅ 𝑁௜ ଶ
ଶ

∀௜∈𝒳

• Asymmetric! 
𝑀𝑆𝐸𝒳,𝒳෡ ് 𝑀𝑆𝐸𝒳,෢𝒳

Typical symmetrization: 𝑀𝑆𝐸ୱ୷୫ 𝒳,𝒳෡ ൌ maxሺ𝑀𝑆𝐸𝒳,𝒳෡ ,𝑀𝑆𝐸𝒳,෢𝒳ሻ

3D DISTANCE METRICS

11
7

• Traditionally, the Peak Signal-to-Noise Ratio is used in 2D image/video

𝑃𝑆𝑁𝑅ୱ୷୫ 𝒳,𝒳෡ ൌ 10 logଵ଴
௣మ

ெௌா౩౯ౣ 𝒳,𝒳෡

• Normalization w.r.t. peak value 𝑝
• The peak value should represent the energy of a pure noise signal
• Easy to define for intensity, not for geometry…
• Signal dependent

• Several solutions
• For a voxelized PC with b bit-depth precision, 𝑝 ൌ 2௕ െ 1
• Diagonal distance of bounding box
• Intrinsic resolution (max or avg nearest neighbor distance)

PSNR FOR GEOMETRY METRICS

D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 3460-3464
A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Improving PSNR-Based Quality Metrics Performance For Point Cloud Geometry," IEEE International Conference on Image Processing (ICIP), 2020, pp. 3438-3442
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• Example: PCQM
• quadric approximation for point matching (point-to-surface)

• Geometry-based features
• Curvature comparison, contrast and structure

• Color-based features
• Lightness comparison, contrast and structure

• Chroma, hue comparison

• Linear combination of the features to obtain the global quality score

3D METRICS FOR GEOMETRY AND ATTRIBUTES

G. Meynet, Y. Nehmé, J. Digne and G. Lavoué, "PCQM: A Full-Reference Quality Metric for Colored 3D Point Clouds," Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1-6

11
9

PERFORMANCE OF PC QUALITY METRICS

1E. Alexiou and T. Ebrahimi, "Exploiting user interactivity in quality assessment of point cloud imaging," 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 2019, pp. 1-6
2Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration," in IEEE Transactions on Multimedia, Oct. 2020

SJTU dataset2

• 420 stimuli
• 64 subjects
• compression, noise, subsampling 

Alexiou et al.1

• 54 stimuli
• 20 subjects
• compression artifacts

3D metrics
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PERFORMANCE OF PC QUALITY METRICS

1E. Alexiou and T. Ebrahimi, "Exploiting user interactivity in quality assessment of point cloud imaging," 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 2019, pp. 1-6
2Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration," in IEEE Transactions on Multimedia, Oct. 2020

SJTU dataset2

• 420 stimuli
• 64 subjects
• compression, noise, subsampling 

Alexiou et al.1

• 54 stimuli
• 20 subjects
• compression artifacts

2D metrics

12
1

• Objective quality metrics

• Performance of PC codecs

QUALITY ASSESSMENT AND BENCHMARK
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• Subjective evaluations

PERFORMANCE ASSESSMENT: G-PCC VS. V-PCC

S. Perry et al., "Quality Evaluation Of Static Point Clouds 
Encoded Using MPEG Codecs," 2020 IEEE International 
Conference on Image Processing (ICIP), 2020, pp. 3428‐
3432, doi: 10.1109/ICIP40778.2020.9191308.

Alexiou, E., Viola, I., Borges, T., Fonseca, T., De Queiroz, 
R., & Ebrahimi, T. (2019). A comprehensive study of the 
rate‐distortion performance in MPEG point cloud 
compression. APSIPA Transactions on Signal and 
Information Processing, 8, E27. 
doi:10.1017/ATSIP.2019.20

12
4

• Façade and buildings (sparse to dense, 12-20 bits per coordinate)

PERFORMANCE ASSESSMENT: G-PCC VS. V-PCC

• Objects (sparse to dense, 11-20 bits per coordinate)
Façade Arco Valentino House without a roof

Shiva Klimt statue Frog

C. Cao, M. Preda, V. Zakharchenko, E. S. Jang and T. Zaharia, "Compression of Sparse and Dense 
Dynamic Point Clouds—Methods and Standards," in Proceedings of the IEEE, vol. 109, no. 9, pp. 1537-
1558, Sept. 2021

Egyptian mask
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GEOMETRY CODING: LEARNING-BASED CODECS VS. 
MPEG

MPEG 3DGC, Performance analysis of currently AI-based available solutions for PCC, ISO/IEC JTC 1/SC 29/WG 7 N233, October 2021 

12
6

LEARNING-BASED GEOMETRY CODECS: QUALITATIVE RESULTS

MPEG 3DGC, Performance analysis of currently AI-based available solutions for PCC, ISO/IEC JTC 1/SC 29/WG 7 N233, October 2021
Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Improved Deep Point Cloud Geometry Compression. IEEE International Workshop on Multimedia Signal Processing (MMSP'2020), Sep 2020, Tampere, 

Finland.
J. Wang, D. Ding, Z. Li and Z. Ma, "Multiscale Point Cloud Geometry Compression," Data Compression Conference (DCC), 2021

uncompressed GPCC (TMC13v14)
0.28 bpip

D1-PSNR: 63.21 dB
D2-PSNR: 68.46 dB

Quach et al. (2020)
0.27 bpip

D1-PSNR: 71.41 dB
D2-PSNR: 74.99 dB

Wang et al. (2021)
0.25 bpip

D1-PSNR: 73.60 dB
D2-PSNR: 77.41 dB
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• Still lagging behind MPEG…

ATTRIBUTE CODING: LEARNING-BASED METHODS VS. MPEG

X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li and F. Wu, "Deep-PCAC: An End-to-End Deep Lossy Compression Framework for Point Cloud Attributes," in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2021.3086711.

12
9

• Quality metrics
• 2D metrics appropriate for dense PC and distortions that do not significantly change 

density

• Point-to-point easier to embed in end-to-end learning-based codecs

• No clear consensus on which is the good metric to use!

• Benchmark of PC coding approaches
• V-PCC outperforms G-PCC (only) on dense point clouds

• Voxel-based VAE coding methods achieve state-of-the-art performance in coding 
geometry of dense PC

• MPEG codecs achieve state-of-the-art performance on attribute compression

• A thorough subjective evaluation of learning-based codecs still missing!

TAKE-AWAY ON PC QUALITY ASSESSMENT AND PCC 
BENCHMARK
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0

TRENDS AND SUMMARY

13
1

• Capture the underlying geometric structure
• Variable spatial density
• Extremely sparse sampling
• Prior information: joint semantic interpretation and coding?
• Modeling the acquisition
• Perceptual loss?

• Joint geometry and attribute coding
• Interdependence 

• Perceptual quality assessment
• Methodologies
• Large dataset construction

OPEN CHALLENGES IN POINT CLOUD CODING AND QUALITY

ASSESSMENT
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giuseppe.valenzise@centralesupelec.fr

Immersive 3D HDR 
visualisation
Ific Goudé, Rémi Cozot (speaker)
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Contributions

• Evaluation of lightness and color 
perception on HMDs

• A TMO for visualization of HDR 
panoramas on HMDs

• A TMO for HDR 3D scenes

Human eye perception on Head 
Mounted Display
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Weber’s law

The minimal perceptible threshold is 
proportional 
to the background luminance

Δ𝑌 ൌ 𝑌௦ െ 𝑌௕ ൌ 𝑘.𝑌௕

pe
rc

ep
tib

le
 th

re
sh

ol
d 
Δ
𝑌

[c
d/

m
²]

background luminance 𝑌௕
[cd/m²]

𝑘 ≃ 1%
on 2D screen
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Fechner’s integration

The derivate of the response relative to the 
luminance: lightness

𝑑𝐿
𝑑𝑌

𝑌௕ ൌ
1

𝛥𝑌ሺ𝑌௕ሻ

𝐿 𝑌௕ ൌ  න
1

𝛥𝑌ሺ𝑌௕ሻ
𝑑𝑌

௒್

଴

𝐿 𝑌௕ ൌ න
1
𝑘𝑌௕

𝑑𝑌௕ ൌ
1
𝑘
ൈ 𝑙𝑜𝑔 𝑌௕ ൅ 𝑎

Weber: Δ𝑌 ൌ 𝑘𝑌௕

Fechner’s integration

Our sensitive response is logarithmic

𝐿ሺ𝑌ሻ ൌ
1
𝑘
𝑙𝑜𝑔 ሺ𝑌ሻ

lig
ht

ne
ss

 𝐿

luminance 𝑌 [cd/m²]
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Tone Mapping Operator

Images courtesy of Frédéric Drago

TMO

Linear ScalingLogarithmic Scaling

[Drago03][Ashikhmin02][Mantiuk06]

di
sp

la
y 

lu
m

in
an

ce
 

𝑌 ௗ

image luminance 𝑌௪

Lightness perception on HMD

Do we have the same perception on HMD?

– Linearly proportional to the background?

– Logarithmic response?

– Same constant factor?
• k ≃ 1% for screen visualization
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Lightness perception on HMD
CIECAM02

• Stimulus: 2°/ 4°

• Background: 20°

• Surround: Field of view

HMD

• Stimulus: 2°/ 4°

• Background: 100° (HMD FoV)

• Surround: None

Lightness perception on HMD

pe
rc

ep
tib

le
 th

re
sh

ol
d 
Δ
𝑌

[c
d/

m
²]

background luminance 
𝑌௕[cd/m²]
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Lightness perception on HMD

The sensitive response is still logarithmic

lig
ht

ne
ss

 𝐿

luminance 𝑌 [cd/m²]

k = 1%

k = 2%

Lightness perception on HMD

1%
Not anymore 
on HMD

Stimulus is 
perceptible on 

2D screen
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Second experiment

• Comparing two stimuli for a solid 
background

𝑌௕

Color Appearance Models
Fechner (1860)

– 𝐿 ൌ  
ଵ

௞
log 𝑌 ൅ 𝑎

CIELAB (1976)

– 𝐿∗ ൌ 116 𝑓
௒

௒೙
െ 16 𝑤𝑖𝑡ℎ 𝑓 𝑡 ൌ ൞

𝑡
భ
య⁄  𝑠𝑖 𝑡 ൏

଺

ଶଽ

ଷ

ଵ

ଷ

ଶଽ

଺

ଶ
𝑡 ൅

ସ

ଶଽ
 𝑠𝑖𝑛𝑜𝑛

CIECAM02 (2002)

– 𝐽 ൌ 100
஺

஺ೢ

௖.௭
𝑤𝑖𝑡ℎ 𝑧 ൌ 1.48 ൅

௒್
௒ೢ

, 𝑎𝑛𝑑 𝑐 ൌ  ቐ
0.525   𝑓𝑜𝑟 𝐷𝑎𝑟𝑘 𝑒𝑛𝑣
0.590   𝑓𝑜𝑟 𝐷𝑖𝑚   𝑒𝑛𝑣
0.690   𝑓𝑜𝑟 𝐴𝑣𝑔   𝑒𝑛𝑣
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Visualization conditions
CIECAM02

– 𝐽 ൌ 100
஺

஺ೢ

௖.௭

HMDCAM

– 𝐽 ൌ 100
஺

஺ೢ

𝒄𝑳.௭

HMDCAM

• 𝐽 ൌ 100
஺

஺ೢ

௖ಽ.௭
𝑤𝑖𝑡ℎ 𝑧 ൌ 1.48 ൅

௒್
௒ೢ

, 𝑎𝑛𝑑 𝑐௅ ൌ
௖.௥.∆௒ೌ|ೊೌసఱబ

∆௒ೌ

• ∆𝑌௔ ൌ 1.88 𝑌௔
଴.ଶଷ  െ 7.24 𝑌௔

଴.ଵଵ ൅ 8.26
• 𝑌௔ ൌ 𝐹.𝑌௕ ൅ 0.2 ሺ1 െ Fሻ𝑌ௗ೘ೌೣ

• 𝐹 ൌ ቊ0.7379 ൅ 0.392 1 െ exp 0.0221 𝑌௕ ,     𝑖𝑓 𝑌௕ ൏ 50 𝑐𝑑/𝑚²
                        1                               ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑟 ൌ
଴.଴ଵ

୩

• k ൌ 0.022
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HMDCAM

pe
rc
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ve

d 
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ss
 d

if
fe

re
nc

e
Δ
𝐽

background luminance 𝑌௕
[cd/m²]

HMDCAM

Error of the estimated perception for 
luminance and color [Goude20]

Background luminance 
[cd/m²]

15 50 90 125

CIECAM02 (avg) error [%] 13.1 18.9 17.3 9.7

HMDCAM error [%] 3.8 7.1 8.2 5.2

Color Red Green Blue Yellow

CIECAM02 (avg) error [%] 1.3 0.6 3.2 5.3

HMDCAM error [%] 0.7 0.5 1.7 2.8
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Contributions

• Evaluation of lightness and color 
perception on HMDs

• A TMO for visualization of HDR 
panoramas on HMDs

• A TMO for HDR 3D scenes

Tone Mapping High Dynamic 
Range 3D point cloud
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360° image

HDR viewport

360° image

Viewport TMO [Reinhard02]

• 𝐿ത௪ሺ𝑡ሻ ൌ
ଵ

ே
exp ∑ log ሺ𝑌௪ሺ𝑥, 𝑦, 𝑡ሻ ൅ 𝛿ሻ௫,௬

• 𝐿ሺ𝑥,𝑦, 𝑡ሻ ൌ
௔

௅തೢሺ௧ሻ
𝑌௪ሺ𝑥,𝑦, 𝑡ሻ

• 𝒀𝒅 𝒙,𝒚, 𝒕 ൌ
𝑳ሺ𝒙,𝒚,𝒕ሻൈ 𝟏ା 𝑳ሺ𝒙,𝒚,𝒕ሻ

𝒀𝒘𝒎𝒂𝒙ሺ𝒕ሻ²

𝟏 ା 𝑳ሺ𝒙,𝒚,𝒕ሻ

𝐿ത௪ is the key-value
𝑎 is a user-defined 
parameter
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360° image

Viewport TMO

360° image

Viewport TMO + eye adaptation [Yu15]

• 𝐿ത௪ᇱ 𝑡       ൌ     τ. 𝐿ത௪ 𝑡     ൅    1 െ 𝜏 . 𝐿ത௪ᇱ 𝑡 െ 1
• 𝑌௪೘ೌೣ

ᇱ 𝑡 ൌ  τ.𝑌௪೘ೌೣ
𝑡  ൅ 1 െ 𝜏 .𝑌௪೘ೌೣ

ᇱ 𝑡 െ 1

• 𝐿ሺ𝑥,𝑦, 𝑡ሻ ൌ
௔

௅തೢ
ᇲ ௧

𝐿௪ሺ𝑥,𝑦, 𝑡ሻ

• 𝒀𝒅 𝒙,𝒚, 𝒕 ൌ
𝑳ሺ𝒙,𝒚,𝒕ሻൈ 𝟏ା 

𝑳ሺ𝒙,𝒚,𝒕ሻ
𝒀𝒘𝒎𝒂𝒙
ᇲ 𝒕 ²

𝟏 ା 𝑳ሺ𝒙,𝒚,𝒕ሻ
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360° image

Viewport TMO + eye adaptation

360° image

Viewport TMO + eye adaptation
– Spatial coherency is not preserved
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360° image

Global TMO

360° image

Global TMO [Ward97]

• The Cumulative Distribution Function of the log-luminance 
histogram

𝑃 log 𝑌௪ 𝑥,𝑦

• Histogram ceiling based on our HMDCAM

• Scaled in the dynamic range of the display

𝒀𝒅 𝒙,𝒚 ൌ 𝒆𝒍𝒏 𝒀𝒅𝒎𝒊𝒏  ା 𝒍𝒏 𝒀𝒅𝒎𝒂𝒙 ି𝒍𝒏 𝒀𝒅𝒎𝒊𝒏  ൈ 𝑷ሺ𝒀𝒘ሺ𝒙,𝒚ሻሻ
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360° image

Global TMO

360° image

HMD-TMO [Goude19]

• Linear combination of both Viewport and 
Global TMOs
in the logarithmic domain

• 𝑌ௗሺ𝑥, 𝑦, 𝑡ሻ ൌ 𝛼. log 𝐺 𝑥, 𝑦 ൅ ሺ1 െ
𝛼ሻ. log 𝑉ሺ𝑥, 𝑦, 𝑡ሻ

• 𝒀𝒅ሺ𝒙,𝒚, 𝒕ሻ ൌ 𝑮ሺ𝒙,𝒚ሻ𝜶 ൈ 𝑽ሺ𝒙,𝒚, 𝒕ሻ𝟏ି𝜶
𝛼 is a user-defined weight
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360° image

HMD-TMO

360° image

HMD-TMO
– Spatial coherency is preserved

– Viewport contrasts are enhanced

– Objective metric shows a better TMO quality

[Reinhard02] [Ward97] [Yu15] HMD-TMO [Goude19]

TMQI quality [TMQI] 0.798 0.854 0.865 0.887
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Contributions

• Evaluation of lightness and color 
perception on HMDs

• A TMO for visualization of HDR 
panoramas on HMDs

• A TMO for HDR 3D scenes

3D scene

Viewport TMO + eye adaptation
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3D scene

Viewport TMO + eye adaptation
– Spatial coherency is not preserved

3D scene

Global TMO

• What is the dynamic range of a 3D scene?
• Light field

• Plenoptic function 𝐿ሺ𝑥,𝑦, 𝑧, 𝜃,𝜑, 𝑡ሻ [Adelson91]

• Camera position ሺ𝑥,𝑦, 𝑧ሻ
• Camera orientation ሺ𝜃,𝜑ሻ

• To compute in real-time  impossible!
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3D scene

Global TMO

3D scene

3D-TMO
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3D scene

3D-TMO
– Spatial coherency is preserved

– Viewport contrasts are enhanced

– Subjective studies show that our TMO is 
preferred

Fidelity [Drago03] Eye-adaptation (Unity) 3D-TMO [Goude20bis]

Scene 1 6.39 േ 1.82 6.56 േ 1.89 7.50 േ 1.15

Scene 2 6.17 േ 1.69 7.00 േ 1.64 7.39 േ 1.58

Global appreciation [Drago03] Eye-adaptation (Unity) 3D-TMO [Goude20bis]

Scene 1 6.83 േ 2.20 6.94 േ 1.66 7.44 േ 1.38

Scene 2 6.28 േ 1.81 7.22 േ 1.86 7.61 േ 1.65

• For the ReVeRY project
• Combine 3D and HDR reconstruction

• Add multiexposure

• Add time coherence for video

• Other directions
• More general camera configurations

FUTURE WORK
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