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Many applications ranging from quasi-Monte Carlo integration over op-

timal control to neural networks benefit from high-dimensional, highly

uniform samples. In the case of computer graphics, and more particularly in

rendering, despite the need for uniformity, several sub-problems expose a

low-dimensional structure. In this context, mastering sampling uniformity

over projections while preserving high-dimensional uniformity has been

intrinsically challenging. This difficulty may explain the relatively small

number of mathematical constructions for such samplers. We propose a

novel approach by showing that uniformity constraints can be expressed

as an integer linear program that results in a sampler with the desired

properties. As it turns out, complex constraints are easy to describe by

means of stratification and sequence properties of digital nets. Formalized

using generator matrix determinants, our new MatBuilder software solves

the set of constraints by iterating the linear integer program solver in a

greedy fashion to compute a problem-specific set of generator matrices that

can be used as a drop-in replacement in the popular digital net samplers.

The samplers created by MatBuilder achieve the uniformity of classic low

discrepancy sequences. More importantly, we demonstrate the benefit of

the unprecedented versatility of our constraint approach with respect to

low-dimensional problem structure for several applications.

CCS Concepts: • Computing methodologies → Rendering; • Math-
ematics of computing → Permutations and combinations; Quadrature;
Number-theoretic computations.

Additional Key Words and Phrases: Path tracing, quasi-Monte Carlo in-

tegration, low discrepancy sequences, generator matrices, integer linear

programming.
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1 INTRODUCTION

Generating samples covering a domain as uniformly as possible

is core to many scientific domains including computer graphics.

It is well known that simple Monte Carlo integration converges

faster when using well-spaced samples than using random sampling,
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which is particularly useful in physically based rendering [Pharr et al.

2016]. Stratified sampling of a population improves the precision of

statistical surveys [Kish 1965]. Generating highly uniform samples is

also important in Deep Learning [Keller and Van keirsbilck 2022] and

stratification can be used to prevent class imbalance during learning

[Yuan et al. 2018]. Qualifying and quantifying this uniformity is a

challenge in itself and has been the scope of decades of research,

involving tools such as discrepancy [Hickernell 1998] and optimal

transport [Paulin et al. 2020].

Applications may require uniformity, not only in the possibly

high-dimensional space of samples, but also for particular lower-

dimensional projections. This is notably the case for rendering [Per-

rier et al. 2018], where integration is performed over a path space

consisting of the union of domains of increasing dimensions as light

bounces – uniformity is then desired for each integration subdo-

main. While generating a specific set of samples satisfying complex

combinations of constraints may be performed via energy optimiza-

tion, certain applications require the ability to generate sequences

of points instead of a single point set, that is, the ability of adding

more samples without touching the existing ones, while preserving

uniformity constraints. For instance, rendering applications may

progressively show the rendered image being refined or adaptively

terminate rendering based on image quality. In addition, the effi-

ciency of sample generation is crucial and it may not be acceptable

for point set optimization time to exceed theMonte Carlo simulation

itself.

Such constraints are dictated by the user and are application

specific. While low-discrepancy sequences have been designed and

used as general-purpose samplers – this is the case of the popular

family of Sobol’ sequences – they may not be adapted to the end-

user’s requirements.

In this paper, we introduce the mathematical tools and a de-

scription language that allow one to define sample point sets and

sequences that satisfy complex uniformity constraints. We achieve

this feat with two key ideas. First, we we show that these constraints

can be written in the form of constraints on matrix determinants.

This formalization allows us to represent the constraints as an integer
linear program [Wolsey 2020]. Second, we show that higher-order fi-

nite fields offer many more degrees of freedom to satisfy constraints,

overcoming restrictions of classic algebraic constructions. Solving

the integer linear program lets us create application-specific sam-

plers. We demonstrate the superior performance of the resulting

samplers for rendering, texture exploration, and optimal control

applications. The source code of the proposed MatBuilder system

has been released to facilitate further research [Paulin et al. 2022].
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2 RELATED WORK

In numerical integration, quasi-Monte Carlo methods can outper-

form Monte Carlo methods by using correlated samples that are

more uniformly distributed than independent uniformly distributed

random samples. Quasi-Monte Carlo methods have profoundly im-

pacted computer graphics and are now standard in rendering tech-

nologies [Pharr et al. 2016]. We will review the work most relevant

to our new construction.

Low-discrepancy sequences. Deterministic number-theoretic con-

structions of highly uniform point sets and sequences form the

foundation of quasi-Monte Carlo methods [Halton 1964; Nieder-

reiter 1992; Sobol’ 1967]. Their uniformity is measured by discrep-
ancy [Hickernell 1998] that is defined as the supremum of the ab-

solute difference between the relative number of samples that fall

into an arbitrary convex subset of the unit cube and the volume

of the subset. Point sequences that achieve a discrepancy of order

O(log𝑁 /𝑁 ) are called low-discrepancy sequences. The classic the-
ory and constructions of low discrepancy sequences are extensively

covered in reference text books by Niederreiter [1992], Lemieux

[2009], and Dick and Pillichshammer [2010].

Our contribution draws from the algorithmic framework for the

generation of low-discrepancy sequences and hence can be a drop-in

replacement for the improvement of existing codes.

Projective samplers. Already Sobol’ [1967] recognized that there

are combinatorial lower bounds on the achievable uniformity of

low-dimensional projections of his algebraic high-dimensional con-

struction. Later Sobol’ et al. [2011] introduced the concept of con-

straints to improve the uniformity of low-dimensional projections at

the cost of relaxed high-dimensional uniformity. Similarly, improve-

ments to the low dimensional projections of the Sobol’ sequence

have been identified by computer search [Joe and Kuo 2008]. More

recently, computer search has been key to improving the quality

parameter 𝑡 of a generalization of Sobol’ construction [Faure and

Lemieux 2016, 2019].

Recognizing the particular structure of physically-based render-

ing integration domains, for example obtained by repeated scat-

tering in path tracing algorithms, computer graphics has been at

the forefront of improving the uniformity of point sets in low di-

mensional projections using both computer search [Ahmed et al.

2016; Marques et al. 2020; Paulin et al. 2020; Perrier et al. 2018] and

mathematical constructions [Paulin et al. 2021].

As compared to the aforementioned specific approaches, we come

up with a general formulation of constraints and a system to solve

them in an efficient way.

Orthogonal Arrays. Orthogonal Arrays (OA) are widely used in

engineering and the statistical design of scientific experiments [Bose

and Bush 1952; Bush 1952; Plackett and Burman 1946]. Given a set

of values in {0, . . . , 𝑏 − 1}, an OA in dimension 𝑠 of strength 𝑡 ≤ 𝑠 is
set of 𝑛 points seen as an array𝐴 of size 𝑛 × 𝑠 where each submatrix

of size 𝑛 × 𝑡 (i.e. 𝑡 dimensional projection) contains all 𝑏𝑡 possible

distinct rows [Owen 2013].

As introduced to computer graphics [Jarosz et al. 2019], OAs gen-

eralize the notion of Latin hypercube and (multi-)jittered sampling,

focusing on stratification properties on some 𝑡−dimensional pro-

jections of the samples. So-called strong OAs fill the gap between

orthogonal arrays and low discrepancy nets [He and Tang 2013].

The constraints implied by orthogonal arrays are a special case

of our general approach to designing generator matrices.

Randomization. Low-discrepancy sequences may be randomized

to allow for variance estimation and unbiased Monte Carlo integra-

tion [Owen 1998]. The underlying principles are recursive random

scrambling and random shifting on the unit torus. These techniques

may also be used for the optimization of sampling points accord-

ing to various criteria: besides minimizing discrepancy, the mutual

minimum distance of the points may be maximized and the spectral

properties may be tweaked to approximate blue noise characteristics

in low dimensions [Ahmed et al. 2016; Ahmed and Wonka 2020,

2021; Heitz et al. 2019].

While many improvements of scrambled algebraic samplers are

intrinsic to our constraint-based approach, our samplers are com-

patible with the aforementioned randomization techniques.

3 PRELIMINARIES

Our new method is based on the classic algorithms (reviewed

in Section 3.1) to generate digital nets and sequences [Dick and

Pillichshammer 2010; Lemieux 2009; Niederreiter 1992] in the 𝑠-

dimensional unit cube [0, 1)𝑠 , where a set of generator matrices

𝐶0, . . . ,𝐶𝑠−1 ∈ F𝑚×𝑚
p defines an 𝑠-dimensional point set of size p𝑚 .

Rather than constructing such matrices using number theory, we

aim to design the generator matrices 𝐶0, . . . ,𝐶𝑠−1 by specifying

constraints that we introduce in Section 4 as design principles de-

rived from the algebraic properties of the classic constructions (see

Section 3.2).

3.1 Digital Nets and Sequences from Generator Matrices

To compute the 𝑖-th component 𝑥𝑎,𝑖 of the 𝑎-th point x𝑎 , the index
(or its ordinal number) 𝑎 ∈ N0 is represented in base p as the vector

(𝑎0, . . . , 𝑎𝑚−1) of 𝑚 digits, where 𝑎0 is the least-significant digit.

Given the 𝑖-th generator matrix 𝐶𝑖 , the vector

©­­«
𝑏𝑚−1
.
.
.

𝑏0

ª®®¬ := 𝐶𝑖 ·
©­­«
𝑎0
.
.
.

𝑎𝑚−1

ª®®¬ (1)

is mapped to the unit interval by

𝑥𝑎,𝑖 :=
1

p𝑚

𝑚−1∑︁
𝑗=0

𝑏 𝑗 · p𝑗 ∈ [0, 1) . (2)

The matrix multiplication is performed in the finite (Galois) field Fp
(sometimes denoted GF(p)). Using a finite field with a base p that
is a prime power rather than a prime would involve mapping the

digits 𝑎𝑘 to the finite field and mapping the digits 𝑏𝑘 back into the

integers [Niederreiter 1992, Section 4.3]. Applying only prime bases

in this article, these mappings are not required and operations are

simply performed modulo p.
The above algorithm has become extremely popular, as in base p =

2, the vector operations on F𝑚
2
can be efficiently implemented as bit-

vector ‘xor’ and ‘and’ operations for addition and multiplication,
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𝐶𝑖 ·

©­­­­­­«

𝑎0
𝑎1
𝑎2
.
.
.

𝑎𝑚−1

ª®®®®®®¬
=

©­­­­­­«

𝑏𝑚−1
𝑏𝑚−2
𝑏𝑚−3
.
.
.

𝑏0

ª®®®®®®¬
0 1

00 01 10 11

000 001 010 011 100 101 110 111

.

.

.

0 2
𝑚 − 1

(a)

𝐶1

𝐶0

𝑀𝐾

(b)

Fig. 1. Generator matrix structure: (𝑎) The first row of the generator matrix𝐶𝑖 acts on the most significant digit of 𝑏𝑚−1 selecting one two intervals of size
2
𝑚−1

in base 2, the first two rows of𝐶𝑖 determine one intervals of size 2
𝑚−2

and so on. (𝑏 ) When coupling the matrices to design a 2D sampler, the first rows

of𝐶0 select intervals along the 𝑥-axis, while the first rows of the𝐶1 select intervals along the 𝑦-dimension. If𝑀𝐾 is of full rank, samples generated by𝐶0 and

𝐶1 will be stratified in the cells induced by selected rows of the two matrices.

respectively. For higher bases, efficient implementations process

multiple digits simultaneously using lookup tables [Keller et al.

2012].

3.2 Stratification of Digital Nets and Sequences

Digital nets and sequences generated by matrices imply a stratifi-

cation of the unit cube as illustrated in Figure 3. These strata are

specified by

Definition 3.1 (see [Niederreiter 1992, p.48]). For a fixed dimension

𝑠 ≥ 1 and an integer base 𝑏 ≥ 2 the subinterval

𝐸 =

𝑠∏
𝑗=1

[
𝑎 𝑗 · 𝑏−𝑑 𝑗 , (𝑎 𝑗 + 1) · 𝑏−𝑑 𝑗

)
⊆ [0, 1)𝑠

with 0 ≤ 𝑎 𝑗 < 𝑏
𝑑 𝑗
, 𝑎 𝑗 , 𝑑 𝑗 ∈ N0, is called an elementary interval in

base p.

The stratification and hence uniformity constraints given by all

the elementary intervals can be used to characterize the uniformity

of point sets and sequences:

Definition 3.2 (see [Niederreiter 1992, Def. 4.1]). For integers 0 ≤
𝑡 ≤ 𝑚, a (𝑡,𝑚, 𝑠)-net in base 𝑏 is a point set of 𝑏𝑚 points in [0, 1)𝑠
such that there are exactly 𝑏𝑡 points in each 𝑏-adic elementary

interval 𝐸 with volume 𝑏𝑡−𝑚 .

Definition 3.3 (see [Niederreiter 1992, Def. 4.2]). For an integer

𝑡 ≥ 0, a sequence x0, x1, . . . of points in [0, 1)𝑠 is a (𝑡, 𝑠)-sequence in
base 𝑏 if, for all integers 𝑘 ≥ 0 and𝑚 > 𝑡 , the point set x𝑘𝑏𝑚 , . . . ,
x(𝑘+1)𝑏𝑚−1 is a (𝑡,𝑚, 𝑠)-net in base 𝑏.

Revisiting the point set in Figure 3, we see a realization of a

(0, 4, 2)-net in base p = 2 that is an 𝑠 = 2-dimensional point set with

2
4 = 16 points, where 𝑡 = 0, i.e. exactly one point is in each possible

elementary interval. A smaller quality parameter 𝑡 implies a lower

discrepancy and hence better uniformity of a point set or sequence.

Historically, Sobol’s construction [Sobol’ 1967] has led to the

above definitions and in fact, the Sobol’ low discrepancy sequence

is a (𝑡, 𝑠)-sequence in base 2. Its generator matrices 𝐶𝑖 are con-

structed from the 𝑖-th primitive polynomial over F2. Joe and Kuo

[2008] have published Sobol’ generator matrices with optimized

low-dimensional projections up to dimension 𝑠 = 21201 that are

widely used in computer graphics and numerical simulation in gen-

eral. Grünschloß et al. [2008] have performed an exhaustive search

on the binary matrix 𝐶1 such that starting from the identity ma-

trix 𝐶0 = 𝐼 , the point sets generated by (𝐶0,𝐶1) are (0,𝑚, 2)-nets
maximizing the minimal distance between the samples. More re-

cently, Paulin et al. [2021] have proposed a cascaded construction

of the 𝐶𝑖 matrices in base 2 in a way that any pair of consecutive

matrices (𝐶𝑖 ,𝐶𝑖+1) defines a (0,𝑚, 2)-net in base 2, with optimized

discrepancy on the remaining two-dimensional projections. Ahmed

and Wonka [2021] further explore all possible dyadic nets in base

2 but only for 2 dimensions. Still in base 2, L’Ecuyer and Munger

[2016] propose a generic tool, LatNetBuilder, for constructing

matrices in higher dimensions optimizing a given figure of merit
(e.g. full-space or projective discrepancy), using either an exhaustive

or a randomized exploration.

There remain severe limitations to a low base. For example, achiev-

ing the best quality parameter 𝑡 = 0 is impossible for 𝑠 > p. While

there exist constructions with 𝑡 = 0 in higher bases, a higher base

results in a higher discrepancy and hence reduced uniformity. In gen-

eral, it is considered hard to construct algebraic low-discrepancy se-

quences. Since we aim to improve the uniformity of low-dimensional

projections, too, the problem becomes even harder. Therefore, we

propose a novel, constraint-based approach to digital nets and se-

quences.

4 GENERATOR MATRIX CONSTRAINTS

In this section we show how classic uniformity constraints translate

into determinant inequalities that can be used as design constraints.

ACM Trans. Graph., Vol. 41, No. 4, Article 84. Publication date: July 2022.
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4.1 How Generator Matrices Act

The algorithm of Equation (1) is illustrated in Figure 1: the 𝑗-th row

of a generator matrix 𝐶𝑖 determines the 𝑗-th digit 𝑏𝑚− 𝑗 . The first 𝑘
rows of 𝐶𝑖 determine the 𝑘 most significant digits of the vector 𝑏.

They in turn determine in which of the p𝑘 uniformly sized intervals[
𝑙 · p𝑚−𝑘 , (𝑙 + 1) · p𝑚−𝑘

)
, 0 ≤ 𝑙 < p𝑘 the sample will be placed.

If the generator matrix is of full rank, that is its determinant is

non-zero, the matrix multiplication in Equation (1) will be bijective

and thus corresponds to permuting the set {0, . . . , p𝑚}. Hence a

set of generator matrices with non-zero determinants generates a

point set by Equation (2) that is perfectly stratified in each single

dimension 𝑖 and thus a Latin hypercube sample. Themost prominent

example of this property is the Sobol’ sequence.

As a generator matrix with non-zero determinant implies perfect

stratification, we conclude that non-zero determinants may be used

to express uniformity constraints.

4.2 Design Constraint: Stratification and Net Properties

The intuition developed in Section 4.1 may be used to define uni-

formity constraints across dimensions. Let 𝐾 = (𝑘0, . . . , 𝑘𝑠−1) ∈ N𝑠
be a set of non-negative integers such that

∑𝑠−1
𝑖=0 𝑘𝑖 =𝑚. Then, for

each 𝑘𝑖 the first rows of 𝐶𝑖 map the index 𝑎 to one of the intervals[
𝑙 · p𝑚−𝑘𝑖 , (𝑙 + 1) · p𝑚−𝑘𝑖

)
, 0 ≤ 𝑙 < p𝑘𝑖 . Compositing all 𝑘𝑖 first

rows of the corresponding generator matrix 𝐶𝑖 results in an𝑚 ×𝑚
matrix𝑀𝐾 that maps the index 𝑎 to one of p𝑚 elementary intervals

of size p𝑚−𝑘0 × · · · × p𝑚−𝑘𝑠−1
as illustrated for two dimensions in

Figure 1.

By analogy with Section 4.1, a composite matrix𝑀𝐾 with a non-

zero determinant is a bijection between the index 𝑎 and the elemen-

tary intervals specified by 𝐾 . In case the dimension 𝑠 divides the

number𝑚 of digits, the generator matrices 𝐶0, . . . ,𝐶𝑠−1 generate a
stratified point set if the determinant

det

(
𝑀(𝑚/𝑠,...,𝑚/𝑠 )

)
≠ 0 ,

because each stratum of volume 𝑝𝑚/𝑠 × · · · × 𝑝𝑚/𝑠
contains exactly

one point. In case 𝑠 does not divide𝑚, the property can be general-

ized to elementary intervals with a ratio of at most p between the

longest and shortest dimensions. This leads to

Design Constraint 1 (Generalized Stratification). A point
set of size p𝑚 is said to be stratified if

∀𝐾 = (𝑘0, . . . , 𝑘𝑠−1) ∈
{⌊𝑚
𝑠

⌋
,

⌈𝑚
𝑠

⌉}𝑠
with

𝑠−1∑︁
𝑖=0

𝑘𝑖 =𝑚 ,

all cells of size p𝑚−𝑘0 × · · · × p𝑚−𝑘𝑠−1 contain exactly 1 point. Thus
𝐶0, . . . ,𝐶𝑠−1 generate a stratified point set if and only if

det (𝑀𝐾 ) ≠ 0 . (3)

Classic stratification along the canonical axes is a special case of

the more general concept of stratification by elementary intervals.

The constraint resulting from the definition of (0,𝑚, 𝑠)-nets [Nieder-
reiter 1992] is:

Design Constraint 2 ((0,m,s)-net). An 𝑠-dimensional point set
of size p𝑚 is said to be a (0,𝑚, 𝑠)-net if

∀𝐾 = (𝑘0, . . . , 𝑘𝑠−1) ∈ N𝑠 with
𝑠−1∑︁
𝑖=0

𝑘𝑖 =𝑚 ,

all cells of size p𝑚−𝑘0 × · · · × p𝑚−𝑘𝑠−1 contain exactly one point. Thus
𝐶0, . . . ,𝐶𝑠−1 generate a (0,𝑚, 𝑠)-net if and only if

det (𝑀𝐾 ) ≠ 0 . (4)

We conclude that stratification and (0,𝑚, 𝑠)−net constraints of
digital nets and sequences can be verified by computing determi-

nants of matrices that are composited from sets of first rows of

generator matrices {𝐶0, . . . ,𝐶𝑠−1} in Fp.

4.3 Design Constraint: Sequences

Many applications use adaptive sampling, where the number of

samples is controlled by a termination criterion, e.g. a threshold

on the variance in Monte Carlo integration. Progressive random

sampling is straightforward, as it just requires to drawmore random

samples. In the case of our digital construction, points have to

respect uniformity constraints that are only satisfied for sample

counts of powers of p, see Section 3.2.

In theory a sequence property shall be valid for an infinite number

of samples. In practice the number of samples is bounded due to

finite floating point precision and finite computation time. Given

the base p, this allows us to select a suitable𝑚 determining an upper

bound of p𝑚 samples that covers the range of samples representable

in floating point arithmetic. As a consequence, one can select a

point set of maximum size p𝑚 and consider it to be sequential if, for

1 ≤ 𝑖 ≤ 𝑚, all subsets of the first p𝑖 points satisfy the

Design Constraint 3 (Seqential property). 𝐶0, . . . ,𝐶𝑠−1
have a sequence property if the property is valid for all 𝑗 × 𝑗 subma-
trices 𝐶 𝑗

0
, . . . ,𝐶

𝑗

𝑠−1 of 𝐶0, . . . ,𝐶𝑠−1 anchored at the most significant
digit, 1 ≤ 𝑗 ≤ 𝑚.

4.4 Design Constraint: The Prime Base p

The base p in which one decomposes the index 𝑎 in Equation (1) is

an important choice to consider in the design of generator matrices.

It is a known result [Niederreiter 1992] that in base p it is neither
possible to construct a (0,m,s)-net for 𝑠 > p + 1 nor a (0,s)-sequence

for 𝑠 > p. The base may also have an impact on the satisfiability

of the entire set of other constraints. It determines the number of

values any specific matrix entry can take. In turn, each constraint

det(·) ≠ 0 may reduce the range of possible matrix entries.

As an example, given a matrix𝐶0, we search for a matrix𝐶1 such

that both generate a (0, 2)-sequence in base p = 2. By induction, one

can show that there is only one possible value for each entry of 𝐶1
and thus there exists exactly one𝐶1 that results in a (0, 2)-sequence
given𝐶0. In particular, if𝐶0 is the identity matrix,𝐶1 corresponds to

the Pascal triangle, and (𝐶0,𝐶1) forms the first two dimensions of the

Sobol sequence. This restriction due to the small base can be severely

limiting. For instance, we show in Figure 2 the samples obtained by

generalizing the construction of Cascaded Sobol’ Sampling [Paulin

et al. 2021] where all consecutive pairs of dimensions form (0,𝑚, 2)-
nets, to instead impose the constraint that all consecutive pairs
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dim 0 1 2 3 4

1

2

3

4

5

Fig. 2. The base p constrains the space of cascaded sequences: Complying

with a (0,𝑚, 2)-net constraint in base p = 2 for all pairs of subsequent

dimensions, there exist exactly two 2-dimensional projections.

of dimensions form (0, 2)-sequences, using base p = 2. Although

consecutive pairs of this construction are (0, 2)-sequences, half of
the 2-dimensional projections have extremely poor uniformity that

can be detrimental in many applications such as rendering. This is

due to the fact that since satisfying the (0, 2)-sequence constraint
has only one solution in base p = 2, all matrices with even indices

equal 𝐶0 and others equal 𝐶1.

Selecting a higher base comes at the price of a larger distance

between sample counts at which design constraints derived in the

previous sections can be verified. We further discuss changing the

base in Section 6.2.

5 SOLVING THE CONSTRAINTS

Given a problem dimension 𝑠 , a base p, and set of uniformity con-

straints as discussed in the previous section, the goal is to determine

𝑠 generator matrices 𝐶𝑖 with entries in {0, . . . , p − 1} that satisfy
the constraints. In this section, we prove that these constraints are

equivalent to an integer linear program [Wolsey 2020], whose so-

lution – if existent – yields a set of generator matrices with the

desired uniformity properties.

Our approach is motivated by Definition 3.3 stating that (𝑡, 𝑠)-
sequences are sequences of (𝑡,𝑚, 𝑠)-nets for𝑚 > 𝑡 . We hence imple-

ment matrix construction as a greedy algorithm that iterates over

the number of digits𝑚 starting with 1 × 1 matrices until the target

size is reached. To grow the matrices, we only need to consider

triangular matrices, see the proof in Appendix A:

Theorem 5.1. If a set of constraints can be satisfied by square
matrices, it will equivalently be satisfiable by triangular matrices up
to an Owen scrambling step.

All the aforementioned uniformity constraints have the common

form of

det(𝑀) ≠ 0 . (5)

Using the recursive determinant formula yields a polynomial of

degree 𝑚 with the 𝑚2
matrix entries as variables in Fp for each

constraint. Already solving for polynomials on integers is a NP-

hard problem with few efficient approximations [Belotti et al. 2013].

However, we can transform the Inequality (5) into a set of linear

constraints to be solved in Z instead of Fp: For p a prime number,

the first linear constraint amounts to

0 < det(𝑀) − 𝑘p < p (6)

with 𝑘 ∈ Z an additional variable representing the modulo arith-

metic of Fp. As we no longer operate in Fp, the matrix elements

need to be constrained to {0, . . . , p − 1} ⊂ Z that is
∀0 ≤ 𝑗 ≤ 𝑚 − 1, 0 ≤ 𝑀𝑗,𝑚−1 < p. (7)

Note that since we want to iteratively grow the matrices, the𝑚 −
1×𝑚 − 1 triangular matrix is already known. Hence only the newly

added last column of matrix entries𝑀𝑗,𝑚−1 adds to the constraints.

The key observation is that these𝑚+1 constraints form an integer

linear program that can be used to determine the next larger set

of generator matrices - much in the reverse spirit of the recursive

determinant formula. The resulting sequence of linear integer pro-

gramming problems remains NP-hard but is much easier to solve.

We formalize this in

Theorem 5.2. For given𝑚 ×𝑚 generator matrices 𝐶0, . . . ,𝐶𝑠−1,
adding a column of variables 𝑐𝑖

𝑙,𝑚+1 to the right and adding a row
of𝑚 zeros at the bottom yields a set of (𝑚 + 1) × (𝑚 + 1) matrices
𝐶′
0
, . . . ,𝐶′

𝑠−1, i.e.

𝐶′
𝑖 =

©­­­­­«
𝑐𝑖
1,𝑚+1

𝐶𝑖 𝑐𝑖
2,𝑚+1
.
.
.

0 · · · 0 𝑐𝑖
𝑚+1,𝑚+1

ª®®®®®¬
,

satisfying a set of properties that is an integer linear program.

Proof. Let 𝐿 be the set of constraints we wish to satisfy. Each

constraint is in the form of det(𝑀) ≠ 0 for a given matrix 𝑀 . Ac-

cording to our design principles 𝑀 is an (𝑚 + 1) × (𝑚 + 1) matrix

composed of lines from multiple𝐶′
𝑗
. Thus all cells are known except

for the last column. Since the determinant is linear by columns, it

is linear for all variables 𝑐𝑖
𝑙,𝑚+1 in the new column, leading to the

fact that Equation (6) and (7) correspond to a pair of integer linear

constraints. Packing all determinants together, 𝐿 defines an integer

linear program. □

When the constraints are transformed into an integer linear pro-

gram they can be prioritized by assigning a weight 𝑤 𝑗 . This is

implemented by extending the hard constraint of Equation (6) to

𝑥 𝑗 ≤ det(𝑀) − 𝑘p < p, where 𝑥𝑖 ∈ {0, 1} , (8)

and adding𝑤 𝑗𝑥 𝑗 to the objective function to be maximized. Unless

det(𝑀) = 0, in which case the constraint cannot be satisfied and

hence 𝑥 𝑗 = 0 must follow, 𝑥 𝑗 will be set to 1 and 𝑤 𝑗𝑥 𝑗 will count

towards the objective function.
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u0

u4

u2

Det = 1Det = 1

Det = -1Det = 1

Det = -1

𝑀𝐾

= 𝐶0 = 𝐶1

Fig. 3. Modifiers u<m’> illustrated for the relaxed (0,𝑚, 𝑠 )-net constraint
in 2 dimensions, base 2, and for 2

4
samples: u0 corresponds to a stratification

test enforcing one sample per

(
1

4
× 1

4

)
strata, u4 amounts to a complete

(0,𝑚, 2)-net check, and u2 leads to intermediate constraints. Such prop-

erties can be assessed by checking the determinant of the 𝑀𝐾 matrices:

2 rows from 𝐶0 and 𝐶1 (u0), 1 row from 𝐶0, three from 𝐶1 and conversly

(u2), or the full 𝐶0 and 𝐶1 matrices (u4). The strata depicted in the unit

squares on the right are the elementary intervals underlying the displayed

(0, 4, 2)-net.

In summary, we implement matrix construction as a greedy algo-

rithm that iterates over𝑚 and digit by digit determines the columns

of all 𝐶𝑖 by solving the set of linear constraints derived in Equa-

tions (6) and (7) while maximizing a target objective function that

is the weighted sum of satisfied weak constraints (see Figure 4). As

solving this problem remains NP-hard, we rely on efficient heuris-

tics as implemented in the CPLEX [IBM 2022] library in order to

find instances that satisfy the constraints.

With our greedy approach it may happen, especially for restrictive

sets of constraints, that choices made for a previous column may

render finding the next column unsatisfiable. To tackle this issue we

add a backtracking feature that when faced with an unsatisfiable

set of constraints drops the most recently added column and tries

again with different choices. When this strategy fails again, the

algorithm starts from scratch with empty matrices. This behavior

can be observed in the timings of the mixed profile in Figure 5.

If even after backtracking the linear integer programs remain

infeasible, our algorithmwill signal that the chosen set of constraints

does not admit a solution. In this case, the user needs to consider a

higher prime base or turning some of the hard constraints into weak

ones. We also provide a timeout parameter that limits the maximum

time spent on maximizing the number of satisfied weak constraints.

Uniformity beyond Generator Matrices. Up to this point both con-

straints and solver are deterministic. In order to optimize with re-

spect to uniformity metrics that cannot be expressed by generator

matrices alone, we extend the objective function by a stochastic

-

...
...

...
...

...
...

Maximize Stochastic regularization

∑
𝑤𝑗𝑥 𝑗

such that
H
a
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d

c
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0 < det(𝑀 ) − 𝑘p < p

𝑥 𝑗 ≤ det(𝑀 ) − 𝑘p < p
0 ≤ 𝑥 𝑗 ≤ 1

0 ≤ 𝑐𝑖
𝑙,𝑚+1 < p

Fig. 4. Anatomy of an Integer Linear Program (ILP): To grow the matri-

ces𝐶𝑖 according to Theorem 5.2, the values of the 𝑐𝑖
𝑙,𝑚+1 in the last column

of their respective 𝐶′
𝑖
are determined by solving an ILP, which consists

of an objective function to maximize subject to a set of constraints. The

range constraints enforce that 𝑐𝑖
𝑙,𝑚+1 ∈ {0, . . . , p − 1} and the hard unifor-

mity constraints enforce a non-zero determinant to guarantee the design

constraints of stratification, net, and sequence properties as introduced in

Section 4. Remember that matrices 𝑀 are constructed from first rows of

the𝐶′
𝑖
matrices and hence include some of the 𝑐𝑖

𝑙,𝑚+1. Indicated by 𝑥 𝑗 = 1,

a satisfied weak constraint adds its weight 𝑤𝑗 to the objective function.

Otherwise, a zero determinant comes along with 𝑥 𝑗 = 0. The stochastic

regularization term is detailed in Equation (9).

regularization term:

max

𝑐𝑖
𝑙,𝑚+1,𝑥 𝑗

𝑉∑︁
𝑗=1

𝑤 𝑗𝑥 𝑗 −
(
min

𝑗∈1..𝑉
𝑤 𝑗

)
·

∑𝑠−1
𝑖=0

∑𝑚+1
𝑙=1

���𝑐𝑖
𝑙,𝑚+1 − 𝑟

𝑖
𝑙

���
𝑠 ·𝑚 · (p − 1) (9)

Besides maximizing the objective function by satisfying a maximum

number of the 𝑉 weak constraints, we generate random numbers

𝑟 𝑖
𝑙
∈ {0, . . . , p − 1} and subtract the normalized ℓ1-distance between

them and the matrix elements of the new columns. The normaliza-

tion accounts for the maximum distance, which is the product of the

largest possible number p− 1 and the number 𝑠 ·𝑚 of variables to be

determined by Theorem 5.2. In order not to override the weak con-

straints, the normalized difference is scaled by the smallest weight

of the weak constraints. As a result, the solution of the ILP will be as

close as possible to the random choice 𝑟 𝑖
𝑙
, which allows us to sample

a large diversity of solutions satisfying all strong constraints, while

optimizing the weak ones.

Given such a set of solutions, any application specific selection

may be exercised. Options are uniformity metrics that cannot be

expressed as generator matrix properties such as maximized mini-

mum distance [Grünschloß et al. 2008], spectral analysis [Pilleboue

et al. 2015], or Optimal Transport [Paulin et al. 2020].

For the example of our rendering application in Section 7.1, we

generate 64 sets of matrices and select the best candidate with re-

spect to lowest 𝐿2 discrepancy. Usually, the quality of the generated

matrices exposes low variance as can be seen Figure 6-top.

6 THE MATBUILDER SOLVER

The input to the MatBuilder program is a text file that specifies the

constraints imposed on the desired point set as introduced in the

ACM Trans. Graph., Vol. 41, No. 4, Article 84. Publication date: July 2022.

David Coeurjolly

David Coeurjolly



MatBuilder: Mastering Sampling Uniformity Over Projections • 84:7

next section. The solver returns the 𝑠 generator matrices𝐶𝑖 ∈ F𝑚×𝑚
p

that are used to generate up to p𝑚 samples in [0, 1)𝑠 according

to Equation (2). The performance of the algorithm is explored in

Section 6.2.

6.1 Constraint Specification Language

The header of the constraint text file specifies the dimension 𝑠 , the

finite field Fp, and the number of uniformly distributed points p𝑚

to generate:

s=<dimension s of point set >

p=<base p>

m=<matrix dimension m>

Hard constraints on selected dimensions are added using the key-

words

net <i_1 > <i_2 > ... <i_s '> #(0,m,s')-net constraint

where the dimension 𝑠′ amounts to the number of dimensions enu-

merated after the keyword and

stratified <i_1 > <i_2 > ... <i_s '>

By default, the net and stratified constraints are enforced for

submatrices, i.e. all𝑚′ < 𝑚, which allows for progressive sampling

with the selected constraints guaranteed. As for example, it does

not make sense to check the stratification for less than p2 points in
dimension 𝑠 = 2, using the from and to keywords, constraints can
be restricted to sample indices between p𝑚1

and p𝑚2
:

from <m_1 > to <m_2 > net <i_1 > <i_2 > ... <i_s '>

from <m'> stratified <i_1 > <i_2 > ... <i_s '>

We have added a modifier to the net keyword, denoted u<m’>
for 0 ≤ 𝑚′ < 𝑚 to define relaxed versions of the net property:

we only keep constraints that rely on an 𝑀𝐾 matrix (see design

constraint 2) with a maximum difference of𝑚′
between the number

of rows taken from the𝐶𝑖 . This way u0 corresponds to the Property
A of [Sobol’ 1967] (contiguous blocks of p𝑠 samples are stratified),

u1 corresponds to design constraint 1, u<m> would correspond to

the original net constraint (see Figure 3). This modifier allows for

a control of both the positively correlated uniformity strength and

computational cost of the problem. The efficiency of different values

𝑚′
with respect to discrepancy is shown in Figure 6.

When hard constraints cannot be satisfied, the weak keyword

allows one to attach a weight resulting in a weak constraint:

weak <w> from <m_1 > to <m_2 > net <i_1 > <i_2 > ... <i_s '>

weak <w> from <m'> stratified <i_1 > <i_2 > ... <i_s '>

6.2 Numerical Evidence

To evaluate the performances of the MatBuilder program, we con-

sider several generic scenarios: first, a low discrepancy sequence in

base 3 with up to 3
10

samples in dimension 8, with as low discrep-

ancy as possible for the full dimension (net):

#Generic -full -space -LDS

s=8

p=3

m=10

weak 1 net 0 1 2 3 4 5 6 7

Solutions to this profile will be as close as possible to (0, 8)-
sequences up to 3

10
samples (note that exact (0, 𝑠)−sequences do

not exist for 𝑠 > p in base p [Niederreiter 1992]).
Second, we consider a perfect projective profile in dimension 6,

where each consecutive pair of dimensions is a (0, 2)−sequences up
to 3

10
in base 3, and all remaining pairs must be as close as possible

to a generalized stratification (see Figure 7 for a comparison to the

Sobol’ sequence, and the net obtained by LatNetBuilder [L’Ecuyer

and Munger 2016], when optimizing the same pairs of projection):

#Generic -proj -LDS

s=6

p=3

m=10

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

weak 1 net 0 2

weak 1 net 0 3

weak 1 net 0 4

weak 1 net 0 5

weak 1 net 1 3

weak 1 net 1 4

weak 1 net 1 5

weak 1 net 2 4

weak 1 net 2 5

weak 1 net 3 5

Third, we take a look at an Orthogonal Array profile in dimension

9: we search for a sequential sampler in base 3 with OA strength 3

(each triplet of dimension are stratified starting from 3
3
samples),

and a final weak stratification constraint in 9 dimensions:

#Generic -OA

s=9

p=3

m=10

from 3 stratified 0 1 2

from 3 stratified 1 2 3

from 3 stratified 2 3 4

from 3 stratified 3 4 5

from 3 stratified 4 5 6

from 3 stratified 5 6 7

from 3 stratified 6 7 8

from 5 weak 1 stratified 0 1 2 3 4 5 6 7 8

Finally, a more complex scenario combines stratified and net
properties in dimension 10 for p = 3:

#Mixed

s=10

p=3

m=10

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

from 3 stratified 0 1 2

from 4 stratified 1 2 3
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from 3 stratified 2 3 4

from 4 stratified 3 4 5

from 4 to 6 stratified 0 1 2 3 4

from 4 to 6 stratified 1 2 3 4 5

In Figure 5, we evaluate the performance of the solver for all

profiles as 𝑚 increases (2 x Intel(R) Xeon(R) CPU E5-2650 v2 @

2.60GHz, 32 cores, 64Gbmemory, the solver has been given a timeout

of 120 seconds per solution). In less than 13 minutes, the solver

outputs the generator matrices for all profiles. Note that for the

mixed problem, the solver has to backtrack many times for𝑚 ≤ 4

before being able to complete the matrices. For the generic-OA and
the mixed profiles, the largest the integer linear programs to solve

has 321 rows, 371 columns, and 1426 nonzero entries (resp. 117×228

with 713 nonzero entries), which is a relatively small problem. The

generic-full-space-LDS profile induces larger problems as 𝑚

increases (see Figure 5). The problem size is not strictly monotonous

in𝑚, but increases with the matrix size. For this profile, 12871 out of

19448 weak constraints have been satisfied. For the generic-OA, all
weak constraints (9/9) have been satisfied. Note that once matrices

have been produced our sampler performs with the same efficiency

as Halton or Sobol’ sequences as they rely on the same kind of

matrix vector multiplication.

To evaluate the quality of the MatBuilder outputs, we compare

the samples generated by the generic-LDS profile to a random uni-

form sampler and a Sobol’ sampler [Sobol’ 1967] in base 2, using

the 𝐿2 discrepancy. We have considered 64 realizations of the sam-

plers, i.e. 64 runs of the solver for the generic-full-space-LDS
profile). As illustrated in Figure 6-(top), we generate samples with a

discrepancy comparable to the classic Sobol’ sequence with Owen

scrambling, while preserving the (0, 2)−sequence property on each

pair of dimensions (contrary to Sobol’). Note that our solver gen-

erates randomized solutions with very low variance with respect

to the 𝐿2 discrepancy. In Figure 6-(bottom), we evaluate the impact

of the u<m’> modifier on the net property: we have considered in-

creasing modifier values {u0, u1, u2, u3, u4, u5, u6 ,u7} and evaluate

the associated discrepancy. When relaxing the constraints using

a u<m’> modifier, problems are easier to solve (see the timings in

Figure 5), but it comes with a trade-off between the efficiency and

the quality of the produced generator matrices.

In the supplementary material (Section 1), we further eval-

uate the impact of timeout constraints and overall quality of the

matrices. We also experiment with various prime bases for the

Generic-full-space-LDS profile showing both the efficiency of

the solver and the uniformity quality of the samples (Section 2).

7 APPLICATIONS

We demonstrate the advantages of samplers generated from appli-

cation specific constraints to master uniformity over projections for

path tracing, texture exploration, and optimal control.

7.1 Path Tracing

In rendering, the path space exposes a clear nested structure: each

high-dimensional light transport path is built from low-dimensional

events: sampling a pixel footprint (2D), sampling the lens aperture

(2D), sampling the time (1D), sampling a point on a light source
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Fig. 5. Performance: On the top we show the timings of the MatBuilder

solver as a function of thematrix size𝑚. For the mixed profile, the plots show
several backtracks for small𝑚 before being able to expand the matrices

(u4 and u7 have the same timings). At the bottom, the size of the reduced

integer linear programs are shown during execution (number of rows and

number of nonzero entries) for the generic-full-space-LDS profile (most

difficult one in our tests). For this profile, up to 60 calls to the internal integer

linear program simplification procedure have been performed.

(3D, usually 1D to select a light source and another 2D to sample

a point on this light source), sampling a direction scattered from a

material (3D, usually 1D to select a layer and another 2D to sample

a direction from this layer), and so on. Previous work [Kollig and

Keller 2002; Schlick 1991] has composited high-dimensional path

space samples from low-dimensional samplers connected by some

form of randomization.

We design a path-tracing profile PT-Profile to leverage perfect

low dimensional stratification and good stratification over increas-

ing dimensions to replicate the path space structure:

#PT-Profile

p=3

s=6

m=12

net 0 1

net 1 2

net 2 3

net 3 4

net 4 5

weak 1 net u4 0 1 2
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Fig. 6. Discrepancy test for the generic-full-space-LDS profile: At
the top, we compare the generalized 𝐿2 discrepancy the solver outputs to

the Sobol’ sampler in base 2 as well as random sampling, jittered sampling,

a Rank-1 lattice [Keller 2004] with generators obtained from [L’Ecuyer and

Munger 2016], and Orthogonal Arrays (CMJND) [Jarosz et al. 2019]. At the

bottom, we evaluate the impact of the u<m’> modifiers on the discrepancy:

the higher u, the better the discrepancy as compared to Sobol’, of course at

the cost of higher timings, see Figure 5).

weak 1 net u4 1 2 3

weak 1 net u4 2 3 4

weak 1 net u4 3 4 5

weak 1 net u2 0 1 2 3

weak 1 net u2 1 2 3 4

weak 1 net u2 2 3 4 5

weak 1 net u2 0 1 2 3 4

weak 1 net u2 1 2 3 4 5

weak 1 net u4 0 1 2 3 4 5

We compare our profile to a commonly used randomization of

Sobol’01 (ZeroTwo [Pharr et al. 2016]) with perfect 2D dyadic stratifi-

cation, to the Sobol’ sequence with Owen scrambling, and Cascaded

Sobol’ points [Paulin et al. 2021]. PT-Profileworks well for smooth

components such as depth of field, motion blur, and direct lighting

as showcased in Figure 8. A base 𝑝 = 3 sampler behaves differently

when selecting 2 light sources or 3, as an odd number of samples

cannot be split equally into two. These differences are further illus-

trated in the first three rows of the same Figure 8 with 2, 3, and 5

light sources. Two light sources have benefit from common base 2

samplers, whereas 5 light sources are a more difficult case for all

samplers. The last row depicts a more typical scene setup with 3

light sources.

The performance of the samplers generated by MatBuilder is

quite remarkable: It widely matches and outperforms the classic

constructions, although it is automatically generated by constraints

only.

Correlating the base with the number of light sources leads to

an interesting improvement in quality as shown in figure 8. This

stems from the fact that the partitioning of points that happens

when selecting a light source happens along the border of strata

from the net property and thus guarantees the high uniformity of

samples used on each different light source. When there is no way

to reach such a correlation, the remedy is to use one area sampler

per light source in combination with one sampler constraint to the

paths [Kollig and Keller 2002].

The supplementary material includes many more renderings

and more comparisons.

7.2 Exploring Parametric Materials

In this scenario, the objective is to sample the space of a parametric

material with explicit correlation between some parameters. This is

an initial step in (semi-)procedural texture exploration or texture

space analysis [Guehl et al. 2020; Lasram et al. 2012a,b]. As an

example, we consider a procedural texture with seven dimensions

to define brick pattern, window brace, and lintel. The structure of

the parameters leads to the following profile:

s=7

p=2

m=5

# (Brick -Amount -X, Brick -Amount -Y)

net 0 1

# (Window -Brace -Amount -X, Window -Brace -Width -X,

# Window -Brace -Amount -Y, Window -Brace -Width -Y)

weak 1 net 3 4 5 6

# Overall uniformity , including Brick -Lintel -Width

weak 2 net 0 1 2 3 4 5 6

The constraints ensure the (0,𝑚, 2)-net stratification of the first

pair of dimensions, a weak 4-dimensional net property of the last

four dimensions, and an overall net property across all seven dimen-

sions. Figure 9 illustrates the first 16 realizations as compared to a

uniform random sampling of each parameter, exhibiting a more uni-

form exploration of the parameter space. For this profile, matrices

are generated in 3.7 seconds by our MatBuilder software.

7.3 Optimal Control

Reinforcement learning can be used to control a robot, a virtual

character, or a dynamic system. This amounts to discretizing the

states of the system as well as possible actions applied to it, defining

a reward for achieving particular states, and iteratively solving

Bellman equation through value iterations. This results in a value

function and optimal control policy at each state, which can then be

interpolated during the simulation in real-time to control the system.

We apply the technique described by Coros et al. [2009] to control a

simple inverted pendulum on a chart to reach an upward orientation,

a specific position, and a near zero velocity and angular velocity.

The state space is 4-dimensional (position 𝑥 , velocity ¤𝑥 , angle 𝜃 ,
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(d) discrepancy of 2D projections

Fig. 7. Projective LDS profile: (𝑎) Projection of the first 2048 Sobol’ samples in dimension 6; (𝑏 ) projections obtained from optimized LatNetBuilder

matrices using a projective profile (see Appendix B); (𝑐 ) the first 37 = 2187 samples for the matrices obtained with the generic-proj-LDS profile exhibiting

better uniformity in the 2D projections. In (𝑑 ) , we quantify our benefit through a 2D discrepancy comparison for all projections. The lower is discrepancy, the

better is uniformity.

and angular velocity
¤𝜃 ), and the action space is 1-dimensional (a

horizontal force 𝑢). The action space is uniformly discretized. We

compare state-of-the-art samplings of the state space with samples

created by MatBuilder with the following profile that seeks 4-d

uniformity:

s=4

p=3

m=17

# particular stratifications were skipped due to

# lack of solutions

from 3 to 5 stratified 0 1 2 3

from 7 to 9 stratified 0 1 2 3

from 11 to 13 stratified 0 1 2 3

from 15 stratified 0 1 2 3

weak 1 net 0 1 2 3

The state-of-the-art samplers we experimented with are random

sampling, a Sobol’ sequence [Joe and Kuo 2008; Sobol’ 1967], and

a rank-1 lattice produced by LatNetBuilder [L’Ecuyer and Munger

2016]. In all cases, we bias these samples so that they follow the

same Gaussian distribution around the target state and get a finer

discretization near the solution. In practice, we used the inverse

cumulative density function of the Gaussian distribution to generate

3
12 = 531, 441 samples (or 2

19 = 524, 288 for Sobol in base 2), plus an

additional sample placed at the exact desired state. To compare these

discretizations, we simulate 200 trajectories for 2000 time steps each

and compute the average number of time steps 𝛼 the pendulum is

within an area of non-zero reward (i.e., within the area considered

as success), the number of trajectories 𝛽 which succeed at least in

one time step to get a non-zero reward, and the average value 𝛾 of

the value function (higher values mean that more time is spent near

the desired state). For all these metrics, higher values indicate better

behavior. For our stratified sampling, 𝛼 = 170, 𝛽 = 200 and 𝛾 = 530

(the reward for achieving success is 1000, and the maximum value

of the optimized value function is near 2500). For 200 trajectories

with a single realization of a random sampling, 𝛼 = 12, 𝛽 = 141 and

𝛾 = 349. For this setup, the Sobol’ sequence yields 𝛼 = 7, 𝛽 = 44, and

𝛾 = 611 while the rank-1 lattice yields 𝛼 = 1, 𝛽 = 20,𝛾 = 189. For 200

trajectories consisting in one (different) trajectory for 200 random

sampling realizations, 𝛼 = 30, 𝛽 = 121 and 𝛾 = 594. Figure 10 shows

a (𝑥, 𝜃 ) slice of 3369 samples of our 3
12

samples within a small ( ¤𝑥, ¤𝜃 )
interval, as well as 3 representative trajectories. Clearly, the sampler

generated by MatBuilder excels.

8 DISCUSSION AND PERSPECTIVES

Our algorithm is greedy with respect to the size of matrices and

uniformity properties consider whole matrix rows at a time (and

not just the last column). Consequently, some solution may be ex-

ponentially hard to find as they may require a specific succession

of choices among a wide set of locally satisfactory ones. It is inter-

esting to search for a solution generating lines of a matrix at a time.

Furthermore, rather than using a greedy algorithm iterating integer

linear programs, one may opt for an algorithm generating matrices

one at a time through a non-linear integer program solver, which

may work better in this aspect.

The design of the objective function of our integer linear pro-

grams implies a relatively small control over the way how weak

sub-properties of net constraints are distributed. The solver may

find the most optimal solution to be satisfying many of the con-

straints for a single group of dimensions while leaving a pair of

dimensions entirely correlated. In perspective, this may be solved

using a non-linear convex objective that is only be slightly slower

to solve.

In our paper we only deal with prime Galois fields, since it relies

on modular arithmetic that can easily be translated into linear con-

straints in N0. This technique cannot be performed for powers of

prime bases as they define a specific set of arithmetic operators. To

extend prime Galois fields to power bases would require a solver

that is able to process addition and multiplication tables specific to

the individual Galois fields over prime power bases.

In our rendering section we discuss the fact that the base of the

generator matrices sometimes have a huge impact on the quality of

integration. The reason for this is that our selectors split the point

set at separations of strata considered by the net property and we
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Fig. 8. Rendering results: In 6 dimensions, the dimensions are used to sample the lens (2D), the time (1D), and the light sources (3D). For light sources, the

first dimension is used to select a light source (2, 3, or 5 light sources for rows 1, 2, and 3), the remaining 2D coordinates sample a point in the selected light

quad. In 8 dimensions, we sample the pixel (2D), the direct lighting (3D) and the indirect lighting (3D). For sampling indirect bounce directions, the first

dimension is used to select a material component, and the remaining 2D coordinates importance sample a direction. The first column shows the ground-truth

images, the second one a per pixel labelling according to the sampler (Random, ZeroTwo, Sobol’, Cascaded, and our PT-Profile) with lowest error at 243spp

for our sampler in base 3 or 256spp for others. Finally the last column presents the mean squared error (MSE) for various sample counts.
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Fig. 9. Exploring parametric texture space: the first 16 realizations of the parameter space sampling using a random sampling strategy (first row) and using

samples constraint such that the space of variations is explored more uniformly in accordance with the structure of parameters of the texture description

(second row). In this example, we can see that the brick pattern is more uniformly sampled using our approach, the Brick-Lintel-Width is sequentially
sampled in a low-discrepancy manner (values between adjacent instances are maximized). For the window brace, all possible variations in 4D are more

captured using our profile (parametric material courtesy Adobe Substance 3D Asset).
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Fig. 10. Optimal control: We perform value iterations to solve the Bellman equation for the problem of balancing an inverted pendulum on a chart, upward,

centered, with low velocity (left). We discretize the 4-dimensional state space (position 𝑥 , velocity ¤𝑥 , angle 𝜃 , and angular velocity
¤𝜃 ) and give rewards only

for vertical positions (rectangle in light gray). We display a 2-d slice (𝑥, 𝜃 ) for values of ( ¤𝑥, ¤𝜃 ) near the target state and three sample trajectories; the value

function is color coded on each sample. Middle: We use a random discretization, biased towards the target (see Section 7.3). Right: We use a stratified

sampling generated with MatBuilder, using the same bias. The space is explored much more uniformly.

thus guarantee that the points sampling each light source have an

optimal distribution. That is true for selectors that split points in

a power of p subsets of equal size. We indicated a solution of how

more attention could be given as to how to use that fact to improve

rendering.

It is noteworthy that the results achieved by the novel constraint-

based approach already are competitive or outperform classic con-

structions of low-discrepancy sequences while providing improved

sampling uniformity over projections. We are confident that the

evolving the constraint-based approach will allow for more explo-

ration and novel approaches to low-discrepancy sequences in the

future.

9 CONCLUSION

Highly uniform point sets can be tailored specific to the structure of

an application as a set of constraints that can be transformed into

an integer linear program. Solving such an integer linear program

yields a construction for samples that in specific applications have

been demonstrated to outperform classic constructions. We hence

introduced a new and powerful way for the computer-aided design

of generator matrices for digital nets and sequences.
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A PROOF OF THEOREM 5.1

Proof. Owen scrambling [Owen 1998] is a randomization tech-

nique that does not alter the structure of the elementary intervals

and hence preserves all properties of a digital net. To do so, it applies

a bijective function 𝑓𝑏0,...,𝑏𝑖−1 : Fp → Fp to digit 𝑏𝑖 of the vector

𝑏 in Equation (1). Given factors 𝑤𝑖, 𝑗 ∈ Fp, bijective functions of

the form 𝑓𝑏0,...,𝑏𝑖−1 (𝑏𝑖 ) =
∑𝑖−1
𝑗=0𝑤𝑖, 𝑗𝑏 𝑗 + 𝑏𝑖 are a realization of Owen

scrambling.

Let 𝐶 be the generator matrix of size 𝑚 that generated 𝑏 and

denote its rows by 𝐶𝑖 . Row 𝐶𝑖 encodes the digit 𝑏𝑖 . Hence one

realization of Owen scrambling is the application of the function

𝑓𝐶0,...,𝐶𝑖−1 (𝐶𝑖 ) =
∑𝑖−1
𝑗=0𝑤𝑖, 𝑗𝐶

𝑗 +𝐶𝑖 that acts on rows the same way

as 𝑓𝑏0,...,𝑏𝑖−1 acts on digits.

We apply 𝑚 such linear functions to each row of 𝐶 . By defini-

tion, Gaussian elimination can be written as such a set of linear

transformations, defining the factors 𝑤𝑖, 𝑗 . Thus for any 𝐶 we can

find a realization of Owen scrambling that transforms it into an

upper triangular matrix 𝐶′
. Since all these functions 𝑓 are bijective,

their inverse defines one realization of an Owen scrambling that

transforms 𝐶′
into 𝐶 .

It follows that all nets generated by any generator matrices can

also be generated by upper triangular matrices with an additional

scrambling step in the sense of Owen. It is therefore sufficient to

only consider triangular matrices. □

B LATNETBUILDER PROJECTIVE PROFILE

For Figure 7, we have used the following configuration for LatNet-

Builder to generate optimized matrices:

latnetbuilder -o projnet --set -type net \

--construction explicit -s 2^16 \

--dimension 6 --norm -type 1 \

--exploration -method random -CBC :100000 \

--figure -of-merit projdep:t-value \

--weights order -dependent :0:1,1 \

--multilevel true --combiner sum
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