
HAL Id: hal-03663732
https://hal.science/hal-03663732

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of inverse-probability-of-treatment
weighting to estimate the effect of daytime sleepiness in

obstructive sleep apnea patients
François Bettega, Clémence Leyrat, Renaud Tamisier, Monique Mendelson,
Yves Grillet, Marc Sapène, Maria Bonsignore, Jean Louis Pepin, Michael

Kattan, Sébastien Bailly

To cite this version:
François Bettega, Clémence Leyrat, Renaud Tamisier, Monique Mendelson, Yves Grillet, et al..
Application of inverse-probability-of-treatment weighting to estimate the effect of daytime sleepi-
ness in obstructive sleep apnea patients. Annals of the American Thoracic Society, 2022, 19 (9),
�10.1513/AnnalsATS.202109-1036OC�. �hal-03663732�

https://hal.science/hal-03663732
https://hal.archives-ouvertes.fr


Title

Application of inverse-probability-of-treatment weighting to estimate the effect of daytime sleepi-

ness in obstructive sleep apnea patients

short title

Causal inference methods in sleep apnea

Author

François Bettega1, Clémence Leyrat2, Renaud Tamisier1, Monique Mendelson1,Yves Grillet3,

Marc Sapène4, Maria R Bonsignore5, Jean Louis Pépin1, Michael W Kattan6, Sébastien Bailly1
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Glossaire

ADR: Adverse Drug Reactions

AHI: Apnea-Hypopnea index

ATE: Average Treatment Effect

ESS: Epworth Sleepiness Scale

IPW-RA: Inverse Propensity Weighted Regression Adjustment

BMI: Body Mass Index

CI: Confidence Interval

CPAP: Continuous Positive Airway Pressure

IPTW: Inverse Probability of Treatment Weighting

IQR: Inter Quartile Range

OSA: Obstructive Sleep Apnea

OSFP: Observatoire Sommeil de la Fédération de Pneumologie

RCT: Randomised Controlled Trial
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Abstract

Introduction : Continuous positive airway pressure (CPAP), the first line therapy for obstruc-

tive sleep apnea (OSA), is considered effective in reducing daytime sleepiness. Its efficacy relies on

adequate adherence, often defined as >4 hours per night. However, this binary threshold may limit

our understanding of the causal effect of CPAP adherence and daytime sleepiness and multilevel

approach for CPAP adherence can be more appropriate.

Objective : In this study, we show how two causal inference methods can be applied on

observational data for the estimation of the effect of different ranges of CPAP adherence on daytime

sleepiness measured by the Epworth sleepiness score (ESS) .

Methods : Data were collected from a large prospective observational French cohort for OSA

patients. Four groups of CPAP adherence were considered (0-4; 4-6; 6-7 and 7-10 hours per night).

Multivariable regression, inverse-probability-of-treatment weighting (IPTW) and IPTW with re-

gression adjustment (IPTW-RA) were used to assess the impact of CPAP adherence level on day-

time sleepiness.

Results : In this study, 9,244 OSA patients treated by CPAP were included. The mean initial

ESS was 11 (+−5.2) with a mean reduction of 4 points (+−5.1). Overall, there was an evidence of

the causal effect of CPAP adherence on daytime sleepiness which was mainly observed between

the lower CPAP adherence group (0-4h) compared to the higher CPAP adherence group (7-10h).

There are no differences by considering higher level of CPAP adherence (>4h).

Conclusion : We showed that IPTW and IPTW-RA can be easily implemented to answer

questions regarding causal effects using observational data when randomized trials cannot be con-

ducted. Both methods give a direct causal interpretation at the population-level and allow the

assessment of the appropriate consideration of measured confounders.

Keywords

Causal inference; inverse probability weight, daytime sleepiness, sleep apnea
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Introduction

Obstructive sleep apnea (OSA) is a major health concern with multi-organ consequences and

significant economic cost and social burdens.1 OSA is defined by recurrent complete or partial ob-

struction of the upper airway during sleep. It has been estimated that more than one billion adults

aged 30–69 years (men and women) worldwide suffer from moderate to severe OSA.2 Obstructive

sleep apnea frequently co-occurs with comorbidities such as obesity, diabetes, hypertension or other

cardiovascular and metabolic diseases and has a major impact on quality of life.1,3–5 Continuous

positive airway pressure (CPAP), the first-line therapy for OSA, is highly effective in terms of

symptom improvement, even in minimally symptomatic patients who initially complain of fatigue

and non-restorative sleep.6 Previous studies have demonstrated that adequate adherence to CPAP

treatment is the pre-requisite for reducing symptoms. CPAP also has an effect on quality of life by

improving daytime sleepiness. Indeed, CPAP use is associated with a significant decrease in the Ep-

worth Sleepiness Score (ESS)7 and a majority of initially sleepy patients (with ESS>10) experience

a significant improvement in their ESS after CPAP initiation.8 The effect size of the response and

the dose-response relationship have mainly been established by meta-analyses summarizing existing

randomized clinical trials.9,10

Randomized Controlled Trials (RCT) are considered as the gold standard for causal inference

in medical research, providing the highest level of evidence. Unfortunately, RCTs are not always

feasible for ethical, logistical or financial reasons.11,12 Furthermore, RCTs often have strict inclusion

criteria, and typically include younger patients with few or no comorbidities, thus limiting the

generalizability of the findings.13 Current data emerging from RCTs might not represent the true

impact of CPAP for reducing subjective sleepiness in unbiased real life populations.14–16

When RCTs cannot be implemented or when real-world evidence is needed, observational stud-

ies, such as cohorts or registries, contain a wealth of data for causal inference. However, unlike

RCTs, observational studies are prone to confounding bias due to the absence of randomization,

meaning that treatment groups might be unbalanced. Therefore, specific statistical methods have

been proposed to address this issue in order to target the causal nature of the relationship between
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multilevel exposures and outcomes. There are several ways to account for the effect of measured

confounding factors. In medical research, the most standard approaches are multivariable regression

and standardization for the estimation of marginal effects. In medical research, the most standard

approaches are multivariable regression and standardization for the estimation of marginal effects.

Propensity score (PS) approaches, are a first methodological way to replicate covariate balance

associated with randomized trials (with the difference that PSs only achieve balance on measured

variables) and minimize selection bias. This was explored by Keenan et al.17 for balance CPAP

adherence. However, PS approaches result in a decrease in the overall sample size. Finally, the

inverse probability of treatment weighting (IPTW) estimator developed within the counterfactual

theory has been increasingly used.18

When a study population is large enough, propensity score based methods, such as IPTW, and

multivariable regression lead to similar results.19 Unlike multivariable regression, IPTW allows the

comparison and evaluation of covariate balance after weighting and leads to directly interpretable

marginal effects (and not conditional effects). Most of the IPTW theory has been developed for

binary exposures and its implementation for multilevel exposures has been given little attention,

which can explain its limited use in practice.20

In the present study, we aim to describe two weighted methods for the estimation of causal effects

– namely inverse-probability-treatment weighting (IPTW) and IPTW with regression adjustment

(IPW-RA) and to illustrate their implementation and interpretation for the analysis of the causal

effect of CPAP adherence on the change in ESS from baseline in a large national prospective cohort.
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Material and methods

Patients with a diagnosis of sleep apnea by polygraphy or polysomnography, older than 18

years old and treated by CPAP were included from the ”Observatoire Sommeil de la Fédération de

Pneumologie” (OSFP) database, a National French Registry for sleep apnea. Patients with missing

values for CPAP adherence or ESS either at the diagnostic visit or at the first follow up visit were

excluded from our study.

We used a multiple imputation by chained equations (MICE) method to replace missing data

values in the dataset under certain assumptions about the data missingness mechanism (i.e. assum-

ing that the data are missing at random ). Details on imputation are available in supplementary

materials 1, number of missing value are presented in supplementary table S1.

The exposure, i.e. average objective adherence, came from CPAP devices download during the

first follow-up visit by the pulmonologist. In order to evaluate adherence as a multilevel treatment,

patients were divided into four equally sized adherence groups based on average nightly CPAP

adherence as follows: i. CPAP use between 0 and 4 hours by night, ii. between 4 and 6 hours by

night, iii. between 6 and 7 hours by night and iv. between 7 and 10 hours by night. The last group

was used as the reference.

The outcome, daytime sleepiness was assessed using the self-administered ESS questionnaire

which leads to a score between 0 and 24, with 24 being the maximum drowsiness. The patient’s

reported Epworth score was considered at two time points: 1) at the diagnostic visit and 2) at the

first follow-up visit.

In order to assess the impact of CPAP adherence on the Epworth score, all potential confounders

must be accounted for (i.e. all variables that can be related with Epworth score and CPAP adher-

ence must be considered). For example, among OSA patients, younger or very elderly patients or

female much more likely to present lower adherence to CPAP.21 Thus, age, obesity and sex have

an impact on the outcome (daytime sleepiness) and therefore must be considered as confounding

factors, otherwise the estimate of the causal effect between the exposure and response variables

would be biased. To ensure that these potential confounding factors are accounted for, the IPTW
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estimator can be applied as explained in the next part of the manuscript. Moreover, the Inverse

Propensity Weighting with Regression Adjustment (IPW-RA) can be used to increase the robust-

ness of standard IPTW to a mis-specification of the weight model. This method is a double robust

estimator of average treatment effect.22 In both methods, two steps are considered: 1) a weight is

computed for each patient and 2) these weights are subsequently used in a regression model to pre-

dict the average treatment effect (ATE) on the Epworth score. The ATE is defined as the average

difference between the potential outcomes for every individual in the population. It is the contrast

between two hypothetical worlds. When the exposure has multiple levels, there are as many ATEs

as possible contrasts.

Counterfactual theory

Contrary to traditional statistics which aim to assess associations between an exposure and

an outcome, causal inference refers to specific assumptions and study design to be able to draw

causal conclusions from the data.23 In the potential outcome framework (the framework developed

for causal inference), the potential outcome refers to what would have happened if a patient had

received a treatment.24 In order to evaluate the effect of several treatments, it is necessary to

establish the effect of each treatment on each patient. There are as many potential outcomes as

there are treatments. However, the observation of each potential outcome is nearly impossible

because each patient usually receives only one treatment.

One of the main problems with observational data is the fact that the exposure is not indepen-

dent of the other variables. In order to address this issue, the IPTW is based on the creation of a

pseudo-population in which the exposure variable (i.e. CPAP adherence) becomes independent of

the potential outcomes given the covariates.

The pseudo-population is the result of assigning a weight to each participant that is, informally,

proportional to the participant’s probability of receiving his/her own exposure.
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Assumptions

In order to use a pseudo-population to measure the effect of CPAP adherence on daytime sleepi-

ness without bias, we need to verify four assumptions to identify the causal effect: 1) consistency

2) non-interference, 3) conditional exchangeability, 4) positivity, and one assumption about the

estimation of the causal effect: no model mis-specification. The four assumptions are summarized

in Table 1.

The consistency assumption is often stated such that an individual’s potential outcome under

his/her observed exposure is exactly the same outcome as it would have been if they received

his/her observed intervention via the hypothetical intervention.18,25 This assumes that observing

is the same as intervening. The treatment needs to be precisely defined to ensure that observed

treatment and hypothetical treatment use in causal framework lead to the same outcomes for a

given patient.

Non-interference assumption states that an individual’s treatment has no influence on other

individuals potential outcomes An example of a violation of this assumption is to consider vaccines

because vaccinating one individual may affect the disease status of other individuals.

Conditional exchangeability refers to the assumption of no unmeasured confounders. In causal

inference, all joint predictors of exposure and outcomes must be accounted for. Thus, all variables

related with treatments and outcomes, (i.e. in this case all variables linked with CPAP adherence

and daytime sleepiness variations) have to be included. In our study, this is illustrated by a causal

directed acyclic graphs (Figure ??.26 Information on the design of the DAG and the links between

the variables are provided in Supplementary Material 2. This assumption is empirically untestable

and can only be verified through expert knowledge.27 However, we can assume that most important

confounders have been properly included in the OSFP database due to expert medical knowledge

and the selection of variables.

Positivity states that given their own characteristics, every individual has a non-zero probability

of receiving any exposure level.27 For example, the existence of formal contraindications to one of

the treatments evaluated among the observed population is a violation of the positivity assump-
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tion because the patients with the contraindication could not be exposed to the contraindicated

treatment.

In addition to these fours assumptions, we need a correct model specification i.e. the unknown

probabilities for a patient to belong to each treatment group knowing all confounders is modelled

through a correctly specified model. For instance, modelling an exponential relationship using a

linear model is a violation of this assumption. This assumption also states that all confounding

variables and their real functional forms are used to fit the model. Double robust estimators such

as IPW-RA can help address this assumption.

Weight estimation and balancing properties

In our study, we predicted for the patient i the probability of belonging to the adherence group

noted A given their confounding factors. We used age and BMI for illustrative purpose in this

example.

P (Ai = ai|AGEi = agei, BMIi = bmii, ...)

Then, each individual was weighted according to the inverse of the probability of receiving the

treatment they actually received (i.e. their adherence group). The probability of each individual of

belonging to their treatment group were computed using a multinomial logistic regression:

IPWi =
1

P (Ai = ai|AGEi = agei, BMIi = bmii, ...)

An example of weight assessment is illustrated in Fig. 2. In order to minimise the bias-variance

compromise, a weight truncation was performed. All weights that exceed a specified threshold were

each set to that threshold. Several thresholds for weight truncation were investigated from 1-99th

to 25-75th percentiles and the threshold which offer the best bias-variance ratio was chosen.

To create a model able to estimate the causal effect, we needed to select a set of variables. We

will use the recommendations of Lefebvre et al. on model specification.28 These authors recom-

mended the inclusion of all risk factors (confounders or not) and avoid including pure predictors of

exposure, also known as instrumental variables, in the treatment model. According to these rules,
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for this study, candidate variables are all variables which are not instrumental variables, selected by

using univariable linear regressions for the outcome, with less than 60% of missing values, without

colinearity. To control for the type I error rate, selection is carried out on a subgroup consisting of

20 % patients stratified by adherence group. These patients are used only to choose the variables

and were removed for weight and final models. To ensure that no major confounding factors have

been overlooked by our procedure, the choice of variables to be included and their relationship to

each other was made in collaboration with OSA clinical experts (RT, JLP and MB).

Four approaches were implemented and compared for the estimation of the outcome: 1) mean

comparison using a t-test , 2) a multivariable regression, 3) using the IPTW estimator and 4) using

the double-robust IPW-RA. The simple t-test does not account for confounding, and therefore is not

appropriate for the analysis of non-randomised studies. We report these results as a benchmark for

adjusted methods. Final results are expressed as Average Treatment Effect (ATE)(95% confidence

interval) from the reference group (7-10 hours).

For IPTW the final weighted model was adjusted for the exposure. For the IPW-RA, the

final weighted model was adjusted for the exposure and all the confounders included in the weight

model, to account for potential remaining imbalances in confounders between groups. IPW-RA

combines the strengths of IPTW and multivariable regression: confounders are adjusted for in a

multiple regression model, also weighted by the inverse of the propensity score. By doing so, the

causal effect estimate will be unbiased if either the weight model or the outcome model is correctly

specified. The weights are the IPTW weights, and the covariates in the outcome model can be

any covariate still unbalanced despite the weighting. A simple IPW-RA allows the estimation of a

conditional causal effect, but it is possible to marginalize on the distribution of the covariates to

estimate a marginal effect (the ATE).

As model based standard errors are incorrect because they do not account for the uncertainty

in PS estimation, we chose to bootstrap weight and treatment effect estimations. This allowed

us to estimate confidence intervals based on percentiles for the treatment effect without making

assumptions about the distribution of the parameters. We evaluated the possibility of integrating

missing value imputation into the bootstrap, but this procedure was time consuming and increased
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the time needed far too much. To keep a reasonable execution time, we therefore chose to impute

the missing values before the bootstrap.29

We performed a complementary analysis using the same model and method with morning fatigue

as outcome. This analysis is presented in the supplementary material 3.

All statistical analyses were performed using R Statistical Software (version 4.0.2).The tests

were performed at a 5% significant level.
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Results

Population

From the OSFP database, 9,244 patients were included in the study.

The included patients were mainly men (n = 6,492, 70.2 %) with a mean age of 57 years

(standard deviation +−12.4) and mean body mass index (BMI) was 32 kg/m2 (+−6.9). The mean

apnea hypopnea index (AHI) was 41 events/hour (+−20.4) and 6,510 (70 %) of patients had severe

OSA.

The mean observance was 05 hours 35 min by night and patients were divided in four groups

according to their average CPAP use by night as follows: 1) CPAP use between 00 hours and 04

hours, n = 1,977 (21.4 %), 2) CPAP use between 04 hours and 06 hours, n = 3,519 (38.1 %) CPAP

use between 06 hours and 07 hours, n = 2,023 (21.9%) and 4) CPAP use between 07 hours and 10

hours, n = 1,725 (18.7 %). For more information, differences across all variables and subgroups are

presented in Table 3.

Overall, the unadjusted mean initial ESS was 11 (+−5.2). There was a mean reduction in the

Epworth score of 4 (+−5.1) at the follow-up visit under CPAP treatment. This reduction was different

according to the CPAP adherence groups: the smallest difference was observed in the 0-4 hours

adherence group with a mean Epworth score which varied from 11 (+−5.3) to 8 (+−4.7) resulting in

a difference of 3 (+−5) which was lower compared to the three other adherence groups. In the 4-6

h adherence group, the mean reduction was 5 (+−5.2) and was similar to the higher level of CPAP

adherence groups (6-7 hours and 7-10 hours adherence groups) with a mean reduction of 5 (+−5.2)

(Figure 3).

Comparison of statistical approaches

First, we performed a weighted regression analysis using the IPTW estimator. The positivity

assumption was verified by making sure that the mean of the maximum IPTW weights obtained

by bootstrap was reasonable. In order to investigate the presence of outliers, we verified the

distribution of the weights by adherence group (Table 2). The mean of truncated weights was 4 (4;
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4) (supplementary table S2 ).

After weighting, the standardized mean differences of all variables for each adherence group

showed no imbalance on confounders (Figure 4). Adjustment in the final model was performed to

correct for potential remaining imbalance in confounders.

The coefficients of the multinomial logistic regression are available in supplementary table S3.

The second modelling approach was based on the double robust approach, IPW-RA. Coefficients

of the IPW-RA are available in supplementary table S4.

Confounders selected are the following variables at diagnosis : age (years), sotwobody mass

index (kg/m2), neck circumference (cm), sleepiness at the wheel, morning tiredness, morning

headaches,libido disorder, dysfunction, night sweating, daytime sleepiness measured by ESS scale,

fatigue measured by Pichot’s scale, depression measured by Pichot’s depression scale, apnea hypop-

nea index, sex, , restless legs syndrome, morning tiredness, morning headaches, night sweating and

fatigue measured by Pichot’s scale.

When the adherence groups are compared with an unweighted mean difference, patients in 0-4

hours adherence group, have an average Epworth score of 2 (95% bootstrap confidence intervals

based on percentiles 1.9; 2.1) points higher than the reference group. Patients in 4-6 hours adherence

group, have an average Epworth score of 0.8 (0.7; 0.9) points higher than patients in 7-10 hours

adherence group. Patients with a 6-7 hours adherence group, have an average Epworth score

of 0.2 (0; 0.3) point higher than patients in 7-10 hours adherence group, there is an evidence

of a difference between groups (overall CPAP adherence effect, p<0.001). By using multivariable

regression, IPTW or IPW-RA estimators, the results are attenuated as compared to the unadjusted

analysis but similar to each other: patients in 0-4 hours adherence group, have an average Epworth

score of 1.1 points (0.8; 1.3) higher than patients in 7-10 hours adherence group with IPTW. Patients

in 4-6 hours adherence group, have an average Epworth score of 0.5 points (0.3; 0.7) higher than

patients in 7-10 hours adherence group. Patients with a 6-7 hours adherence group, have an average

Epworth score of 0.2 points (0; 0.5) higher than patients in 7-10 hours adherence group. (results

for the four methods are presented in Figure 5). IPTW-RA was the most efficient approach, leader

to narrower 95% confidence intervals.
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Discussion

In this study, we illustrated the application of an inverse probability of treatment weighting

estimator by assessing the impact of CPAP adherence levels on ESS in a large population (n =

9,244) of CPAP-treated patients. Our results suggested evidence of a difference in the Epworth score

at the follow-up visit between low adherence groups and the high adherence group (>7h). However,

there was no evidence of a difference for patients with high CPAP adherence level (6-7h vs. 7-10h

groups). This result is consistent with other studies.30,31Further applications should be performed

to investigate the use of such methods on other symptoms and signs of daytime sleepiness.

The results presented in Figure ??

By comparing results of IPTW and IPW-RA, conclusions are similar, however, the use of a

double-robust IPW-RA estimator allows an increase in confidence in the consideration of possible

risk of model misspecification.

However, as in any observational study, unmeasured confounders cannot be ruled out, but it

cannot be checked from the data.

From a methodological point of view, the present study highlights the benefits of applying IPW

methods to estimate the effect of a multilevel exposure in assessing marginal causal effects. Under

a set of assumptions, it is possible to estimate the causal effect of an exposure on an outcome

with well-designed observational studies, which can be used as an alternative to randomized clinical

trials.32 In this study the ATE is the most relevant estimand to understand the potential benefits if

all the patients were adherent. However, the weights can be easily modified for the estimation of the

Average Treatment effect on the Treated. IPTW and IPW-RA are examples of modern statistical

methods developed over the past decades which have improved health research by moving the

interpretation from associational to causal.33

In order to limit the risk of bias when using IPTW, it is important to assess the distribution of

the weights and to consider whether the functional form of the weight model is correctly specified. In

addition, a careful investigation of the plausibility of the assumptions required for causal inference

is needed. This implies extensive discussion between the statistician and clinician to be vigilant
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with regards to variable selection and model validation. Moreover, if IPW estimators are now well-

known and extensively used, mainly for binary exposure, application of such methods need to be

carefully performed and the reporting of these methods in clinical research should be improved.34

Unlike for binary exposures, a few published studies35,36 have applied IPW to multilevel expo-

sure, in order to assess the marginal causal effect on an outcome. However, multilevel exposure

are of great relevance in the medical field as many treatments have several levels or need to be

compared to other treatments or combination of treatments.

We proposed a method to consider CPAP adherence as a multilevel variable, in contrast to a

binary one and we have illustrated the application of IPW method to reduce confounding bias.

Further methodological research for causal inference applied to multivalued exposures could be

proposed. Indeed it could be of interest to compare these approaches to those based on machine

learning algorithms to calculate weights, such as the Gradient boosting algorithms that have already

been used for this purpose.37 Beyond the trimming we used, which relies on the choice of an

arbitrary cutoff, other methods, such as the overlap weighting methods,38 have been developed to

minimize the risk of extreme propensity score.

In conclusion, IPW for multi-level exposures is a promising approach. This study showed that

patients with different levels of CPAP adherence experienced a different reduction in their daytime

sleepiness measured by the Epworth score. We also showed that patients who had high CPAP

adherence experienced a greater reduction in daytime sleepiness than non-adherent patients at

their first follow-up visit.
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List of tables

Table 1: Table of causality assumptions

Assumptions Definitions Can it be tested from the data?

Consistency

The outcome of an individual under
their observed exposure is the same
as their potential outcome had they
received their observed intervention
via the hypothetical intervention

No

Non-interference

The treatment received by an
individual has no influence on the
potential outcomes of the other

individuals

No

Conditional
exchangeability

Given the measured variables, the
exposure and potential outcomes are
independent, i.e. all joint predictors

of exposure and outcomes are
accounted for

No, but the investigation of the
balance between exposure groups

after weighting may give an
indication of the plausibility of this

assumption for the measured
variables (but not the unmeasured

variables)

Positivity

Given their own characteristics,
every individual has a non-zero
probability of receiving any

exposure level.

Yes, by investigating the range of
the estimated propensity score

values

22



Table 2: Distribution of weights

Adherence group Mean Minimum Maximum

0-4 h 4.7(4.5; 4.9) 1.5(1.2; 1.7) 20.1(13.2; 29.5)
4-6 h 2.6(2.6; 2.7) 1.8(1.7; 2.0) 5.9(4.4; 8.6)
6-7 h 4.6(4.4; 4.7) 2.5(2.2; 2.8) 13.2(10.4; 17.5)
7-10 h 5.4(5.2; 5.6) 2.3(2.0; 2.6) 20.1(14.7; 27.4)

Data are presented as mean (95% confidence interval) of bootstrap iterations
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Figure Legends

Figure 1

Figure 1: Causal directed acyclic graph

Causal directed acyclic graph for the relation between multilevel CPAP adherence and residual daytime
sleepiness under CPAP. Dotted straight arrow indicates causal relation under investigation; solid arrows
indicate known relations. CPAP: Continuous Positive Airway Pressure; OSA: Obstructive Sleep Apnea;
SES: SocioEconomic Status. Personal situation regroups: lifestyle, marital status, children
Grey background: unobserved confounders
Dotted frame: exposure; Solid frame: outcome
Symptoms at baseline : sleepiness at the wheel, morning tiredness, morning headaches, libido disorder,
night sweating, fatigue measured by Pichot’s scale and mean nocturnal SaO2
Comorbidities : depression measured by Pichot’s depression scale and restless legs syndrome.

Figure 2

Figure 2: Illustration of the estimation the inverse probability of treatment weight with a
categorical exposure

1The population may be divided into two groups according to sex (12 females and 8 males).
2 Within each group, patients are divided according to their adherence to CPAP. For each individual in each
subgroup, the probability of belonging to their actual adherence group (PCPAP |gender ; i.e., probability of
treatment given the sex) may be estimated from empirical proportions. 3 From this probability we compute
the inverse probability of treatment weight (IPTW) : 1

PCPAP |gender
.

4 We use this weighting to create a pseudo-population. In this pseudo population, individuals with a high
probability of belonging to a treatment group are down-weighted, and in contrast individuals with a low
probability of belonging to a treatment group are up-weighted. The pseudo-population encompasses both
factual and counterfactual observations. In this pseudo-population, all adherence groups are exchangeable
and it is possible to compute directly the difference for a specific outcome.
5 A common issue with pseudo-population is that individuals with a very low propensity score (very close
to 0) will end up with a huge weight resulting in extremely large pseudo-population and potentially making
the weighted estimation unstable. A common way to address this issue is the stabilized weight, which uses
the marginal probability of treatment instead of 1 in the weight numerator resulting for a patient belonging
in first adherence group in PCPAP=1

PCPAP |sex
.

Figure 3

Figure 3: Box plot of raw epworth sleepiness score accoding to the visit by adherence group

CPAP : Continuous Positive Airway Pressure

Figure 4

Figure 4: Standardized mean difference before and after weighting

SMD: Standardized Mean Difference; CPAP : Continuous Positive Airway Pressure; ADR: adverse
drug reaction; SaO2: arterial oxygen saturation

Figure 5
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Figure 5: Difference mean in Epworth score between each adherence group and the reference
group using different methods

Each point represents the difference mean in Epworth score between each adherence group and the reference
group (7-10h). The vertical bars represent the 95% confidence intervals of these estimates.
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