
HAL Id: hal-03663680
https://hal.science/hal-03663680

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Certification of Graphs with Bounded Genus
Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Eric

Rémila, Ioan Todinca

To cite this version:
Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Eric Rémila, et al.. Local
Certification of Graphs with Bounded Genus. Discrete Applied Mathematics, 2023, 325, pp.9–36.
�10.1016/j.dam.2022.10.004�. �hal-03663680�

https://hal.science/hal-03663680
https://hal.archives-ouvertes.fr

Local Certification of Graphs with Bounded Genus1

Laurent Feuilloley �2

Univ. Lyon, Université Lyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France3

Pierre Fraigniaud �4

IRIF, CNRS and Université de Paris, France5

Pedro Montealegre �6

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,7

Ivan Rapaport �8

DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Chile9

Éric Rémila �10

Univ Lyon, UJM Saint-Etienne, GATE L-SE UMR 5824, F-42023 Saint- Etienne, France11

Ioan Todinca �12

LIFO, Université d’Orléans and INSA Centre-Val de Loire, France13

Abstract14

Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating15

standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol,16

Oshman, and Saxena [PODC 2018]. In particular, by using this compiler, every linear-time algorithm17

for deciding the membership to some fixed graph class can be translated into a dMAM(O(logn))18

protocol for this class, that is, a distributed interactive protocol with O(logn)-bit proof size in19

n-node graphs, and three interactions between the (centralized) computationally-unbounded but20

non-trustable prover Merlin, and the (decentralized) randomized computationally-limited verifier21

Arthur. As a corollary, there is a dMAM(O(logn)) protocol for recognizing the class of planar graphs,22

as well as for recognizing the class of graphs with bounded genus.23

We show that there exists a distributed interactive protocol for recognizing the class of graphs24

with bounded genus performing just a single interaction, from the prover to the verifier, yet preserving25

proof size of O(logn) bits. This result also holds for the class of graphs with bounded non-orientable26

genus, that is, graphs that can be embedded on a non-orientable surface of bounded genus. The27

interactive protocols described in this paper are actually proof-labeling schemes, i.e., a subclass28

of interactive protocols, previously introduced by Korman, Kutten, and Peleg [PODC 2005]. In29

particular, these schemes do not require any randomization from the verifier, and the proofs may30

often be computed a priori, at low cost, by the nodes themselves. Our results thus extend the recent31

proof-labeling scheme for planar graphs by Feuilloley et al. [PODC 2020], to graphs of bounded32

genus, and to graphs of bounded non-orientable genus.33

2012 ACM Subject Classification D.1.3 Concurrent Programming (Distributed programming); F.2.234

Nonnumerical Algorithms and Problems.35

Keywords and phrases Local certification, proof-labeling scheme, locally checkable proofs36

Funding Laurent Feuilloley: MIPP and ANR project GrR37

Pierre Fraigniaud: ANR project DESCARTES, and INRIA project GANG38

Pedro Montealegre: ANID via PAI + Convocatoria Nacional Subvención a la Incorporación en la39

Academia Año 2017 + PAI77170068 and FONDECYT 1119048240

Ivan Rapaport: CONICYT via PIA/Apoyo a Centros Científicos y Tecnológicos de Excelencia AFB41

170001 and Fondecyt 117002142

Éric Rémila: IDEX LYON (project INDEPTH) within ANR-16-IDEX-0005 and MODMAD43

mailto:lfeuilloley@liris.cnrs.fr
mailto:pierre.fraigniaud@irif.fr
mailto:p.montealegre@uai.cl
mailto:rapaport@dim.uchile.cl
mailto:eric.remila@univ-st-etienne.fr
mailto:ioan.todinca@univ-orleans.fr

2 Local Certification of Graphs with Bounded Genus

1 Introduction44

1.1 Context and Objective45

The paper considers the standard setting of distributed network computing, in which46

processing elements are nodes of a network modeled as a simple connected graph G = (V,E),47

and the nodes exchange information along the links of that network (see, e.g., [45]). As for48

centralized computing, distributed algorithms often assume promises on their inputs, and49

many algorithms are designed for specific families of graphs, including regular graphs, planar50

graphs, graphs with bounded arboricity, bipartite graphs, graphs with bounded treewidth,51

etc. Distributed decision refers to the problem of checking that the actual input graph52

(i.e., the network itself) satisfies a given predicate. One major objective of the check up53

is avoiding erroneous behaviors such as livelocks or deadlocks resulting from running an54

algorithm dedicated to a specific graph family on a graph that does not belong to this family.55

The decision rule typically specifies that, if the predicate is satisfied, then all nodes must56

accept, and otherwise at least one node must reject. A single rejecting node can indeed57

trigger an alarm (in, e.g., hardwired networks), or launch a recovery procedure (in, e.g.,58

virtual networks such as overlay networks). The main goal of distributed decision is to design59

efficient checking protocols, that is, protocols where every node exchange information with60

nodes in its vicinity only, and where the nodes exchange a small volume of information61

between neighbors.62

Proof-Labeling Schemes.63

Some graph predicate are trivial to check locally (e.g., regular graphs), but others do not64

admit local decision algorithms. For instance, deciding whether the network is bipartite65

may require long-distance communication for detecting the presence of an odd cycle. Proof-66

labeling schemes [34] provide a remedy to this issue. These mechanisms have a flavor of67

NP-computation, but in the distributed setting. That is, a non-trustable oracle provides68

each node with a certificate, and the collection of certificates is supposed to be a distributed69

proof that the graph satisfies the given predicate. The nodes check locally the correctness70

of the proof. The specification of a proof-labeling scheme for a given predicate is that, if71

the predicate is satisfied, then there must exist a certificate assignment leading all nodes72

to accept, and, otherwise, for every certificate assignment, at least one node rejects. As73

an example, for the case of the bipartiteness predicate, if the graph is bipartite, then an74

oracle can color blue the nodes of one of the partition, and color red the nodes of the other75

partition. It is then sufficient for each node to locally check that all its neighbors have the76

same color, different from its own color, and to accept or reject accordingly. Indeed, if the77

graph is not bipartite, then there is no way that a dishonest oracle can fool the nodes, and78

make them all accept the graph.79

Interestingly, the certificates provided to the nodes by the oracle can often be computed80

by the nodes themselves, at low cost, during some pre-computation. For instance, a spanning81

tree construction algorithm is usually simply asked to encode the tree T locally at each82

node v, say by a pointer p(v) to the parent of v in the tree. However, it is possible to ask the83

algorithm to also provide a distributed proof that T is a spanning tree. Such a proof may be84

encoded distributedly by providing each node with a certificate containing, e.g., the ID of85

the root of T , and the distance d(v) from v to the root (see, e.g., [2, 6, 32]). Indeed, every86

node v but the root can simply check that d(p(v)) = d(v) − 1 (to guarantee the absence87

of cycles), and that it was given the same root-ID as all its neighbors in the network (for88

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 3

guaranteeing the uniqueness of the tree).89

Distributed Interactive Protocols.90

The good news is that all (Turing-decidable) predicates on graphs admit a proof-labeling91

scheme [34]. The bad news is that there are simple graphs properties (e.g., existence92

of a non-trivial automorphism [34], non 3-colorability [29], bounded diameter [10], etc.)93

which require certificates on Ω̃(n) bits in n-node graphs. Such huge certificates do not94

fit with the requirement that checking algorithms must not only be local, but they must95

also consume little bandwidth. Randomized proof-labeling schemes [24] enable to limit the96

bandwidth consumption, but this is often to the cost of increasing the space-complexity of the97

nodes. However, motivated by cloud computing, which may provide large-scale distributed98

systems with the ability to interact with an external party, Kol, Oshman, and Saxena [33]99

introduced the notion of distributed interactive protocols. In such protocols, a centralized100

non-trustable oracle with unlimited computation power (a.k.a. Merlin) exchanges messages101

with a randomized distributed algorithm (a.k.a. Arthur). Specifically, Arthur and Merlin102

perform a sequence of exchanges during which every node queries the oracle by sending a103

random bit-string, and the oracle replies to each node by sending a bit-string called proof.104

Neither the random strings nor the proofs need to be the same for each node. After a certain105

number of rounds, every node exchange information with its neighbors in the network, and106

decides (i.e., it outputs accept or reject). It was proved that many predicate requiring large107

certificate whenever using proof-labeling schemes, including the existence of a non-trivial108

automorphism, have distributed interactive protocols with proofs on O(logn) bits [33].109

Naor, Parter, and Yogev [40] recently designed a compiler for automatically translating110

standard centralized interactive protocols to distributed interactive protocols. In particular,111

by using this compiler, every linear-time algorithm for deciding the membership to some112

fixed graph class can be translated into a dMAM(O(logn)) protocol, that is, a distributed113

interactive protocol with O(logn)-bit proof size in n-node graphs, and three interactions114

between Merlin and Arthur: Merlin provides every node with a first part of the proof,115

on O(logn) bits, then every node challenges Merlin with a random bit-string on O(logn)116

bits, and finally Merlin replies to every node with the second part of the proof, again on117

O(logn) bits. Every node then performs a single round of communication with its neighbors,118

exchanging O(logn)-bit messages, and individually outputs accept or reject. As a corollary,119

there is a dMAM(O(logn)) protocol for many graph classes, including planar graphs, graphs120

with bounded genus, graphs with bounded treewidth, etc.121

The Limits of Distributed Interactive Protocols.122

Although the compiler in [40] is quite generic and powerful, it remains that the resulting123

interactive protocols are often based on many interactions between Merlin and Arthur. This124

raises the question of whether there exist protocols based on fewer interactions for the125

aforementioned classes of graphs, while keeping the proof size small (e.g., on O(polylogn)126

bits). Note that, with this objective in mind, proof-labeling schemes are particularly desirable127

as they do not require actual interactions. Indeed, as mentioned before, the certificates may128

often be constructed a priori by the nodes themselves. Unfortunately, under the current129

knowledge, establishing lower bounds on the number of interactions between the prover Merlin130

and the distributed verifier Arthur, as well as lower bounds on the proof size, not to speak131

about tradeoffs between these two complexity measures, remains challenging. Therefore, it is132

not known whether dMAM(O(logn)) protocols are the best that can be achieved for graph133

4 Local Certification of Graphs with Bounded Genus

classes such as graphs with bounded genus, or graphs with bounded treewidth.134

Graphs with Bounded Genus.135

In this paper, we focus on the class of graphs with bounded genus, for several reasons. First,136

this class is among the prominent representative of sparse graphs [42], and the design of fast137

algorithms for sparse graphs is not only of the utmost interest for centralized, but also for138

distributed computing (see, e.g., [3, 8, 12, 15, 26, 27, 28, 36, 37, 49]), as many real-world139

physical or logical networks are sparse. Second, graphs of bounded genus, including planar140

graphs, have attracted lots of attention recently in the distributed computing framework141

(see, e.g., [4, 5, 25]), and it was shown that this large class of graphs enjoys distributed142

exact or approximation algorithms that overcome several known lower bounds for general143

graphs [35, 46, 48]. Last but not least, it appears that the graph classes for which proof-144

labeling schemes require certificates of large size are not closed under node-deletion, which145

yields the question of whether every graph family closed under node-deletion (in particular146

graph families closed under taking minors) have proof-labeling schemes with certificates of147

small size. This was recently shown to be true for planar graphs [21], but the question is148

open beyond this class, putting aside simple classes such as bipartite graphs, forests, etc.149

As for the class of planar graphs, and for the class of graphs with bounded genus, every150

graph class G that is closed under taking minors has a finite set of forbidden minors. As a151

consequence, as established in [21], there is a simple proof-labeling scheme with O(logn)-152

bit certificates for G, i.e., for not being in G. The scheme simply encodes a forbidden153

minor present in G in a distributed manner for certifying that G /∈ G. Therefore, for every154

k ≥ 0, there exists a simple proof-labeling scheme with O(logn)-bit certificates for genus155

or non-orientable genus at least k. The difficulty is to design a proof-labeling scheme with156

O(logn)-bit certificates for genus or non-orientable genus at most k.157

1.2 Our Results158

1.2.1 Compact Proof-Labeling Schemes for Graphs of Bounded Genus159

Recall that planar graphs are graphs embeddable on the 2-dimensional sphere S2 (without160

edge-crossings). Graphs with genus 1 are embeddable on the torus T1, and, more generally,161

graphs with genus k ≥ 0 are embeddable on the closed surface Tk obtained from S2 by162

adding k handles. We show that, for every k ≥ 0, there exists a proof-labeling scheme for163

the class of graphs with genus at most k, using certificates on O(logn) bits. This extends164

a recent proof-labeling scheme for planar graphs [21] to graphs with arbitrary genus k ≥ 0.165

Note that the certificate-size of our proof-labeling schemes is optimal, in the sense there are166

no proof-labeling schemes using certificates on o(logn) bits, even for planarity [21]1.167

For every k ≥ 1, our proof-labeling schemes also apply to the class of graphs with non-168

orientable genus (a.k.a., Euler genus) at most k, that is, they also hold for graphs embeddable169

on a non-orientable surface with genus k. Graphs with non-orientable k are indeed graphs170

embeddable on the closed surface Pk obtained from S2 by adding k cross-caps. Some more171

precise definitions and descriptions are given later, in Section 2.1.172

This paper therefore demonstrates that the ability of designing proof-labeling schemes173

with small certificates for planar graphs is not a coincidental byproduct of planarity, but174

1 The goal of this paper is not to optimize the size of the certificates as a function of the genus k, but it
is not hard to see that our certificates have size O(2k logn).

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 5

C1 C2
Σ(0) = T2 Σ(1) = S2

(a)

C′′
2

C′
2

C′
1

C′′
1

ϕ′
1 ϕ′′

1
ϕ′′

2
ϕ′

2

S2

C′′
2

C′
2

C′
1

C′′
1

ϕ′
1 ϕ′′

1 ϕ′′
2ϕ′

2ψ1 = χ1
ψ2 ψ3

ψ4

P1

S2

C′′
2

C′
2

C′
1

C′′
1

χ2
ψ3

ψ4

P ′
1

P ′′
1

P2

χ2

S2

Φ∗

(e) (f)

(b) (c)

(d)

Φ∗
B∗

H∗

Figure 1 An idealistic scenario where a graph G embedded on T2 has disjoint non-separating
cycles. In this case, we cut along two disjoint non-separating cycles C1 and C2, get four supplementary
faces, and merge these faces by cutting along disjoint paths, until we get only one face (which is
orange in the drawing). Let us give more details, using the notations of the proof. The supplementary
faces are ϕ′

1, ϕ
′′
1 , ϕ

′
2 and ϕ′′

2 , and they are renamed ψ1, ψ2, ψ3 and ψ4 respectively, for convenience.
These faces are merged step by step: a duplicated path is used to merge such a face ψi with the face
χi−1 originating from the merge of the faces ψ1 to ψi−1 (with χ1 = ψ1). Picture (d) illustrates the
merge of χ2 with ψ3. In the end, we have a single merged face that we call Φ∗. The latter face Φ∗

can be seen as the infinite face of the planar graph embedding obtained by these transformations.

this ability extends to much wider classes of sparse graphs closed under taking minors. This175

provides hints that proof-labeling schemes with small certificates can also be designed for176

very many (if not all) natural classes of sparse graphs closed under vertex-deletion.177

1.2.2 Our Techniques178

Our proof-labeling schemes are obtained thanks to a local encoding of a mechanism enabling179

to “unfold” a graph G of genus or non-orientable genus k into a planar graph “G, by a180

series of vertex-duplications. Specifically, for graphs of genus k, i.e., embeddable on an181

orientable surface Tk, we construct a sequences G(0), . . . , G(k) where G(0) = G, G(k) = “G,182

and, for every i = 0, . . . , k, G(i) has genus k − i. For i ≥ 1, the graph G(i) is obtained from183

G(i−1) by identifying a non-separating cycle Ci in G(i−1), and duplicating the vertices and184

cycles of Ci (see Figure 1(a-b)). (Recall that a non-separating cycle, is a cycle that can be185

removed without making the graph disconnected.) This enables to “cut” a handle of the186

surface Tk−i+1, resulting in a closed surface Tk−i with genus one less than Tk−i+1, while187

the embedding of G(i−1) on Tk−i+1 induces an embedding of G(i) on Tk−i. The graph “G is188

planar, and has 2k special faces ϕ′
1, ϕ

′′
1 , . . . , ϕ

′
k, ϕ

′′
k , where, for i = 0, . . . , k, the faces ϕ′

i and189

ϕ′′
i results from the duplication of the face Ci (see Figure 1(c)).190

The proof-labeling scheme needs to certify not only the planarity of “G, but also the191

existence of the faces ϕ′
1, ϕ

′′
1 , . . . , ϕ

′
k, ϕ

′′
k , and a proof that they are indeed faces, which is192

non-trivial. Therefore, instead of keeping the 2k faces as such, we connect them by a sequence193

of paths P1, . . . , P2k−1. By duplicating each path Pi into P ′
i and P ′′

i , the two faces χ and194

ψ connected by a path Pi is transformed into a single face, while planarity is preserved.195

Intuitively, the new face is the “union” of χ, ψ, and the “piece in between” P ′
i and P ′′

i (see196

Figure 1(d)). The whole process eventually results in a planar graph H with a single special197

6 Local Certification of Graphs with Bounded Genus

(a) (b) (c)

(d) (e) (f)

C1

C′
1

C′′
1

C′
1

C′′
1

C2

C′′
2C′

1

C′′
1

C′
2

C′′
2C′

1 C′′
1

C′
2

ϕ′′
1

ϕ′
1

ϕ′
1

ϕ′′
1

ϕ′′
2

ϕ′
2

ϕ′′
1

ϕ′
1

ϕ′
1 ϕ′′

1
ϕ′′

2ϕ′
2 ϕ∗

P ′
1

P ′′
1

P ′
2

P ′′
2

P ′
3

P ′′
3

Figure 2 A more complex unfolding a graph G embedded on T2. Faces created by duplications
have not disjoint boundaries, and parts of previous duplicated paths are used to create new paths.

face ϕ (see Figure 1(e-f)). In fact, the paths Pi, i = 1, . . . , 2k − 1 do not only serve the198

objective of merging the 2k faces ϕ′
1, ϕ

′′
1 , . . . , ϕ

′
k, ϕ

′′
k into a single face ϕ, but also serve the199

objective of keeping track of consistent orientations of the boundaries of these faces. The200

purpose of these orientations is to provide the nodes with the ability to locally check that201

the 2k faces can indeed be paired for forming k handles.202

The planarity of H and the existence of the special face ϕ can be certified by a slight203

adaptation of the proof-labeling scheme for planarity in [21]. It then remains to encode the204

sequence of cycle and path-duplications locally, so that every node can roll back the entire205

process, for identifying the cycles Ci, i = 1, . . . , k, and the paths Pj , j = 1, . . . , 2k − 1, and206

for checking their correctness.207

Among many issues, a very delicate problem is that, as opposed to cycles and paths drawn208

on a surface, which can be chosen to intersect at few points, these cycles and paths are in209

graphs embedded on surfaces, and thus they may intersect a lot, by sharing vertices or even210

edges. Figure 1 displays an idealistic scenario in which the cycles Ci’s are disjoint, the paths211

Pj ’s are disjoint, and these cycles and paths are also disjoint. However, this does not need to212

be the case, and the considered cycles and paths may mutually intersect in a very intricate213

manner. For instance, Figure 2 displays a case in which C2 intersects with C ′′
1 , P ′

2 and P ′′
2214

are reduced to single vertices, and P ′′
3 intersects with P ′

1. It follows that the sequence of215

duplications may actually be quite cumbersome in general, with some nodes duplicated many216

times. As a consequence, keeping track of the boundaries of the faces is challenging, especially217

under the constraint that all information must be distributed, and stored at each node using218

O(logn) bits only. Also, one needs to preserve specific orientations of the boundaries of219

the faces, for making sure that not only the two faces ϕ′
i and ϕ′′

i corresponding to a same220

cycle Ci can be identified, but also that they can be glued together appropriately in a way221

resulting to a handle, and not be glued like, e.g., a Klein bottle.222

The case of graphs embedded on a non-orientable closed surface causes other problems,223

including the local encoding of the cross-caps, and the fact that decreasing the genus of a224

non-orientable closed surface by removing a cross-cap may actually result in a closed surface225

that is orientable. Indeed, eliminating cross-caps is based on doubling a non-orientable cycle226

of the graph, and this operation may result in a graph embedded on a surface that is actually227

orientable. (This phenomenon did not arise in the case of orientable surfaces, as removing a228

handle from an orientable closed surface by cycle-duplication results in a graph embedded229

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 7

on an orientable closed surface.) Thus, the proof-labeling scheme for bounded non-orientable230

genus has to encode not only the identification the cross-caps, but also of faces to be identified231

for forming handles.232

For guaranteeing certificates on O(logn) bits, our proof-labeling schemes distribute the233

information evenly to the certificates provided to the nodes, using the fact that graphs234

of bounded (orientable or non-orientable) genus have bounded degeneracy. This property235

enables to store certificates on O(logn) bits at each node, even for nodes that have arbitrarily236

large degrees.237

We complete this brief summary of our techniques with two remarks.238

On the cuts. Modifying a graph of bounded genus by performing a sequence of cuts for239

eventually producing a planar graph has already been used in the literature — see, e.g.,240

[31], where a probabilistic embedding of bounded genus graphs into planar graphs is241

designed. However, using this techniques in the framework of distributed computing is,242

to our knowledge, new, and poses additional challenges. In particular, dealing with the243

intersections of the aforementioned paths and cycles is not much difficult in centralized244

computing (typically, few virtual nodes may be added, or the graph may even be245

triangulated, for avoiding intersections), but the techniques used in the centralized setting246

do not carry over easily to the decentralized setting. More generally, the fact that every247

step of the transformation of a graph of bounded (non-orientable) genus into a planar248

graph must be verifiable locally in a distributed manner imposes strong constraints, and249

restricts the set of techniques that can be used. As a consequence, we could not pick a250

transformation from the shelf for using it as a black box, but we had to come up with a251

specific one, bearing close similarities with existing ones, for carefully monitoring every252

step of it, and checking the ability to implement this step in a distributed manner using253

small certificates.254

On the general approach. An approach conceptually simpler than the one used in this255

paper would have been to use induction, simply assuming the existence of a proof-labeling256

scheme with O(logn)-bit certificates for graphs with (non-orientable) genus k ≥ 0, and257

then constructing a proof-labeling scheme with O(logn)-bit certificates for graphs with258

(non-orientable) genus k+ 1. However, although we are not claiming that such a desirable259

and conceptually simpler approach is impossible to use, we strongly believe that it may260

simply be not the right approach, for at least two reasons. First, the proof-labeling scheme261

in [21] certifies planarity, but it does not provide a way to certify all the faces of a planar262

embedding. Indeed, it only provides a certification for a single specific face, namely the263

outer-face. Given an arbitrary cycle in the graph, certifying that this cycle corresponds264

to the boundary of a face in the planar embedding is not provided in [21], and the design265

of a compact proof-labeling scheme for this property appears to be non trivial. Note in266

particular that we do not assume that the graphs we manipulate have unique embeddings,267

thus a cycle might be a face in one embedding, but not in another embedding. Second,268

even if the previous problem could be solved, it would remain that the orientations of the269

pair of faces to be merged at each level of the induction are crucial. One needs to make270

sure that the nodes can locally check that the orientations provided by the non-trustable271

prover are correct, for distinguishing handles from cross-caps. The inductive design of a272

compact proof-labeling scheme for this property appears to be even more challenging.273

These two issues are serious obstacles to the development of an inductive construction,274

and, to overcome them, we adopted the approach consisting to “unwrap” the whole275

construction. This is less elegant and comprehensible than an inductive construction,276

but this allowed us to (1) identify a single face in the planar embedding, which can be277

8 Local Certification of Graphs with Bounded Genus

certified (e.g., using [21]), and (2) provide an orientation to the boundary of this face, for278

enabling to certify that the orientation given by the non-trustable prover to each and279

every pair of faces to be merged is indeed correct.280

1.3 Related Work281

Bounded-degree graphs form one of the most popular class of sparse graphs studied in282

the context of design and analysis of distributed algorithms, as witnessed by the large283

literature (see, e.g., [45]) dedicated to construct locally checkable labelings (e.g., vertex284

colorings, maximal independent sets, etc.) initiated a quarter of a century ago by the seminal285

work in [41]. Since then, other classes of sparse graphs have received a lot of attention,286

including planar graphs, and graphs of bounded genus. In particular, there is a long history287

of designing distributed approximation algorithms for these classes, exemplified by the case288

of the minimum dominating set problem. One of the earliest result for this latter problem is289

the design of a constant-factor approximation algorithm for planar graphs, performing in a290

constant number of rounds [36]. This result is in striking contrast with the fact that even291

a poly-logarithmic approximation requires at least Ω(
√

logn/ log logn) rounds in arbitrary292

n-node networks [35]. The paper [36] has paved the way for a series of works, either improving293

on the complexity and the approximation ratio [15, 37, 49], or using weaker models [50], or294

tackling more general problems [13, 14], or proving lower bounds [30, 15]. The minimum295

dominating set problem has then been studied in more general classes such as graphs with296

bounded arboricity [37], minor-closed graphs [12], and graphs with bounded expansion [3].297

Specifically, for graphs with bounded genus, it has been shown that a constant approximation298

can be obtained in time O(k) for graphs of genus k [4], and a (1+ ϵ)-approximation algorithm299

has recently been designed, performing in time O(log∗n) [5].300

Several other problems, such as maximal independent set, maximal matching, etc., have301

been studied for the aforementioned graph classes, and we refer to [18] for an extended302

bibliography. In addition to the aforementioned results, mostly dealing with local algorithms,303

there are recent results in computational models taking into account limited link bandwidth,304

for graphs that can be embedded on surfaces. For instance, it was shown that a combinatorial305

planar embedding can be computed efficiently in the CONGEST model [26]. Such an306

embedding can then be used to derive more efficient algorithms for minimum-weight spanning307

tree, min-cut, and depth-first search tree constructions [27, 28]. Finally, it is worth mentioning308

that, in addition to algorithms, distributed data structures have been designed for graphs309

embedded on surfaces, including a recent optimal adjacency-labeling for planar graphs [8, 16],310

and routing tables for graphs of bounded genus [25] as well as for graphs excluding a fixed311

minor [1].312

Proof-labeling schemes (PLS) were introduced in [34], and different variants were later313

introduced. Stronger forms of PLS include locally checkable proofs (LCP) [29] in which314

nodes forge their decisions on the certificates and on the whole states of their neighbors, and315

t-PLS [20] in which nodes perform communication at distance t ≥ 1 before deciding. Weaker316

forms of PLS include non-deterministic local decision (NLD) [22] in which the certificates317

must be independent from the identity-assignment to the nodes. PLS were also extended318

by allowing the verifier to be randomized (see [24]). Such protocols were originally referred319

to as randomized PLS (RPLS), but are nowadays referred to as distributed Merlin-Arthur320

(dMA) protocols.321

The same way NP is extended to the complexity classes forming the Polynomial Hierarchy,322

by alternating quantifiers, PLS were extended to a hierarchy of distributed decision classes [7,323

19], which can be viewed as resulting from a game between a prover and a disprover.324

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 9

Recently, distributed interactive proofs were formalized [33], and the classes dAM[k](f(n))325

and dMA[k](f(n)) were defined, where k ≥ 1 denotes the number of alternations between326

the centralized Merlin and the decentralized Arthur, and f(n) denotes the size of the proof327

— dAM[3](f(n)) is also referred to as dMAM(f(n)). Distributed interactive protocols for328

problems like the existence of a non-trivial automorphism (AUT), and non-isomorphism (ISO)329

were designed and analyzed in [33]. The follow up paper [40] improved the complexity of330

some of the protocols in [33], either in terms of the number of interactions between the prover331

and the verifier, and/or in terms of the size of the certificates. A sophisticated generic way332

for constructing distributed IP protocols based on sequential IP protocols is presented in [40].333

One of the main outcome of this latter construction is a dMAM protocol using certificates334

on O(logn) bits for all graph classes whose membership can be decided in linear time. For335

other recent results on distributed interactive proof, see [11, 23].336

It is worth noticing that a very recent arXiv paper [17] provides an alternative proof of the337

results of this paper, by certifying (i) the faces of the embedding using the Heffter-Edmonds-338

Ringel rotation principle, and (ii) the genus of the embedding using Euler’s Formula.339

1.4 Organization of the Paper340

The next section provides the reader with basic notions regarding graphs embedded on closed341

surfaces, and formally defines our problem. Section 3 describes how to “unfold” a graph G342

of genus k, for producing a planar graph H with a special face ϕ. The section also describes343

how, given a planar graph H with a special face ϕ, one can check that (H,ϕ) results from the344

unfolding of a graph G with genus k. Then, Section 4 presents our first main result, that is, a345

proof-labeling scheme for the class of graphs with bounded genus. In particular, it describes346

how to encode the description of the pair (H,ϕ) from Section 3, and, more importantly, how347

to locally encode the whole unfolding process in a distributed manner, using certificates on348

O(logn) bits, which allow the nodes to collectively check that their certificates form a proof349

that G has genus k. Section 5 presents our second main result, by showing how to extend the350

proof-labeling scheme of Section 4 to the class of graphs with bounded non-orientable genus.351

Finally, Section 6 concludes the paper with a discussion about the obstacles to be overcame352

for the design of a proof-labeling scheme for the class of graphs excluding a fixed minor.353

2 Definitions, and Formal Statement of the Problem354

This section contains a brief introduction to graphs embedded on surfaces, and provides the355

formal statement of our problem.356

2.1 Closed Surfaces357

Most of the notions mentioned in this section are standard, and we refer to, e.g., Massey et358

al. [38] for more details.359

2.1.1 Definition360

Recall that a topological space is a pair (X,T) where X is a set, and T is a topology on X361

(e.g., T is a collection of subsets of X, whose elements are called open sets, satisfying the362

following properties : the set X and the empty set are open, any finite intersection of open363

sets is an open set, and any arbitrary union of open sets is an open set). A topological space364

may be denoted by X if there is no ambiguity about the topology on X. Also recall that365

10 Local Certification of Graphs with Bounded Genus

Di

Di+k handle

cross-cap

Figure 3 Handles and cross-cap.

a topological space X is compact if, from any set of open sets whose union is X, one can366

extract a finite set of open sets whose union is finite. A function f : X → Y between two367

topological spaces is continuous if the inverse image of every open set in Y is open in X. A368

homeomorphism is a bijection that is continuous, and whose inverse is also continuous. A369

topological path in X is a continuous function P : [0, 1] → X. The space X is path-connected370

if for any pairs x, y of points of X, there exists a topological path P such that P (0) = x and371

P (1) = y.372

▶ Definition 1. A closed surface Σ is a path-connected2, compact space that is locally373

homeomorphic to a disk of R2, (i.e. for each x ∈ Σ, there exists an open set Sx containing x374

such that Sx is homeomorphic to an closed disk of R2, the topology TSx
used for Sx being the375

set TSx = {S ∩ Sx, S ∈ T}.376

2.1.2 Construction377

Some closed surfaces can be obtained by the following construction. Let S2 be the 2-378

dimensional sphere. For k ≥ 0, given 2k disks D1, D2, ...D2k on the surface of S2, with379

pairwise disjoint interiors, let us direct clockwise the boundaries of D1, . . . , Dk, and let us380

direct counterclockwise the boundaries of Dk+1, . . . , D2k. Next, let us remove the interior of381

each disk, and, for 1 ≤ i ≤ k, let us identify (i.e., glue) the boundary of Di with the boundary382

Di+k in such a way that directions coincide (see Figure 3). The resulting topological space is383

denoted by Tk. In particular, T1 is the torus, and T0 = S2. For every i, identifying Di and384

Di+k results in a handle. It follows that Tk contains k handles.385

Another family of closed surfaces is constructed as follows. Let D1, . . . , Dk be k ≥ 1 disks386

with pairwise disjoint interiors. Let us again remove the interior of each disk. For every387

1 ≤ i ≤ k, and for every antipodal point v and v′ of the boundary of Di, let us identify (i.e.,388

glue) the points v and v′ (see Figure 3). The resulting topological space is denoted by Pk.389

In particular, P1 is the projective plane, and P2 is the Klein bottle (P0 is not defined). For390

every i, the operation performed on Di results in a cross-cap. It follows that Pk contains k391

cross-caps.392

2 Path-connected can actually be replaced by connected (i.e., cannot be partitioned in two open sets)
here, because, under the hypothesis of local homeomorphy to a disk, the notions of path-connectivity
and connectivity are equivalent.

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 11

Figure 4 The sphere, torus, projective plane, and Klein Bottle.

The surfaces resulting from the above constructions can thus be orientable (e.g., the393

sphere T0 or the torus T1) or not (e.g., the projective plane P1 or the Klein Bottle P2), as394

displayed on Figure 4.395

2.1.3 Orientability396

For defining orientability of a closed surface Σ, we use the notion of curve, defined as a397

continuous function C : S1 → Σ, where S1 denotes the unidimensional sphere (homeomorphic398

to, e.g., the trigonometric circle). A curve is simple if it is injective. A simple curve C is399

orientable if one can define the left side and the right side of the curve at every point of the400

curve in a consistent manner. Specifically, a curve C is orientable if, for every x ∈ C, there401

exists a neighborhood Nx of x such that Nx ∖ C has two connected components, one called402

the left side L(Nx) of Nx, and the other the right side R(Nx) of Nx, such that, for every403

x, x′ ∈ C and every y ∈ Σ,404

(y ∈ Nx ∩Nx′) ∧ (y ∈ L(Nx)) =⇒ y ∈ L(Nx′).405

A closed surface Σ is orientable if every simple curve of X is orientable. It is easy to check406

that orientability is a topological invariant. That is, if Σ and Σ′ are two homeomorphic407

topological spaces, then Σ is orientable if and only if Σ′ is orientable.408

2.1.4 Genus of a Surface409

An orientable closed surface Σ is of genus k if it is homeomorphic to a closed surface Tk410

constructed as in Section 2.1.2. The Classification Theorem of orientable closed surfaces (see,411

e.g., [9]) states that every orientable closed surface has a genus. That is, for every orientable412

surface Σ, there exists a unique k ≥ 0 such that Σ is of genus k. The fact that every pair of413

orientable closed surfaces with the same genus k are homeomorphic, justifies that a unique414

notation can be adopted for these surfaces, and any orientable closed surface of genus k is415

denoted by Tk. Observe however that two closed surfaces that are homeomorphic are not416

necessarily homotopic, i.e., they may not be continuously deformable into each other (for417

instance, the torus is not homotopic to the trefoil knot, although both are homeomorphic).418

The genus can also be defined for non-orientable closed surfaces. For k ≥ 1, a non-419

orientable closed surface is said to be of genus k if it is homeomorphic to a closed surface Pk420

constructed as in Section 2.1.2. Again, the Classification Theorem of non-orientable closed421

surfaces (see, e.g., [9]) states that every non-orientable closed surface has a genus. That422

is, for every non-orientable closed surface Σ, there exists a unique k ≥ 0 such that Σ is of423

genus k. As for orientable surfaces, every pair of non-orientable closed surfaces of genus k424

are homeomorphic, and a non-orientable closed surface of genus k is denoted by Pk.425

12 Local Certification of Graphs with Bounded Genus

a

b

c
d

a

b

c
d

Figure 5 Two embeddings of K4 on the torus T1.The one on the left is not a 2-cell embedding
since the non-triangular face is not homeomorphic to a closed disk. This situation can occur because
K4 is of genus 0, not 1 (see Lemma 3). The embedding on right is a 2-cell embedding.

2.2 Graphs Embedded on Surfaces426

In this section, we recall standard notions related to graph embeddings on surfaces, and we427

refer to Mohar and Thomassen [39] for more details. Throughout the paper, all considered428

graphs are supposed to be simple (no multiple edges, and no self-loops), and connected.429

2.2.1 Topological Embeddings430

Given a graph G = (V,E), and a closed surface Σ, a topological embedding of G on Σ is given431

by (1) an injective mapping f : V → Σ, and, (2) a topological path fe : [0, 1] → Σ defined432

for every edge e such that:433

if e = {v, v′} ∈ E, then fe({0, 1}) = {f(v), f(v′)}, and434

if e, e′ ∈ E and e ̸= e′, then fe(]0, 1[) ∩ fe′(]0, 1[) = ∅.435

The second condition is often referred to as the non-crossing condition. See Figure 5 for436

two embeddings of the complete graph K4 on T1. Throughout the paper, we may identify a437

vertex v with its representation f(v), and an edge e with its representation fe (i.e., the image438

fe([0, 1]) of [0, 1] by fe), even referred to as f(e) in the following. The set ∪e∈Ef(e) is called439

the skeleton of the embedding, and is denoted by Sk(G). Each connected component of440

Σ∖Sk(G) is an open set of Σ (as complement of a closed set), called a face of the embedding.441

In fact, in this paper, we will abuse notation, and often refer to G instead of Sk(G) when442

referring to the embedding of G on Σ.443

2.2.2 2-Cell Embeddings444

We now recall a slightly more sophisticated, but significantly richer form of topological445

embedding, called 2-cell embedding. A 2-cell embedding is a topological embedding such that446

every face is homeomorphic to an open disk of R2.447

In a 2-cell embedding of a graph G, the border of a face can be described by giving448

a so-called boundary (closed) walk, that is, an ordered list (v0, . . . , vr) of non-necessarily449

distinct vertices of G, where, for i = 0, . . . , r − 1, {vi, vi+1} ∈ E(G), and {vr, v0} ∈ E(G).450

The vertices and edges of a face are the images by the embedding of the vertices and edges451

of the boundary walk. The boundary walk is however not necessarily a simple cycle, as an452

edge may appear twice in the walk, once for each direction, and a vertex may even appear453

many times.454

For instance, Figure 5 displays two embeddings of the complete graph K4 on the torus T1.455

The embedding on the left is not a 2-cell embedding. Indeed, this embedding results in456

three faces, including the two faces with boundary walk (a, b, c) and (a, b, d). The third457

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 13

face is however not homeomorphic to an open disk (there is a hole in it, resulting from the458

hole in the torus). On the other hand, the embedding on the right in Figure 5 is a 2-cell459

embedding. Indeed, there are two faces, including the face with boundary walk (a, b, c). The460

other face is also homeomorphic to an open disk. A boundary walk of this latter face is461

(d, a, b, d, c, a, d, b, c). This can be seen by starting from d, traversing the edge {d, a}, and462

adopting the “left-hand rule” when entering a vertex, leading from a to b, then back to d,463

next to c, etc. Notice that this boundary walk uses some edges twice. It follows that the464

closure of a face is not necessarily homeomorphic to a closed disk, even in a 2-cell embedding.465

We complete the section with an observation, which allows us to restrict our attention466

to cycles in graphs instead of arbitrary curves in topological spaces. It also illustrates the467

interest of 2-cell embeddings (the result does not necessarily hold for arbitrary embeddings,468

as illustrated by the embedding on the left of Figure 5). In the following, contractible means469

homotopic to a point.470

▶ Lemma 2. For every graph G, and every closed surface Σ, any 2-cell embedding of G on471

Σ satisfies that every closed curve in Σ is either contractible, or homotopic to a closed cycle472

of Sk(G).473

The rough reason why the result holds is that, in a 2-cell embedding, any sub-path of a474

path traversing a face can be replaced by a sub-path following the border of the face. (This475

is not necessarily true for a general embedding).476

2.2.3 Genus and non-orientable genus of a Graph477

For any graph G, there exists k ≥ 0 such that G can be embedded on Tk, as any embedding478

of G in the plane with x pairs of crossing edges induces an embedding of G on Tx without479

crossings, by replacing each crossing with a handle. Also, if G can be embedded on Tk, then480

G can be embedded on Tk′ for every k′ ≥ k. The genus of a graph G is the smallest k such481

that there exists an embedding of G on Tk. Similarly, the non-orientable genus, or Euler482

genus of G, is defined as the smallest k such that there exists an embedding of G on Pk.483

The embeddings of graphs of genus k on Tk have a remarkable property (see, e.g., [51]).484

▶ Lemma 3. Every embedding of a graph G of genus k on Tk is a 2-cell embedding.485

The same property does not necessarily hold fo graphs with bounded non-orientable486

genus. However, some weaker form of Lemma 3 can be established (see, e.g., [44]).487

▶ Lemma 4. For every graph G of non-orientable genus k, there exists a 2-cell embedding488

of G on Pk.489

The next result is extremely helpful for computing the genus of a graph, and is often490

referred to as the Euler-Poincaré formula [47].491

▶ Lemma 5. Let G = (V,E), and let Σ be a closed surface of genus k. Let us consider any492

2-cell embedding of G on Σ, and let F be the set of faces of this embedding. If Σ is orientable493

then |V | − |E| + |F | = 2 − 2k. If Σ is non orientable then |V | − |E| + |F | = 2 − k.494

Recall that, for d ≥ 0, a graph G is d-degenerate if every subgraph of G has a node495

of degree at most d. Degeneracy will play a crucial role later in the paper, for evenly496

distributing the information to be stored in the certificates according to our proof-labeling497

schemes. Graphs with bounded genus have bounded degeneracy (see, e.g., [39] Theorem 8. 3.498

1, this result is due to Heawood), as recalled below for further references.499

14 Local Certification of Graphs with Bounded Genus

▶ Lemma 6. For every k ≥ 0, every graph of genus at most k is d-degenerate with d =500

max(5, 5+
√

1+48k
2).501

For every k ≥ 1, every graph of non-orientable genus at most k is d-degenerate with502

d = max(5, 5+
√

1+24k
2).503

2.3 Formal Statement of the Problem504

Proof-Labeling Schemes (PLS) are distributed mechanisms for verifying graph properties.505

More precisely, let G be a graph family. A PLS for G is defined as a prover-verifier pair506

(p,v), bounded to satisfy the following. Given any graph G = (V,E) whose n vertices are507

arbitrarily labeled by n distinct identifiers (ID) picked from a set {1, . . . , nk}, k ≥ 1, of508

polynomial range, the prover p is a non-trustable oracle that provides every vertex v ∈ V509

with a certificate c(v). The verifier v is a distributed protocol performing a single round in510

parallel at all vertices, as follows. Every vertex collects the certificates of all its neighbors,511

and must output “accept” or “reject”, on the basis of its ID, its certificate, and the certificates512

of its neighbors. The pair (p,v) is a correct PLS for G if the following two conditions hold.513

Completeness: For every G ∈ G, and for every ID-assignment to the vertices of G, the514

(non-trustable) prover p can assign certificates to the vertices such that the verifier v515

accepts at all vertices;516

Soundness: For every G /∈ G, for every ID-assignment to the vertices of G, and for every517

certificate-assignment to the vertices by the non-trustable prover p, the verifier v rejects518

in at least one vertex.519

The main complexity measure for a PLS is the size of the certificates assigned to the520

vertices by the prover. The objective of the paper is to design schemes with logarithmic-size521

certificates, for two classes of graphs: the class G+
k , k ≥ 0, of graphs embeddable on an522

orientable closed surface of genus at most k (i.e., the graphs of genus ≤ k), and the class G−
k ,523

k ≥ 1, of graphs embeddable on a non-orientable closed surface of genus at most k (i.e., the524

graphs of non-orientable genus ≤ k).525

Remark.526

Throughout the rest of the paper, for G ∈ G+
k (resp., G ∈ G−

k) with genus k′ < k (resp.,527

non-orientable genus k′ < k), our proof-labeling scheme certifies an embedding of G on Tk′528

(resp., on Pk′). Therefore, in the following, k is supposed to denote the exact genus of G.529

3 Unfolding a Surface530

In this section, we describe how to “flat down” a surface, by reducing it to a disk whose531

boundary has a specific form. This operation is central for constructing the distributed532

certificates in our proof-labeling scheme. In fact, it provides a centralized certificate for533

bounded genus. The section is dedicated to orientable surfaces, and the case of non-orientable534

surfaces will be treated further in the text.535

3.1 Separation and Duplication536

Given a 2-cell embedding of a graph G on a closed surface Σ, a non-separating cycle of the537

embedding is a simple cycle C in G such that Σ ∖ C is connected. Figure 6 illustrates this538

notion: the cycle displayed on (a) is non-separating, as shown on (b); instead, the cycle539

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 15

(a) (b) (c) (d)

Figure 6 Separating and non-separating cycles.

(a) (b) (c)

C

right
left

C ′
C ′′

ϕ

ϕ′ ϕ′′

Figure 7 Cycle-duplication and the associated surface.

displayed on (c) is separating, as shown on (d). The result hereafter is a classic result, whose540

proof can be found in, e.g., [39, 43].541

▶ Lemma 7. Let G be a graph embeddable on a closed orientable surface Σ with genus k ≥ 1.542

For any 2-cell embedding of G on Σ, there exists a non-separating cycle C in G.543

Note that the hypothesis that there is a 2-cell embedding is crucial: a tree can be544

embedded on any surface, but has no cycle.545

3.1.1 Cycle-Duplication546

Let G be a graph embeddable on a closed orientable surface Σ. An orientable cycle is a547

cycle of G whose embedding on Σ yields an orientable curve. Given a 2-cell embedding f of548

G on Σ, let C be a non-separating orientable cycle of G whose existence is guaranteed by549

Lemma 7. By definition, the left and right sides of C can be defined on the neighborhood of550

C. We denote by GC the graph obtained by the duplication of C in G. Specifically, let us551

assume that C = (v0, . . . , vr). Every vertex w /∈ C remains in GC , as well as every edge non552

incident to a vertex of C. Every vertex vi of C is replaced by a left vertex v′
i and a right553

vertex v′′
i . For every i = 0, . . . , r − 1, {v′

i, v
′
i+1} and {v′′

i , v
′′
i+1} are edges of GC , as well as554

{v′
r, v

′
0} and {v′′

r , v
′′
0 }. Finally, for every i = 0, . . . , r, and every neighbor w /∈ C of vi in G, if555

f({vi, w}) meets the left of C, then {v′
i, w} is an edge of GC , otherwise {v′′

i , w} is an edge of556

GC . The embedding f of G on Σ directly induces an embedding of GC on Σ. Figure 7(a-b)557

illustrates the operation of duplication, and the resulting embedding on Σ.558

The embedding of GC on Σ is however not a 2-cell embedding, as it contains the face ϕ559

between C ′ and C ′′ on Σ, where C ′ = (v′
0, . . . , v

′
r) and C ′′ = (v′′

0 , . . . , v
′′
r) (see Figure 7(b)).560

Formally, ϕ is the face with boundaries C ′ and C ′′, and, as such, it is not homeomorphic561

to a disc. Let ΣC be the closed surface3 obtained from Σ by removing ϕ, and by replacing562

3 Notice that X \ ϕ, ϕ′ = ϕ′ ∪C′ (where ϕ′ denotes the adherence of ϕ′), and ϕ′′ = ϕ′′ ∪C′′ are compact
sets. Thus ΣC is compact as the union of these three sets.

16 Local Certification of Graphs with Bounded Genus

C ′ C ′′
P

v′
0

v′
1

v′
i−1

v′
i

w0

v′
i+1v′

r

ws

v′′
j

v′′
j+1

v′′
j−1

v′′
r

v′′
0

v′′
1

C ′ C ′′

P ′

v′
0

v′
1

v′
i−1

w′′
0

v′
i+1v′

r

w′′
s

v′′
j+1

v′′
j−1

v′′
r

v′′
0

v′′
1

w′
0

w′
s

w′
1

w′′
1 P ′′

Figure 8 Path-duplication.

ϕ with two faces ϕ′ and ϕ′′ with boundary walks C ′ and C ′′, respectively (see Figure 7(c)).563

The embedding f of G on Σ induces a 2-cell embedding fC of GC on ΣC . Also, since C is a564

non-separating cycle of G in Σ, the surface ΣC is path-connected, which ensures that GC is565

connected using Lemma 2.566

Moreover, as Σ is orientable, ΣC is also orientable. Indeed, every simple cycle of ΣC not567

intersecting ϕ′ nor ϕ′′ is a cycle of Σ, and is therefore orientable. Furthermore, any simple568

cycle of ΣC intersecting ϕ′ and/or ϕ′′ is homotopic to a cycle separated from both boundaries569

of ϕ′ and ϕ′′ by an open set, and thus is homotopic to a cycle of Σ. It follows that ΣC is a570

closed orientable surface, and thus, thanks to Lemma 5, the genus of ΣC is k − 1.571

3.1.2 Path-Duplication572

Again, let us consider a graph G, an orientable closed surface Σ, and a 2-cell embedding f573

of G on Σ. Let χ, ψ be two distinct faces of the embedding, and let P = (w0, . . . , ws) be a574

simple path (possibly reduced to a single vertex belonging to the two cycles) between χ and575

ψ (see Figure 8). That is, P is such that w0 is on the boundary of ϕ, ws is on the boundary576

of ψ, and no intermediate vertex wi, 0 < i < s, is on the boundary of χ or ψ. The path P577

enables to define a graph GP obtained by duplicating the path P in a way similar to the way578

the cycle C was duplicated in the previous section. There is only one subtle difference, as the579

left and right side of the path cannot be defined at its endpoints. Nevertheless, the left and580

right sides of P can still be properly defined all along P , including its extremities, by virtually581

“extending” P so that it ends up in the interiors of χ and ψ. Thanks to this path-duplication,582

the two faces χ and ψ of G are replaced by a unique face of GP as illustrated on Figure 8,583

reducing the number of faces by one.584

Remark.585

Cycle-duplication and path-duplication are typically used conjointly. A basic example, used586

for the torus T1 in the next section, consists of, first, duplicating a cycle C, then connecting587

the two faces resulting from this duplication by a path P , and, finally, duplicating P for588

merging these two faces into one single face. Further, for the general case Tk, k ≥ 1, k cycles589

C1, . . . , Ck are duplicated, and 2k − 1 paths P1, . . . , P2k−1 are duplicated for connecting the590

2k faces ϕ′
1, ϕ

′′
1 , . . . , ϕ

′
k, ϕ

′′
k resulting from the k cycle-duplications, ending up in a unique591

face ϕ∗.592

3.2 Unfolding the Torus593

As a warm up, we consider the case of a graph embedded on the torus T1, and show how to594

“unfold” this embedding.595

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 17

b

a

c

d
e

d

e

C a′

b′ c′ c′′

a′′

b′′
C′

ϕ′ ϕ′′

C′′

P

(a) (b)

(c) (d)

d2

e

a′

b′
1

c′ c′′
1

a′′

b′′c′′
2

d1

b′
2

P ′′

ϕ∗

P ′ b′
1

d1

c′′
1

a′′

b′′

c′′
2d2b′

2

a′

c′
B∗

H∗

ϕ∗

e

Figure 9 Unfolding K5 embedded on the torus T1. The duplication of the non-separating cycle
C = (a, b, c, a) creates the faces ϕ′ and ϕ′′. Then the duplication of the path P = (c′′, d, b′) merges
ϕ′ and ϕ′′ into a face ϕ∗. The resulting graph is planar, and ϕ∗ can be seen as the infinite face of its
embedding.

3.2.1 Making a Graph of Genus 1 Planar596

Let G be a graph, and let f be a 2-cell embedding of G on X = T1 — see Figure 9(a) for an597

embedding of K5 on T1, as an illustrative example. Let C = (v0, . . . , vr) be a non-separating598

orientable cycle of G, e.g., the cycle (a, b, c) on Figure 9(a). Let C ′ = (v′
0, . . . , v

′
r) and C ′′ =599

(v′′
0 , . . . , v

′′
r) be the two cycles resulting from the duplication of C, e.g., the cycles (a′, b′, c′)600

and (a′′, b′′, c′′) on Figure 9(b). The graph GC with two new faces ϕ′ and ϕ′′ is connected.601

In particular, there exists a simple path P = (w0, . . . , ws) in GC from a vertex v′
i ∈ C ′ to a602

vertex v′′
j ∈ C ′′, such that every intermediate vertex wk, 0 < k < s, is not in C ′ ∪ C ′′, e.g.,603

the path (c′′, d, b′) on Figure 9(b). Note that it may be the case that i ̸= j. On Figure 9(b),604

the path (b′′, e, d, b′) satisfies i = j, but Figure 10 illustrates an embedding of K3,3 on T1 for605

which i = j cannot occur (simply because every vertex of K3,3 has degree 3, and thus it has606

a single edge not in the cycle). Duplicating P enables to obtain a graph GC,P with a special607

face ϕ∗, whose boundary contains all duplicated vertices and only them (see Figure 9(c)).608

The details of the vertex-duplications, and of the edge-connections are detailed hereafter.609

Connections in path-duplication.610

Let P ′ = (w′
0, . . . , w

′
s) and P ′′ = (w′′

0 , . . . , w
′′
s) be the two paths obtained by duplicating P .611

In particular, the vertices w0 = v′
i and ws = v′′

j are both duplicated in w′
0, w

′′
0 , and w′

s, w
′′
s ,612

respectively. The edges613

{v′
i−1, v

′
i}, {v′

i, v
′
i+1}, {v′′

j−1, v
′′
j }, and {v′′

j , v
′′
j+1}614

18 Local Certification of Graphs with Bounded Genus

1

5 2

4 3

6

Figure 10 K3,3 embedded on the torus T1.

are replaced by the edges connecting v′
i−1, v

′
i+1, v

′′
j−1, v

′′
j+1 to w′

0, w
′′
0 , w

′
s, w

′′
s . For defining615

these edges, observe that the path P in T1 induces a path Q = (vi, w1, . . . , ws−1, vj) in G616

connecting the vertices vi and vj of C, such that, in the embedding on T1, the edge {vi, w1}617

meets C on one side while the edge {ws−1, vj} meets C on the other side (see Figure 11(a-b)).618

Figure 11(b) Let us assume, w.l.o.g., that the edges of C ∪Q around vi are in the order619

{vi, vi−1}, {vi, vi+1}, {vi, w1}620

when visited counter-clockwise in T1. It follows that the edges of C ∪Q around vj are in the621

order622

{vj , vj−1}, {vj , vj+1}, {vj , ws−1}623

when visited clockwise in T1 (see Figure 11(b)). These orders are transferred in GC , that is,624

the edges of C ′ ∪ P around v′
i are in counter-clockwise order625

{v′
i, v

′
i−1}, {v′

i, v
′
i+1}, {v′

i, w1},626

while the edges of C ′′ ∪ P around v′′
j are in clockwise order627

{v′′
j , v

′′
j−1}, {v′′

j , v
′′
j+1}, {v′′

j , ws−1},628

as illustrated on Figure 11(b). This guarantees that v′
i−1 and v′′

j−1 are in the same side of629

the path P . More generally, the relative positions of v′
i−1, v′

i+1, v′′
j−1, and v′′

j+1 w.r.t. P are630

as follows. Vertices v′
i−1 and v′′

j−1 are on the same side of P , while vertices v′
i+1 and v′′

j+1631

are on the other side of P (see again Figure 11(b)). As a consequence, it can be assumed632

that, in the graph GC,P resulting from the duplications of both C and P , the vertices v′
i−1633

and v′′
j−1 are connected to the end points of P ′, while v′

i+1 and v′′
j+1 are connected to the634

end points of P ′′. It follows that635

{w′
0, v

′
i−1}, {w′

s, v
′′
j−1}, {w′′

0 , v
′
i+1}, and {w′′

s , v
′′
j+1}636

are edges of GC,P (see Figure 11(c)).637

Unfolding.638

The embedding f of G on X = T1 directly induces an embedding of H∗ = GC,P on ΣC , as639

illustrated on Figure 11(d). As observed before, the genus of ΣC is one less than the genus640

of Σ. Since X = T1, it follows that the embedding f of G on T1 actually induces a planar641

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 19

(a) (b)

ϕ∗

P ′
v′

i−1

w′′
0

v′
i+1

w′′
s

v′′
j+1

v′′
j−1

w′
0

w′
sw′

1
w′′

1

P ′′

(c)

(d)

v′
i

v′
i+1

v′
i−1 v′′

j

v′′
j+1

v′′
j−1

vj

vj+1
vj−1

vi

vi+1

vi−1
w1 w0

w1

ws

ws−1
ws−1

PP

C ′
C ′′C

w′′
s−1w′′

1

w′
1

v′
i+1

v′
i−1

w′
0

w′′
0

w′
s

w′′
s

v′′
j+1

v′′
j−1

C ′
C ′′

P ′

P ′′

ϕ∗

w′
s−1

w′′
s−1

B∗

B∗H∗

w′
s−1

Figure 11 Setting up the connections in path-duplication. A key point, is that vi is surrounded
by the triple (vi−1, vi+1, w1) counter-clockwise while vj is surrounded by (vj−1, vj+1, ws) clockwise.
This allows to know where P ′ and P ′′ are respectively branched on cycles C′ and C′′.

embedding f∗ of H∗. The faces of this embedding are merely the faces of G, plus another,642

special face ϕ∗ whose boundary walk is643

B∗ = (w′
0, w

′
1, . . . , w

′
s,v

′′
j−1, v

′′
j−2, . . . , v

′′
0 , v

′′
r , . . . , v

′′
j+1, (1)644

w′′
s , w

′′
s−1, . . . , w

′′
0 , v

′
i+1, v

′
i+2, . . . , v

′
r, v

′
0, . . . , v

′
i−1),645

646

as displayed on Figure 11(d)). For instance, on Figure 9(d), B∗ =647

(b′
1, d1, c

′′
1 , a

′′, b′′, c′′
2 , d2, b

′
2, a

′, c′). The face ϕ∗ can be pointed out as special, as on648

Figure 11(d), or can be made the external face of the embedding of H∗, as on Figure 9(d).649

Our interest for H∗, f∗, ϕ∗, and B∗ as far as the design of a proof-labeling scheme is650

concerned, resides in the fact that, as shown hereafter, they form a (centralized) certificate651

for genus 1.652

3.2.2 Certifying Genus 1653

Let us first define the notion of splitting.654

▶ Definition 8. A splitting of a graph G into a graph H is a pair σ = (α, β) of functions,655

where α : V (G) → 2V (H), and β : E(G) → 2E(H), such that:656

1. the set {α(v) : v ∈ V (G)} forms a partition of V (H);657

2. for every e = {u, v} ∈ E(G), β(e) is a matching between α(u) and α(v).658

Note that σ(G) may not be connected, even if G is connected. For every v ∈ V (G), the659

vertices α(v) in H are the avatars of v in H. The degree of a splitting σ = (α, β) of G into H660

is maxv∈V (G) |α(v)|, and H is said to be a d-splitting of G whenever d = maxv∈V (G) |α(v)|.661

20 Local Certification of Graphs with Bounded Genus

A vertex v ∈ V (G) is split in H if |α(v)| ≥ 2, otherwise it is not split in H. If a vertex v is662

not split, we abuse notation by writing α(v) = v, i.e., by referring to v as a vertex of G and663

as a vertex of H. For any subgraph G′ of G, we denote by σ(G′) the subgraph H ′ of H with664

vertex-set V (H ′) = {α(v) : v ∈ V (G′)}, and with edge-set E(H ′) = ∪e∈E(G′)β(e). With a665

slight abuse of notation, for a splitting σ = (α, β) of G into H, we often refer to σ(v) instead666

of α(v) for v ∈ V (G), and to σ(e) instead of β(e) for e ∈ E(G).667

Let H be a splitting of a graph G for which there exists a 2-splittting U of G such that H668

is a 2-splitting of U . Let f be a planar embedding of H, and let ϕ be a face of H embedded669

on T0. Let B = (u0, . . . , uN) be a boundary walk of ϕ. Let σG,U and σU,H be the splitting of670

G into U , and the splitting of U into H, respectively. Let σG,H = σU,H ◦ σG,U . We say that671

(G,H,B,U) is globally consistent if there exist vertices v′
0, . . . , v

′
r, v′′

0 , . . . , v
′′
r , w′

0, . . . , w
′
s,672

w′′
0 , . . . , w

′′
s of H such that673

B = (w′
0, . . . , w

′
s, v

′′
j−1, . . . , v

′′
0 , v

′′
r , . . . , v

′′
j+1, w

′′
s , . . . , w

′′
0 , v

′
i+1, . . . , v

′
r, v

′
0, . . . , v

′
i−1)674

where675

for every vertex u /∈ {v′
k, v

′′
k : 0 ≤ k ≤ r} ∪ {w′

k, w
′′
k : 0 ≤ k ≤ s} of H, σG,H(u) = u;676

for every k ∈ {1, . . . , s− 1}, σ−1
U,H({w′

k, w
′′
k}) = wk ∈ V (U), and σG,U (wk) = wk;677

for every k ∈ {0, . . . , r} ∖ {i, j}, σ−1
G,U ({v′

k, v
′′
k }) = vk ∈ V (U), and σU,H(vk) = vk;678

σ−1
U,H({w′

0, w
′′
0 }) = v′

i ∈ V (U), σ−1
U,H({w′

s, w
′′
s }) = v′′

j ∈ V (U), σ−1
G,U ({v′

i, v
′′
i }) = vi ∈ V (G),679

and σ−1
G,U ({v′

j , v
′′
j }) = vj ∈ V (G) (note that this applies to both cases i = j and i ̸= j).680

Remark.681

The way the vertices of B are listed provides B with a reference direction, say clockwise.682

This reference direction is crucial for checking that the two faces of U with respective683

boundary walks v′
i, v

′
i+1, . . . , v

′
r, v

′
0, . . . , v

′
i−1 and v′′

j , v
′′
j−1, . . . , v

′′
0 , v

′′
r , . . . , v

′′
j+1 can be merged684

for forming a handle. Global consistency specifies that, for these two faces to be merged,685

their directions inherited from the reference direction of B must both be clockwise (cf.,686

Figure 11(d)). Indeed, while one face is traversed clockwise with increasing indices, the other687

is traversed clockwise with decreasing indices. This matches the specification of handles (cf.688

Figure 3).689

By the construction in Section 3.2.1, for every graph G of genus 1, (G,H∗, B∗, U∗) is690

globally consistent, where H∗ = GC,P , U∗ = GC , and B∗ is the boundary walk of ϕ∗
691

displayed in Eq. (1). The following result is specific to the torus, but it illustrates the basis692

for the design of our proof-labeling schemes.693

▶ Lemma 9. Let H be a splitting of a graph G, and assume that there exists a planar694

embedding f of H with a face ϕ and a boundary walk B of ϕ. Let U be a 2-splittting of695

G such that H is a 2-splitting of U . If (G,H,B,U) is globally consistent, then G can be696

embedded on the torus T1.697

Proof. Using the specifications of the splits, the two sub-paths (w′
0, . . . , w

′
s) and (w′′

0 , . . . , w
′′
s)698

of B can be identified by merging each pair of vertices w′
k and w′′

k , k ∈ {1, . . . , s − 1},699

into a single vertex wk = σ−1
U,H({w′

k, w
′′
k}) of U , by merging the vertices w′

0 and w′′
0 into700

a single vertex v′
i of U , and by merging the vertices w′

s and w′′
s into a single vertex v′′

j701

of U . The resulting sequence v′
i, w1, . . . , ws−1, v

′′
j forms a path in U connecting two faces702

ϕ′ and ϕ′′, replacing the face ϕ of the planar embedding f of H, with respective boundary703

walks (v′
0, v

′
1, . . . , v

′
r) and (v′′

r , v
′′
r−1, . . . , v

′′
0), where the vertices are ordered clockwise. These704

transformations preserve the planarity of the embedding, that is, U is planar. Next, the two705

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 21

cycles (v′
0, . . . , v

′
r) and (v′′

0 , . . . , v
′′
r) can be identified, by merging each pair of nodes v′

k and706

v′′
k into a single node vk = σ−1

G,U ({v′
k, v

′′
k }) of G. As a result, the two faces ϕ′ and ϕ′′ are707

replaced by a handle, providing an embedding of G on T1. ◀708

The outcome of Lemma 9 is that (H∗, f∗, ϕ∗, B∗) is essentially a certificate that G can709

be embedded on T1 (up to also providing the “intermediate” splitting U∗ resulting from710

cycle-duplication). In the next section, we show how to generalize this construction for711

deriving a certificate that a graph G can be embedded on Tk, k > 1.712

The process described in the previous section for genus 1 can be generalized to larger713

genus k ≥ 1, as follows. Again, let G be a graph, and let f be a 2-cell embedding of G on Tk.714

3.2.3 The Face-Duplication Phase715

Let Σ(0) = Tk. As for the torus, let C1 be a non-separating orientable cycle of G(0) = G,716

and let us consider the embedding of G(1) = G
(0)
C1

induced by f , on the surface Σ(1) = Σ(0)
C1

717

of genus k − 1. This operation can be repeated. Indeed, by Lemma 7, there exists a718

non separating cycle C2 of G(1). The graph G(2) = G
(1)
C2

can be embedded on the surface719

Σ(2) = Σ(1)
C2

with one face more than the number of faces of the embedding of G(1) on Σ(1),720

and thus two more faces than the number of faces of the embedding of G on Tk. By Lemma 5,721

Σ(2) has thus genus k − 2. See Figure 1(a-b).722

This process can actually be iterated k times, resulting in a sequence of k + 1 graphs723

G(0), . . . , G(k) where G(0) = G, and a sequence of k + 1 closed surfaces Σ(0), . . . ,Σ(k) where724

Σ(0) = Tk. Each graph G(i) is embedded on the closed surface Σ(i) of genus k − i, as follows.725

The embedding of G(0) on Σ(0) is the embedding of G on Σ, and, for every i = 0, . . . , k−1, the726

embedding of G(i+1) on Σ(i+1) is induced by the embedding of G(i) on Σ(i), after duplication727

of a non-separating cycle Ci+1 of G(i) into two cycles C ′
i+1 and C ′′

i+1.728

The closed surface Σ(k) is of genus 0, i.e. Σ(k) is homeomorphic to the sphere T0 = S2
729

(see Figure 1(b)). The graph G(k) is therefore planar, for it contains k more faces than730

the number of faces in G, as two new faces ϕ′
i and ϕ′′

i are created at each iteration i, in731

replacement to one face ϕi, for every i = 1, . . . , k.732

3.2.4 The Face-Reduction Phase733

The objective is now to replace the 2k faces ϕ′
i, ϕ

′′
i , i = 0, . . . , k− 1, by a single face. For this734

purpose, let us relabel these faces as ψ1, . . . , ψ2k (see Figure 1(c)) so that, for i = 1, . . . , k,735

ϕ′
i = ψ2i−1, and ϕ′′

i = ψ2i.736

Let χ1 = ψ1. There exists a simple path P1 between the two faces χ1 and ψ2. Duplicating737

P1 preserves the fact that the graph G(k+1) = G
(k)
P1

can be embedded on the sphere T0. By738

this duplication, the two faces χ1 and ψ2 are merged into a single face χ2. Now, there is a739

simple path P2 between the two faces χ2 and ψ3 (see Figure 1(d)). Again, duplicating P2740

preserves the fact that the graph G(k+2) = G
(k+1)
P2

can be embedded on the sphere T0, in741

which the two faces χ2 and ψ3 are now merged into a single face χ3. By iterating this process,742

a finite sequence of graphs G(k), . . . , G(3k−1) is constructed, where, for i = 0, . . . , 2k − 1,743

the graph G(k+i) is coming with its embedding on T0, and with a set of special faces744

χi+1, ψi+2, . . . , ψ2k. A path Pi+1 between χi+1 and ψi+2 is duplicated for merging these745

two faces into a single face χi+2, while preserving the fact that G(k+i+1) = G
(k+i)
Pi+1

can be746

embedded on the sphere T0.747

22 Local Certification of Graphs with Bounded Genus

Eventually, the process results in a single face ϕ∗ = χ2k of H∗ = G(3k−1) (see Figure 1(e)).748

This face contains all duplicated vertices. The embedding f of G on Tk induces a planar749

embedding of H∗ whose external face is ϕ∗ (see Figure 1(f)).750

3.2.5 Certifying Genus at Most k751

Conversely, for a graph G of genus k, an embedding of G on Tk can be induced from the752

embedding f∗ of H∗ on T0, and from the boundary walk B∗ of ϕ∗. The latter is indeed753

entirely determined by the successive cycle- and path-duplications performed during the754

whole process. It contains all duplicated vertices, resulting from the cycles C ′
1, . . . , C

′
k and755

C ′′
1 , . . . , C

′′
k , and from the paths P ′

1, . . . , P
′
2k−1 and P ′′

1 , . . . , P
′′
2k−1. Note that the duplication756

process for a vertex may be complex. A vertex may indeed be duplicated once, and then757

one of its copies may be duplicated again, and so on, depending on which cycle or path758

is duplicated at every step of the process. This phenomenon actually already occurred in759

the basic case of the torus T1 where the duplications of vi and vj were more complex that760

those of the other vertices, and were also differing depending on whether i = j or not (see761

Section 3.2). Figure 2 illustrates a case in which two cycles Ci and Cj share vertices and762

edges in T2, causing a series of duplication more complex than the basic case illustrated on763

Figure 1. In particular, a same vertex of H∗ may appear several times on the boundary walk764

B∗, and a same edge of H∗ may be traversed twice, once in each direction.765

Let H be a splitting of a graph G, let f be a planar embedding of H, and let ϕ be a766

face of H embedded on T0. Let B = (u0, . . . , uN) be a boundary walk of ϕ, and let B⃗ be767

an arbitrary reference direction given to B, say clockwise. Let U = (U0, . . . , U3k−1) be a768

sequence of graphs such that U0 = G, U3k−1 = H, and, for every i ∈ {0, . . . , 3k − 2}, Ui+1 is769

a 2-splitting of Ui. The splitting of Ui into Ui+1 is denoted by σi = (αi, βi). The following770

extends the notion of global consistency defined in the case of the torus T1. We say that771

(G,H, B⃗,U), is globally consistent if the following two conditions hold.772

1. Path-duplication checking. Let χ2k = ϕ, with directed boundary walk B⃗(χ2k) =773

B⃗. For every i = 0, . . . , 2k − 1, there exist faces χi+1, ψ
(i)
i+2, . . . , ψ

(i)
2k of Uk+i, with774

respective directed boundary walks B⃗(χi+1), B⃗(ψ(i)
i+2), . . . , B⃗(ψ(i)

2k), and there exist vertices775

u
(i)
1 , . . . , u

(i)
t , v(i)

1 , . . . , v
(i)
r , w′(i)

0 , . . . , w
′(i)
s , and w

′′(i)
0 , . . . , w

′′(i)
s of Uk+i such that776

B⃗(χi+1) = (w′(i)
0 , . . . , w

′(i)
s , v

(i)
1 , . . . , v

(i)
r , w

′′(i)
s , . . . , w

′′(i)
0 , u

(i)
1 , . . . , u

(i)
t);777

for every vertex x ∈ V (Uk+i) ∖ ({w′(i)
0 , . . . , w

′(i)
s } ∪ {w′′(i)

0 , . . . , w
′′(i)
s }), σk+i−1(x) = x;778

for every j ∈ {0, . . . , s}, |σ−1
k+i−1({w′(i)

j , w
′′(i)
j })| = 1;779

B⃗(χi) = (x, u(i)
1 , . . . , u

(i)
t , x) where x = σ−1

k+i−1({w′(i)
0 , w

′′(i)
0 });780

B⃗(ψ(i−1)
i+1) = (y, v(i)

1 , . . . , v
(i)
r , y) where y = σ−1

k+i−1({w′(i)
s , w

′′(i)
s });781

for j = i+ 2, . . . , 2k, σk+i−1(B⃗(ψ(i−1)
j)) = B⃗(ψ(i)

j).782

2. Cycle duplication checking. Let ϕ
′(k)
1 = χ1, and, for i = 2, . . . , k, let ϕ

′(k)
i =783

ψ
(0)
2i−1. For i = 1, . . . , k, let ϕ

′′(k)
i = ψ

(0)
2i . For every i = 1, . . . , k, there ex-784

ists faces ϕ
′(i)
1 , ϕ

′′(i)
1 , . . . , ϕ

′(i)
i , ϕ

′′(i)
i of Ui with respective directed boundary walks785

B⃗(ϕ′(i)
1), B⃗(ϕ′′(i)

1), . . . , B⃗(ϕ′(i)
i), B⃗(ϕ′′(i)

i) such that786

B⃗(ϕ′(i)
i) = (v′

0, v
′
1, . . . , v

′
r, v

′
0) and B⃗(ϕ′′(i)

i) = (v′′
0 , v

′′
r , v

′′
r−1, . . . , v

′′
1 , v

′′
0) for some r ≥ 2,787

with |σ−1
i−1({v′

j , v
′′
j })| = 1 for every j = 0, . . . , r;788

for j = 1, . . . , i− 1, σi−1(B⃗(ϕ′(i−1)
j)) = B⃗(ϕ′(i)

j), and σi−1(B⃗(ϕ′′(i−1)
j)) = B⃗(ϕ′′(i)

j).789

By the construction performed in Sections 3.2.3 and 3.2.4, for every graph G of genus k,790

(G,H∗, B⃗∗,U∗) is globally consistent, where U∗ = (G(0), . . . , G(3k−1)). The following result791

generalizes Lemma 9 to graphs of genus larger than 1.792

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 23

▶ Lemma 10. Let H be a splitting of a graph G, and assume that there exists a planar793

embedding f of H with a face ϕ and a boundary walk B of ϕ. Let U = (U0, . . . , U3k−1) be794

a series of graphs such that U0 = G, U3k−1 = H, and, for every i ∈ {0, . . . , 3k − 2}, Ui+1795

is a 2-splitting of Ui. If (G,H, B⃗,U) is globally consistent, then G can be embedded on the796

torus Tk.797

Proof. Condition 1 in the definition of global consistency enables to recover a collection798

ψ1, . . . , ψ2k of faces of Uk. These faces are inductively constructed, starting from the face ϕ799

of the planar embedding f of U3k−1 = H. At each iteration i of the induction, Uk+i−1 has800

faces χi, ψ
(i−1)
i+1 , . . . , ψ

(i−1)
2k obtained from the faces χi+1, ψ

(i)
i+2, . . . , ψ

(i)
2k of Uk+i by separating801

the face χi+1 into two faces χi and ψ
(i−1)
i+1 connected by a path, while preserving the other802

faces ψ(i)
i+2, . . . , ψ

(i)
2k . This operation preserves planarity, and thus, in particular, Uk is planar.803

The directions of the boundary walks of the faces ψ1, . . . , ψ2k are inherited from the804

original direction given to the boundary walk B. Condition 2 enables to iteratively merge805

face ψ2i with face ψ2i−1, i = 1, . . . , k, by identifying the vertices of their boundary walks806

while respecting the direction of these walks, which guarantees that handles are created (and807

not a Klein-bottle-like construction). The process eventually results in the graph U0 with k808

handles, providing an embedding of U0 = G on Tk. ◀809

Thanks to Lemma 10, the overall outcome of this section is that the tuple810

c = (H∗, f∗, ϕ∗, B∗,U∗)811

constructed in Sections 3.2.3 and 3.2.4 is a certificate that G can be embedded on Tk. This812

certificate c and its corresponding verification algorithm are however centralized. In the next813

section, we show how to distribute both the certificate c, and the verification protocol.814

4 Proof-Labeling Scheme for Bounded Genus Graphs815

In this section, we establish our first main result.816

▶ Theorem 11. Let k ≥ 0, and let G+
k be the class of graphs embeddable on an orientable817

closed surface of genus at most k. There is a proof-labeling scheme for G+
k using certificates818

on O(logn) bits in n-node graphs.819

The proof essentially consists of showing how to distribute the centralized certificate820

(H, f, ϕ,B,U)821

used in Lemma 10 for a graph G, by storing O(logn) bits at each vertex of G, while allowing822

the vertices to locally verify the correctness of the distributed certificates, that is, in particular,823

verifying that (G,H,B,U) is globally consistent. The rest of the section is entirely dedicated824

to the proof of Theorem 11. We start by defining the core of the certificates assigned to the825

nodes, called histories. Then, we show how to distribute the histories so that every node826

stores at most O(logn) bits, and we describe the additional information to be stored in the827

certificates for enabling the liveness and completeness properties of the verification scheme828

to hold. Recall that the nodes of G are given arbitrary distinct IDs picked from a set of829

polynomial range. The ID of node v ∈ V (G) is denoted by id(v). Note that id(v) can be830

stored on O(logn) bits.831

24 Local Certification of Graphs with Bounded Genus

4.1 Histories832

The description of the certificates is for positive instances, that is, for graphs G ∈ G+
k . For833

such an instance G, the prover performs the construction of Section 3.2.2, resulting in the834

series of 2-splitting graphs G(0) = G,G(1), . . . , G(2k−2), G(2k−2) = H∗, a planar embedding f835

of H∗, and the identification of a special face ϕ∗ in this embedding, with boundary walk B∗.836

The successive duplications experienced by a vertex v of the actual graph G during the837

face-duplication and face-reduction phases resulting in H∗ can be encoded as a rooted binary838

tree unfolding these duplications, called history.839

For every vertex v of G, the history of v is denoted by h(v). The history of v is a840

rooted binary tree of depth 3k − 1 (all leaves are at distance 3k − 1 from the root). For841

ℓ = 0, . . . , 3k − 1, the level ℓ of h(v) consists of the at most 2ℓ nodes at distance ℓ from the842

root. The internal nodes of h(v) with two children are call binary nodes, and the internal843

nodes with one child are called unary.844

For ℓ = 0, . . . , k − 1, the edges connecting nodes of level ℓ to nodes of level ℓ + 1 are845

corresponding to the duplication of the cycle Cℓ+1 in G(ℓ) (cf. Section 3.2.3), and,846

for ℓ = 0, . . . , 2k − 1, the edges connecting nodes of level k + ℓ to nodes of level k + ℓ+ 1847

are corresponding to the duplication of the path Pℓ+1 in G(k+ℓ) (cf. Section 3.2.4).848

The nodes of h(v) are provided with additional information, as follows.849

4.1.1 Vertices and Adjacencies in the Splitting Graphs850

For every ℓ = 1, . . . , 3k − 1, every node x at level ℓ in h(v) is provided with the vertex u851

of G(ℓ) it corresponds to, after the duplications of v corresponding to the path from the852

root to x. In particular, each leaf of h(v) is provided with the single vertex of H∗ = G(3k−1)
853

it corresponds to. Specifically, each internal node x of h(v) is provided with the set Sx of854

vertices of H∗ marked at the leaves of the subtree of h(v) rooted at x. For a leaf x, Sx = {u},855

where u is the avatar of v in H∗ corresponding to the path from the root to the leaf x. Note856

that, for two distinct nodes at level ℓ in h(v), we have Sx ∩ Sy = ∅.857

The 3k − 1 splittings successively performed starting from G are 2-splittings, from which858

it follows that every vertex of G is split a constant number of times for a fixed k. The ν ≥ 1859

avatars of v ∈ V (G) in H∗ are labeled (id(v), 1), . . . , (id(v), ν). It follows that the ν leaves of860

h(v) are respectively labeled (id(v), 1), . . . , (id(v), ν). For every node x of h(v), each set Sx is861

a subset of {(id(v), 1), . . . , (id(v), ν)}, and thus these sets Sx can be stored on O(logn) bits.862

Every node x of h(v) at level ℓ ∈ {0, . . . , 3k − 1}, which, as explained above, corresponds863

to a vertex of G(ℓ), is also provided with the set Nx of the neighbors of Sx in G(ℓ). The set864

Nx has the form Nx = {X1, . . . , Xd} for some d ≥ 1, where, for i = 1, . . . , d, Xi is a vertex865

of G(ℓ) corresponding to a set of avatars in H∗ of some neighbor w of v in G.866

Since some vertices v ∈ V (G) may have arbitrarily large degree (up to n− 1), the sets867

Nx may not be storable using O(logn) bits. As a consequence, some histories may not be868

on O(logn) bits, and may actually be much bigger. Nevertheless, a simple trick using the869

fact that graphs with bounded genus have bounded degeneracy (cf. Lemma 6) allows us to870

reassign locally the set Nx in the histories so that every node of G stores O(logn) bits only.871

4.1.2 Footprints872

Every node x of h(v) at level ℓ ∈ {0, . . . , 3k− 1} is provided with a (possibly empty) set Fx of873

ordered triples of the form (X,Y, Z) where X ∈ Nx, Y = Sx, and Z ∈ Nx, called footprints.874

Intuitively, each footprint encodes edges {X,Y } and {Y, Z} of G(ℓ) occurring in:875

a boundary walk of one of the faces ϕ′
i or ϕ′′

i , i = 1, . . . , ℓ, if ℓ ≤ k, or876

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 25

a boundary walk of one of the faces χℓ−k, ψℓ−k+1, . . . , ψ2k, otherwise.877

Note that these two edges are actually directed, from X to Y , and from Y to Z, reflecting878

that the boundary walk is traveled in a specific direction, inherited from some a priori879

direction, say clockwise, given to the boundary walk B∗ of the face ϕ∗ = χ2k (hence the880

terminology “footprints”).881

Note that a same vertex of G(ℓ) may appear several times in the boundary walk of a face,882

and a same edge may appear twice, once in every direction. Therefore, a same node x of h(v)883

may be provided with several footprints, whose collection form the set Fx, which may be of884

non-constant size. On the other hand, for a fixed k, a constant number of boundary walks885

are under concern in total, from which it follows that even if a node x at level ℓ of h(v) must886

store a non-constant number of footprints in Fx, each of x’s incident edges in G(ℓ) appears887

in at most two footprints of Fx. We use this fact, together with the bounded degeneracy of888

the graphs of bounded genus, for reassigning locally the sets Fx in the histories so that every889

node of G stores O(logn) bits only.890

4.1.3 Types891

Last, but not least, for every node x of h(v), each of the two (directed) edges (X,Y) and892

(Y, Z) in every footprint (X,Y, Z) in Fx also comes with a type in893

Tk = {C ′
1, . . . , C

′
k, C

′′
1 , . . . , C

′′
k , P

′
1, . . . , P

′
2k−1, P

′′
1 , . . . , P

′′
2k−1},894

which reflects when this edge was created during the cycle- and path-duplications.895

Example.896

Figure 12 provides examples of histories for some vertices of G in the case displayed on897

Figure 11. Figure 12(a-b) display the histories of vi and vj whenever i ≠ j, while Figure 12(c)898

displays the histories of vi = vj whenever i = j. In this latter case, the leaves w′
0, w

′′
0 , w

′
s, w

′′
s899

may be labeled as (id(v), 1), (id(v), 2), (id(v), 3), (id(v), 4), respectively. Then v′
i is labeled900

Sv′
i

= {(id(v), 1), (id(v), 2)}, while v′′
i is labeled Sv′′

i
= {(id(v), 3), (id(v), 4)}, and root is901

labeled Svi = {(id(v), 1), (id(v), 2), (id(v), 3), (id(v), 4)}. The neighborhoods Nx of these902

nodes x of h(vi) are depending on the graphs G(0) = G,G(1), and G(2) = H∗. Assuming that903

B∗ is directed clockwise, as displayed on Figure 11(d), the leaf w′
0 is provided with footprint904

(v′
i−1, w

′
0, w

′
1) while the leaf w′′

0 is provided with footprint (w′′
1 , w

′′
0 , v

′
i+1). Similarly, w′

s and905

w′′
s are respectively provided with footprint (w′

s−1, w
′
s, v

′′
i−1) and (v′′

i+1, w
′′
s , w

′′
s−1), where the906

various nodes in these footprints are encoded depending on their labels in H∗, which depend907

on the IDs given to the neighbors of vi in G. The footprint at v′
i is (v′

i−1, v
′
i, v

′
i+1), while908

the footprint at v′′
i is (v′′

i+1, v
′′
i , v

′
i−1). In both case, the directions of the edges are inherited909

from the initial clockwise direction of the boundary walk B∗. The directed edges (v′
i−1, v

′
i)910

and (v′
i, v

′
i+1) receives type C ′

1, while the directed edges (v′′
i+1, v

′′
i) and (v′′

i , v
′′
i−1) receives911

type C ′′
2 . The four edges (v′

i−1, w
′
0), (w′′

0 , v
′
i+1), (v′′

i+1, w
′′
s), and (w′

s, v
′′
i−1) are respectively912

inheriting the types C ′
1, C

′
1, C

′′
1 , and C ′′

1 of the four edges (v′
i−1, v

′
i), (v′

i, v
′
i+1), (v′′

i+1, v
′′
i), and913

(v′′
i , v

′′
i−1). The directed edges (w′

0, w
′
1) and (w′

s−1, w
′
s) receive type P ′

1, while the directed914

edges (w′′
1 , w

′′
0) and (w′′

s , w
′′
s−1) receive type P ′′

1 . Observe that the footprints are constructed915

upward the histories, while the types are assigned downward those trees.916

We now detail how the footprints are constructed in general, and how the types are917

assigned to the edges of the footprints.918

26 Local Certification of Graphs with Bounded Genus

vi

v′
i v′′

i

w′′
0w′

0 v′′
i

vj

v′′
jv′

j

w′′
sw′

sv′
j

vi

v′′
iv′

i

w′′
sw′

sw′′
0w′

0

(a) (b) (c)

Figure 12 Examples of histories.

4.1.4 Construction of the Footprints919

Let us give an arbitrary orientation, say clockwise, to the boundary walk B∗ of the special920

face ϕ∗ of H∗. This orientation induces footprints (pred(u), u, succ(u)) ∈ Fx given to every921

leaf x of every history h(v), v ∈ V (G). The vertex pred(u) ∈ V (H∗) is the predecessor922

of the avatar u ∈ V (H∗) of v in H∗, and succ(u) ∈ V (H∗) is its successor. Note that923

some leaves x have Fx = ∅, whenever the corresponding node u in H∗ does not belong to924

the boundary walk B∗. On the other hand, as a same node can be visited several times925

when traveling along the boundary walk B∗, some leaves may be given several footprints926

(pred1(u), u, succ1(u)), . . . , (predd(u), u, succd(u)) in Fx, for some d ≥ 1. The footprints927

provided to the internal nodes of the histories of the vertices of G are given in a way928

consistent with the orientation of B∗. More specifically, the footprints are constructed929

upward the histories, as follows.930

Hereafter, the symbol “ ℓ−→” stands for the operation performed when going from level931

ℓ− 1 to level ℓ, or vice-versa, from level ℓ to level ℓ− 1. For instance, for three sets S, S′, S′′
932

of vertices from H∗, the relation933

S
ℓ−→ S′, S′′

934

states that the vertices S′ and S′′ of G(ℓ) are the results of a cycle- or path-duplication935

experienced by the vertex S occurring from G(ℓ−1) to G(ℓ), i.e., the vertex S = S′ ∪ S′′ of936

G(ℓ−1) is split into two avatars, S′ and S′′, in G(ℓ). If ℓ ≤ k, the split was caused by a937

cycle-duplication, otherwise it was caused by a path-duplication. Similarly, for two footprints938

F ′ and F ′′ at two nodes at level ℓ, children of a same binary node, the relation939

F ′, F ′′ ℓ−→ F940

states that, when going upward a history, the two footprints F ′ and F ′′ of level ℓ generate941

the footprint F at level ℓ− 1.942

Three rules, called Elementary, Extremity, and Vacancy, are applied for the construction943

of the footprints. Their role is to “role back” the boundary walk B∗ of the special face ϕ∗ in944

the planar embedding of H∗. Each edge of the boundary walk B∗ is indeed resulting from945

some duplication, of either a cycle or a path. The footprints encode the histories of all edges946

of the boundary walk B∗ in all graphs G(ℓ), 0 ≤ ℓ ≤ 3k − 1, including when the edges were947

created (referred to as the types of the edges), and what were their successive extremities948

when those extremities are duplicated.949

Elementary rule. Assuming X
ℓ−→ X ′, X ′′, Y

ℓ−→ Y ′, Y ′′, and Z
ℓ−→ Z ′, Z ′′, the elementary950

rule matches two footprints of two children Y ′ and Y ′′, and produces none at the parent Y :951

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′) ℓ−→ ⊥.952

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 27

X

Y
Z X ′

Y ′

Z ′
Z ′′

Y ′′

X ′′

Cℓ C ′
ℓ C ′′

ℓ

ℓ

X Y Z

Pℓ−k

ℓ
X ′ Y ′ Z ′

P ′
ℓ−k

X ′′ Y ′′ Z ′′

P ′′
ℓ−k

(X ′, Y ′, Z′)

⊥

(Z′′, Y ′′, X ′′)}} } }

type C
′
ℓ/P

′
ℓ−k type C

′′
ℓ /P

′′
ℓ−k

Figure 13 Footprint construction, and type assignment: Elementary rule.

The Elementary rule applies to the case of cycle duplication, as well as to the case of953

path-duplication, but to the internal nodes of the path only (see Figure 13). When two954

cycles are merged (as the opposite to cycle duplication), their faces are glued together, and955

disappear. Similarly, when two paths are merged (as the opposite of path-duplication),956

the resulting path is of no use, and it can be discarded. Note that the two footprints957

(X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are ordered in opposite directions. This matches the958

requirement for correctly glueing the borders of two faces in order to produce a handle959

(see Figures 3 and 7). This also matches the way the two copies of a path Pi are traversed960

when traveling along the boundary walk B∗ in clockwise direction (cf. Eq. (1) and961

Figure 8).962

Extremity rule. This rule applies only for levels ℓ > k. It has two variants, defined below.963

Single extremity rule. Assuming X ′ ℓ−→ X ′, X ′′ ℓ−→ X ′′, Y
ℓ−→ Y, |Y ′′, and Z

ℓ−→ Z ′, Z ′′,964

the single extremity rule matches two footprints of two children Y ′ and Y ′′, and965

produces one footprint at the parent Y :966

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′) ℓ−→ (X ′, Y,X ′′).967

Double extremity rule. Assuming X ′ ℓ−→ X ′, X ′′ ℓ−→ X ′′, Y
ℓ−→ Y ′, Y ′′, Z ′ ℓ−→ Z ′, and968

Z ′′ ℓ−→ Z ′′, the double extremity rule matches two footprints of two children Y ′ and969

Y ′′, and produces two footprints at the parent Y :970

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′) ℓ−→
{

(X ′, Y,X ′′), (Z ′′, Y, Z ′)
}
.971

The Extremity rule refers to path duplication only (i.e., to levels ℓ > k), as displayed972

on Figure 14. It is dedicated to the extremities of the path considered at this phase973

(see Figure 8). The Single extremity rule (cf. Figure 14(a)) handles the standard case974

in which the path is not trivial (i.e., reduced to a single vertex), whereas the Double975

extremity rule (cf. Figure 14(b)) handles the case in which the path connecting two976

faces is reduced to a single vertex Y (i.e., the two corresponding cycles share at least977

one vertex Y). Then only the vertex Y is split during the path duplication, while its978

four neighbors X ′, X ′′, Z ′, and Z ′ remain intact.979

Vacancy rule. The vacancy rule simply forwards a footprint upward:980

(X ′, Y,′ Z ′) ℓ−→ (X,Y, Z)981

with X
ℓ−→ X ′, X ′′ (resp., Y ℓ−→ Y ′, Y ′′, and Z

ℓ−→ Z ′, Z ′′), unless X ℓ−→ X (resp., Y ℓ−→ Y ,982

and Z
ℓ−→ Z), in which case X = X ′ (resp., Y = Y ′, and Z = Z ′).983

28 Local Certification of Graphs with Bounded Genus

(b)(a)

X ′

Y Z

X ′′

ℓ

X′

Y ′ Z′

X′′

Y ′′Z′′

Pℓ−k

P ′
ℓ−k

P ′′
ℓ−k

(X′, Y ′, Z′) (Z′′, Y ′′, X′′)} }

type P
′
ℓ−k type P

′′
ℓ−k

(X′, Y, X′′)

ℓ ℓ

} }

X ′

Y

X ′′

Z′

Z′′

ℓ

X ′
Z′

X ′′ Z′′

P ′′
ℓ−k

P ′
ℓ−k

Pℓ−k

Y ′

Y ′′

(X′, Y ′, Z′) (Z′′, Y ′′, X′′)

(X′, Y, X′′) (Z′′, Y, Z′)

ℓ ℓ

} }

}

}

}

}

} }

} }

Figure 14 Footprint construction, and type assignment: Extremity rule.

X ′

Y

Z′

A

B

ℓ

X ′ A′

Z′ B′

Pℓ−k

Y ′′Cℓ

Y ′

B′′

A′′

C′
ℓ/P ′

ℓ−k C′′
ℓ /P ′′

ℓ−k

(X ′, Y, Z′)}

(X ′, Y, Z′)}

}

}

ℓ ℓ

Figure 15 Footprint construction, and type assignment: Vacancy rule.

The Vacancy rule handles the case where one of the twin nodes carries a footprint984

(X ′, Y ′, Z ′) (resp., (X ′′, Y ′′, Z ′′)), which is copied to the parent node, after updating the985

vertices in case the latter experienced duplications (see Figure 15).986

4.1.5 Assigning Types to Footprints987

The types in Tk are assigned to the edges of the footprints, downwards the histories, as988

follows.989

If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by application of the Elemen-990

tary rule at level ℓ, then the two (directed) edges (X ′, Y ′) and (Y ′, Z ′) (resp., (Z ′′, Y ′′)991

and (Y ′′, X ′′)) of G(ℓ) are given type C ′
ℓ (resp., C ′′

ℓ) if ℓ ≤ k, and P ′
ℓ−k (resp. P ′′

ℓ−k)992

otherwise. See Figure 13.993

If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by application of the Single994

extremity rule at level ℓ, then the two edges (X ′, Y) and (Y,X ′′) adopt the types of the995

edges (X ′, Y ′) and (Y ′′, X ′′), respectively, while the two edges (Y ′, Z ′) and (Z ′′, Y ′′) are996

given type P ′
k−ℓ and P ′′

k−ℓ, respectively. See Figure 14(a).997

If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by application of the Double998

extremity rule at level ℓ, then the four edges (X ′, Y ′), (Y ′, Z ′), (Z ′′, Y ′′), and (Y ′′, X ′′)999

adopt the types of the edges (X ′, Y), (Y,Z ′), (Z ′′, Y), and (Y,X ′′), respectively. See1000

Figure 14(b)1001

If the footprint (X ′, Y,′ Z ′) is forwarded upward as (X,Y, Z) by application of the1002

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 29

Vacancy rule, then (X ′, Y ′), and (Y ′, Z ′) adopt the types of the edges (X,Y), and (Y,Z),1003

respectively. See Figure 15.1004

We have now all the ingredients to state what will be proved as sufficient to certify that1005

a graph G has genus at most k.1006

4.2 Assignment of the Histories to the Certificates1007

As it was mentioned in Section 4.1, the history h(v) of a node v of the actual graph G may1008

not be on O(logn) bits. The reason for that is that, even if G has a bounded genus k, the1009

node v may have an arbitrarily large degree. As a consequence, the sum of the degrees of1010

its v’s avatars in each of the graphs G(0), . . . , G(3k−1) may be arbitrarily large. This has1011

direct consequences not only on the memory requirement for storing the neighborhood Nx1012

of each node x ∈ h(v), but also on the number of footprints to be stored in Fx. In both1013

cases, this memory requirement may exceed O(logn) bits. On the other hand, every graph1014

G of bounded genus is sparse, which implies that the average degree of G, and of all its1015

splitting graphs G(0), . . . , G(3k−1) is constant. Therefore, the average memory requirement1016

per vertex v for storing all the histories h(v), v ∈ V (G), is constant. Yet, it remains that1017

some vertices v ∈ V (G) may have large histories, exceeding O(logn) bits.1018

The simple trick under this circumstances (cf., e.g., [21]) is to consider the space-complexity1019

of the histories not per node of G, but per edge. Indeed, the space-complexity of the1020

information related to each edge e of G, as stored in the histories, is constant, for every1021

edge e. For instance, at a node x of level ℓ in some historie h(v), instead of storing Nx at v,1022

one could virtually store every edge {Sx, Sy}, Sy ∈ Nx, on the edge {v, w} of G, where w is1023

the neighbor of v in G with avatar Sy in G(ℓ).1024

Let us define a line proof-labeling scheme as a proof-labeling scheme in which certificates1025

are not only assigned to the vertices of G, but also to the edges of G (i.e., to vertices of the1026

line-graph of G). In a line proof-labeling scheme, the vertices forge their decisions not only1027

on their certificates and on the certificates assigned to their adjacent vertices, but also on the1028

certificates assigned to their incident edges. Our interest for the concept of line proof-labeling1029

scheme is expressed in the following result, after having recalled that, thanks to Lemma 6,1030

every graph of genus at most k is d-degenerate for some constant d depending on k.1031

▶ Lemma 12. Let f : N → N such that f(n) ∈ Ω(log(n)). Let d ≥ 1, and let G be a graph1032

family such that every graph in G is d-degenerate. If G has a line proof-labeling scheme with1033

certificate size O(f(n)) bits, then G has a proof-labeling scheme with certificate size O(f(n))1034

bits.1035

Proof. Let (p,v) be line proof-labeling scheme for G. For G ∈ G, the prover p assigns1036

certificate p(v) to every node v ∈ V (G), and certificate p(e) to every edge e ∈ V (G). Since1037

G is d-degenerate, there exists a node v of G with degree dv ≤ d. Let c(v) be the certificate1038

of v defined as1039

c(v) =
(

p(v),
{

(id(u1),p(e1)), . . . , (id(udv
),p(edv

)
})
,1040

where u1, . . . , udv
are the dv neighbors of v in G, and, for every i = 1, . . . , dv, ei = {v, ui}.1041

Since the IDs can be stored on O(logn) bits, and since f(n) ∈ Ω(logn), we get that c(v) can1042

be stored on O(f(n)) bits. This construction can then be repeated on the graph G′ = G− v,1043

which still has degeneracy at most d. By iterating this construction, all nodes are exhausted,1044

and assigned certificates on O(f(n)) bits, containing all the information originally contained1045

30 Local Certification of Graphs with Bounded Genus

r

T

ϕ
H

1 ϕ

2
3

4

5

6
7

8 9

10

11
12

1314

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕ

(a) (b) (c)

Figure 16 Illustration of the PLS for planarity in [21].

in the node- and edge-certificates assigned by p. We complete the proof by observing that,1046

for every edge e = {u, v} of G, the certificate p(e) assigned by p to e can be found either in1047

c(u) or in c(v). This suffices for simulating the behavior of v, and thus for the design of a1048

standard proof-labeling scheme for G. ◀1049

4.3 Certifying Planarity1050

In this section, we show how to certify that H is a planar embedding with a special face ϕ1051

with boundary walk B. For this purpose, we just need to slightly adapt a recent proof-labeling1052

scheme for planarity [21].1053

▶ Lemma 13. There exists a proof-labeling scheme for certifying that a given graph H has a1054

planar embedding f , including a face ϕ with boundary walk B.1055

Proof. Let H be a planar graph with a planar embedding f . The scheme for planarity1056

in [21] constructs the certificates as follows (cf. Figure 16). Let T be an arbitrary spanning1057

tree of H, and let us root T at a vertex r ∈ V (H) on the outer face ϕ, as displayed on1058

Figure 16(a). The tree T is “flattened” into a cycle C in a splitting H ′ of H by replacing1059

every vertex v ∈ V (H) by as many vertices as the number of times v is visited by a DFS1060

traversal of T starting from r (see Figure 16(b)). The scheme in [21] certifies the cycle C,1061

viewed as a path P whose two extremities are avatars of r, with respective DFS numbers 11062

and 2n − 1, plus an edge connecting these two avatars (see Figure 16(c)). A property of1063

this construction taken from [21] is that the vertices of H on the outer face ϕ are those1064

which have at least one avatar in H ′ such that no co-tree edges “jumps over it” when the1065

vertices are displayed as on Figure 16(c). For instance, the avatars 1, 4, 6, 10, 12, 13, 15 have1066

no co-tree edges jumping over them, and indeed these avatars are the ones of the vertices on1067

the boundary of the outer face ϕ. The scheme of [21] is precisely based on a local encoding1068

of the “lower edge” jumping over every avatars in H ′. It follows that this scheme suffices for1069

certifying not only the planarity of H, but also that ϕ is a face of H with boundary B. ◀1070

4.4 Local Consistency1071

Let H be a splitting of a graph G, let f be a planar embedding of H, and let ϕ be a face of1072

H with boundary walk B directed, say, clockwise. The directed boundary walk B is denoted1073

by B⃗. Let h(G) = {h(v), v ∈ V (G)} be a collection of histories for the vertices of G, of depth1074

3k − 1, for some k ≥ 1. We say that (G,H, B⃗, h(G)) is locally consistent if the following1075

holds.1076

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 31

1. There exists a sequence of graphs U0, . . . , U3k−1 with U0 = G, U3k−1 = H, and, for every1077

0 ≤ ℓ < 3k − 1, Uℓ+1 is a degree-2 splitting of Uℓ, such that, for every v ∈ V (G), and for1078

every ℓ = 0, . . . , 3k − 1, every node x at level ℓ of h(v) satisfies that Sx is a vertex of Uℓ,1079

the neighborhood of Sx defined in Nx is consistent with the neighborhood of Sx in Uℓ,1080

and the footprints in Fx contains edges of Uℓ. Moreover, if x has two children x′ and x′′
1081

in h(v), then there are exactly two footprints, one in Ex′ and one in Ex′′ , for which the1082

Elementary rule or the Extremity rule was applied, all the other footprints in Ex′ and1083

Ex′′ being subject to the Vacancy rule. Furthermore, if x has a unique child x′, then all1084

footprints in Ex′ are subject to the Vacancy rule. Finally, the typing is consistent with1085

the specified typing rules.1086

2. The collection of footprints at the leaves of the histories in h(G) can be ordered as1087

(x0, y0, z0), . . . , (xN , yN , zN) such that, yi = zi−1 = xi+1 for every i = 0, . . . , N , and1088

B⃗ = (y0, . . . , yN).1089

3. For every ℓ = 1, . . . , , 2k − 1, the following must be satisfied:1090

a. the collection of footprints at the nodes at level k + ℓ whose both edges1091

have type P ′
ℓ (resp., type P ′′

ℓ) in the histories in h(G) can be ordered as1092

(X ′
0, Y

′
0 , Z

′
0), . . . , (X ′

sℓ
, Y ′

sℓ
, Z ′

sℓ
) (resp., (Z ′′

0 , Y
′′

0 , X
′′
0), . . . , (Z ′′

sℓ
, Y ′′

sℓ
, X ′′

sℓ
)), for some sℓ ≥1093

0, such that:1094

i. for every i = 0, . . . , sℓ, Yi
k+ℓ−−→ {Y ′

i , Y
′′

i };1095

ii. for every i = 1, . . . , sℓ, Y ′
i = Z ′

i−1 and Y ′′
i = Z ′′

i−1;1096

iii. for every i = 0, . . . , sℓ − 1, Y ′
i = X ′

i+1 and Y ′′
i = X ′′

i+1;1097

b. the collection of footprints at the nodes at level k + ℓ whose both edges have type1098

C ′
⌈ ℓ+1

2 ⌉ if ℓ+ 1 is odd, or type C ′′
ℓ+1

2
if ℓ+ 1 is even, can be ordered as (X0, Y0, Z0), . . . ,1099

(Xrℓ
, Yrℓ

, Zrℓ
), for some rℓ ≥ 0 such that, for every i = 1, . . . , rℓ, Yi = Zi−1 = Xi+1;1100

c. the collection of footprints at the nodes at level k + ℓ whose both edges have same1101

type P ′
1, P

′′
1 , . . . , P

′
ℓ−1, P

′′
ℓ−1, C

′
1, C

′′
1 , . . . , C

′
⌈ℓ/2⌉, C

′′
⌈ℓ/2⌉, or C ′

(ℓ+1)/2 if ℓ+ 1 is even, can1102

be ordered as (X0, Y0, Z0), . . . , (Xtℓ
, Ytℓ

, Ztℓ
), for some tℓ ≥ 0, such that for every1103

i = 1, . . . , tℓ, Y ′
i = Z ′

i−1 and Y ′′
i = Z ′′

i−1;1104

4. For every ℓ = 1, . . . , k, the collection of footprints at the nodes at level ℓ whose both edges1105

have type C ′
ℓ (resp., type C ′′

ℓ) in the histories in h(G) can be ordered as (X ′
0, Y

′
0 , Z

′
0), . . . ,1106

(X ′
rℓ
, Y ′

rℓ
, Z ′

rℓ
) (resp., (Z ′′

0 , Y
′′

0 , X
′′
0), . . . , (Z ′′

rℓ
, Y ′′

rℓ
, X ′′

rℓ
)), for some rℓ ≥ 0, such that:1107

a. for every i = 0, . . . , rℓ, Yi
ℓ−→ {Y ′

i , Y
′′

i };1108

b. for every i = 1, . . . , rℓ, Yi = Zi−1 = Xi+1;1109

By construction, (G,H∗, B⃗∗, h∗(G)) produced by encoding the unfolding of the embedding1110

of G on Tk, described in Section 3.2.2, is locally consistent. The following result shows that1111

the local notion of historical consistency based on the histories fits with the global notion of1112

historical consistency used in Section 3.2.2.1113

▶ Lemma 14. Let H be a splitting of a graph G, let f be a planar embedding of H, let ϕ be1114

a face of H with boundary walk B⃗ directed clockwise. Let h(G) be a history of all the vertices1115

in G. If (G,H, B⃗, h(G)) is locally consistent, then (G,H, B⃗,U) is globally consistent, where1116

U = U0, . . . , U3k−1 is a sequence of graphs enabling Condition 1 of the historical consistency1117

of (G,H, B⃗, h(G)) to hold.1118

Proof. Thanks to Condition 1, for every 0 ≤ ℓ < 3k − 1, Uℓ+1 is a degree-2 splitting of Uℓ.1119

Moreover, by the consistence of the footprints and the typing in the histories, the splitting1120

of from Uℓ to Uℓ+1 is locally consistent at each node of Ui with the duplication of a cycle1121

whenever ℓ ≤ k, and with the duplication of a path otherwise.1122

32 Local Certification of Graphs with Bounded Genus

Condition 2 in the definition of local consistency guarantees that the footprints at the1123

leaves of the histories are correctly set, that is, they collectively encode the boundary walk B.1124

Condition 3 guarantees that, for ℓ = 1, . . . , 2k − 1, starting from χ2k = B, one can1125

iteratively decompose the boundary walk of the face χℓ+1 of Uk+ℓ+1 into a boundary walk1126

of a face ψℓ+1 of Uk+ℓ, a boundary walk of a face χℓ of Uk+ℓ, and the duplication of a1127

path in Uk+ℓ connecting χℓ to ψℓ+1. It follows that 2k faces ψ1, . . . , ψ2k of Uℓ have been1128

identified. Since, the merging of the 2k − 1 paths successively identified in the graphs Uk+ℓ,1129

ℓ = 1, . . . , 2k − 1 preserves planarity, the graph Uk is planar.1130

Moreover, each of the boundary walks of the faces ψ1, . . . , ψ2k is oriented in a direction1131

inherited from the clockwise orientation of B, as guaranteed by the Elementary, Extremity,1132

and Vacancy rules satisfied by the footprints, whose validity are themselves guaranteed by1133

Condition 1. Condition 4 guarantees that the 2k faces ψ1, . . . , ψ2k of Uk can be reordered as1134

k pairs (ϕ′
i, ϕ

′′
i), i ∈ {1, . . . , k} that can be successively merged for creating handles. More1135

specifically, for i = k, k− 1, . . . , 1, Condition 4 guarantees that the boundary walks of ϕ′
i and1136

ϕ′′
i are directed such that, by identifying the vertices of Ui that are split of vertices in Ui−1,1137

a handle is created, resulting in Ui embedded in Tk−i. ◀1138

4.5 Existence and Unicity of the Paths and Cycles1139

Our proof-labeling scheme relies on a collection of paths and cycles in the graphs1140

G(0), . . . , G(3k−1). The footprints and types encode these paths and cycles locally. One1141

needs to guarantee the existence and unicity of each path and cycle, in each graph G(i),1142

i = 0, . . . , 3k − 1. The next lemma, which is standard, achieve this task.1143

▶ Lemma 15. Let G be a graph, and let P (resp., C) be a (non-necessary simple) directed path1144

(resp., cycle) in G. Assume each vertex v of P (resp., C) is given a triple (pred(v), v, succ(v)),1145

where pred(v) and succ(v)) are the predecessor and successor of v in P (resp., C). If v is an1146

extremity of P , then pred(v) = ⊥ or succ(v) = ⊥, or both pred(v) = ⊥ and succ(v) = ⊥ in1147

case P is reduced to v. There exists a proof-labeling scheme with certificates on O(logn) bits1148

that guarantees the existence and unicity of P .1149

Proof. Let P be a directed path in G. The proof-labeling scheme uses a spanning tree T of1150

G rooted at the starting vertex v0 of P . Every vertex v is given the ID of its parent p(v)1151

in T (v0 has p(v0) = ⊥). The tree T is certified by providing a certificate to every node v1152

containing a pair (id(v0), d(v)), where d(v) is the distance from v to v0 in T . Every vertex v1153

checks that it is given the same root-ID as its neighbors in G, and that d(p(v) = d(v) − 1.1154

Every node that is given one or many triples (pred(v), v, succ(v)) checks that, for each of1155

them, pred(succ(v)) = v and succ(pred(v)) = v. (Of course, every such vertex v also checks1156

consistence of the triples given to it, including the fact that pred(v) ̸= succ(v) unless they1157

are both equal to ⊥, that it is not given the same successor in two different triples, etc.). If1158

one of the tests is not passed at a vertex, this vertex rejects, otherwise it accepts. The case1159

of a cycle C is treated the same, where the spanning tree T is rooted at any vertex of C. It1160

is easy to check that this standard proof-labeling scheme satisfies both completeness and1161

soundness. ◀1162

4.6 Verification Procedure1163

We now have all ingredients for describing our proof-labeling scheme for G+
k , k ≥ 0. First, we1164

describe the certificates assigned to the vertices of a graph G of genus k. The main part of the1165

certificate of v is the history h(v), as constructed in Section 4.1. As mentioned in Section 4.2,1166

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 33

a history may require more than just O(logn) bits. However, Lemma 12 has shown how to1167

resolve this issue, so that histories can be spread out among the vertices in a way guaranteeing1168

that every vertex stores O(logn) bits, and, in a single round of communication with its1169

neighbors, every node v can recover its entire history. More importantly even, although a1170

vertex v may not be able to recover the whole history of each of its neighbors in a single1171

round, yet it can recover from each neighbor w the part of h(w) corresponding to every edge1172

between an avatar of v and an avatar of w, which is sufficient to check the consistency of the1173

neighborhoods, footprints, etc., in all graphs G(0), . . . , G(3k−1) used in the construction. In1174

addition, the certificate of every vertex is provided with the information enabling to check1175

planarity of H = G(3k−1) (cf. Lemma 13), and to guarantee the existence and unicity of all1176

the directed cycles C ′
i, C

′′
i , i = 1, . . . , k, and all directed paths P ′

j , P
′′
j , j = 1, . . . , 2k − 1 (cf.1177

Lemma 15). The vertices can then check local consistency, as specified in Section 4.4. Since1178

G has genus k, it follows that, whenever the prover assigns the certificates appropriately, all1179

vertices pass all tests, and therefore all vertices accept. Completeness is therefore satisfied by1180

the scheme.1181

Soundness is guaranteed by Lemmas 10 and 14. Indeed, the latter lemma shows that if1182

the vertices are given certificates that are consistent, and in particular for which the histories1183

are locally consistent, then global consistency is also guaranteed. And the former lemma1184

says that if global consistency is satisfied then the graph can be embedded on Tk. Therefore,1185

if a graph G cannot be embedded on Tk, then global consistency cannot be satisfied, which1186

means that the local consistency of the histories cannot be satisfied either, and therefore,1187

at least one vertex of G fails to pass all tests, and rejects. This completes the proof of1188

Theorem 11.1189

5 Proof-Labeling Scheme for Bounded Non-orientable genus Graphs1190

This section is entirely dedicated to the proof of our second main result.1191

▶ Theorem 16. Let k ≥ 0, and let G−
k be the class of graphs with non-orientable genus at1192

most k, i.e., embeddable on a non-orientable closed surface of genus at most k. There is a1193

proof-labeling scheme for G−
k using certificates on O(logn) bits in n-node graphs.1194

The proof-labeling scheme for G−
k is based on the same ingredients as the one for1195

G+ in Theorem 11 (e.g., Lemma 4 is used in replacement of Lemma 3, etc.). However,1196

new ingredients must be introduced for handling the cross-caps from which non-orientable1197

surfaces result. The proof will thus mainly consist in describing these new ingredients, and1198

in explaining their interactions with the ingredients used for establishing Theorem 11. We1199

start by defining the notion of doubling performed on cycles.1200

5.1 Doubling of a Non-Orientable Cycle1201

Let us assume that we are given an embedding of a graph G on a non-orientable closed1202

surface Σ of genus k, and let D = (v0, v1, . . . , vp−1, vp = v0) be a non-orientable cycle of G.1203

Note that a non-orientable cycle is non-separating. The graph GD is obtained by doubling D,1204

i.e., by multiplying its length by 2. This doubling of D, and the canonical embedding of GD1205

on a closed surface ΣD, are obtained as follows (see Figure 17 for an illustration).1206

Each vertex vi, 0 ≤ i < p, is split into two vertices v′
i and v′

p+i in such a way that1207

D′ = (v′
0, v

′
1, v

′
2, . . . , v

′
2p−1, v

′
2p = v′

0) is a cycle of GD, which forms a boundary walk of a1208

face ϕ of XD.1209

34 Local Certification of Graphs with Bounded Genus

vi+1

g

f

e

d

c

vi
b

a

v′
i

v′
i+1

v′
i+p

v′
i+p+1

c

b

a

ϕ
g

f

e

d

Figure 17 Doubling a non-orientable cycle.

The neighbors of each vertex vi in G\D, 0 ≤ i < p, are shared between v′
i and v′

i+p in GD,1210

as follows. The left and right sides of D can be defined locally, i.e., in the neighborhood1211

of each (embedded) edge {vi, vi+1} of D. The edges incident to v′
i and v′

i+1 in GD (and,1212

by symmetry, the edges incident to v′
i+p and v′

i+p+1) correspond to the edges incident to1213

vi and vi+1 on the same side of D in G according to the local definition of left and right1214

sides in the neighborhood of {vi, vi+1}.1215

The vertices v′
i and v′

i+p have no other neighbors.1216

We now show how to unfold Pk, as we did for unfolding Tk in the oriented case.1217

5.2 Unfolding Pk for k ≥ 11218

Let G be a graph with a 2-cell embedding f on Pk. The unfolding of G has three phases,1219

and only the first one, called doubling phase is new. The second phase is a face-duplication1220

phase, and the third phase is a face-reduction phase, identical to those described in the case1221

of orientable surfaces. The doubling phase is as follows. Let Σ(0) = Pk, and let D1 be a1222

non-orientable cycle of G(0) = G. Let us consider the embedding of G(1) = G
(0)
D1

induced1223

by f , on the surface Σ(1) = Σ(0)
D1

. There are two cases, both using Lemma 5:1224

If Σ(1) is non-orientable, then Σ(1) is homeomorphic to Pk−1;1225

Otherwise, Σ(1) is homeomorphic to T k−1
2

.1226

In the first case, a doubling operation is repeated on G(1), using a non-orientable cycle D2 of1227

G(1). Doubling operations are performed iteratively until an embedding on an orientable1228

surface is reached. Formally, there exists a a sequence of m+ 1 graphs G(0), . . . , G(m), m ≤ k,1229

respectively embedded on closed surfaces Σ(0), . . . ,Σ(m), such that, for 0 ≤ i < m, there exists1230

a non-orientable cycle Di+1 of G(i) such that G(i+1) = (G(i))Di+1 , and Σ(i+1) = (Σ(i))Di+11231

(up to homeomorphism). Necessarily, for 0 ≤ i < m, Σ(i) = Pk−i (up to homeomorphism),1232

and Σ(m) = T(k−m)/2, thanks to Lemma 5. When Σ(m) is reached, G(m) contains m special1233

faces, whose boundary walks are resulting from the successive doubling of D1, . . . , Dm,1234

respectively. The doubling phase is then completed.1235

The face duplication phase starts, initialized with the embedding of G(m) on Σ(m). Let1236

k′ = k−m
2 . The duplication phase is performed, as in Section 3.2.3. Specifically, there exists1237

a sequence of k′ + 1 graphs G(m), . . . , G(m)+k′ , respectively embedded on closed surfaces1238

Σ(m), . . . , X ′(m+k′), such that, for 0 ≤ i < k′, there exists a non-separating cycle Ci+1 of1239

G(m+i) such that G(m+i+1) = G
(m+i)
Ci+1

, and Σ(m+i+1) = Σ(m+i)
Ci+1

. Necessarily, for 0 ≤ i ≤ k′,1240

Σ(m+i) = Tk′−i up to homeomorphism, thanks to Lemma 5. In particular, Σ(m+k′) = T0.1241

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 35

When Σ(m+k′) is reached, G(m+k′) contains 2k′ +m special faces, whose boundary walks are1242

resulting from the successive doubling of the cycles D1, . . . , Dm, and from the duplications1243

of the cycles C1, . . . , Ck′ . At this point, the face-duplication phase is completed.1244

The face-reduction phase starts, as in Section 3.2.4, in order to merge the 2k′ +m = k1245

special faces of G(m+k′) into a single face. Let us denote the 2k′ + m = k special faces of1246

G(m+k′) by ψ1, . . . , ψk. Let ψ1 = χ1. There exists a sequence of paths P1, . . . , Pk−1 such1247

that, for 1 ≤ i ≤ k − 1, the duplication of Pi merges χi and ψi+1 in a single face χi+1. A1248

sequence of planar graphs G(m+k′), . . . , G(m+k′+k−1) results from these merges, where, for1249

0 ≤ i < k− 1, Pi+1 is a path of G(m+k′+i), and G(m+k′+i+1) = G
(m+k′+i)
Pi+1

. For 1 ≤ i ≤ k− 1,1250

G(m+k′+i) has k− i special faces χi+1, ψi+2, . . . , ψk. In particular, G(m+k′+k−1) has a unique1251

special face χk−1.1252

To summarize, as in Section 3.2.2, the embedding f of G in Pk induces a planar embedding1253

of H∗ = G(m+k′+k−1) whose external face is ϕ∗ = χk−1. The boundary of face ϕ∗ contains1254

all the vertices obtained by splittings resulting from doublings or duplications.1255

5.3 Certifying Non-Orientable Genus at Most k1256

Conversely, for a graph G of non-orientable genus k, an embedding of G in Pk can be induced1257

from the embedding f∗ of H∗ on T0, and from the boundary walk B∗ of ϕ∗. The latter is1258

indeed entirely determined by the successive cycle-duplications, path-duplications, and cycle1259

doublings performed during the whole process. It contains all duplicated vertices resulting1260

from the cycles D′
1, . . . , D

′
m, the cycles C ′

1, . . . , C
′
k′ and C ′′

1 , . . . , C
′′
k′ , and from the paths1261

P ′
1, . . . , P

′
k−1 and P ′′

1 , . . . , P
′′
k−1.1262

Now, let H be a splitting of a graph G, let f be a planar embedding of H, and let ϕ1263

be a face of H embedded on T0. Let B = (u0, . . . , uN) be a boundary walk of ϕ, and let1264

B⃗ be an arbitrary direction given to B, say clockwise. Let U = (U0, . . . , Um+k′+k−1), with1265

m+ 2k′ = k and m ≥ 1, be a sequence of graphs such that U0 = G, Um+k′+k−1 = H, and,1266

for every i ∈ {0, . . . ,m + k′ + k − 1}, Ui+1 is a 2-splitting of Ui. The splitting of Ui into1267

Ui+1 is denoted by σi = (αi, βi). The definition of global consistency of (G,H, B⃗,U), in the1268

case of orientable surfaces, can trivially be adapted to the case of non-orientable surfaces1269

by revisiting conditions 1 and 2, of Section 3.2.5, in such a way that the indices correspond1270

to the unfolding of Pk. We thus say that (G,H, B⃗,U) is globally consistent for Pk if the1271

(revisited) conditions 1 and 2 in Section 3.2.5 hold, plus the following additional condition1272

corresponding to the doubling phase:1273

Cycle doubling checking. For every i = 1, . . . , ℓ, there exist faces ϕ′(i)
1 , ϕ

′(i)
2 , . . . , ϕ

′(i)
i1274

of Ui with respective directed boundary walks B⃗(ϕ′(i)
1), B⃗(ϕ′(i)

2), . . . , B⃗(ϕ′(i)
i) such that1275

B⃗(ϕ′(i)
i) = (v′

0, v
′
1, . . . , v

′
2p−1, v

′
2p = v′

0) with, for 0 ≤ j < p, σ−1
i−1({v′

j , v
′
j+p}) ∈1276

V (Ui−1);1277

for j = 1, . . . , i− 1, σi−1(B⃗(ϕ′(i−1)
j)) = B⃗(ϕ′(i)

j).1278

By the construction of Section 5.2, for every graph G of non-orientable genus k,1279

(G,H∗, B⃗∗,U∗) is globally consistent for Pk, where U∗ = (G(0), . . . , G(m+k′+k−1)). The1280

following lemma is the analog to Lemma 10 for non-orientable surface. Its proof is essentially1281

the same as the proof of Lemma 10, in which an argument should be added, for handling1282

cycle doublings, that is, for identifying opposite vertices of the cycle D′
i in order to create a1283

cross-cap. The details are omitted.1284

▶ Lemma 17. Let H be a splitting of a graph G, and assume that there exists a planar1285

embedding f of H with a face ϕ and a boundary walk B of ϕ. Let m, k′ be integers such that1286

36 Local Certification of Graphs with Bounded Genus

X
Y

Z
ℓ

D′
ℓ

Dℓ

X ′

Y ′

Z′ X ′′

Y ′′

Z′′

(X ′, Y ′, Z′)

⊥

(X ′′, Y ′′, Z′′)}} } }
type D

′
ℓ type D

′
ℓ

ℓ ℓ

Figure 18 The cross-cap rule.

1 ≤ m ≤ k and m+ 2k′ = k, and let U = (U0, . . . , Um+k′+k−1) be a series of graphs such that1287

U0 = G, Um+k′+k−1 = H, and, for every i ∈ {0, . . . ,m+ k′ + k− 2}, Ui+1 is a 2-splitting of1288

Ui. If (G,H, B⃗,U) is globally consistent for Pk, then G can be embedded on Pk.1289

Thanks to Lemma 17, the overall outcome of this section is that the tuple c =1290

(H∗, f∗, ϕ∗, B∗,U∗) constructed in Section 5.2 is indeed a certificate that G can be em-1291

bedded on Pk.1292

5.4 From Centralized Certificate to Local Certificate1293

The method to distribute the centralized certificates uses the same approach and the same
tools as those used in Section 4 in the orientable case. Only the differences are pointed out
in this section. In the non-orientable case, the set of types is

Sk = {D′
1, . . . , D

′
ℓ, C

′
1, . . . , C

′
k′ , C ′′

1 , . . . , C
′′
k′ , P ′

1, . . . , P
′
k−1, P

′′
1 , . . . , P

′′
k−1}.

The footprints and their construction are identical to the orientable case, except that a1294

cross-cap rule is introduced (see Figure 18).1295

Cross-cap rule. Assuming X ℓ−→ X ′, X ′′, Y
ℓ−→ Y ′, Y ′′, and Z ℓ−→ Z ′, Z ′′, the cross-cap rule1296

matches two footprints of two children Y ′ and Y ′′, and produces none at the parent Y :1297

(X ′, Y ′, Z ′), (X ′′, Y ′′, Z ′′) ℓ−→ ⊥.1298

The cross-cap rule applies to the case of identifying opposite vertices of the boundary of1299

a face, in the reverse operation of doubling. The corresponding face disappears, and their1300

boundaries can be discarded.1301

The assignments of types to footprints is performed in the same as in Section 4, and the1302

same distributed algorithm is used for checking the planarity of H. An important difference1303

with the orientable case appears in the definition of the local consistency of distributed1304

certificates (previously defined in Section 4.4). Again, an additional condition is introduced,1305

for reflecting the creation of cross-caps.1306

For every ℓ = 1, . . . ,m, the collection of footprints at the nodes at level ℓ whose1307

both edges have type D′
ℓ in the histories in h(G) can be ordered as (X ′

0, Y
′

0 , Z
′
0), . . . ,1308

(X ′
2rℓ−1, Y

′
2rℓ−1, Z

′
2rℓ−1), for some rℓ ≥ 1, such that:1309

1. for every i = 0, . . . , rℓ − 1, Yi
ℓ−→ {Y ′

i , Y
′′

i+rℓ
};1310

2. for every i = 0, . . . , 2rℓ − 1, Yi = Zi−1 = Xi+1 (where indices are taken modulo 2rℓ);1311

The following lemma is the analog of Lemma 14, but for non-orientable surfaces. Its proof is1312

identical to the proof of Lemma 14, with an additional argument, stating that the conditions1313

added for handling non-orientable surfaces enable opposite vertices of the face surrounded by1314

D′
ℓ in Uℓ, 1 ≤ ℓ ≤ 2k − 1, to be identified for creating a cross-cap in Uℓ−1.1315

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 37

▶ Lemma 18. Let H be a splitting of a graph G, let f be a planar embedding of H, let ϕ1316

be a face of H with boundary walk B⃗ directed clockwise. Let h(G) be a history of all the1317

vertices in G. If (G,H, B⃗, h(G)) is locally consistent, then (G,H, B⃗,U) is globally consistent,1318

where U = U0, . . . , Um+k′+k−1 is a sequence of graphs enabling the global consistency of1319

(G,H, B⃗, h(G)) to hold.1320

5.5 Verification Procedure1321

The verification procedure is similar to the one described in Section 4.6, and is therefore1322

omitted.1323

6 Conclusion1324

In this paper, we have designed proof-labeling schemes for the class of graphs of bounded1325

genus, as well as for the class of graphs with bounded non-orientable genus. All our schemes1326

use certificates on O(logn) bits, which is optimal, as it is known that even certifying1327

the class of planar graphs requires proof-labeling schemes with certificates on Ω(logn)1328

bits [21]. The existence of “compact” proof-labeling schemes (i.e., schemes using certificates1329

of polylogarithmic size) for other classes of sparse graphs is still not known. In particular,1330

proving or disproving the existence of such a scheme for H-minor-free graphs appears to1331

be a challenging problem. Indeed, Robertson and Seymour’s decomposition theorem states1332

that every H-minor-free graph can be expressed as a tree structure of “pieces”, where each1333

piece is a graph that can be embedded in a surface on which H cannot be embedded, plus1334

a bounded number of so-called apex vertices, and a bounded number of so-called vortex1335

subgraphs. The decomposition theorem provides a powerful tool for the design of (centralized1336

or distributed) algorithms. However, this theorem is not a characterization, that is, there are1337

graphs that are not H-minor-free, and yet can be expressed as a tree structure satisfying the1338

required properties (surfaces of bounded genus, bounded number of apices, bounded number1339

of vortices, etc.). It follows that, although Robertson and Seymour’s decomposition theorem1340

should most probably play a crucial role for designing a compact proof-labeling scheme for1341

H-minor-free graphs (if such a scheme exists), this development may require identifying1342

additional properties satisfied by these graphs.1343

References1344

1 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Compact routing for graphs excluding a1345

fixed minor. In 19th International Conference on Distributed Computing (DISC), LNCS 3724,1346

pages 442–456. Springer, 2005.1347

2 Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its application1348

to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.1349

3 Saeed Akhoondian Amiri, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian1350

Siebertz. Distributed domination on graph classes of bounded expansion. In 30th ACM1351

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 143–151, 2018.1352

4 Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. A local constant factor MDS1353

approximation for bounded genus graphs. In ACM Symposium on Principles of Distributed1354

Computing (PODC), pages 227–233, 2016.1355

5 Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. Distributed dominating set1356

approximations beyond planar graphs. ACM Trans. Algorithms, 15(3):39:1–39:18, 2019.1357

6 Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local checking1358

and correction (extended abstract). In 32nd Symposium on Foundations of Computer Science1359

(FOCS), pages 268–277, 1991.1360

38 Local Certification of Graphs with Bounded Genus

7 Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be1361

verified locally? J. Comput. Syst. Sci., 97:106–120, 2018.1362

8 Marthe Bonamy, Cyril Gavoille, and Michal Pilipczuk. Shorter labeling schemes for planar1363

graphs. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 446–462. SIAM,1364

2020.1365

9 H. R Brahana. Systems of circuits on two-dimensional manifolds. Annals of Mathematics,1366

23:144–168, 1922.1367

10 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor.1368

Comput. Sci., 811:112–124, 2020.1369

11 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive1370

proofs. In 33rd International Symposium on Distributed Computing (DISC), LIPIcs 146, pages1371

13:1–13:17. Dagstuhl, 2019.1372

12 Andrzej Czygrinow and Michał Hańćkowiak. Distributed almost exact approximations for1373

minor-closed families. In 14th Annual European Symposium on Algorithms (ESA), pages1374

244–255, 2006.1375

13 Andrzej Czygrinow, Michał Hańćkowiak, Edyta Szymanska, Wojciech Wawrzyniak, and Marcin1376

Witkowski. Distributed local approximation of the minimum k-tuple dominating set in planar1377

graphs. In 18th Int. Conference on Principles of Distributed Systems (OPODIS), pages 49–59,1378

2014.1379

14 Andrzej Czygrinow, Michał Hańćkowiak, Edyta Szymanska, Wojciech Wawrzyniak, and Marcin1380

Witkowski. Improved distributed local approximation algorithm for minimum 2-dominating1381

set in planar graphs. Theor. Comput. Sci., 662:1–8, 2017.1382

15 Andrzej Czygrinow, Michał Hańćkowiak, and Wojciech Wawrzyniak. Fast distributed approxi-1383

mations in planar graphs. In 22nd Int. Symp. on Distributed Computing (DISC), pages 78–92,1384

2008.1385

16 Vida Dujmovic, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin.1386

Adjacency labelling for planar graphs (and beyond). In 61st IEEE Symposium on Foundations1387

of Computer Science (FOCS), pages 577–588, 2020.1388

17 Louis Esperet and Benjamin Lévêque. Local certification of graphs on surfaces. CoRR,1389

abs/2102.04133, Feb 8, 2021.1390

18 Laurent Feuilloley. Bibliography of distributed approximation beyond bounded degree. CoRR,1391

abs/2001.08510, 2020.1392

19 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local decision. Theor.1393

Comput. Sci., 856:51–67, 2021.1394

20 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy1395

in distributed proofs. Distributed Computing, page To appear, 2021.1396

21 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and1397

Ioan Todinca. Compact distributed certification of planar graphs. In 39th ACM Symposium1398

on Principles of Distributed Computing (PODC), pages 319–328, 2020.1399

22 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local1400

distributed computing. J. ACM, 60(5):35:1–35:26, 2013.1401

23 Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. On1402

distributed Merlin-Arthur decision protocols. In 26th Int. Colloquium Structural Information1403

and Communication Complexity (SIROCCO), LNCS 11639, pages 230–245. Springer, 2019.1404

24 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.1405

Distributed Computing, 32(3):217–234, 2019.1406

25 Cyril Gavoille and Nicolas Hanusse. Compact routing tables for graphs of bounded genus.1407

In 26th Int. Coll. on Automata, Languages and Programming (ICALP), LNCS 1644, pages1408

351–360. Springer, 1999.1409

26 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks I: planar1410

embedding. In ACM Symposium on Principles of Distributed Computing (PODC), pages1411

29–38, 2016.1412

L. Feuilloley, P. Fraigniaud, P. Montealegre, I. Rapaport, E. Rémila, I. Todinca 39

27 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:1413

low-congestion shortcuts, MST, and min-cut. In 27th ACM-SIAM Symposium on Discrete1414

Algorithms (SODA), pages 202–219, 2016.1415

28 Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar graphs. In 31st1416

Int. Symp. on Distributed Computing (DISC), LIPIcs, pages 21:1–21:16. Dagstuhl, 2017.1417

29 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of1418

Computing, 12(1):1–33, 2016.1419

30 Miikka Hilke, Christoph Lenzen, and Jukka Suomela. Brief announcement: local approxima-1420

bility of minimum dominating set on planar graphs. In ACM Symposium on Principles of1421

Distributed Computing (PODC), pages 344–346, 2014.1422

31 Piotr Indyk and Anastasios Sidiropoulos. Probabilistic embeddings of bounded genus graphs1423

into planar graphs. In Jeff Erickson, editor, Proceedings of the 23rd ACM Symposium on1424

Computational Geometry, Gyeongju, South Korea, June 6-8, 2007, pages 204–209. ACM, 2007.1425

32 Gene Itkis and Leonid A. Levin. Fast and lean self-stabilizing asynchronous protocols. In 35th1426

Annual Symposium on Foundations of Computer Science (FOCS), pages 226–239, 1994.1427

33 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In1428

ACM Symposium on Principles of Distributed Computing (PODC), pages 255–264, 2018.1429

34 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing,1430

22(4):215–233, 2010.1431

35 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed1432

locally! In 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages1433

300–309, 2004.1434

36 Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What can be approximated1435

locally?: case study: dominating sets in planar graphs. In 20th ACM Symposium on Parallelism1436

in Algorithms and Architectures (SPAA), pages 46–54, 2008.1437

37 Christoph Lenzen, Yvonne Anne Pignolet, and Roger Wattenhofer. Distributed minimum1438

dominating set approximations in restricted families of graphs. Distributed Computing,1439

26(2):119–137, 2013.1440

38 W.S. Massey, J.H. Ewing, F.W. Gerhing, and P.R. Halmos. A Basic Course in Algebraic1441

Topology. Graduate Texts in Mathematics. Springer New York, 1991.1442

39 B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Studies in the Mathematical1443

Sciences. Johns Hopkins University Press, 2001.1444

40 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive1445

proofs. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–115,1446

2020.1447

41 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,1448

24(6):1259–1277, 1995.1449

42 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,1450

volume 28 of Algorithms and combinatorics. Springer, 2012.1451

43 Ronald Ortner. Embeddability of arrangements of pseudocircles into the sphere. European1452

Journal of Combinatorics, 29(2):457–469, 2008.1453

44 Torrence D. Parsons, Giustina Pica, Tomaz Pisanski, and Aldo G. S. Ventre. Orientably1454

simple graphs. Mathematica Slovaca, 37(4):391–394, 1987.1455

45 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.1456

46 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of1457

distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–1442,1458

2000.1459

47 Henri Poincaré. Sur la généralisation d’un théorème d’Euler relatif aux polyèdres. C.R. Hebdo.1460

Séances Académie des Sciences, 117:144–145, 1893.1461

48 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal1462

Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of1463

distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.1464

40 Local Certification of Graphs with Bounded Genus

49 Wojciech Wawrzyniak. A strengthened analysis of a local algorithm for the minimum domi-1465

nating set problem in planar graphs. Inf. Process. Lett., 114(3):94–98, 2014.1466

50 Wojciech Wawrzyniak. A local approximation algorithm for minimum dominating set problem1467

in anonymous planar networks. Distributed Computing, 28(5):321–331, 2015.1468

51 J. W. T. Youngs. Minimal imbeddings and the genus of a graph. Journal of Mathematical1469

Mechanics, 12:303–315, 1963.1470

	1 Introduction
	1.1 Context and Objective
	1.2 Our Results
	1.2.1 Compact Proof-Labeling Schemes for Graphs of Bounded Genus
	1.2.2 Our Techniques

	1.3 Related Work
	1.4 Organization of the Paper

	2 Definitions, and Formal Statement of the Problem
	2.1 Closed Surfaces
	2.1.1 Definition
	2.1.2 Construction
	2.1.3 Orientability
	2.1.4 Genus of a Surface

	2.2 Graphs Embedded on Surfaces
	2.2.1 Topological Embeddings
	2.2.2 2-Cell Embeddings
	2.2.3 Genus and non-orientable genus of a Graph

	2.3 Formal Statement of the Problem

	3 Unfolding a Surface
	3.1 Separation and Duplication
	3.1.1 Cycle-Duplication
	3.1.2 Path-Duplication

	3.2 Unfolding the Torus
	3.2.1 Making a Graph of Genus 1 Planar
	3.2.2 Certifying Genus 1
	3.2.3 The Face-Duplication Phase
	3.2.4 The Face-Reduction Phase
	3.2.5 Certifying Genus at Most k

	4 Proof-Labeling Scheme for Bounded Genus Graphs
	4.1 Histories
	4.1.1 Vertices and Adjacencies in the Splitting Graphs
	4.1.2 Footprints
	4.1.3 Types
	4.1.4 Construction of the Footprints
	4.1.5 Assigning Types to Footprints

	4.2 Assignment of the Histories to the Certificates
	4.3 Certifying Planarity
	4.4 Local Consistency
	4.5 Existence and Unicity of the Paths and Cycles
	4.6 Verification Procedure

	5 Proof-Labeling Scheme for Bounded Non-orientable genus Graphs
	5.1 Doubling of a Non-Orientable Cycle
	5.2 Unfolding ¶k for k 1
	5.3 Certifying Non-Orientable Genus at Most k
	5.4 From Centralized Certificate to Local Certificate
	5.5 Verification Procedure

	6 Conclusion

