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Abstract

It was noted already in the 90s that many classic graph classes, such as in-
terval, chordal, and bipartite graphs, can be characterized by the existence of
an ordering of the vertices avoiding some ordered subgraphs, called patterns.
Very recently, all the classes corresponding to patterns on three vertices (in-
cluding the ones mentioned above) have been listed, and proved to be efficiently
recognizable. In contrast, very little is known about patterns on four vertices.

One of the few graph classes characterized by a pattern on four vertices is
the class of intersection graphs of rectangles that are said to be grounded on
a line. This class appears naturally in the study of intersection graphs, and
similar grounded classes have recently attracted a lot of attention.

This paper contains three parts. First, we make a survey of grounded in-
tersection graph classes, summarizing all the known inclusions between these
various classes. Second, we show that the correspondence between a pattern on
four vertices and grounded rectangle graphs is not an isolated phenomenon. We
establish several other pattern characterizations for geometric classes, and show
that the hierarchy of grounded intersection graph classes is tightly interleaved
with the classes defined patterns on four vertices. We claim that forbidden pat-
terns are a useful tool to classify grounded intersection graphs. Finally, we give
an overview of the complexity of the recognition of classes defined by forbidden
patterns on four vertices and list several interesting open problems.
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1 Introduction

There are several ways to approach well-structured graph classes, and two important
ones are forbidden structures and intersection representations. In a nutshell, this paper
is about establishing that there exists a strong relation between a type of forbidden
structures and type of intersection representations.

Some classic forbidden structures are forbidden (induced) subgraphs and forbidden
minors. In this paper, we will consider another type of forbidden structures, called
patterns. A pattern is basically an ordered graph, and we say that a graph avoids
a pattern if there exists an ordering of its vertices such that the pattern does not
appear [9, 16]. Various well-known classes have forbidden pattern characterizations,
such as chordal, bipartite, comparability, permutation, split and threshold graphs.
Characterizations by patterns are very useful. First, they can be more compact and
manageable than forbidden induced subgraphs characterizations. Second, they lead
to efficient recognition algorithms, often based on graph traversals [22, 16].

Let us illustrate pattern characterization and their usefulness on the example of
interval graphs. A graph on n vertices is an interval graph if there exists a set of
n intervals that we can identify to the vertices, such that two intervals intersect if
and only if the associated vertices are adjacent. It is well-known [36, 39] that interval
graphs can also be characterized by a forbidden pattern. Namely, a graph is an interval
graph, if and only if, there exists an ordering of its vertices, such that for any triplet
of vertices, a < b < c, it is not the case that (a, c) belongs to the graph, and (a, b)
does not. The forbidden pattern of this characterization is depicted in Figure 1.

1 2 3

Figure 1: Representation of the forbidden pattern for interval graphs. The general
meaning of the edge styles is that in the forbidden pattern, the plain edges are present,
the dashed edges are absent, and if there is no edge between two vertices, there is no
constraint.

This pattern characterization is very simple and compact, unlike the forbidden
subgraph characterization of interval graphs, which consists in three graphs and two
infinite families of graphs [27]. Also, thanks to this characterization, interval graphs
can be recognized in linear time, because an ordering avoiding the pattern can be
computed efficiently via graphs traversals [5].

Interval graphs are also an example of intersection graphs. In a similar way as for
interval graphs, given a set of geometric objects, one can define a graph by associating a
node with every object and adding an edge between every two nodes whose geometric
objects intersect. By allowing different types of geometric objects one can define
different graph classes. Such geometric graphs have been well-studied, partly because
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they are related with practical algorithmic questions. The example of interval graphs
illustrates how patterns and geometry can be related: the ordering of the left endpoints
of the intervals, in the intersection representation, is an ordering that avoids the
forbidden pattern.

Another example of a known class that is characterized by both a pattern and
an intersection model is the class of grounded rectangle graphs. These graphs have
been introduced a few years ago in several papers independently, under various names
(diagonal-touched rectangle graphs [7], hook graphs [23], max point-tolerance graphs [3],
and p-box(1) graphs [42]). Grounded rectangle graphs are the intersection graphs of
rectangles grounded on a line, whose faces have angles π/4 and 3π/4 with the ground-
ing line. See Figure 2a. As proved independently in several of the papers cited above,
this class is characterized by the forbidden pattern of Figure 2b. In other words, a
graph is a grounded rectangle graph, if and only if, there exists an ordering of the
nodes such that no subset of four nodes a < b < c < d, is such that: (a, c) and (b, d)
are edges, and (b, c) is not and edge. Again, the ordering on the grounding line is
an ordering that avoids the pattern. Note that the pattern of the interval graphs is
included in the pattern of the grounded rectangle graphs. This is not a coincidence:
grounded rectangle graphs generalize interval graphs, and this is witnessed by the
pattern inclusion.

(a) Grounded rectangles.

1 2 3 4

(b) Associated pattern.

Figure 2: Grounded rectangle graphs and their forbidden pattern on 4 vertices.

In this paper, we investigate the relations between classes defined by intersecting
objects grounded on a line, and classes defined by patterns of a specific shape. Beyond
the fact that this connection is intriguing, we have two motivations for this study.

The first motivation comes from the study of patterns. A recent work [16] estab-
lished a complete characterization of the classes characterized by a set of forbidden
patterns on three nodes. A remarkable fact is that basically all these classes have
been studied before, and that they can all be recognized in polynomial time (and for
most of them linear time). It is then natural to ask whether patterns on four nodes
also define interesting classes that can be recognized efficiently. Answering this ques-
tion seems very challenging. First, note that there are 36 = 729 different patterns
on four vertices, thus a priori 2729 sets of patterns on 4 vertices. Even if many of
these classes are equivalent because symmetries, it seems unrealistic to study all these
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classes exhaustively. Second, we know that the complexity landscape is going to be
more complex, as there exists patterns on four vertices that define classes that are
NP-hard to recognize. Given this challenge, a reasonable place to start the study of
patterns on four vertices is to generalize the geometric-pattern connection of grounded
rectangle graphs.

The second motivation is on the geometry side. Establishing that two intersection
graph classes are distinct can be a hard task, because it is not always easy to reason
about geometric objects. In particular, it might be difficult to be exhaustive in a
case analysis. On the other hand, considering an ordering of the nodes can be handy,
because these are more combinatorial objects that can be easily enumerated. This also
implies that it might be easier to find answers or conjectures by computer simulation.

2 Overview

Grounded rectangle graphs are just one example of grounded intersection graphs.
By changing the shape, and the way the shapes are grounded, one can define and
redefine many graph classes. For example, interval graphs correspond to shapes that
are segments, and that are grounded on their two extremities. Other examples of well-
known graph classes captured by this framework are permutation, cocomparability and
interval filament graphs. Many papers have defined new such classes, and established
inclusions or incomparability between them. At this point, it is useful to have a
common terminology (which we establish in Section 3), and a systematic survey of
the classes and their inclusions (which we do in Section 4).

In Sections 5 to 9, we establish new equalities, inclusions and incomparabilities, be-
tween classes defined by forbidden patterns on four vertices and grounded intersection
classes. Let us give a simple example illustrating the type of results we get.

Consider a configuration of unconstrained shapes in the plane grounded on a line,
like in Figure 3a. We claim that the ordering of the shapes on the line avoids the
pattern of Figure 3b.

(a) A grounded intersection model

1 2 3 4

(b) A pattern on four nodes

Figure 3: A grounded intersection model and a related pattern on four nodes.

Let us sketch a proof (see Section 8, for a proper proof). Suppose that the pattern
appears when we consider the graph with the ordering of the shapes on the line.
Consider the two shapes that correspond to position 1 and 3 in the pattern. They
define two regions (above the line): the region below the shapes (that we could call the
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innerface) and the region above the shapes (the outerface). Since 2 is in the innerface,
and 4 in the outerface, there should be an intersection between the shapes of numbers
{1, 3} and {2, 4}. which contradicts the fact that in the pattern of Figure 3b, no edge
is allowed except (1, 3) and (2, 4).

Since we have not yet introduced all the notations, at the moment we cannot
describe our results in details. Nevertheless, we will list them, as a roadmap for
the paper that the reader can go back to, to get the big picture. Our results are
enumerated below, and are illustrated (along with known results) in Figure 4.

• Theorem 1 : The touching grounded L-shape graphs are the forests.

• Theorem 2: The touching grounded string graphs are the outerplanar graphs.

• Theorem 3 (Edges 11 and 14 in Figure 4): Interval filament graphs (that we call
bigrounded string graphs) are between Ca and Cab in the inclusion hierarchy.

• Theorem 4 (Edge 19 and 22): Grounded stairs graph are between Cab and Cabc

in the inclusion hierarchy.

• Theorem 5 (Edge 24): Grounded convex graphs are included in Cabc.

• Theorem 6 (Edge 27): String graphs (that we call grounded string graphs) are
included in Cabcd.

• Theorem 7 (Edge 13): Ca is strictly included in Cab, and Cabcd does not contain
all graphs.

The inclusions of grounded stairs and string graphs in, respectively, Cabc and Cabcd

(Edges 22 and 24) can actually be derived from [37, 38]. We reprove them in our
setting for completeness.

The rest of the inclusions described in Figure 4 correspond to the following obser-
vations.

• Observation 10: Edges 3, 9, 10.

• Observation 9: Edge 20.

• Observation 8: Edge 23 and 25.

• Observation 1: Edge 26.

• Observation 11: All the other edges.

We can already make several observations about Figure 4. We can see some classes
we have mentioned: in the middle, grounded rectangle graphs and their pattern, and
on the bottom interval graphs, and their pattern. The inclusion we have just sketched
is the edge labeled 27 (general shapes correspond to what we will call strings, and
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T-G. L-shapes
Forest

B-G. segments
Interval

T-G. strings
Outerplanar

Ca

2-G. stairs
Cocomparability

2-G. segments
Permutation

(Patterns in Fig. 10b)

B-G. strings
Interval filament G. L-shape

(Patterns in
Fig. 11b)

G. rectangles (Cb)

G. segments

Cab

G. stairs

G. convex

G. strings

Cabc

Cabcd

1 2
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4
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Figure 4: Diagram of our results. The name of the classes in our vocabulary are
written in normal font, the names in the literature are written in italic font. Edges
represent inclusions. Thick edges are known strict inclusions. G. stands for grounded,
T-G stands for touching grounded, B-G. stands for Bigrounded, and 2-G. stands for
2-grounded.
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Cabcd is the name we use for the class of the pattern of Figure 3b). In general, we can
see that pattern classes and geometric classes are intriguingly interleaved.

In the last section of the paper (Section 10), we review known results and open
questions about the complexity of the recognition of the classes defined by forbidden
patterns on four vertices.

3 Preliminaries

3.1 Patterns

We first define formally patterns, and the related concepts. We use the exact same
vocabulary as in [16].

Definition 1. A trigraph T is a 4-tuple (V (T ), E(T ), N(T ), U(T )) where V (T ) is the
vertex set and every unordered pair of vertices belongs to one of the three disjoint
sets E(T ), N(T ), and U(T ) called respectively edges, non-edges and undecided edges.
A graph G = (V (G), E(G)) is a realization of a trigraph T if V (G) = V (T ) and
E(G) = E(T ) ∪ U ′, where U ′ ⊂ U(T ).

Definition 2. An ordered graph is a graph given with a total ordering of its vertices.
We define the same for a trigraph, and call it a pattern. We say that an ordered graph
is a realization of a pattern, the ordered graph and the pattern share the same set of
vertices, the same linear order, and the graph is a realization of the trigraph.

When drawing a pattern, we will use plain edges for edges, dashed edges for non-
edges, and nothing for undecided edges (just like we did in the introduction). Also,
in our drawings, the patterns are ordered from left to right.

Definition 3. In an ordered graph, if no subgraph is the realization of given pattern,
we say that the ordered graph avoids the pattern. Given a family of patterns F , we
define the class CF as the set of connected graphs that have an ordering avoiding the
patterns in F .

If F consists of only one pattern P , we abuse notation an simply write CP , instead
of C{P}. Note that one can equivalently consider forbidden ordered subgraphs instead
of forbidden order trigraphs (which are the patterns). Like in [16], we prefer patterns,
because they give more compact characterizations of the obstructions. Table 1 shows
a list of graph classes, and their corresponding pattern.

As already noticed in [9, 16, 46], inclusions of patterns imply inclusions of classes.

Observation 1. Consider two patterns P and P ′. We say that P is included in P ′ if
V (P ) ⊆ V (P ′), E(P ) ⊆ E(P ′), and N(P ) ⊆ N(P ′). In this case, CP ⊆ CP ′ .

There is one type of pattern that will be important in this paper, and that we
define now.
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Graph Class Forbidden Pattern

Linear forests

Stars

Interval graphs

Split graphs

Forest

Bipartite graphs

Chordal graphs

Comparability graphs

Triangle-free graphs

At most two nodes

Table 1: The table from [9]. For each row the class on the first column is characterized
by the pattern represented in the second column.

Definition 4. Consider patterns on four nodes {1, 2, 3, 4}. We use the following names
for some pairs of nodes: a = (1, 2), b = (2, 3), c = (3, 4), d = (1, 4) (see Figure 5). Let
S ⊆ {a, b, c, d}, the pattern PS is the pattern on four vertices, with edges (1, 3) and
(2, 4), and non-edge set S. The class CS is the class where PS is forbidden.

1 2 3 4
a

d

b c

Figure 5: Illustration of Pabcd (Definition 4).

Remark 1. It is easy to see that a pattern and its mirror (the same pattern but with
reversed order) define the same class. Consequently Ca = Cc, Ca,d = Cc,d, Ca,b = Cb,c,
Cb,c,d = Ca,b,d. Therefore, we can restrict attention to the following classes: C∅, Ca, Cb,
Cd, Ca,b, Ca,c, Ca,d, Cb,d, Ca,b,c, Ca,b,d, Ca,c,d and Ca,b,c,d.
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Note that we have already mentioned that grounded rectangle graphs correspond
to the pattern Pb, and we discussed the pattern Pabcd at the beginning of Section 2.
It is folklore that outerplanar graphs are chacterized by P∅.

3.2 Grounded types

Definition 5. We say that a configuration of shapes is grounded if it is in one of the
two following situation.

• There exists a horizontal straight line such that all the shapes are above the line,
and are touching it in at least one point,

• There exists a circle such that all the shapes are inside the circle, and are touching
it in at least one point.

We call the line (resp. circle) the grounding line (resp. grounding circle). We also
require that no two shapes touch the grounding line/circle on the same point (except
for interval graphs, for which we require that the endpoints of the intervals are differ-
ent). For the case of a grounding line, we can define the grounding ordering as the
order in which the shapes touch the line for the first time (from left to right).

We consider six grounding types, that are illustrated Figure 6.

Definition 6. A configuration of shapes is:

(a) Grounded, if all the shapes are touching the grounding line at least once.

(b) Touching grounded, if it is grounded, and the shapes only intersect on their
borders, and not on their interiors.

(c) Outer, if it has a grounding circle.

(d) Bigrounded, if every shape is touching the line on at least two points, and these
two points are extremal in terms of abscissa.

(e) 2-Grounded, if there is a second line above the grounding line, an all shapes are
contained between the two lines, and touching the two lines.

(f) Circle, if it has a grounding circle that every shape touches twice.

Observation 2. The touching grounded configuration is not well-defined for shapes
that do not have interiors (e.g. curves). For example, two segments that are crossing
are intuitively not considered as touching, although they only intersect at their border.
In the following we will use a natural way to differentiate between configurations where
curves are touching and where the curves are intersecting. If, when we replace the lines
by thick lines (with an interior), the drawing can be kept identical (that is only doing
infinitesimal changes) then we will say that it is proper touching representation. If
instead, replacing the lines by thick lines transforms the configuration into a drawing
that cannot be fixed locally by minor modifications, then we will not consider the
configuration as touching.
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(a) Grounded.
(b) Touching grounded. (c) Outer.

(d) Bigrounded.
(e) 2-grounded. (f) Circle.

Figure 6: Grounding types of Definition 6.

3.3 Relations between grounding types

The different grounding types are related, and some inclusions follow automatically
from these relations. Let us list these relations. We refer to a generic shape type S,
that we are going to properly defined later, but one can think of S as being segments,
convex polygons, lines etc. We start by making a few informal observations, to show
how one can transform one grounding type into another. Note that some shapes are
more difficult to manipulate, and that some observation work only for some shapes.

Observation 3. For every shape S, touching-grounded-S graphs, bigrounded-S graphs
and 2-grounded-S graphs are included in grounded-S graphs, because the definitions of
the former are more constrained than the definition of the later. For the same reason,
circle-S graphs are contained in outer-S graphs.

Observation 4. For several shape types S, grounded-S graphs are included in outer-S
graphs, and bigrounded graphs are included into circle-S graphs. This is because one
can transform a straight line into a small arc of a large circle via a small deformation. If
S is stable by such deformation, then we can transfer the intersection representations.
See Figure 7 for the case of grounded-S and outer-S configurations.

Observation 5. For several shape types, 2-grounded-S graphs are included into circle-
S graphs. This because two parallel lines can be transformed into a slice of a large
circle with a small deformation. See Figure 8

Observation 6 ([13]). For several shape types, 2-grounded-S graphs are included into
bigrounded-S graphs. This is because we can take the upper line and plug it to the
first line, continuously curving the shapes without creating new intersections. In this
case there is a point P on the line such that any shape has one grounding point on
the left of P and one grounding point on the right of P . See Figure 9.
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Figure 7: Illustration of Observation 4 with grounded-polygons and outer-polygons.

Figure 8: Illustration of Observation 5 with 2-grounded-polygons and circle-polygons.

Figure 9: Illustration of Observation 6 with 2-grounded strings and bigrounded
strings.

Observation 7. For several shape types, outer-S graphs are included in grounded-S
graphs. This happens when one can cut the circle in one point, and then continuously
transform both the circle and the shapes, keeping the same intersections, until the
circle is straighten into a line (in a similar way as in the transformation of Observa-
tion 6)s.

3.4 Shape types

We now list the shapes we are going to use.

Definition 7. A shape type is one the following 8 cases.

1. Segments.
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2. Triangles.

3. Trapeziums.

4. Diagonal rectangles, that are rectangles touching a grounding line on one corner,
and with faces with angles π/4 and 3π/4 with respect to the grounding line.

5. L-shape that are formed by a vertical segment touching the grounding line, and
extended by an horizontal segment to the right.

6. Stairs which are series of horizontal and vertical segments forming stairs going
to the right.

7. (Convex) polygons. (For this paper all polygons are convex, thus we will simply
say “polygons”.)

8. Strings which are simply curves.

Observation 8. Strings are more general than all the other shapes. Convex polygons
are more general than segments and rectangles.

4 Survey of grounded intersection graphs

In this section, we make a survey of grounded intersection graphs. The goal is to
have a more detailed survey than in previous papers [24, 10], with a special focus on
pattern characterization. It can be seen as an extended related works section.

We study the combinations of the shape types (Definition 7) and grounding types
(Definition 6). Some combinations are not mentioned, because they have not been
studied, and are not used in this paper either. This section contains eight subsections,
one for each shape type of Definition 7. Each subsection contains a list of classes (with
some additional remarks, such as pattern characterization) and a list of inclusions with
other classes of the survey.

4.1 Segments

Classes Grounded segment graphs have been defined in [2]. It is proved in [2] that
this class is the same as the one of downward rays intersections, where a downward
ray is a halfline pointing downward.

The 2-grounded segment graphs are known to be the same as the permutation
graphs. A permutation graph is a graph that can be built from a permutation the
following way: the vertices represent the elements of a permutation, and the edges
represent pairs of elements that are reversed by the permutation. Permutation graphs
are characterized by a couple of forbidden patterns [12], see Figure 10.

The bigrounded segment graphs are the interval graphs. Indeed, if the segments
touch the grounding line by two points, then they are completely contained in the
grounding line. As already mentioned in the introduction, interval graphs have pattern
characterization, with the pattern of Figure 1.
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(a) Intersection graph

1 2 3

1 2 3

(b) Forbidden patterns.

Figure 10: Two characterizations of permutation graphs.

The circle segment graphs are known as circle graphs. It is known that outerplanar
graphs are circle graphs [44].

Outer segment graphs are introduced in [2], where it is proved that this class strictly
contains the intersection graphs of rays (that is, of half-lines).

Inclusions.

• Grounded segments graphs contain 2-grounded segment graphs (permutation
graphs) and bigrounded segment graphs (interval graphs), by Observation 3.
These inclusions are strict (see e.g. [24]).

• Grounded segments strictly contains grounded L-shapes [24].

• Outer-segment graphs contain circle segment graphs, by Observation 3.

• Grounded segment graphs are included into outer-segment graphs, by Observa-
tion 4, and this inclusion is strict [2].

• 2-grounded segment graphs are included in circle segment graphs, by Observa-
tion 5, and the inclusion is strict (as witnessed by C6).

• By Observation 1, interval graphs are included in outerplanar graphs.

4.2 Triangles

Classes. For triangles, we only consider the 2-grounded case, which actually contains
two subcases. The point interval graphs (PI-graphs) are the intersection graphs of
2-grounded triangles, where every triangle has an edge on the bottom line. The PI∗-
graph class is the generalization where every triangle has an edge on one of the two
lines. Interestingly, PI-graphs can be recognized in polynomial-time [30], but PI∗-
graphs are NP-complete to recognize [29].

Inclusions. PI-graphs contain bigrounded segment (interval) and 2-grounded seg-
ment (permutation) graphs, by generalization of the shapes, and the inclusions are
strict (see [29]).
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4.3 Trapeziums

Classes The 2-grounded trapezium graphs, where the trapeziums have the two par-
allel faces on the two lines, are known as trapezoid graphs [8].

Circle-grounded trapezium graphs can be defined as intersections of regions of
the circle defined by two non-crossing cords. These are known as circle trapezoid
graphs [15].

Inclusions The 2-grounded trapezium graphs are included in the circle trapezium
graphs, via Observation 5, and the inclusion is strict [15]. The 2-grounded trapez-
ium graphs contain PI∗ graphs by the preliminary observations, and the inclusion is
strict [4].

4.4 (Diagonal) rectangles

Classes. Grounded diagonal rectangles graphs are known under various names as
already mentioned in the introduction: diagonal-touched rectangle graphs [7], hook
graphs [23], max point-tolerance graphs [3], and p-box(1) graphs [42]. In particular
this class can be also obtained as intersection of diagonal orthogonal triangles or even
diagonal L-shapes. This class is characterized by the pattern Pb (see Figure 2b).

Inclusions. Grounded diagonal rectangles graphs strictly contain interval graphs
and outerplanar graphs [3].

4.5 L-shapes

Class. Grounded L-shapes were introduced in [28]. It was proved in [24] that these
graph have a pattern characterization with the two patterns of Figure 11. The first of
the two patterns says that on a set of nodes 1 < 2 < 3 < 4, it is not possible to have
edges (1, 3) and (2, 4), but not (1, 2) and (2, 3) (this is what we call Pab). The second
pattern says that it is not possible to have edges (1, 2), (2, 3) and (1, 4) but not (1, 3).

(a) Grounded L-shapes and the associated
grounded-L graph.

1 2 3 4

1 2 3 4

(b) Forbidden patterns

Figure 11: Definition and pattern characterizations of grounded L-graphs.
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Inclusions.

• Because the L-shapes can only be grounded on the lowest point, the outer-L-
shape graphs are the same as the grounded-L-shape.

• The circle-L-shape graphs (where every L touches the circle by it lowest and
right-most points), are the same as the circle-segment graphs (or simply circle
graphs) [24].

• 2-grounded segments graphs, that is interval graphs, are included in grounded L-
shape: simply use L’s that all have the horizontal segments at the same altitude.

• Both grounded L-shape and grounded rectangles are included in in Cab by Ob-
servation 1. As these two classes are not comparable [24], these inclusions are
strict.

4.6 Stairs

Class. For stairs, only the 2-grounded case has been considered. The 2-grounded
stairs graphs are exactly the cocomparability graphs. Indeed, it is known that cocom-
parability graphs are intersection graphs of continuous functions between two lines
(see [19] or the explanation we give in Subsection 4.8), and we can make these func-
tions strictly increasing, and them discretize them to get stairs. Comparability graphs
are characterized by the pattern of Figure 12.

(a) Intersection graph.

1 2 3

(b) Forbidden patterns.

Figure 12: Two characterizations of cocomparability graphs.

Inclusions In several settings stairs generalize segments. First suppose that the
segments are pointing upward to the right. Then one can transform those into stairs:
just discretize the segments into stairs, with a fine enough discretization to keep the
same intersections. As a matter of fact, we can often assume that the segments are
pointing to the right: if it is not the case, we can tilt all the segments to the right,
until they are all pointing to the right.

This techniques works for example for 2-grounded stairs, that are included into 2-
grounded segments (which is not a surprise as these classes boil down to permutation
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and cocomparability graphs). It also allows to prove the following observation, that
we use in Figure 4.

Observation 9. Grounded segment graphs are contained in grounded stairs graphs.

4.7 Convex Polygons

Circle-polygon graphs were studied in [26]. Grounded convex polygons contain grounded
segments and grounded rectangles by Observation 8.

4.8 Strings

Classes Grounded string graphs are the same as outer-string graphs (by Observa-
tions 7 and 4, as noticed in [2]). Outerstring graphs are well studied. See Figure 13a
for a grounded representation of such a graph.

The 2-grounded string graphs are co-comparability graphs [19]. Let us give some
detail on this topic. Any shape between 2 lines separates the vertices (or shapes)
in between two lines as left part and right part (shapes totally to the left or totally
to the right). Therefore the relation : being totally to the left (resp. the right) is
a partial order and therefore its complement is a comparability graph. This implies
that every 2-grounded class is included in cocomparablity graphs, and for 2-grounded
string graphs this is an equality.

Bigrounded string graphs are known as interval filament graphs [13]. See Fig-
ure 13b for a representation.

Inclusions

• It was shown in [13] that bigrounded string graphs contain 2-grounded string
graphs (by what we called Observation 6), and circle-polygon graphs, and that
these inclusions are strict.

• Outer-segment are strictly included in outer-string [1].

• Strings generalize all the shapes we use. This is clear for segments, stairs and
L-shape which are special strings, but it is also true for rectangles and convex
polygons, as their boundaries are strings, and only the boundary matters for
intersections.

5 Touching grounded intersection characterization

Theorem 1. The touching grounded L-shape graphs are the forests.

Note that forests are also characterized by a pattern on three vertices (See Table 1).
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outerstring-eps-converted-to.pdf

(a) An outer-string representation and
graph.

filament-eps-converted-to.pdf

(b) An interval filament representation
and graph.

Figure 13: Representations of an outer-string graph and an interval filament graph.

Proof. Before we prove both inclusions, let us introduce a notation and make an
observation. First, a grounded L-shape S can be characterized by three numbers:

1. The abscissa of its rooting point, that we denote x(S).

2. The abscissa of its right-most point, that we denote x′(S).

3. The ordinate of it horizontal segment, that we denote y(S).

When S corresponds to a vertex v in a graph, we will abuse notation, and write
x(v), x′(v) and y(v). Now, in a touching L-shape representation, two L-shapes S
and S ′, with x(S) < x(S ′) can touch in only one way: S touches the vertical part of
of S ′, with its right-most point.

Remember that forests are characterized by the pattern on three nodes with edges
(1, 2) and (1, 3) (see Table 1). Now, consider the grounding order of an arbitrary set
of touching grounded L-shapes. Take three shapes S1, S2 and S3 in that order. If S1

and S2 are touching, then this has to be on the right-most point of S1, and on the
vertical part of S2. Then S1 cannot go further right than the grounding position of
S2, because then it would cross S2. (Remember that for string-like shapes, we defined
“touching” as “touching even if we were to make the strings have non-zero thickness”,
thus crossings are forbidden for touching L-shapes.) Consequently, S1 cannot reach S3.
Therefore, the grounding ordering of the shapes avoids the forbidden pattern of forests,
and touching grounded L-shape graphs are included in forests.
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For the other direction, we build a touching L-shape representation for any forest.
First, note that we can assume without loss of generality that the forest is actually
a tree T , because the representations of the different connected component can be
placed side by side on the line.

Our construction is top-down, that is, we place the L-shape of the root first, and
we go down in the tree towards the leaves. Consider the tree T ′ of the vertices that
have been added so far to the drawing. At first T ′ is empty, and at the end T ′ = T .
Our construction will take place in the unit square [0, 1] × [0, 1]. We first represent
the root r as a vertical segment between positions (1, 0) and (1, 1). At that point
T ′ = {r}. We explain how we can take a leaf from T ′, and add all its children in T
to T ′, by adding them to the drawing. By induction, this describes a touching L-shape
representation of the tree.

We maintain the following invariant. For any vertex v that is a leaf in T ′, there
exists an abscissa x∗(v) < x(v), and an ordinate y∗(v) ≤ y(v), such that the rectangle
(x∗(v), x(v)) × [0, y∗(v)] intersects none of the shapes placed so far. Note that this
invariant is satisfied when we have just the root in T ′, with x∗(v) = 0 and y∗(v) = 1.
Suppose, the invariant holds for an arbitrary leaf v of T ′. Now, consider the children
of v in T : v1, . . . , vk (in an arbitrary order). For each vi, we build the L-shape with
the following characteristics (see Fig. 14):

x(vi) = x∗(v) + i · x(v)− x∗(v)

k + 1
x′(vi) = x(v) y(vi) = (k − i+ 1) · y

∗(v)

k + 1
.

x∗(v) x(v1) x(v2) x(v3)

y∗(v)

y(v1)

y(v2)

y(v3)

x(v )

Figure 14: Illustration of the construction of the proof of Theorem 1.
.

One can check that these shapes do not intersect, and that they all touch the shape
of v. Also, because they are in the rectangle of our invariant, they touch no other
shape. Finally, our invariant is preserved, since for any new leaf vi, the rectangle with
the following coordinates is empty: x∗(v1) = x∗(v) and x∗(vi) = x(vi−1) for i > 0, and
y∗(vi) = y(vi), for all i.

Theorem 2. The touching grounded strings graphs are the outerplanar graphs.

As already mentioned outerplanar graphs are also characterized by the pattern P∅.
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Proof. Consider an outerplanar graph, and let us build a representation by touching
rectangles (which are a special case of touching strings). For a point p of the grounding
line, let its left diagonal be the half-infinite line that starts at p, and goes in the
north-west direction. Similarly define the right diagonal for the north-east direction.
Consider an ordering of the vertices of the graph that avoids the pattern P∅. Plant the
corresponding rectangles regularly on the line in this ordering. For a given vertex v,
let v` and vr its left-most and right-most neighbors in the ordering (considering that
v is a neighbor to itself). Now the rectangle of v is defined in the following way:

• Its left-most corner is at the intersection of its left diagonal and of the right
diagonal of v`.

• Its right-most corner is at the intersection of its right diagonal and of the left
diagonal of vr.

Clearly, this intersection graph will have all the intersection of the original graph.
Let us prove that there are no other intersection. Suppose there is an intersection
between the rectangles of vertices a and b, with a < b, but a and b are not neighbors
in the graph. Then, by construction it must be that a has a neighbor c such that
b < c, and b has a neighbor d such that d < a. Consequently, the nodes d < a < b < c
form P∅, the forbidden pattern of outerplanar graphs, which is a contradiction.

In the other direction: suppose we have a touching string representation, let us
prove that the ordering of the shapes along the line corresponds to an ordering of the
vertices that avoids the pattern. For the sake of contradiction, suppose we have four
strings a, b, c and d, such that a and c are in contact, and b and d are in contact.
Strings a and c must touch at some position p. Now the grounding point of b is in
the region delimited by the grounding line and the parts of a and c that starts on
the grounding line and end in p. The grounding point of d is outside this region, and
none of b or d can cross the boundaries of the region, thus b and d cannot meet, a
contradiction.

We can derive from the proof that outerplanar graphs also correspond to touching
grounded rectangle graphs, and touching grounded polygon graphs.

6 Interval filament graphs are between Ca and Cab

In this section, we prove that the geometric class of interval filament graphs is between
the pattern classes Ca and Cab.

Theorem 3. The following holds: Ca ⊆ Interval filaments ⊆ Cab.

We think that it is insightful to have both inclusions into one theorem, but for
convenience, we split the theorem into two lemmas for the proofs.

Lemma 1. Interval filaments ⊆ Cab.

19



Proof. Consider an interval filament representation. We claim the order of the left
grounding points of the interval filaments avoids the pattern Pab. For the sake of
contradiction, suppose that the pattern appears in this ordering, on some vertices
a < b < c < d. Let αa, αb, αc, αd be the left endpoints, and βa, βb, βc, βd be the right
endpoints of the filaments corresponding to a, b, c and d. Because b and d are adjacent,
it must be that αd < βb. Similarly, because a and c are adjacent, αc < βa. Since a and
b are not adjacent, we cannot have αa < αb < βa < βb, therefore, given the inclusions
above, we must have αa < αb < αc < αd < βb < βa. Consequently, αc is in the region
of the plane delimited by the grounding line and the filament of b. As c is not adjacent
to b, it cannot reach the filament of a (whose extremities are outside the interval of
b), which is a contradiction.

We move on to the second inclusion.

Lemma 2. Ca ⊆ Interval filaments.

Proof. Consider a graph G in Ca. We show how to compute a proper interval filament
representation of G. To do so, we first create a set of interval filaments that is not
a proper representation of G in general, and then modify it several times, until it
becomes a proper intersection representation of G. The outcome of our construction
is illustrated on an example in Figure 15.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Figure 15: On the top picture, a graph whose vertices are ordered to avoid Pa. On
the bottom picture, the interval filament representation built by our construction. (A
few modifications of the construction have been used for readability, including using
a smaller scale on the vertical axis than on the horizontal axis.)
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We start with a first representation that we call R1. Consider an order of the
vertices of G avoiding Pa. We will abuse notation and write u instead of “the rank of
u in the ordering”. For every the vertex u, we denote its right-most neighbor by ru
(with ru = u when u has no neighbor on the right). Let εu = n−u+1

n+1
. We note that for

two vertices u < v, 0 < εv < εu < 1. In R1, the filament of u starts at position (u, 0),
goes up to point (u, ru− u+ εu), then goes right to the position (ru + εu, ru− u+ εu),
and then goes down to the grounding line at (ru + εu, 0). Note that at this point each
filament forms a square with the grounding line. For further reference, we denote the
altitude of horizontal segment as hu = ru − u+ εu.

Claim 1. In R1, all the intersections between filaments correspond to edges in the
graph, and at any intersection point, there are exactly two filaments intersecting, one
that is locally vertical and one that is locally horizontal.

Proof of the claim. Let us start by proving the first part of the claim. Consider the
filaments of two vertices u < v. We make a case analysis depending on the placement
of ru and rv.

• If u ≤ ru < v ≤ rv, then the two filaments do not intersect.

• If u < v ≤ rv ≤ ru, then again the filaments do not intersect. Indeed, the square
corresponding to v, starts at position v (> u) and stops at rv + εv (< ru + εu),
thus is fully included into the square of u.

• If u < v < ru < rv, then the filaments intersect in R1, but in this case, since by
definition (u, ru) and (v, rv) are edges in G, either (u, v) is an edge in G, or we
get that u < v < ru < rv form a Pa in the ordering, which is a contradiction.

Now, for the rest of the claim, note that any horizontal segment is at an altitude
of the form k + εu, where k is an integer, and εu ∈ (0, 1) is specific to the node u
where the filament starts. Thus, no two horizontal parts of two different filaments can
intersect. The analogue reasoning holds for the vertical parts. The claim follows. C

In general, R1 is not a proper representation of G, because there are edges in the
graphs that do not correspond to filament intersections. We now modify this first
representation R1 into a second representation R2.

For a vertex v, we select (when it exists) the vertex w such that:

• w is on the left to v,

• w is adjacent to v in G,

• the filaments of w and v do not intersect in R1

• among the vertices satisfying the three points above, w is the one that has the
highest horizontal segment (that is, the largest hw).

21



We modify the shape of v with a spike at the beginning: the first vertical line goes
up to hw, and then goes down to hv, and continues the shape as before. (If we want
the filament to not self-intersect, we can go down with some steep enough slope, like
in Figure 15.)

Claim 2. For every edge of the graph, there is an intersection of filaments in R2.
Moreover, if the filaments corresponding to some vertices y < v intersect in R2, and y
and v are not adjacent in G, then there must exist a vertex x, with x < v, such that
(x, v) ∈ G and hy < hx.

Proof of the claim. First, note that all filaments intersections from R1 also appear in
R2. Also, note that the spikes appear on different zones of x-axis, thus they do not
interfere. Now, consider a pair of nodes v < u, such that (v, u) ∈ G, but the two
corresponding filaments were not intersecting in R1. By definition of rv, u ≤ rv, thus
v < u < rv + εv. Therefore, in R1 the horizontal part of the filament of v goes above
the left grounding point of u. The vertex u satisfies the three first conditions of the
vertex w defined above, and because hw is chosen to be maximal, we get that the spike
of u necessarily touches the filament of v. Thus the intersection between the filaments
of v and u appears in R2, which proves the first part of the claim.

Now, if there is an unwanted intersection, that is an intersection in R2 that does
not appear in G, it must be because of a spike of some vertex v, that intersects the
horizontal part of the filament of a vertex y with (v, y) /∈ E, while going up to touch u.
This can only happen if the conditions of the claim are satisfied. C

We now defineR3, which will be our final filament representation. Let us first define
an ε-chimney. Consider a horizontal segment [(x1, y), (x2, y)] and a vertical segment
[(x, y1), (x, y2)] that intersect at position (x, y). Then an ε-chimney is a modification
of the horizontal segment, to avoid the vertical segment. More precisely, it is the
piece-wise segment going through the following points: (x1, y), (x− ε, y), (x− ε, y2 +
ε), (x+ ε, y2 + ε), (x+ ε, y), (x2, y).

Let us call a conflict an intersection between two filaments that does not correspond
to an edge in G. As mentioned earlier, a conflict is necessarily between the spike of
a filament and the horizontal plateau of another filament. For any given filament u,
we show how to solve all the conflicts that involve the spike of u, without loosing the
intersection that are needed in G. We do so by only modifying the filaments in a
small vertical column around the abscissa of u. We will maintain the invariant that
when we consider a filament v, every filament w above it has been treated: either
(u,w) ∈ E and the intersection has been preserved, or (u,w) /∈ E and the intersection
has been removed. We consider the filaments that intersect the spike of u ordered by
the altitude of their horizontal plateaus, from the highest to the lowest. For each such
filament v, we do the following:

• If (u, v) ∈ E, do nothing.

• If (u, v) /∈ E:
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– If there is a filament w above v, such that (v, w) /∈ E, and w intersects the
spike of u, then we claim that there is a contradiction. Indeed, if (v, w)
is not in G, and hv < hw, necessarily, w < v < u < rv < rw. Then
w < v < u < rv is an occurrence of Pa, because (w, v) /∈ E (by hypothesis),
(w, u) ∈ E (by the invariant) and (v, rv) ∈ E (by definition).

– If there is no filament w above v, such that (v, w) /∈ E, and w intersects
the spike of u, then we transform the filament of v, by building a chimney
around the spike of u. The ε of this chimney is taken to be smaller than
all the ε used for chimneys of filaments modified so far around the spike of
u. If this is the first chimney, then we take ε to be the minimum between
1/4, and the space between the top of the spike of u and the next plateau
above (if it exists).

We claim that this construction gives a proper interval filament representation
of G. First note that, the conflict resolution is independent at all vertices, because
the chimney we build are taken with a sufficiently small ε around the spikes. Hence,
it is sufficient to show for each spike that: we have not lost correct intersections, we
have removed all the incorrect intersections, and have not created new ones.

The correct intersections that were present in R2 are of two types: the ones coming
from R1 and the ones between a spike and horizontal plateaus. We have only modified
the graphs around the spikes, thus the first type is safe. Moreover, when we had an
intersection corresponding to an edge (u, v) ∈ E, we have not modified the filament,
hence the second type is also safe.

All the incorrect intersections at some given spike in R2 have been removed thanks
to our chimney constructions.

Finally, we have not created any new intersection. Indeed, while building a chim-
ney, the only new incorrect intersection that we might have created is with another
chimney, but this cannot happen as we have taken care of reducing the ε parameter
at every chimney.

7 Grounded stairs graphs between Cab and Cabc

Theorem 4. The following holds: Cab ⊆ grounded stairs ⊆ Cabc.

The main part of this theorem is the first inclusion. The second inclusion can
actually be derived from a result in [38]. More precisely, in [38] it is proved that
the disjointness graph of x-monotone curves are semi-comparability graphs. This
is related to our result because: the disjointness graph is the complement of the
intersection graph, x-monotone graphs are a generalization of grounded stairs graphs,
and semi-comparability are the graphs that avoid the complement of Cabc.

Proof. Let us start with the first inclusion, and consider a graph G = (V,E) in Cab.
We build a grounded stairs representation incrementally, by adding the stairs one by
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one, from left to right, in the ordering of G avoiding the pattern Pa,b. Actually, for
every new vertex i, allow ourselves to modify the stairs 1 to i − 1, such that at the
end of the process, the adjacency of the vertices 1 to i in the graph is the same as the
one in the grounded stairs configuration.

For any new vertex i, we create an infinite vertical line, grounded at position i. We
will cut the line into a finite segment at the end of this step of the construction, and
maintain the invariant that all the stairs are finite. We will maintain the invariant
that the representation of vertices 1 to k only uses abscissas in [1, k], thus, at that
point, the line has no intersection. Consider a stair j, with j < i in the ordering, and
such that (i, j) ∈ E. We claim that it is possible to modify the stairs of j, so that they
intersect the segment of i, without creating an unwanted intersection with the stairs
of any vertex k, with (j, k) /∈ E. Note that proving that we can make the stairs of j
and i intersect simply means that we can extend the stairs of j beyond the abscissa i.

For the sake of contradiction, suppose there are some stairs j, such that the ex-
tension to i is no possible. It means that there is a position x on the horizontal axis,
such that the stair j cannot be extended beyond abscissa x. We extend the stairs j
to a position p = (x− ε, t) for a small ε. Now, as by invariant, all the stairs of index
smaller than i are finite, there must be an ordinate y, such that if we make stairs j go
up from p, it cannot go further than y. (If such an ordinate y would not exist, then
we could just go high enough to be above all the stairs except i, and then go straight
to i, which would contradict that fact that we cannot go beyond abscissa x.)

In this situation, the position (x, y) must be the intersection of two stairs ` and
r, ` having an horizontal segment at height y , and r having a vertical segment at
abscissa x. And necessarily ` and r are not adjacent to j in G. We claim that in the
ordering, ` < j < r < i. Indeed, i has the right-most stairs by definition, and given the
configuration described above, any other ordering would imply an intersection between
the stairs ` or r, and the stairs of j. Then, the vertices ` < j < r < i correspond
the pattern Pa,b because we have edges (`, r) and (j, i), and non-edges (`, j) and (j, r).
This is a contradiction. Therefore, we can always extend the stairs of j to the stairs
of i, and get the same adjacency in the representation and in the graph for vertices
from 1 to i. Finally, we cut the infinite vertical line of i just above its last intersection
to make it a finite segment. This finishes the proof of the first inclusion.

Let us now prove that grounded stairs graphs are included in Cabc. Consider a
grounded stairs representation. We claim that the grounding ordering of the associated
graph avoids the pattern Pabc. Suppose that it is not the case, and that the pattern
appears on some vertices a < b < c < d. Consider the zone of the plane between
the grounding line, the stairs of a, and the stairs of c, below their (first) intersection,
whose coordinates will be denoted (x, y). This zone contains the grounding point of b.
Because intersections between the stairs of b and the stairs of a and c are forbidden, the
stairs of b are fully contained in this zone. Now, the stairs of d must appear strictly on
the right of the stairs of c until ordinate y, because these two do not intersect either.
Finally, the rest of the stairs of d is in the quarter of the plane that is on the top
right of (x, y). For both parts of the stairs of d, the intersection with the stairs of b is
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impossible. This is a contradiction, and proves the inclusion.

8 Inclusions of grounded convex and string

In this section, we show two easy inclusions of geometric classes into pattern classes.

Theorem 5. Grounded convex graphs are included in Cabc.

Proof. Consider the grounded convex representation, and suppose that the pattern
of Cabc is present with vertices a < b < c < d, when considering the graph in the
grounding ordering. Note first that the intersection of the convex shapes a and c is
itself a convex shape. Let P be a lowest point of this convex intersection. By similar
arguments as in the previous section, the ordinate of P is the highest ordinate that the
shape of b can reach. Now, as the shape d must avoid the shape c, it must in particular
pass “above” the segment between P and the grounding point of c. Therefore b and
d can only touch at P , and this is impossible as we required that there cannot be a
contact of more than two shapes on each point (except for interval graphs). This is
contradiction, it proves the theorem.

Theorem 6. Grounded string graphs are included in Cabcd.

This statement was already proved in [37], and it corresponds to the proof sketch
we gave in Section 2. We reprove it here formally for completeness.

Proof. We again reason by contradiction, and consider the grounding ordering in a
representation by grounded strings. Suppose we have four vertices a < b < c < d,
such that the only edges between these vertices are (a, c) and (b, d). Then, consider
the closed region of the plane that is inside the Jordan curve defined by the string
of a, the string of c, and the grounding line. The shape b must be inside this region
because its root is, and it cannot intersect any of the boundaries, by Jordan curve
theorem. On the other end d must be outside this region, because likewise its root
is outside and it cannot cross the curve. Then b and d cannot intersect, which is a
contradiction.

Note that another way to see Theorem 6 is that the complement of grounded string
graphs avoids the complement of Pabcd, which is an induced cycle in the natural order.
This is actually not very surprising, as it is known that the class of complement
of triangle-free intersection graphs of grounded curves is exactly the class of Hasse
diagrams [33], and that even without the triangle-free assumption, these complement
graphs avoid an infinite family of ordered cycles [41].
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9 Strict inclusions and open problems

In this section, we focus on inequalities between included classes, and open problems.
In particular, we finish giving the results that are used to establish the diagram of
Figure 4, given in the overview section of the paper.

We start with new inequalities between pattern classes. Remember that inclusion
of patterns imply inclusion of classes (Observation 1), thus we have the following
inclusions: C∅ ⊆ Ca ⊆ Cab ⊆ Cabc ⊆ Cabcd ⊆ ALL, where ALL stands for the set of
all graphs. Also C∅ ⊆ Cb ⊆ Cab.

Two inclusions are known to be strict:

Observation 10. The class C∅, is strictly included into Ca and Cb. For example K4

has no ordering avoiding P∅, but all orderings avoid Pa and Pb.

We prove three other inequalities between included classes.

Theorem 7. Ca ( Cab, Cb ( Cab, and Cabcd ( ALL

Proof. The proof of this theorem uses a computer program for enumerating vertex
orderings. The source code is available upon request.

For the first two inequalities, Ca ( Cab and Cb ( Cab, we consider the graph
of Figure 16. This graph is in Cab, as the second pictures shows, and a computer
enumeration shows that it is not in Ca, nor in Cb.

0 1 2 3 4 5 6 7

0 1 23 4 5 6 7

Figure 16: Two vertex ordering of a graph that is in Cab, but not in Ca, nor in Cb.
The first pictures illustrates how we discovered this graph: taking P∅ and then forcing
some order conditions with intermediate nodes and a cycle. The second picture is an
ordering avoiding Pab. (We made some edges thicker to increase readability.)

For the third inequality, Cabcd ( ALL, we consider the graph of Figure 17. Again a
computer enumeration shows that no vertex ordering of this graph avoids the pattern
Pabcd, thus the graph is not in Cabcd.
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0 1 2 3 4 5 6 7 8 9 10 11

Figure 17: A graph that is not in Cabcd, by computer enumeration. (We made some
edges thicker to increase readability.)

A natural open problem here is whether all the inclusions are strict, and even more
generally, the following question.

Open problem 1. Let P be a pattern with a non-decided edge (x, y). Let P ′ be the
pattern obtained from P by adding the edge (x, y). Under which conditions does
CP ( CP ′ hold? What about adding a non-edge (x, y)?

We now give a list of inequalities between classes, that are either known, or easy
to derive from known results.

Observation 11. 1. Grounded L-shape graphs are strictly included in grounded seg-
ment graphs [32].

2. Grounded L-shape graphs and grounded rectangle graphs are incomparable [24].
This result has several consequences. First the inclusions of grounded rectan-
gle graphs grounded L-shape graphs into Cab (which follow from the pattern
inclusions) are strict. Second, the inclusion of grounded rectangle graphs into
grounded convex graphs (which follows from the comparison of the shapes) is
also strict.

3. Grounded rectangle graphs and grounded segment graphs are incomparable [24].
As a consequence, the inclusion of grounded segment graphs into grounded con-
vex graphs (which follows from the comparison of the shapes) is strict.

4. We know from the literature (or alternatively from Theorem 1 and 2) that forest
are included in outerplanar graphs. This inclusion is strict as witnessed by the
cycle on four vertices, C4, that is outerplanar but not acyclic.

5. By Theorem 1, we get that forests are included in grounded L-shape graphs.
This inclusion is strict, as witnessed by C4 again (Figure 11a shows that C4 is a
grounded L-shape graph).
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6. Interval graphs are included in Ca, cocomparability graphs, grounded rectangle
graphs, and grounded L-shape, as can be seen from the pattern inclusions (for
the first three class) and from the generality of the shapes and grounding (for
the fourth). These inclusions are strict as witnessed by C4 again.

7. The class of 2-grounded segments graphs (permutation graphs) is strictly in-
cluded in the classes of grounded L-shapes and grounded segments [24].

8. Cocomparability graphs are included in interval filament graphs, by Observa-
tion 6, and the inclusion is strict, as witnessed by C6 which is not a cocompara-
bility graph [17] and can be easily represented by interval filaments.

Now that we have all the results that are used to build the Diagram of Figure 4,
we can list some open problems. Of course settling the status of each inclusion (either
equality or strict inclusion) is a natural direction. For example, the lowest such edge
in the diagram is for the inclusion of Ca in interval filament graphs. This question
would be solved if could answer positively the following, innocent-looking problem.

Open problem 2. Are Ca and cocomparability graphs incomparable? (Or are cocom-
parability graphs included in Ca, the reverse being impossible, as witnessed by C6?)

We know that C∅ is the class of outerplanar graphs, and that Cb is the class of
grounded rectangle graphs, which gives us several points of view on these two classes
defined by forbidden patterns. We lack such diversity for other the other pattern
classes considered in the paper.

Open problem 3. Can we characterize Ca,b, Ca,b,c and Ca,b,c,d, without patterns? Do
these classes have geometric characterizations?

10 Complexity of recognition

As said in the introduction, one of the motivations to study the relation between
patterns and grounded intersection graphs is that it is a way to better understand
patterns on four vertices. In this section, we survey the known results and list open
problems about the complexity of the recognition of the classes that are defined by
patterns on four vertices.

Let us start by classes that are known to be recognizable in polynomial time.
Remember that all the classes characterized by patterns on three vertices can be
recognized in polynomial time [22, 16]. When we go to four vertices, the landscape is
more complex, but there are still “good cases”.

First, outerplanar graphs, that have been mentioned a lot already, as they corre-
spond to C∅, can be recognized in linear time [34]. Second, let us consider the class of
cographs, which is the smallest class of graphs that contains the unique vertex graph
and is closed under series and parallel compositions. The cographs are also the P4-
free graphs [40], hence they can be characterized by the existence of a vertex ordering
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1 2 3 4 1 2 3 1 2 3

Figure 18: Forbidden patterns of cographs.

avoiding the twelve orderings of P4. But there is a more compact set of forbidden
patterns [9], see Fig. 18. The cographs can also be recognized in linear time [6].

A less-known class is the strongly chordal graphs in which every even cycle of length
greater or equal to 6 admits an odd chord. These are characterized by the existence of
a strong perfect elimination ordering of the vertices, which corresponds to the patterns
of Figure 19 [14]. They can be recognized in time O(min(n2, (n+m) log n)) [43].

1 2 3 1 2 3 4

Figure 19: Forbidden patterns of strongly chordal graphs.

The complement of threshold tolerance graphs (coTT for short) is surclass of the
strongly chordal graphs that have been characterized with the patterns of Figure 20 [35],
and whose recognition is also polynomial [18].

1 2 3 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 20: Forbidden patterns of coTT graphs.

Finally, note that K4-free graphs (resp. their complement) are characterized by
the pattern that is an ordered version of K4 (resp. of K̄4). These can be recognized in

time O(m
α+1
2 ), where α is the best exponent for boolean matrix multiplication [25].

As hinted before, there are also classes that are characterized by patterns on four
vertices and that are hard to recognize. The simplest example of this phenomenon
is 3-colorable graphs, whose recognition is a classic NP-hard problem. These are
characterized by the forbidden pattern that is simply a path on four vertices (see
e.g. [16], but this is also a special case of the Gallai-Hasse-Roy-Vitaver theorem).

Another example is the class of graphs with queue number 1, that can be charac-
terized with the pattern of Figure 21 [20], and whose recognition is NP-hard [21].
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1 2 3 4

Figure 21: Forbidden pattern of the graphs of queue number 1.

One more example is perfectly orderable graphs, that are the graphs that admit a
perfect ordering of the vertices, i.e. an ordering where there is no path on four vertices
(a− b− c− d), such that a < b and d < c. These are characterized by the forbidden
patterns of Figure 22, and their recognition was proven to be NP-hard in [31].

1 2 3 4 1 2 3 4 1 2 3 4

Figure 22: Forbidden patterns of perfectly orderable graphs.

Let us now move on to the interesting classes for which we do not know the
complexity of the recognition. First, the recognition complexity of almost all the
pattern classes on Figure 4 is unknown. In particular, the question for grounded
rectangle graphs, that is Cb, is still open, although it has been raised several time
in the literature. A related class of interest is the one where the pattern has edges
(1, 3), (2, 3) and (2, 4). This pattern correspond to Pb but with an edge instead of a
non-edge, and it is also a permutation of the pattern for 3-colorable graph. To our
knowledge this class has not received attention yet.

We will finish this section with graph classes related to two parameters: the LMIM-
width and the MIM-width. These are interesting parameters based on the size of
some maximum matchings, that are related to the other classic parameters such as
treewidth, branchwidth, rankwidth and cutwidth [45, 11]. The graph of LMIM-width
1 are known to be characterized by the two patterns of Figure 23, including Pabcd.

1 2 3 4 1 2 3 4

Figure 23: The patterns characterizing the graphs of LMIM-width 1. The first pattern
is Pabcd.

The graphs that have MIM-width 1 correspond to linear Hsu-decomposable graphs,
and they can be characterized by the two forbidden patterns of Figure 24 [45, 11].

As far as we know the complexity of the recognition of LMIM-width 1 and MIM-
width 1 are still widely open.
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1 2 3 4 1 2 3 4

Figure 24: The patterns characterizing the graphs of MIM-width 1. The first pattern
is Pbd.

Conclusion
In this paper we prove that forbidden patterns can help to better understand the

relationships between graph classes, but it is no clear how they could help for the
classification of the complexity of the recognition of the corresponding graph classes.
Since very similar patterns may lead to either linear (such as C∅) or perhaps NP-hard
recognition algorithms (such as Cb).
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Magnús M Halldórsson, Thomas Hixon, and Juraj Stacho. Max point-tolerance
graphs. Discrete Applied Mathematics, 2015.

[4] Derek G Corneil. Extensions of permutation and interval graphs. In Proc. 18th
Southeastern Conference on Combinatorics, Graph Theory and Computing, pages
267–276, 1987.

[5] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and
recognition of interval graphs. SIAM J. Discrete Math., 23(4):1905–1953, 2009.

[6] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition
algorithm for cographs. SIAM J. Comput., 14(4):926–934, 1985.
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