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Abstract

Recoloring a graph is about �nding a sequence of proper colorings of this graph

from an initial coloring σ to a target coloring η. Each pair of consecutive

colorings must di�er on exactly one vertex. The question becomes: is there a

sequence of colorings from σ to η?

In this paper, we focus on (∆ + 1)-colorings of graphs of maximum degree ∆.

Feghali, Johnson and Paulusma proved that, if both colorings are non-frozen

(i.e. we can change the color of a least one vertex), then a quadratic recoloring

sequence always exists. We improve their result by proving that there actually

exists a linear transformation.

In addition, we prove that the core of our algorithm can be performed locally.

Informally, if we start from a coloring where there is a set of well-spread non-

frozen vertices, then we can reach any other such coloring by recoloring only

f(∆) independent sets one after another. Moreover these independent sets

can be computed e�ciently in the LOCAL model of distributed computing.

1 Introduction

Recon�guration problems consist in �nding step-by-step transformations between two
given feasible solutions of a problem, such that all intermediate states are also feasible.
For a complete overview of the recon�guration �eld, the reader is referred to the two recent
surveys on the topic [24, 27]. In this paper, our reference problem is graph coloring.

Graph recoloring. All along the paper G = (V,E) denotes a graph, n := |V |, and k is
a positive integer. For standard de�nitions and notations on graphs, we refer the reader
to [17]. A (proper) k-coloring of G is a function σ : V (G) → {1, . . . , k} such that, for
every edge xy ∈ E, we have σ(x) 6= σ(y). Throughout the paper, we only consider proper
colorings, and will then omit the word �proper� for brevity. The chromatic number χ(G)

*This work was supported by ANR project GrR (ANR-18-CE40-0032)
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of a graph G is the smallest k such that G admits a k-coloring. Two k-colorings are
adjacent if they di�er on exactly one vertex. The k-recon�guration graph of G, denoted
by G(G, k), and de�ned for any k > χ(G), is the graph whose vertices are k-colorings
of G, with the adjacency relation de�ned above.

In this work, we will focus on the diameter of the recon�guration graph. The k-
recoloring diameter of a graph G is the diameter of G(G, k), if G(G, k) is connected, and
is equal to +∞ otherwise. In other words, it is the minimum D for which any k-coloring
can be transformed into any other through a sequence of at most D adjacent k-colorings.
The diameter of the recon�guration graph plays an important role, for instance in random
sampling, since it provides a lower bound on the mixing time of the underlying Markov
chain (and the connectivity of the recon�guration graph ensures the ergodicity of the
Markov chain1). Since proper colorings correspond to states of the anti-ferromagnetic
Potts model at zero temperature, Markov chains related to graph colorings received con-
siderable attention in statistical physics and many questions related to the ergodicity or
the mixing time of these chains remain widely open (see e.g. [16, 22]).

If we consider (∆ + 2)-colorings2, the recoloring graph is indeed connected. An im-
portant conjecture in the random sampling community is that the mixing time of the
(∆ + 2)-colorings of any graph is O(n log n). In other words, given any (∆ + 2)-coloring
of a graph, if we perform a (lazy) random walk on the set of proper (∆ + 2)-colorings,
we should sample (almost) at random a coloring after O(n log n) steps. This question
is still widely open, and the best known upper bound on the number of colors to ob-
tain a polynomial mixing time is (11

6
− ε)∆ [16], slightly improving a classical result of

Vigoda [28]. When the number of colors is ∆+1, one cannot expect a polynomial mixing
time, since the chain is not irreducible. Indeed, if we consider for instance a clique, the
(∆ + 1)-colorings are frozen, i.e. we cannot modify the color of any vertex. (A vertex is
non-frozen if we can modify its color and frozen otherwise.)

However, Feghali, Johnson, and Paulusma [21] proved that the situation is not that
bad for (∆ + 1)-colorings, since the recon�guration graph of the (∆ + 1)-colorings of
a graph is a set of isolated vertices plus a unique component containing all the other
colorings, which has diameter O(n2). In other words, any non-frozen coloring can be
transformed into any other with O(n2) single vertex recolorings. In addition, Bonamy,
Bousquet, and Perarnau [5] proved that, if G is connected, then the proportion of frozen
(∆ + 1)-colorings of G is exponentially smaller than the total number of colorings.

1.1 Our results

Our main result consists in proving that we can bring the quadratic term in the result
of Feghali, Johnson, and Paulusma [21] down to a linear term (by paying an additional
function of ∆).

Theorem 1.1. Let G be a connected graph with ∆ > 3 and σ, η be two non-frozen k-
colorings of G with k > ∆ + 1. Then we can transform σ into η with a sequence of at

1Actually, it only gives the irreducibility of the chain. To get the ergodicity, we also need the chain
to be aperiodic. For the chains associated with proper graph colorings, this property is usually straight-
forward.

2All along the paper, ∆(G), or ∆ when G is clear from context, will denote the maximum degree
of G.
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most O(∆c∆n) single vertex recolorings, where c is a constant.

In other words, we lower the upper bound on the diameter of the non-trivial component
from O(n2) to f(∆)·n. The existence of linear transformations between colorings received
considerable attention in recent years, see e.g. [3, 2, 11, 18]. Most of the works focus on
the following question: how many colors are needed in order to guarantee the existence
of a linear transformation between any pair of colorings of G?

Most of the proofs of these results are not local since we have no control on how the
set of recolored vertices is �moving� in the graph. Informally speaking, when we have a
recoloring sequence that is of minimal length, if a vertex is recolored, it is either to give
it its �nal color or because it has to be recolored since one of its neighbors wants to take
its color later in the sequence. In the second case, let us call the corresponding edge a
special arc associated to that step. So, for every step of the recoloring sequence but at
most n, we can associate a special arc. In most of the recoloring proofs, even when the
transformation is linear, we have no control on the location of the sequence of special arcs
in the graph (we might have to go back and forth several times in the graph) even if all
the vertices are initially non-frozen. On the contrary, our proof is local in the sense that,
if we start from a coloring which is r-locally non-frozen, which is a coloring such that any
ball of radius r contains a non-frozen vertex, then the length of the longest oriented path
in the sequence of special arcs has bounded size. In other words, a recoloring sequence
of the type �a vertex u1 is recolored because a vertex u2 is recolored because a vertex u3

is recolored...etc...� cannot be too long. Actually, we prove an even stronger result: if
both the initial and the target colorings are locally non-frozen, there exists a recoloring
sequence that consists in recoloring successively a constant (in ∆) number of independent
sets (and then there is no long chain of special arcs and the total number of recolorings
is linear). Moreover, such a recoloring sequence can be found e�ciently in the LOCAL
model of distributed computing3.

More formally, a recoloring (parallel) schedule of length r from α to β is a sequence
of independent sets S1, . . . , Sr such that (i) at any step of the transformation only the
vertices of Si are recolored and, (ii) at any step the coloring is proper. Note that if there
is a recoloring schedule of length r then there is a single vertex recoloring transformation
in at most rn steps. We say that a coloring is r-locally non-frozen if all the vertices are
at distance at most r from a non-frozen vertex. We prove the following theorem.

Theorem 1.2. Let G be a graph with ∆ > 3, k ∈ N with k > ∆ + 1. Let σ, η be two
k-colorings of G which are r-locally non-frozen. There exists three constants c, c′, c′′ such
that we can transform σ into η with a parallel schedule of length at most O(kc∆ + ∆c′r)
in

� O(∆c′′ + log∗ n+ k) rounds if k > ∆ + 2.

� O(∆c′′ + log2 n · log2 ∆ + k) rounds otherwise.

Informally, the number of rounds we need in the LOCAL model to provide a dis-
tributed recoloring sequence can be seen as how much we need to understand the graph
globally to provide a recoloring sequence. When we look into our proof, the log∗ n (or

3See Section 1.2 for formal de�nitions on distributed algorithms.
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log2 n) term in the number of rounds is there to compute a maximal independent set at
distance Ω(1) (or a ∆ + 1 coloring). If we are given such colorings and independent sets,
the number of rounds is independent of n.

Note that Theorem 1.2 implies Theorem 1.1, as long as both initial and target colorings
are locally non-frozen. However, we might have only a few non-frozen vertices in the
graph G (such colorings exist e.g. in powers of paths). In that case, we prove that we can
transform a non-frozen coloring into a locally non-frozen coloring with a linear number of
recoloring steps. The proof is based on a result of independent interest, which is formally
stated in Section 4, that we sketch here. Given a (∆ + 1)-coloring, if a vertex x is non-
frozen, and y is a vertex at distance 7 from x, then we can recolor the vertices of B(x, 7)
such that:

(i) at the end of the transformation, x is still non-frozen,

(ii) no vertex of the border of B(x, 7) is recolored,

(iii) y is non-frozen at the end of the transformation.

Informally speaking, the result ensures that, in (∆ + 1)-colorings, we can locally �dupli-
cate� non-frozen vertices. Using this statement we prove, using a BFS-like structure, that
we can transform the coloring into a locally non-frozen coloring (see Proposition 3.1).

Note that our proof technique is completely di�erent from the one of Feghali et al. [21],
whose proof is based on an iterative identi�cation of vertices (and from which we can
hardly expect a linear transformation).

An interesting direction for future work is to determine whether we can replace the
exponential function in ∆ by a polynomial function of ∆. We actually have no lower
bound that ensures that a dependency in ∆ is necessary. In other words:

Question 1.3. Given α, β two non-frozen (∆ + 1)-colorings, is it possible to transform α
into β in O(n) steps independent of ∆?

A �rst step towards this question would consist in proving that if the number of colors
is large enough (compared to ∆), then we can remove or reduce the dependency on ∆.
When k = ∆ + 2, a result of Bonamy and Bousquet [4] (on recolorings with the grundy
coloring number) ensures that the diameter is at most O(∆n). One can wonder if this
dependency in ∆ can be avoided.

Finally note that, at some steps of the proof, we can reduce the exponential depen-
dency on ∆ into a polynomial one by adapting a result of Bousquet and Heinrich [10] but
we did not succeed to do it at every step. We thus decided to keep the proof as simple
as possible.

1.2 LOCAL model and distributed recoloring

The LOCAL model is a classic model of distributed computing (see [26] for a survey). The
model consists of a graph G = (V,E) where each vertex v ∈ V has a unique identi�er.
Each edge corresponds to a communication link between two vertices. Initially, each
vertex only has access to its identi�er and its list of neighbors. Each vertex communicates
synchronously with its neighbors at each round. We say that an algorithm runs in `
rounds, if every vertex can run this algorithm for ` rounds and then get an output. Since
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we do not impose any limit on the memory, on the information propagated along a link
at each round, or the computational power of the vertices, this is equivalent to a model
where every vertex knows its full neighborhood at distance at most `, and then chooses
an output.

Usually, the validity of the output can be checked locally. For example, to check that
a coloring is proper, a vertex just needs to check that its color output by the algorithm
di�ers from its neighbors'. An algorithm is valid if its output is correct. In what follows,
we will only consider valid algorithms.

Distributed recoloring in the LOCAL model was introduced in [7], and implicitly
studied before in [25]. In [7], the authors focus on recolorings 3-colored trees, subcubic
graphs and toroidal grids, and in [25], the focus is on transforming a (∆ + 1)-coloring
into a ∆-coloring. More recently, [9] designed e�cient distributed recoloring for chordal
and interval graphs. A few recon�guration problems di�erent from coloring have been
studied in the distributed setting, including vertex cover [12] and maximal independent
sets [13].

Distributed recoloring in the LOCAL model is de�ned as follows. Each vertex v
is given as input its initial color c0 and its target color cend. It outputs a schedule
c0, c1, . . . , c` = cend of length `, which is the list of colors taken by v all along the trans-
formation. In one communication round, each vertex can check that the schedule is
consistent by checking that at each step: (i) its color di�ers from its neighbors', and (ii)
if its color changes at some step i > 0 (i.e. ci−1 6= ci), then the color of none of its
neighbors is modi�ed at that same step. In case we handle r-locally non-frozen colorings,
a vertex is given as input its distance to a closest unfrozen vertex in both initial and
target colorings. The input validity can be checked in one round, as each vertex just
needs to check that (i) both colorings are locally proper (around its vertex), and that (ii)
it is unfrozen if the integer assigned to it is 0, or it has a neighbor at a smaller distance
if its distance is positive.

Theorem 1.2 directly improves some results of [7] on distributed recoloring. One
problem studied in [7] consists in recoloring 3-colored graphs of maximum degree 3 with
the help of an extra color. They provide an algorithm that �nds a parallel schedule of
length O(log n) in a polylogarithmic number of rounds in the LOCAL model. Theorem 1.2
implies that a constant length schedule can be found in O(log∗ n) rounds (and it holds
even we start from an arbitrary locally non-frozen 4-colorings instead of 3-colorings plus
an additional color). Theorem 1.2 also directly solves two open questions from [7]:

� The �rst question is about the complexity of �nding a schedule to recolor a ∆-
coloring with an extra color. Theorem 1.2 gives an algorithm that �nds a parallel
schedule of length f(∆) in O(F (∆) log∗ n) communication rounds (since these ∆-
colorings can be seen as non-frozen (∆ + 1)-colorings).

� The second question concerns the case of 4-colored toroidal grids with an extra
color. We provide an algorithm with a constant length schedule after O(log∗ n)
rounds.

We leave as an open problem whether a schedule can be found even faster. In par-
ticular, we conjecture that, in the case of toroidal grids, such a schedule could be found
in O(1) communication rounds, by using the input and target colorings as symmetry-
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breaking tools. More generally, we were not able to provide a positive answer to that
question:

Question 1.4. Does there exist a non-constant function f such that an algorithm comput-
ing a recoloring schedule in the LOCAL model between any pair of 28-locally non-frozen
(∆ + 1)-colorings takes Ω(f(n)) communication rounds.

Note that a lower bound result of this �avor can be found in [13] for the problem
of maximal independent set recon�guration but we did not manage to adapt it in our
setting.

1.3 Related work in graph recoloring

Bonsma and Cereceda [8] proved that there exists a family G of graphs and an integer k
such that, for every graph G ∈ G, there exist two k-colorings whose distance in the k-
recon�guration graph is �nite and super-polynomial in n. Cereceda conjectured that the
situation is di�erent for degenerate graphs. A graph G is d-degenerate if any subgraph
of G admits a vertex of degree at most d. In other words, there exists an ordering
v1, . . . , vn of the vertices such that for every i 6 n, the vertex vi has at most d neighbors
in vi+1, . . . , vn. It was shown independently in [19] and [15] that for any d-degenerate
graph G and every k > d + 2, G(G, k) is connected. However, the (upper) bound on
the k-recoloring diameter given by these constructive proofs is of order cn (where c is a
constant). Cereceda [14] conjectured that the diameter of G(G, k) is of order O(n2), as
long as k > d + 2. If correct, the quadratic function is sharp, even for paths or chordal
graphs as proved in [6]. The best known bound on this conjecture is due to Bousquet and
Heinrich [10], who proved that the diameter of G(G, k) is nd+1. The conjecture is known
to be true for a few graph classes, such as chordal graphs [6] and bounded treewidth
graphs [4, 20].

2 Preliminaries

Let G be a graph and v be a vertex of G. We denote by N(v) the set of neighbors of v,
that is the set of vertices adjacent to v. The set N [v], called the closed neighborhood of v,
denotes the set N(v)∪{v}. Given a set X, we denote by N(X), the set (∪v∈XN(v)) \X.
The distance between u and v in G is the length of a shortest path from u to v in G (by
convention, it is +∞ if no such path exists), and it is denoted by d(u, v). Let r ∈ N.
We denote by B(v, r) the ball of center v and radius r, which is the set of vertices at
distance at most r from v. A vertex w belongs to the boundary of B(v, r) if the distance
between v and w is exactly r. The interior of a ball B is the ball minus its boundary
(i.e. B(v, r − 1) for a ball B(v, r), with r > 0).

Let c be a coloring of G. A vertex v is frozen in c if all the colors appear in N [v]. The
coloring c is frozen if all the vertices are frozen. Note that a frozen coloring is an isolated
vertex of the recon�guration graph.

Let α be a coloring of G, and X be a subset of vertices. We denote by G[X] the
subgraph of G induced by X, and by αX the coloring α restricted to the vertices of X.
We say that two colorings α and β agree on X if αX = βX .
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We introduce two new notions that are essential in the paper: r-locally non-frozen
colorings and r-safe graphs.

De�nition 2.1. A coloring is r-locally non-frozen if, for every vertex v, there exists a
non-frozen vertex at distance at most r from v.

De�nition 2.2. The k-colorings of a graph G are r-safe if, for every vertex v, and every
k-coloring where v is non-frozen, the following holds. For any vertex w at distance r
from v, there exists a recoloring sequence, such that: w is recolored, all the other recolored
vertices are in the interior of B(v, r), and v is again non-frozen at the end of the sequence.

Since we only consider (∆ + 1)-colorings in the paper, we will say that G is r-safe if
the (∆ + 1)-colorings of G are r-safe. Before we de�ne yet another notion, let us make a
remark.

Remark 2.3. Consider a non-frozen vertex u in a ∆+1-coloring of the graph. If we change
its color, then all its frozen neighbors become unfrozen.

Indeed, before the change, for any frozen neighbor v of u, all the colors appear exactly
once in N [v] (because we consider ∆ + 1 colors). Thus, after the change, the old color c
of u does not appear anymore in N [v], and v has two possible colors: its current color
and c. Now, let us go one step further. Suppose that v had another neighbor z, not
adjacent to u, that was also frozen at the beginning. The recoloring of u keeps z frozen,
but then the recoloring of v with color c unfreeze it. By iterating this process, we get
what we call a ladder.

De�nition 2.4. Given an induced path P where the �rst vertex in the path is non-frozen,
and all the other vertices are frozen, a ladder consists in recoloring all the vertices of P
one by one.

Note that at the end of the sequence, the other endpoint w of P has changed color,
and it is non-frozen. Moreover, for every consecutive pair of vertices vivi+1 in the path,
where vi appears �rst between v and w, the �nal color of vi+1 is the initial color of vi.

3 Outline of the proofs

The proofs of both our theorems are in two steps. The �rst step is slightly di�erent, but
the second step is the same for both results. The �rst step consists in reaching a coloring
where the vertices of a �xed set I are all non-frozen. For Theorem 1.1 (centralized
recoloring), this step corresponds to the following proposition, where we start from a
non-frozen coloring.

Proposition 3.1. Let G be a connected graph of maximum degree ∆ > 3, and let I be
a maximal independent set at distance d > 15 in G. Let σ be a coloring of G that is
non-frozen. Then it is possible to transform σ into a coloring µ where I is non-frozen,
with O(n) single vertex recolorings.

For Theorem 1.2 (distributed recoloring), the �rst step corresponds to the following
proposition, where we start from an r-locally non-frozen coloring.
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Proposition 3.2. Let G be a connected graph of maximum degree ∆ > 3, and let I
be a maximal independent set at distance d > 15 in G. Let σ be a r-locally non-frozen
coloring. Then it is possible to transform σ into a coloring µ where I is non-frozen, in
O(d∆4d+10 + d log∗ n+ r) rounds, and with a schedule of length O((r+ d)d∆6d+10) in the
LOCAL model.

Actually, the proofs of both Proposition 3.1 and 3.2 will use as an essential building
block the following theorem, which is of independent interest.

Theorem 3.3. For every r > 7 and every graph G of maximum degree ∆ > 3, G is
r-safe.

The second step, that is common to both theorems, consists in reaching a �xed col-
oring γ, and corresponds to the following proposition.

Proposition 3.4. Let G be a graph with ∆ > 3 and I be an independent set at distance 28.
Let r, k, k′ ∈ N such that k′ < k, k > ∆+1. Let µ, γ be two colorings, using respectively at
most k and k′ colors, that are both non-frozen on I. There is a recoloring schedule from
µ to γ of length at most (k′)O(∆). Moreover, such a recoloring schedule can be computed
in O(∆) rounds in the LOCAL model.

Note that even if k = ∆ + 1, a k′-coloring with k′ = ∆ exists, by Brook's theorem.
Indeed, since σ is non-frozen and ∆ > 3, G is neither a clique nor an odd cycle.

We now have all the tools to prove our two main theorems.

Theorem 1.1. Let G be a connected graph with ∆ > 3 and σ, η be two non-frozen k-
colorings of G with k > ∆ + 1. Then we can transform σ into η with a sequence of at
most O(∆c∆n) single vertex recolorings, where c is a constant.

Proof. By Proposition 3.1, we can transform σ (resp. η) into a coloring µ (resp. µ′) which
is non-frozen on I by recoloring O(n) vertices in total.

Let γ be an arbitrary ∆-coloring of G. In order to build the recoloring sequence from
µ to µ′, we will build one from µ to γ, and one from γ to µ′. By Proposition 3.4, there is
a recoloring schedule from µ (resp. µ′) to γ recoloring at most ∆O(∆) independent sets.
This sequence recolors at most ∆O(∆) times each vertex, which completes the proof.

The second theorem is about local recon�guration, and we assume that the colorings
are r-locally non-frozen.

Theorem 1.2. Let G be a graph with ∆ > 3, k ∈ N with k > ∆ + 1. Let σ, η be two
k-colorings of G which are r-locally non-frozen. There exists three constants c, c′, c′′ such
that we can transform σ into η with a parallel schedule of length at most O(kc∆ + ∆c′r)
in

� O(∆c′′ + log∗ n+ k) rounds if k > ∆ + 2.

� O(∆c′′ + log2 n · log2 ∆ + k) rounds otherwise.

8



Proof. We �rst compute an independent set at distance d = 28 in a distributed manner
in time O(∆28 + log∗ n) rounds in the LOCAL model by [1]. Then by pluggnig the result
of Proposition 3.2 with d = 28, we can transform σ (resp. η) into a coloring µ (resp. µ′)
such that all the vertices of I are non-frozen with a recoloring schedule of length O(r∆178)
in O(∆122 + log∗ n+ r) rounds.

Assume �rst that k > ∆ + 2. It is easy to transform µ into a coloring γ with k − 1
colors in one round: for every vertex that has color ∆ + 2, move it to a color of smaller
index. Such a color must exist, and the transformation takes only one round. Now by
Proposition 3.4, we can transform µ′ into γ e�ciently, and �nish this proof.

Now, if k = ∆ + 1, we �rst compute an arbitrary ∆-coloring, in time O(log2 n log2 ∆),
using the algorithm of [23], and then use Proposition 3.4 twice (between µ and γ, and
between µ′ and γ).

4 Safeness and consequences

4.1 Maximum degree at least 3 ensures safeness

The goal of this section is to prove the following theorem, that ensures that, in any ball
with an unfrozen vertex, we can unfreeze at a vertex of its border while keeping its center
unfrozen.

Theorem 3.3. For every r > 7 and every graph G of maximum degree ∆ > 3, G is
r-safe.

Consider a graph G of maximum degree ∆ > 3. Let σ be proper (∆ + 1)-coloring
of G, and v be a non-frozen vertex. Let B = B(v, r). Note that if the boundary of B is
empty (that is, the whole graph is contained in B(v, r− 1)) then G is r-safe. For the rest
of the section, we will assume that this is not the case.

Let w be a vertex of the boundary of B. Our goal is to prove that there exists a
recoloring sequence of the vertices of the interior of B plus w, which recolors w, and such
that at the end of the sequence, v is still non-frozen. Moreover, we will show that this
recoloring sequence recolors each vertex at most twice (and at most 2r vertices in total).

We will call nice such a recoloring sequence. The existence of a nice recoloring se-
quence implies Theorem 3.3. Let us �rst give some conditions which ensure the existence
of a nice recoloring sequence.

Lemma 4.1. Let P be a shortest path from v to w. Assume that P contains a non-frozen
vertex not in N [v]. Then there is a nice recoloring sequence.

Proof. Let z be the non-frozen vertex of P closest to w. By assumption, we know that z
is not adjacent to v. Let P ′ be the subpath from z to w. We can recolor w by recoloring
a ladder along this path P ′. Let us check that this is a nice recoloring sequence. All the
vertices of P ′, except w, are in the interior of B, because P is a shortest path from the
center of the ball B to w. Moreover, after this transformation v is still non-frozen since
none of its neighbors were recolored. Finally, every vertex is recolored at most once.

We can extend this property to the vertices at distance 1 from the path P .
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Lemma 4.2. Let P be a shortest path from v to w. Assume that there is a non-frozen
vertex z adjacent to P , such that 3 6 d(v, z) 6 r − 1. Then there is a nice recoloring
sequence.

Proof. The argument is similar to the one of Lemma 4.1. Let z be a vertex satisfying
the conditions of the lemma, that is the closest to w. Note that z is in the interior of
B, since d(v, z) 6 r − 1. Let z′ be the neighbor of z in P which is the closest to w,
then z′ is at distance at least 2 from v, in particular, it is not a neighbor of v. Then,
we can again recolor along a ladder that starts with z, z′, and then continues along P
towards w. This allows us to recolor w while leaving the neighbors of v and the boundary
of B untouched. Each vertex is recolored at most once, which implies that this is a nice
recoloring sequence.

Lemma 4.3. Let P = v0, . . . , vr be a shortest path from v to w. If there is an index
2 6 i 6 r − 3 , such that σ(vi) 6= σ(vi+3), then there is a nice recoloring sequence.

Proof. By Lemma 4.1, we can assume that all the vertices of P , except for v = v0 and its
neighbor v1, are frozen. Let us denote by η the coloring obtained by recoloring the ladder
along P , starting either from v, if v1 is frozen, or v1, if it is non-frozen, and ending in w.
In η, we have recolored w, but now v might be frozen. If v is not frozen, we are done. If
v1 is non-frozen, then again we are done, since we can make a ladder with just v1 and v.
Thus, let us assume that both v1 and v are frozen in η.

Amongst the indices 2 6 i 6 r − 3 such that σ(vi) 6= σ(vi+3), let i be the minimum
one. We have the following claim:

Claim 4.4. The vertex vi+2 is non-frozen in the coloring η.

Proof. Let c = σ(vi+3). Let us make a few remarks:

1. σ(vi+2) 6= c, because σ is a proper coloring,

2. σ(vi+1) 6= c, because vi+2 is frozen in σ. More generally, none of the neighbors of
vi+2 except vi+3 has color c.

3. σ(vi) 6= c, because σ(vi) 6= σ(vi+3) by assumption.

Now, by construction and by the properties of ladders, we have η(vj+1) = σ(vj), for
every vertex vj of the ladder, except vr = w. Transposing the remarks above about σ to
η we get that:

1. η(vi+3) 6= c,

2. η(vi+2) 6= c, and more generally, no neighbor of vi+2 has color c.

3. η(vi+1) 6= c.

Consequently, c does not appear in the closed neighborhood of vi+2 in η, which implies
that vi+2 is non-frozen in η, as claimed.

By Claim 4.4, vi+2 is non-frozen in η. We can make a new ladder in η along the
path P from vi+2 to v. The vertex w is not recolored by this ladder, and at the end
v is non-frozen. Since every vertex is recolored at most twice, we get a nice recoloring
sequence.
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We now have all the tools to prove that a nice recoloring sequence always exists. Let
us assume that we do not fall in one of the previous cases. Let P = v0, . . . , vr be a
shortest path from v to w. By Lemma 4.1, all the vertices in P but the �rst two ones
are frozen. By Lemma 4.2, all the neighbors of P that are at distance at least three from
v are frozen. Free to rename colors, Lemma 4.3 ensures that σ(vi) = i mod 3 for every
i > 2. We denote by η the coloring obtained by recoloring the ladder along P starting
either from v, if v1 is frozen, or from v1 otherwise. As before, at that point we are done
except if both v and v1 are frozen in η. Note that, for i > 3, η(vi) = (i − 1) mod 3,
because of the color shift of the ladder.

Let us consider the vertex v5. It cannot have degree 2, because it is frozen in σ, and
no degree-2 vertex can be frozen in a ∆ + 1-coloring, with ∆ > 3. Hence, we can assume
that v5 has a neighbor z outside P . And because P is a shortest path, z is at distance at
least 4 from v. Also note that, since we assume that r > 7, d(v, z) 6 d(v, v5) + 1 6 r− 1.
Therefore, by Lemma 4.2, z is frozen in σ. We will use the following claim:

Claim 4.5. If z is non-frozen in η, then a nice recoloring exists.

Proof. Indeed, from η, we can recolor along a ladder from z to v. After this operation,
no other vertex of the boundary is recolored, v is non-frozen, and each vertex has been
recolored at most twice. Hence, this de�nes a nice recoloring sequence.

We make a case analysis depending on the number of neighbors of z in P .
Case 1: z has a single neighbor in P . Since z is frozen in σ, v5 is its only neighbor
colored with σ(v5). In η, v5 is recolored with a di�erent color, which implies that z is no
longer frozen in η. By Claim 4.5, the conclusion follows.

Case 2: z has exactly two neighbors in P . Let c1 and c2 be the colors of these two
neighbors in σ. Since z is frozen in σ, it does not have two neighbors colored with the
same color. Moreover, in η, the two neighbors of z in P have color c′1 = c1 − 1 mod 3
and c′2 = c2 − 1 mod 3 by Lemma 4.3 (since z is incident to v5, the other neighbor is at
least v3). Then we have {c1, c2} 6= {c′1, c′2}. It follows that z is non-frozen in η, and the
result follows from Claim 4.5.

Case 3: z has at least three neighbors in P . Since P is a shortest path, z has exactly
three neighbors in P , and these neighbors are consecutive in P . Let 3 6 i 6 5 such
that vi, vi+1, vi+2 are the neighbors of z in P . Since z is adjacent to vi+1, we have
σ(z) 6= σ(vi+1) = (i + 1) mod 3. Let P ′ be the path obtained from P by replacing vi+1

by z. (Note that z is not in the boundary of B, and then z 6= w.) Then P ′ is a shortest
path from v to w, and since σ(z) 6= (i + 1) mod 3, we can apply Lemma 4.3 on P ′ to
conclude. More precisely, if i = 3, then (i+ 1) + 3 is at distance at most r because r > 7,
and if i = 4 or 5, then (i+ 1)− 3 > 2, thus in both cases the lemma applies.

This concludes the proof, and proves Theorem 3.3.

4.2 Consequences of Theorem 3.3

The next lemma ensures that, in the centralized setting, we can obtain a 28-locally non-
frozen coloring.

Proposition 3.1. Let G be a connected graph of maximum degree ∆ > 3, and let I be
a maximal independent set at distance d > 15 in G. Let σ be a coloring of G that is
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non-frozen. Then it is possible to transform σ into a coloring µ where I is non-frozen,
with O(n) single vertex recolorings.

Proof. We start by unfreezing a vertex of I. Consider a pair of vertices u, v such that u
is non-frozen and v is in I, that minimize the distance d(u, v). Note that if u = v, we are
done. Otherwise, we take a shortest path from u to v and build a ladder along this path
to unfreeze v.

We construct an auxiliary graph H, where V (H) = I, and we put an edge (i, i′) in H
if there exists a path of length at most 2d from a vertex of B(i, 7) to a vertex of B(i′, 7)
in G which does not contain any vertex in B(i′′, 7) for any i′′ 6= i, i′. Note that for any
pair a, b ∈ I, B(a, 7) and B(b, 7) are disjoint, since d > 15.

Claim 4.6. The graph H is connected.

Proof. Suppose the claim does not hold. Let A be a connected component ofH. Let i ∈ A
and j ∈ I \ A, such that dG(i, j) is minimum among the such pairs. If d(i, j) > 2d + 1,
then the vertex in the middle of a shortest path between i and j is at distance at least
d + 1 from any vertex in I which contradicts the maximality of I. So there exists i ∈ A
and j ∈ I \ A such that d(j, i) 6 2d. Now let x be the last vertex in B(i, 7) and y the
last vertex in B(j, 7). We have d(x, y) 6 2d which gives a contradiction.

Now, let us denote by T a spanning tree of H rooted in v. Let τ be a BFS ordering
of T . The index of a vertex of H is its position of appearance in the BFS. Let i be the
�rst vertex of τ that is frozen. Note that if all the vertices of I are non-frozen, we are
done. Also note that i cannot be the root of the tree since v is non-frozen.

Claim 4.7. By recoloring a constant number of vertices, we can unfreeze i, and this
operation leaves the vertices of index j smaller than i in τ non-frozen.

Proof. Let i′ be the parent of i in T , and let P be the path from i to i′ in G corresponding
to the edge (i, i′) in H. By de�nition, P has length at most 2d and does not intersect
B(i′′, 7) for any i′′ 6= i, i′. Also, we can assume that P is an induced path, since otherwise
we can take a path on a subset of vertices of P , satisfying the same properties. If there
is a vertex y in P \ B(i, 7) that is unfrozen, we simply recolor a ladder from y to i′,
to unfreeze i′. Otherwise, let x be the last vertex of P in B(i, 7). By Theorem 3.3, by
recoloring at most 14 vertices, we can recolor x, leave i unfrozen and while recoloring only
vertices in B(i, 6) (and x). We can recolor a ladder from x to i′ to get the conclusion.
In both cases, the recoloring sequence has length at most 2d + 14, and the non-frozen
vertices of I are kept unfrozen.

We iterate this construction to get all of I non-frozen. This requires at most (2d +
14)|I| 6 (2d + 14)n recoloring steps, therefore we get the result. Note that since every
vertex contains at most ∆2d other vertices of I at distance at most 2d, every vertex is
recolored at most O(∆2d) times during the whole process.

We now prove the following proposition, which is the local analogue of the previous
proposition. Intuitively, it says that if we have a well-spread set of non-frozen vertices,
we move it to another well-spread set locally.
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Proposition 3.2. Let G be a connected graph of maximum degree ∆ > 3, and let I
be a maximal independent set at distance d > 15 in G. Let σ be a r-locally non-frozen
coloring. Then it is possible to transform σ into a coloring µ where I is non-frozen, in
O(d∆4d+10 + d log∗ n+ r) rounds, and with a schedule of length O((r+ d)d∆6d+10) in the
LOCAL model.

Note that r could be large and depend on n, in which case Proposition 3.2 not only
moves the set of well-spread non-frozen vertices around, but also makes it more dense.

Proof. Let N be the set of non-frozen vertices at the beginning of the algorithm. We
proceed in two steps: �rst, we show that we can somehow move the set of non-frozen
vertices to a subset of I, and then we show how to unfreeze all the vertices of I.

For both steps, we will use an auxiliary coloring of the vertices of I. Note that this
auxiliary coloring is just a tool and is independent of the coloring we are modifying. Let p
be an integer. Consider a graph H, whose vertex set is I and whose edges are the pairs
(a, b) ∈ I, such that dG(a, b) 6 p. The graph H has maximum degree ∆H = O(∆p),
thus we can compute a (∆H + 1)-coloring of H in O(∆H + log∗(|H|)) rounds in H [1].
Therefore, we can compute such an auxiliary coloring of I in G in O(p∆p + p log∗ n)
rounds (in G).

Claim 4.8. We can reach a coloring such that in the �nal coloring any vertex of I is at
distance at most r+d from a non-frozen vertex of I, with a schedule of length O(d∆2d+4)
computed in O(d∆2d+2 + d log∗ n) rounds.

Proof. Consider an auxiliary coloring as described above, with p = 2d + 2. Let Mi be
the set of vertices that are in I and have received color i in H. We will go through the
sets Mi one after another. At step i, for every u ∈ Mi that is frozen, if B(u, d) contains
a vertex v of N that is still non-frozen, we recolor a ladder from v to u (where we take v
to be the closest non-frozen vertex). Since, p = 2d+ 2, the balls B(u, d+ 1) with u ∈Mi

are all disjoint by construction of the Mi. Therefore, we can perform this step in parallel
without coordination. Now, we want the additional property that a vertex u of I that
has been unfrozen cannot be refrozen. This could happen if there is a non-frozen vertex
in the neighborhood of u that is the start of a ladder (thus at distance exactly d from
another vertex of I). We add a twist to the algorithm: if this situation occurs, we do not
build the ladder.

To prove that the claim holds at the end of this process, consider a vertex w of I.
By assumption, at the beginning w was at distance at most r from a non-frozen vertex
x of N . Consider a vertex u of I in B(x, d) (such a vertex exists by maximality). If
this vertex u is non-frozen, then the claim holds for w. If this vertex is frozen, the only
possibility is that we did not build a ladder from x to u because of the twist in the
algorithm. But in this case there exists a vertex u′ ∈ I in the neighborhood of x which
is necessarily non-frozen (since there is no obstruction to building a ladder from x to u′).

The round complexity is dominated by the computation of the auxiliary coloring, and
the schedule length can be bounded by the maximum size of a ladder inside a ball, O(d)
times the number of color classes O(∆2d+4).

Claim 4.9. Consider a coloring and the distance from any vertex of I to the closest
non-frozen vertex of I in this coloring. If this distance is positive, we can reach a new
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coloring, where this distance in strictly smaller, with a schedule of length O(∆6d+14) in
O(d∆4d+10 + d log∗ n) rounds.

Proof. Again, consider an auxiliary coloring as described at the beginning of the proof,
but with parameter p = 4d+ 10. We will consider the color classes Mi, one after another.
For every u ∈Mi, let Xu be the ball B(u, 2d+4) plus the vertices of I at distance exactly
2d+5 from u in G. Note that no vertex of I in V \Xu is adjacent to Xu. If u is non-frozen,
then we can unfreeze all the vertices of I ∩Xu: since d > 15, we can proceed exactly like
in the proof of Proposition 3.1. Note that, similarly to the previous proof, because of our
de�nition of the sets (Xu)u, these recolorings can be performed in parallel, and no vertex
of I that was non-frozen can be refrozen.

We claim that, at the end of this recoloring, the minimum distance from any vertex
u of I to the closest non-frozen vertex of I has decreased. Indeed, let v be the closest
non-frozen vertex of I from u at the beginning. If d(u, v) 6 2d + 4, u is non-frozen at
the end of the algorithm by construction. Otherwise, let x be the (d + 1)-th vertex of
a shortest path from v to u. Note that x must be at distance at most d from a vertex
v′ of I. Thus v′ is in B(v, 2d + 1). So v′ is unfrozen at the end of the algorithm. And
since the distance from u to v′ is strictly smaller than the one from u to v, we get the
condition of the claim. The computation of the schedule length and number of rounds are
similar to the ones of the previous claim, except the unfreezing of each Xu uses O(∆2d+4)
recoloring steps.

By using the algorithm of Claim 4.8, and then iterating the algorithm of Claim 4.9,
we can unfreeze all of I.

The number of iteration of Claim 4.9 is at most r + d by Claim 4.8, thus the total
schedule length is in O((r + d)d∆6d+10). The total number of rounds is O(d∆4d+10 +
d log∗ n+ r) since we can reuse the same auxiliary coloring for all the iterations.

5 Recoloring locally non-frozen colorings

The goal of this section is to prove Proposition 3.4. To do so we will �rst prove a few
lemmas.

5.1 Degeneracy ordering lemma

A graph G is d-degenerate if any subgraph of G admits a vertex of degree at most d. In
other words, there exists an ordering v1, . . . , vn of the vertices such that for every i 6 n,
the vertex vi has at most d neighbors in vi+1, . . . , vn.

Lemma 5.1. Let G be a connected r-locally non-frozen graph which is k-colorable, and
let S be a maximal independent set at distance at least 2r+2. Let BS be the set of vertices
at distance at most r from S, and G′ = G \BS.

Then there exists a (∆−1)-degeneracy ordering of G′ consisting of O(r ·k) consecutive
independent sets. Moreover, if we are given a k-coloring c of G′, such an ordering can be
found in O(r) rounds in the LOCAL model.
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Proof. The graph G′ is (∆− 1)-degenerate because we have removed at least one vertex
from a connected graph of maximum degree ∆. The degeneracy ordering of G′ will be
built by �rst splitting G′ into layers such that each vertex v in layer i has at most ∆− 1
neighbors in layers j > i. Then we will split each layer into independent sets using the
coloring c.

We de�ne the i-th layer Li of G
′ as the set of vertices at distance exactly i from BS.

Since S is a maximal independent set at distance 2r + 2, all the vertices of G′ belong to
a layer i with i 6 r + 2. All the vertices in the �rst layer have a neighbor in BS and,
for every i > 2, all the vertices in layer i have at least one neighbor in layer (i − 1). So
the graph induced by the layers ∪j>iLj is (∆ − 1)-degenerate (and all the vertices of Li
have degree ∆− 1 in ∪j>iLj). We now split each layer into k independent sets using the
color classes of a k-coloring c. We can order the vertices in the layers by color, and get a
(∆− 1)-degeneracy ordering of G′ composed of O(r · k) consecutive independent sets.

Note that in the LOCAL model, if S is given, computing this partition can be done
in O(r) rounds. Indeed, after computing its distance to S, each vertex knows if it is in
BS or in which layer it is. As their color in c is given as input, they do not need more
information.

5.2 List-coloring lemma

The following lemma is a list-coloring adaptation of a proof of Dyer et al. [19] that ensures
that one can transform any (d+ 2)-coloring of a d-degenerate graph into any other. Let
G be a graph in which, for every vertex u, we are given a list Lu of colors. A coloring
c of G is compatible with the lists Lu, if the coloring is proper and for every vertex u,
c(u) ∈ Lu. Let τ be an ordering of V (G). We denote by d+

τ (u) (or d+(u), when τ is clear
from context) the number of neighbors of u that appear after u in τ . We say that a set
of lists is safe for τ if, for every vertex u, |Lu| > d+

u + 2.
We will consider particular schedules in the LOCAL model such that, at each step, all

the recolored vertices are recolored from a color a to a color b (in particular, the recolored
vertices form an independent set). We call such a recon�guration step an a→ b step. A
recoloring schedule where all the steps are a→ b steps is called a restricted schedule. Note
that any schedule can be transformed into a restricted schedule by multiplying the length
of the schedule by O(k2) (where k is the total number of colors). Indeed, we simply have
to split each step s of the initial schedule into k(k − 1)/2 di�erent a → b steps sa,b for
every pair of colors a, b. At step sa,b, we recolor from a to b all the vertices recolored from
a to b at step s. Note that since at step s, the set of recolored vertices is an independent
set, all the intermediate colorings obtained after sa,b are proper.

Lemma 5.2. Let G be a graph, τ be an ordering of G composed of t consecutive inde-
pendent sets and, d = maxv∈V d

+
τ (u). Consider a set of lists (Lv)v∈V safe for τ . Let σ, η

be two k-colorings of G compatible with (Lv)v∈V .
There exists a recoloring sequence from σ to η with a restricted schedule of length at

most kt+1 where k = | ∪v∈V Lv|. Moreover, this schedule can be found in O(r) rounds if
the independent sets of τ are given.

Proof. Let It, . . . , I1 be the independent sets of the ordering τ . For every i 6 t, we denote
by Gi the graph G[∪j6iIj].
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Let us prove by induction on i that we can recolor Gi from σGi
to ηGi

with a restricted
schedule of length at most ki+1. SinceG1 induces an independent set, a restricted schedule
of length k · (k − 1) 6 k2 exists. Indeed, for every pair a 6= b, we create an a → b step
where we recolor the vertices of I1 colored a in σ and b in η from color a to color b. After
all these steps, the coloring is ηG1 . Since I1 is an independent set, we indeed recolor an
independent set at any step.

In order to extend the transformation of Gi−1 into a transformation of Gi (with i > 2)
we perform as follows. For each step s of the transformation of Gi−1, we will add (k− 2)
new steps before s. Since the transformation is a restricted schedule, there exists a, b such
that s is an a→ b step. For every c 6= a, b, we add a b→ c step, denoted sb,c, between s
and the step before in the transformation of Gi−1. Let I be the set of vertices recolored
at step s, and NI be the set of vertices at distance exactly 1 from a vertex of I. In sb,c,
we recolor all the vertices of Gi ∩NI colored b with the color c, if it is possible (i.e. if c
is in their lists, and they do not have any neighbor already colored c) . Note that every
vertex v of I colored b can indeed be recolored with some color c, distinct from a, since
the size of the list of v is at least the degree of v plus two in Gi. So after these new steps,
we can safely apply the a→ b step without creating monochromatic edges in Gi.

Finally, at the end of the recon�guration sequence of Gi−1, we add k · (k − 1) steps
in order to recolor the vertices of Ii with their target colors (after Gi−1 has reached its
target coloring) as we did for I1. This provides a restricted schedule of length (k − 2) ·
ki + k · (k − 1) 6 ki+1 from σ to η which completes the proof.

In the LOCAL model, to compute their own layers, the vertices need O(r) rounds. In
order to compute its own schedule, a vertex simulates the induction, above, which can
be done with a view of O(r) rounds.

As an immediate corollary, we obtain the following, where the lists are just the same
k colors for every vertex:

Lemma 5.3. Let G be a d-degenerate graph and σ, η be two k-colorings of G with k >
d + 2. Assume that G has a degeneracy ordering composed of t consecutive independent
sets. Then there exists a recoloring sequence from σ to η with a restricted schedule of size
at most kt+1 in the LOCAL model.

5.3 Recoloring outside the balls

Let us now prove that we can obtain a coloring where the vertices agree on V \ BS.
Then we will explain how we can transform such a coloring into the target coloring by
recoloring (almost) only vertices of BS.

Lemma 5.4. Let k > ∆ + 1 and r > 10. Let G be a graph of maximum degree ∆ > 3,
and let σ, η be two r-locally non-frozen k-colorings of G. Let S be a maximal independent
set at distance r′ > 2r + 2. Let G′ = G[V \BS] where BS = ∪x∈SB(x, r).

Then there is a recoloring schedule of length kO(r′k) from σ to η′ such that η′G′ = ηG′.

Proof. The �rst part of the recoloring sequence is a pre-processing step to ensure that
every vertex v ∈ S is non-frozen. Since σ is r-locally non-frozen, for every v in S, there
is a vertex u in B(v, r) such that u is non-frozen. By recoloring a ladder along a shortest
path from u to v, v is non-frozen. Since B(v, r) does not share an edge with B(v′, r)
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for any v, v′ ∈ S, we can repeat this argument for every v ∈ S and then assume that
S is unfrozen. In the LOCAL model, all these recolorings pre-processing steps can be
performed in parallel. So, from now on, we can assume that, in σ, every vertex of S is
non-frozen (and we will keep this property all along the schedule).

By Lemma 5.1 and Lemma 5.3, there exists a restricted recoloring schedule R in G′

from σG′ to ηG′ in at most (∆ + 2)O(r∆) steps.
Let us now explain how we can extend the restricted schedule R of G′ to G, that is,

avoid the con�icts between vertices in G′ and their neighbors in G that are in BS. Let
X be the set of vertices which are recolored during an a → b step of R. Denote by Y
the set of vertices of BS such that Y is adjacent to a vertex of X. We will recolor these
vertices, before they create any con�ict.

For each ball of radius r centered in u ∈ S, we �rst identify the vertices of Yu =
Y ∩B(u, r) that are colored b. Note that Yu is an independent set. By Theorem 3.3, we
can recolor each vertex of Yu in at most 2r steps with a di�erent color, leaving u unfrozen,
and without modifying the color of any other vertex in Yu. Since Yu contains at most
∆r vertices, we can change the color of all the vertices of Yu with a schedule of length at
most 2r ·∆r. Since all the balls of radius r centered in S are disjoint and do not share
an edge, we can perform these schedules in parallel for each ball of radius centered in S.

Since the restricted schedule R has length at most kO(r′k), the new schedule have
length at most kO(r′k) · 2r′kk+2 = kO(r′k), which completes the proof.

The previous lemma ensures that, from any locally non-frozen coloring, we can obtain
a locally non-frozen coloring where all the vertices but the vertices of BS are colored with
the target coloring. Before completing the proof of Proposition 3.4, we need one more
lemma.

5.4 Recoloring inside the balls (easy case)

Lemma 5.5. Let k > ∆ + 1. Let σ and η be two k-colorings of a graph G which only
di�er on X ⊆ V . Assume that, in each connected component C of G[X], there exists
a vertex that has degree at most k − 2 or has two neighbors in V \X colored the same.
Then there is a recoloring schedule from σ to η of length at most kO(diam(X)k).

Proof. Let C be a connected component of X. For every vertex v of G[C], let Zv be the
set of colors σ that appear on neighbors outside X, that is on N(v)∩ (V \X). We assign
to every vertex v of G[C] the list of colors [k] \ Zv. Note that since the total number of
colors is k > ∆ + 1, every vertex x ∈ C has a list of size at least dG[X](x) + 1. Moreover,
if a vertex x has degree at most k− 2 in G, or two neighbors of x are colored the same in
V \X, its list has size dG[X](x)+2. We claim that we can build a degeneracy ordering of C
for which the lists of C are safe, and that consists of diam(C)k consecutive independent
sets. Indeed, similarly to earlier in the paper, we can take the vertices of C by layers,
corresponding to the distance from x, and then split these layers into independent sets
using the colors of σ.

Finally, by Lemma 5.3, there exists a recoloring sequence of G[C] from σ to η which
recolors each vertex at most kO(diam(C)k) times. Since we can treat each connected com-
ponent of X simultaneously (there is no edge between them), the conclusion follows.
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5.5 Finishing the proof of Proposition 3.4

All the previous lemmas can be combined in order to prove Proposition 3.4, that we
restate here.

Proposition 3.4. Let G be a graph with ∆ > 3 and I be an independent set at distance 28.
Let r, k, k′ ∈ N such that k′ < k, k > ∆+1. Let µ, γ be two colorings, using respectively at
most k and k′ colors, that are both non-frozen on I. There is a recoloring schedule from
µ to γ of length at most (k′)O(∆). Moreover, such a recoloring schedule can be computed
in O(∆) rounds in the LOCAL model.

Proof of Proposition 3.4. Let us �x r = 7. Let I be a maximal independent set at distance
r′ = 2r+14. Let G′ = G\BI where BI = ∪x∈IB(x, r). By Lemma 5.4, there is a coloring
η′ which agrees with η on G \BI and a recoloring schedule from σ to η′ of length at most
kO(kr). To conclude, we only need to �nd a recoloring sequence from η′ to η, that is to
prove that we can recolor all the balls of BI with their target coloring η.

For every ball Bv of radius r centered in v ∈ I, we will de�ne a set B′v which contains
Bv, is included in B(v, r + 5), and that satis�es the conditions of Lemma 5.5. Since I is
an independent set at distance 2r + 14, for every v, w ∈ I, the sets B′v and B′w will be at
distance at least 4. Let B′I = ∪v∈IB′v. Since the diameter of each ball B′v for v ∈ S is
O(r) and all the balls of B′S are disjoint, we will conclude using Lemma 5.5. In the rest
of the proof, we restrict to a single ball Bv for v ∈ I denoted by B for simplicity.

If a vertex of B has two neighbors in V \B colored the same or has degree less than
k − 2, we set B′ = B. Otherwise, let us prove that by adding a few vertices to B and
doing a few recoloring steps, we can apply the Lemma 5.5. Note that no vertex of V \B
is colored with k in η′, since it agrees with η, which is a k′-coloring with k′ < k by
assumption.

Let us consider a path v1, v2, . . . , v6 of vertices such that vi is at distance i from B. For
every i ∈ {3, 4, 5}, we can remark we can obtain a desired set B′ if one of the following
holds:

� If deg(vi) < ∆, then we simply take B′ = B∪j6ivi which contains a vertex of degree
less than ∆.

� If N(vi) \ vi−1 is not a clique then let a, b be two neighbors of vi that are non
adjacent. Then, since d(a,B) and d(b, B) are at least two, we can recolor a and b
with k in η′ (the coloring is proper since color k was not used in η by assumption).
Now, in this new coloring, B′ = B ∪j6i vi satis�es the condition. (We will recolor a
and b to the right color at the very end of the algorithm.)

Let us now prove that one of the conditions above must hold. Assume, for the sake
of contradiction, that for every 3 6 i 6 5, N(vi) \ vi−1 is a clique and that all the vi's
have degree at least ∆.

Let z be a vertex of N(v3) distinct from v2 and v4 (which exists since ∆ > 3). The
vertex z is at distance at most 4 from B. Moreover, v4z is an edge (otherwise N(v3) \ v2

is not a clique). Since N(v4)\v3 is a clique, zv5 must also be an edge. But then N(v5)\v4

cannot be a clique: that would mean that z and v6 are adjacent, and then v6 would be
at distance 5 from B, which is a contradiction.
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Now, by Lemma 5.5, we can recolor all the vertices of B′ with the target coloring η in
such a way that every vertex of B′ is recolored at most ∆O(∆r) times (since the diameter
of B′ is at most the diameter of B plus 5). We then �nally recolor, if needed, the two
vertices recolored k in the second item of the construction of B′ with their real target
color in η.

Since all the balls B′ are disjoint and do not share an edge, we can apply these steps
in parallel. Moreover, since they are at distance at least 4, the fact that we recolor a
vertex at distance 5 from B can also be done in parallel. This completes the proof of
Proposition 3.4.
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