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Convergence of a finite-volume scheme for a heat
equation with a multiplicative Lipschitz noise

Caroline Bauzet? Flore Nabet! Kerstin Schmitz?
Aleksandra Zimmermann?

Abstract

We study here the approximation by a finite-volume scheme of a heat equation
forced by a Lipschitz continuous multiplicative noise in the sense of Ité6. More
precisely, we consider a discretization which is semi-implicit in time and a two-
point flux approximation scheme (TPFA) in space. Since the nonlinearity in the
stochastic integral is not compatible with the weak convergence obtained by the a
priori estimates, we adapt the method based on the theorem of Prokhorov and on
Skorokhod’s representation theorem in order to show stochastically strong convergence
of the scheme towards the unique variational solution of our parabolic problem.

Keywords: Stochastic heat equation e Multiplicative Lipschitz noise e Finite-
volume method e Stochastic compactness method e Variational approach e Convergence
analysis.

Mathematics Subject Classification (2020): 60H15 e 35K05 e 65MO08.

1 Introduction

Let A C R? be a bounded, open, connected and polygonal set. Moreover let (Q, A, P)
be a probability space endowed with a right-continuous, complete filtration (F;);>o and
let (W(t))i>0 be a standard one-dimensional Brownian motion with respect to (F;);>0 on
(Q, A, P).

For T" > 0, we consider a nonlinear stochastic heat equation under Neumann boundary
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conditions:
du — Audt = g(u) dW (t), in Qx (0,T) x A;
u(0, ) = uo, in Q x A; (1.1)
Vu-n=0, on 2 x (0,7) x OA;

where n denotes the unit normal vector to A outward to A. We assume the following
hypotheses on the data:

Hy: ug € L*(Q; HY(A)) is Fo-measurable.
Hs: g: R — R is a Lipschitz continuous function with Lipschitz constant L > 0.

Remark 1.1. Hypothesis H3 has been made in order to avoid additional technicalities
in the proofs. Since H, implies |g(r)| < Cp(1 + |r|) for all » € R and a constant
Cr > 0 only depending on the Lipschitz constant L > 0 of g and |g(0)|, our scheme
may be applied without assuming Hjz and also for square integrable, additive noise with
appropriate measurability assumptions.

Remark 1.2. We further remark that our results do not depend on the space dimension
and may be generalized to polyhedral domains of R? with straightforward calculations.

1.1 Concept of solution and main result

The theoretical framework associated with Problem (1.1) is well established in the literature.
Indeed, we can find many existence and uniqueness results for various concepts of solutions
associated with this problem such as mild solutions, variational solutions, pathwise solutions
and weak solutions. In the present paper we will be interested in the concept of solution
as defined below, which we will call a variational solution:

Definition 1.3. A wariational solution to Problem (1.1) is an (F;)i>o-adapted stochastic
process

u € L*(Q; C([0,T]; L*(A))) N L*(; L*(0, T3 H' (A)))

such that for all t € [0,T],

u(t) — g — /0 " Au(s) ds = /0 () AW (s)

in L*(A) and a.s. in Q.

The main result of this paper is to propose a finite-volume scheme for the approximation
of such a variational solution and to show its stochastically strong convergence by passing
to the limit with respect to the time and space discretization parameters. This is stated
in the following convergence result:



Theorem 1.4. Assume that hypotheses Hy to Hs hold. Let (T,)men be a sequence of
admissible finite-volume meshes of A in the sense of Definition 2.1 such that the mesh size
hpm tends to 0 and (Ny,)men € N* a sequence of positive numbers which tends to infinity.
For a fired m € N, let uj,  —and Uém,Nm be the finite-volume approximations defined
by (2.1), (2.3)-(2.4) with T = Tp, and N = Np,. Then (uj y Jmen and (u, n Jmen
converge in L*(Q; L*(0,T; L*(A))) to the variational solution of Problem (1.1) in the sense
of Definition 1.35.

1.2 State of the art

The study of numerical schemes for stochastic partial differential equations (SPDEs) has

attracted a lot of attention in the last decades and there exists an extensive literature on

this topic. A list of references for the numerical analysis of SPDEs and an overview of
the state of the art is given in [10], [2] and [32].

Concerning the theoretical and numerical study of stochastic heat equations, semigroup

techniques may be used to construct mild solutions (see, e.g., [11]). However, from the

point of view of applications and mathematical modeling, it is often interesting to consider

first-order perturbations of the stochastic heat equation and more complicated, nonlinear

second order operators, such as the p-Laplacian or the porous medium operator. For these

nonlinear SPDEs, the semigroup approach is not available and variational techniques have

been developed in [33], [29] and [30].

In the numerical analysis of variational solutions to parabolic SPDEs, spatial discretizations
of finite-element type have been frequently used (see, e.g., [8], [l 1] and the references

therein). On the other hand, for stochastic scalar conservation laws, finite-volume schemes

have been studied in [5], [1], [0], [26] , [31], [19], [3] and [20]. To the best of our knowledge,

there are only a few results on finite-volume schemes for parabolic SPDEs. Let us mention

the work of [7] where the authors proposed a convergence result of a finite-volume scheme

for the approximation of a stochastic heat equation with linear multiplicative noise.

1.3 Aim of the study

In this contribution, we want to extend the finite-volume approximation results in the
hyperbolic case to the stochastic heat equation with Lipschitz continuous multiplicative
noise. Having applications to nonlinear operators and also to degenerate parabolic-
hyperbolic problem with stochastic force in mind for the future, we propose a method
for the convergence of the scheme which does not rely on mild solutions and results from
semigroup theory. The main technical challenge is then a lack of compactness since we
consider a nonlinear multiplicative noise. Indeed, from the a prior: estimates, we get up
to subsequences weak convergence results in several functional spaces for our finite-volume
approximations and this mode of convergence is not enough to indentify the weak limit
of the nonlinear term in the stochastic integral. Therefore, we first show the convergence
towards a martingale solution by adapting the stochastic compactness method based
on Skorokhod’s representation theorem. Then, using a famous argument of pathwise



uniqueness (see, e.g., [28]), we obtain the stochastically strong convergence result stated
in Theorem 1.4.

1.4 Outline of the paper

The paper is organized as follows. The next section concerns the introduction of the
finite-volume framework: the definition of an admissible finite-volume mesh on A will
be stated and the associated notations of discrete unknowns will be given. Then the
notions of discrete gradient and discrete H'-seminorm will be introduced. In a last
subsection, we will introduce our finite-volume scheme together with the associated finite-
volume approximations. The remainder of the paper is then devoted to the proof of the
convergence of this approximations towards the variational solution of (1.1). To do so,
we will prove in Section 3 several stability estimates satisfied by these approximations,
but also a boundedness result on the approximation of the stochastic integral. These
estimates will allow us to pass the limit in the numerical scheme in Section 4. More
precisely, we apply the classical stochastic compactness argument (see, e.g., [10]). By the
theorem of Prokhorov, we will get convergence in law (up to subsequences) of our finite-
volume approximations. At the cost of a change of probability space, the Skorokhod
representation theorem will allow us to obtain almost sure convergence of the proposed
finite-volume scheme. Then, a martingale identification argument will help us in order to
recover at the limit the desired stochastic integral. In this way, we have shown that our
finite-volume scheme converges to a martingale solution of (1.1), i.e., the stochastic basis
is not fixed, but enters an unknown in the equation. Next, we show pathwise uniqueness
of solutions to (1.1). This, together with a classical argument of Gyongy and Krylov (see
[28]) allows us to deduce convergence in probability of the scheme with respect to the
initial stochastic basis.

2 The finite-volume framework

2.1 Admissible finite-volume meshes and notations

In order to perform a finite-volume approximation of the variational solution of Problem
(1.1) on [0,7] x A we need first of all to set a choice for the temporal and spatial
discretization. For the time discretization, let N € N* be given. We define the fixed time
step At = % and divide the interval [0, 7] in 0 =ty < t; < .... < ty = T equidistantly with
t, = nAt for all n € {0, ..., N —1}. For the space discretization, we consider finite-volume
admissible meshes in the sense of the following definition.

Definition 2.1. (Admissible finite-volume mesh) An admissible finite-volume mesh T of
A (see Fig. 1) is given by a family of open polygonal and conver subsets K, called control
volumes of T, satisfying the following properties:

e X=Ux, K.



o If K,L €T with K # L then int K Nint L = (.

o IfK,LeT, with K # L then either the 1-dimensional Lebesgue measure of KNL is
0 or KN L is the edge of the mesh denoted o = K|L separating the control volumes
K and L.

e To each control volume K € T, we associate a point v € K (called the center of
K) such that: If K,L € T are two neighbouring control volumes the straight line
between the centers xy and xy is orthogonal to the edge o = K|L.

Figure 1: Notations of the mesh 7T associated with A
Once an admissible finite-volume mesh 7 of A is fixed, we will use the following notations.

Notations.
o h = size(T) = sup{diam(K) : K € T}, the mesh size.
e dj, € N the number of control volumes K € T with h = size(T).
e )\, denotes the two-dimensional Lebesgue measure.

e & is the set of the edges of the mesh 7 and we define &y := {0 € £ : 0 € A},
Eext :={0 €& :0 COA}.

o For K € T, £k is the set of edges of K and mg := A (K).

e Let K, L € T be two neighbouring control volumes. For o = K|L € &y, let m, be
the length of o and d/;, the distance between xx and xp.

e For neighbouring control volumes K, L € T, we denote the unit vector on the edge
o = K|L pointing from K to L by ng;.

e For 0 = K|L € &y, the diamond D, (see Fig. 2) is the open quadrangle whose
diagonals are the_edge o arﬁthe segment [zx,xp]. For 0 € Euy N Ek, we define
D, := K. Then, A =,z Do



Figure 2: Notations on a diamond cell D, for o € &y

e mp, := \o(D,) is the two-dimensional Lebesgue measure of the diamond D,, . Note
modK|L

2

Using these notations, we introduce a positive number

that for o € &y, we have mp, =

diam(K
reg(7) = max | NV, max #
KeT d(ng, 0')
o€l
(where N is the maximum of edges incident to any vertex) that measures the regularity
of a given mesh and is useful to perform the convergence analysis of finite-volume schemes.
This number should be uniformly bounded when the mesh size tends to 0 for the convergence

results to hold.

2.2 Discrete unknowns and piecewise constant functions

From now on and unless otherwise specified, we consider N € N*, At = % and 7 an

admissible finite-volume mesh of A in the sense of Definition 2.1 with a mesh size h.
For n € {0,...,N — 1} given, the idea of a finite-volume scheme for the approximation
of Problem (1.1) is to associate to each control volume K € 7T and time t, a discrete
unknown value denoted u} € R, expected to be an approximation of u(t,,zx), where u
is the variational solution of (1.1). Before presenting the numerical scheme satisfied by
the discrete unknowns {u}, K € T,n € {0,...,N — 1}}, let us introduce some general
notations.

For any arbitrary vector (wt)gxer € R% we can define the piecewise constant function
wp A — R by
wyp(x) == Z wilg(z), Vo € A.
KeT

Note that since the mesh 7T is fixed, by the continuous embedding

(Wi )reT = Z Igwy
KeT



the space R% can be considered as a finite-dimensional subspace of L*(A) and we may
naturally identify the function and the vector

wh = (wi) ke € R™.

Then, knowing for all n € {0,..., N} the function wh, we can define the following
piecewise constant functions in tlme and space wj, v, wj, y : [0,7] x A = R by

N—

._\

whNtx:

Il
S

()L, b,(t) if t € [0,T) and wsz(T, x) = w,]lv(x),

3
I
=)

(2.1)

2
L

wﬁL’N(t,x) = wy ()1, 4, (t) if t € (0,7] and wﬁhN(O,x) = wj(x).

n

I
o

As for the piecewise constant function in space, since 7 and N are fixed, by the continuous
embedding

(W)  wer = Y Al wk

KeT
ne{0,...,N—1}

the space R%"*Y can be considered as a finite-dimensional subspace of L?(0,T; L?(A)) and
we may naturally identify

I _ (. m dp x N
Wy N = (W)  KeT € R*7,
ne{0,...,N—1}
T _ n+1 dp x N
wpn = (W) wer € RW
ne{0,...,N—1}

We can also define the piecewise affine in time and piecewise constant in space reconstruction
{Dh,N : [O,T] xA—R by

B(t,2) Zﬂ[tnw (T ) rae). e

Remark 2.2. Note that in the rest of the paper, when we will consider a time and
space function a : [0,7] x A — R on all the space A (respectively the time interval
[0,7]) at a fixed time ¢ € [0,T] (respectively at a fixed 2 € A) we will omit the space
(respectively time) variable in the notations and write «(t) (respectively «(z)) instead of
a(t,-) (respectively (-, x)).

2.3 Discrete norms and discrete gradient

Fix n € {0,..., N—1} and consider for the remainder of this subsection an arbitrary vector
(W) ket € R and use its natural identification with the piecewise constant function in
space wy = (Wi )ger. We introduce in what follows the notions of discrete gradient and
discrete norms for such a function wy,.



Definition 2.3 (Discrete L>-norm). We define the L*-norm of w! € R% as follows

1
2
lwilL2) = (Z mKW?{P) -

KeT

Definition 2.4 (Discrete gradient). We define the gradient operator V" that maps scalar
fields w € R% into vector fields of (R?)n (where ey, is the number of edges in the mesh
T), we set V'w = (Vhwp),ce with
R
Vil = dk|L
0, if 0 € Eoxt-

ngy, if 0=KI[LE Ep;

Definition 2.5 (Discrete H'-seminorm). We define the H'-seminorm of w € R% as
follows

1
2
m
il = ( > - wEP) .

o€Ent |

Notation. If not marked otherwise, for an edge o € &;,x we denote the neighbouring control
volumes by K and L, i.e., 0 = K|L. In particular we use this notation in sums.

Remark 2.6. Note that in particular,

m
IV whlIFzagane = Y mo, IVowhP =2 7 “lwy — wi]? = 2Jwpl} -
Uegint Jegint K|L
Remark 2.7. If we consider another arbitrary vector w? = (wWh)ger € R, then by

rearranging the sum we get the following rule of discrete partial integration

> > gk —ul)@k = 3 g (i — w) (@ — )

d
KeT ce€xgNEing o0€Eint KlL

We have now all the necessary definitions and notations to present the finite-volume
scheme studied in this paper. This is the aim of the next subsection.

2.4 The finite-volume scheme

Firstly, we define the vector u) = (u%)xer € R% by the discretization of the initial

condition uy of Problem (1.1) over each control volume:
0 1
up = — | up(x)de, VK eT. (2.3)
Mg Jk
The finite-volume scheme we propose reads, for this given initial Fy-measurable random
vector uf) € R



For any n € {0,---,N — 1}, knowing u! = (u%)ger € R% we search for u]™' =
(W ker € R such that, for almost every w € , the vector u}*' is solution to

the following random equations

mpg

At

My n n m n
G T e s, KT, 0
o€&iniNEK

where A, 1 W denotes the increments of the Brownian motion between t¢,,1 and t,:
ANy W= W(ty1) — W(t,) forne {0,...,N —1}.

Proposition 2.8 (Existence of a discrete solution). Assume that hypotheses Hy to Hj
hold. Let T be an admissible finite-volume mesh of A in the sense of Definition 2.1 with
a mesh size h and N € N*. Then, there exists a unique solution (u)i<p<n € (R™)N to
Problem (2.4) associated with the initial vector ul) defined by (2.3). Additionally, for any
ne€{0,...,N}, u} is a Fy, -measurable random vector.

The solution (u})i<p<ny € (R¥%)N of the scheme (2.3)-(2.4) is then used to build the right
and left finite-volume approximations uj, y and uj, 5 defined by (2.1) for the variational
solution u of Problem (1.1).

Proof. (Proposition 2.8). Set n € {0,...,N —1}. For K € T and a.s. in Q, note that
(2.4) can be rewritten in the following way:

My

mi (! = fr)+ ALY (uptt —up™) =0, (2.5)

c€ENEK K|L

where fi = g(u%) A, W +u%. For fI' = (fi)ker € R% and a.e. w € Q, we define the
functional J7 : R% — R by

1
Jp(wp) = 3 (/(wh)de—l—At|wh|ih) —/whf,?dx
A A
:lZm (w )2+§Z ma(w —w)2—2mwf”
5 k(WK K — WL KWK [

2 d
KeT oCEm KIL KeT

for any wy, = (wg)ker € R%. From a straightforward calculation it is easy to see that
JP is strictly convex and coercive. Therefore J;* admits a unique minimizer u} ™' € R
and the associated sequence (u);< <y € (R%)" is the unique solution of (2.5) a.s. in Q.
If we assume that u} is F;, -measurable, then by the properties of the Brownian motion,
I is F,,,-measurable and consequently the random variable w — JJ'(wp)(w) is Fy, .-

measurable for any w, € R%. In particular, w — up*'(w) = min,, cga, Ji'(wp)(w) is
Fi..,-measurable. Then, it follows by iteration, that for a given, Fy-measurable random

variable u) € R%, for any n € {0,..., N — 1} there exists a F;,,,-measurable function
uptt € R¥% such that (ul)i<,<y € (R%)N is solution to Problem (2.4) associated with
the initial vector u) which concludes the proof. []

9



3 Stability estimates

We will derive in this section several stability estimates satisfied by the discrete solution
(uM)1<nen € (RN of the scheme (2.3)-(2.4) given by Proposition 2.8, and also by the
associated right and left finite-volume approximations uj, y and uj,  defined by (2.1).

3.1 Bounds on the finite-volume approximations
We start by giving a bound on the discrete initial data.

Lemma 3.1. Let ug be a given function satisfying assumption Hy. Then, the associated
discrete initial data u) € R% defined by (2.3) satisfies P-a.s. in ,

0
lunllz2(a) < lluollr2(a)
The proof is a direct consequence of the definition of u} and the Cauchy-Schwarz inequality.

We can now give the bounds on the discrete solutions which is one of the key points of
the proof of the convergence theorem.

Proposition 3.2 (Bounds on the discrete solutions). There ezxist constants Cy,Cy > 0,
not depending on the discretization parameters N € N* and h, such that

sup B[ 30| < O

ne{l,..
Z g™ = gl

E|llug 32| +E
Proof. We fix n € {1,...,N}. For any k € {0,...,n — 1} we multiply the numerical
scheme (2.4) with v} and sum over K € T to obtain

n—1

+2AtZIE [[uf™[2,] < Cs, ¥ne{1,...,N}.

MK g1 k41 Mo k+1 k+1y, k+1
At (ur™ — ul) U~ + E Z —upug
KeT KeToeemmsK (3 1)
= (b ub A W+ ub ) (W — uk ) A W .
K K2k+1 uK UK k+1 .
KeT KeT

We consider the terms separately: For the first term on the left-hand side we find

mig 1 mg
D g (R — it = 5 3 T (i = ko = ).
KeT KeT
For the second term on the left-hand side of (3.1), we obtain by using Remark 2.7

Z Z Mg k:+1 ulz+1)ul}:<+1 Z Mgy |u’;{+1 k+1|2

KeT aesmthK €€t

10



Taking expectation in (3.1), the first expression on the right-hand side of (3.1) vanishes,
since

E [g(uf)ufe A W] = 0.

In the second term we apply Young’s inequality in order to keep all necessary terms.
Then, taking expectation and using the It6 isometry we obtain

E [g(ufo)(u — uje) A W] < E [lg(ufe) Mg W } + E [fuf — ule|?]
< AE [|g(ui)[’] + E Uuk“ uicl’]

for any K € T. Altogether we find

1
2At

< / E [lg(u})[?] da.

Summing over k € {0,...,n — 1} and multiplying with 2A¢ we obtain

1
Uuk“\z |ur|? | da + A Uuk“ up’] de +E Uuk“\Q n)

n—1
E llug 32 = 683200y | + ZE [l = k22| + 2003 E [ ]
n—1 B (32)
<22t 3 [Jlg(uh) [22qn)| -
k=0

Since g is Lipschitz continuous, ¢(0) = 0 and the second and third term in (3.2) are
nonnegative, there arises

n—1

E [HUZHQLQ(A)} <E |:||u?l||%2(A)] + 2L2AtZE [HUZH%Q(A)] -

k=0

Applying the discrete Gronwall lemma yields

E [[[620] < (14 2L2T) B | lluf32(q) | 227 (3.3)

From (3.3) and Lemma 3.1 we may conclude that there exists a constant C; > 0 such
that

swp B [l | < Co
ne{l,...,N}

and since ¢ is Lipschitz continuous with g(0) = 0 also

n—1 n—1
286 Y B | llg(uf) [32(n)| < 2208 3 E [llufllFa| < 2L°7C (3.4
k=0 k=0

11



for all n € {1,... N}. From (3.2), Lemma 3.1 and (3.4) it now follows that

n—1 n—1
n 1
B uple| +5 D0E [kt —ublifae| +22¢ Y E [uf ]
k=0 k=0

<E [HUOH%Q(A)} +2L°TC = Cy
foralln e {1,...,N}. O

We are now interested in the bounds on the right and left finite-volume approximations
defined by (2.1). As a direct consequence of Proposition 3.2 we get a L*(Q; L*(0,T; L*(A)))-
bound on these approximations.

Lemma 3.3. The sequences (uj, y)nn and (u, y)pn are bounded independently of the
discretization parameters N € N* and h in L*(Q; L*(0,T; L*(A))).

Thanks to Proposition 3.2 we can also obtain a L?(Q; L?*(0,T; L*(A)))-bound on the
discrete gradients of the finite-volume approximations.

Lemma 3.4. There exist constants Ky, Ko > 0 not depending on the discretization
parameters N € N* and h such that

T
| Elunafi) @< K (35)

and

T
| Bl < (36)
0
Proof.

T N-1
| Elhalta] dt = At YR [ 1)
k=0

and therefore (3.5) follows directly from Proposition 3.2. Using the definition of uj, , and
(3.5), we get

N-1

T
/ E [|ujn |3 5] dt < AR [|up]? ] + ALY E [Jup™3,] < A [Jup];,] + K.
0 k=0

Since ug is assumed to be in L*(Q; H'(A)), from [24, Lemma 9.4], it follows that there
exists Cy > 0 depending on the mesh regularity reg(7) such that,

E [Juff3,] < CAE 900l
and therefore (3.6) follows. O

12



We end this section by a bound on the discrete solution which will be useful for obtaining
the time translate estimate and the bounds on the Gagliardo seminorm.

Lemma 3.5. There exists a constant K3 > 0 independent of the discretization parameters
N € N* and h, such that

E 12 < Kj.
LE%%%N}H%HH(A)] = A3

Proof. For N € N, we choose an arbitrary k € {0,.. — 1} and an arbitrary K € 7.
Testing the implicit scheme (2.4) with w5 yields after taking the sum over K € 7 and
applying Remark 2.7

MK, pt1 k+1 k:+1 k:+12 mg kN, k+1
> Ay UK — g )ui + E "= 2 Ay 9lur)ug” Apn W,
KeT ae&m KeT

This provides by Cauchy-Schwarz and Young’s inequalities
(Il 1220y = Mgy + ™ = w3 )

tk“ k+1 k R k
(7 sty =) ([ stbiw).)
L2(A) tk L2(A)
1 ’ 1 k+1 k|2 s k k
By HU _uh”LQ(A) + g(uh)dW(S)ﬂuh :
L2(A) th L2(N)

<
=9
2 to+1
+2(/’ gw@ﬂV@%%) |
L2(A) 23 L2(A)

Forn € {1,..., N} fixed, we sum over k = {0,...,n — 1} to obtain

/ uwm>2+51fmuwm>) VI

L2(A)
From this, taking the maximum over n € {1,..., N} first and then the expectation there

N —

IN

tkt1

g(uy)dW (s)

We obtain

[ stprawes

173

||u;€z+1‘|%2(A) - Hqu%Q(A) <

-1

1) Ej

k=

2

L

13



arises by applying It isometry since u} is JF;, -measurable

2
LQ(A)]

n—1 tri1
max ( | stabaws), )
n=1,...,\N 0 ty L2(A)

R NI
<> [ E[lotuhle) ds
t

.....

= ||/ " gt )aw(s)

ty

k=0

+E [HUQH%Z(A)] (3.7)

nolo ety
max - [ ). )V (o)

k=0 tk

+ | lef 220

We can estimate the second term by the Burkholder-Davis-Gundy inequality

wax Y [ k“<g<uz>,uz>mdw<s>]

k=0 tk
r 3
(/ |(9(U2,N);UZ,N)L2(A)|2d8> ] .
0

Now we apply Cauchy-Schwarz and Young’s inequalities (with o > 0)

T 3
( / |<g<uz,N>,uz,mmn?ds) ]

t
[ (6t )y )
0

< 2CBE

20BE

1
2

T
< 2CgE (SUP HUZ,N(t)H%%A)/ Hg(ulh,N)H%Q(A)dS>
te[0,T] 0

(6] 1 T
_Qte[oyT]H nv Oz + 5 i 19 (up )72 a)

2 CoLl? [ [T 1 2
< CpgalE | max ||uh||L2(A) + > E ||uh,N||L2(A)dS :
0

n=1,....,IN

Plugging the above estimate in (3.7), we arrive at

=1l,...

.....
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Choosing a > 0 such that 1 — Cga > 0, we find a constant C'(«, L) > 0 such that

.....

Now, the assertion follows by Lemmas 3.1 and 3.3. O

3.2 Time and space translate estimates

For the stochastic compactness argument in Subsection 4.2, we need a uniform bound
on (uj, y)nn in the spaces L*(Q; L*(0,T; W*?(A))) and L*(Q; W*2(0,T; L*(A))) for a €
(0,1). In order to prove the bound in L*(Q; L*(0,T; W*?(A))), we establish a uniform
estimate on the space translates of (uj, y )y in Lemma 3.8. The proof of the bound in
L2(Q; W*2(0,T; L*(A))) is more complicated. Lemma 3.6 is a technical result for the
proof of Lemma 3.7, where we show a uniform estimate on time translates of (uj, 5 —
M, n)n,n- Thanks to Lemma 3.7, we may conclude a uniform bound on (u}, y — My n)nn
in L*(Q; W*2(0,T; L*(A))) in Lemma 3.10. Then the desired bound on (uf, y)un is
obtained in Lemma 3.11 by using the additional information that (M), x)nn is bounded
in L?(Q; W*2(0,T; L*(A))).

Lemma 3.6. There exists a constant K4 > 0, independent of the discretization parameters

N € N* and h, such that for all T € (0,T) there holds

E VO - |y n (t+7) — My (E+7) — (ub p(8) — MAN(t))HiQ(A) dt| < Kyr, (3.8

where M},  is defined for any (t,x) € [0,T] x A by

tn
Mj n(t,x) = / g(uh n(s,2)) AW (s) if t € [t tus1) with n € {0,...,N —1}.
0

Proof. Let 7 € (0,T) be fixed. In the following, we set @} (t,2) 1= uj, y(t,2) — M} (L, )
for t € [0,T],z € A. Note that by definition M} := M} (tn, xx) and ¢ = uj — M
forn € {0,...,. N}, K € T. Fort € (0,7 — 1) let ng(t),n1(t) € {0,...,N — 1} be the
unique nonnegative integer satisfying

no(t)At <t < (ng(t) + 1)At and ny(t)At <t+7 < (ny(t) + 1)At.

There holds P-a.s in €
T—1
! l ! 1
/ |up n(t+7) = My, N (t+7) = (uy, v () — Mh,N(t))H%Q(A)dt
0

T—1 T—1
[ e = [ Ay
0 0

KeT

15



If ng(t) = nq(t) holds, we have A(t) = 0. So we only consider t € (0,7 — 7) with
ni(t) > no(t). We get

= mi(ei? — ) (R — o)
KeT
n1(t) 1
= Z mi(p - SOK Z B ok)
KeT n=ng(t)
N—-1
= > k@R = N> Xt + )R = 9k)
KeT n=0
= an+1 (tt+7) > (R — o ymu (e — o),
KeT

where x,(t,t+7) = 1if nAt € [t,t+ 1) and x,(¢,t +7) = 0 otherwise. Using Sinee (2.4)
yields, we obtain

N-1
Mg n n
A(t) = =AY xwn(tt+7) Y (0 = o) Y R ),
n=0 KeT seEmnEr KIL
Rearranging the sum in the same way as for discrete partial integration (see Remark 2.7),
using the definition of ) and the notation uf’ = ul, y(zx) for K € T there arises
N—-1 m
Alt) = =0ttt +7) 3 (! —upt) (RO — ot = (o - o))
n=0 0€Eint KI|L
N-1 m
=AY (1) ST Tt @ - — e o)
n=0 0€Ent KL
N-1 n(t)At
Mgy n+1 n+1 10 N, N,
ALY w4 7) Y (g =g (9(uith) = g(u™)) dw (s)
n=0 EEint KI|L no(t)At

=: A1 (1) + A(t),
By Cauchy-Schwarz and Young inequalities we get

Ay ZXW (tt + >|u”+1|1h+—2xn+l (8t + )y — )3
n=0
A N-1 N-1
< S S (b D A S (6 )R+ LR
n=0 n=0
Consequently,

T—T
E [/ A1) dt] <I +1I
0

16



where

1 T—1 N-1
hi=3 /0 D Xty t+T)E [Atlup[7,] de
n=0
and
T—7 N-1
I, = / Z Xnt1(t, t + 7)ALE [|UZ°(t)\ih + qul(t)ﬁh] d.
0 n=0
Since

Xnt1(t,t+7)=1 < (n+1Ate[t,t+71)
& t—7<(n+DHAt—7 <t < (n+1)At,

there arises

T—7 (n+1)At
/ st (b4 7)dt = / Ldt = . (3.9)
0 (n+1)At—r

Using this and (3.5), we have

T
K
=1 | [ k] <53
0

Now we write Iy = Iy + I 2 where,

T—7 N-1

Iy = /O > (bt +7)AE [ 2, ] dt,
n=0
T—7 N-1

Iro = / Z Xn+1(t,t + 7)ALE [|UZ1(”\?,;J dt.
0 n=0

We note that, for any m € {0,..., N—1},if t € [t,,, ,n21) then the definition of ng implies
no(t) = m and therefore

N—-1 b1 N—-1
s ( [T S vt dt) AE (2]
m=0 tm n=0

From [27, Lemma 6.2] it follows that

N-1

tm+41
/ Y xnsa(t,t+7)dt <7, Vme{0,...,N—1}.
tm n=0

17



Therefore, thanks to Lemma 3.4 one has

N-1

T
Ly <7ALY E[lup,] =7 /0 E [|ul v[2,] dt < Ko

m=0

Analogously, for any m € {0,...,N — 1}, if t € [t,, — 7,1 — 7), then the definition of
ny implies ny(t) = m and therefore

N—-1 tm+1—7’N71

ha< S AE[NER] [ S et )it < Kar

m=0 tm—T n=0

by |27, Lemma 6.2] and Lemma 3.4, where x,41(f,t +7) = 0 for ¢ < 0. Combining the
previous estimates we arrive at

el [ awal < (5o, (3.10)
[ awa] < (3 om)-

Now we consider As. Applying Young’s inequality we find

At T My
Ay(t) < 5 Z Xnt1(t, 6+ 7) Z 1 (uf —up ™)
n=0 0€Eint KL
2
At N-1 My ni(t)At
S S ettt ) 3 P [ (gl — g) aw (s
n=0 0€E&int KIL |/no(t)At
=: A1 (t) + A22(t)
We have
N—

T—1
Z "“ylh/ Xns1(t,t 4+ 7)dt] .

=0

By (3.9) and Lemma 3.4 we may conclude

T—71 T K
. ’ 2| f, NI 2

For the study of the term Ay, we recall the notation uy" = uj, n(z) for K € T. From
the Burkholder-Davis-Gundy inequality |10, Proposition 2.3.8] it follows that there exists
a constant C'g > 0 such that, for any t € (0,7 — 7) with ng(t) < n(t),

2]

ni (t) At

B[ (o) —gr) avis)| | <4 | sup

rel0,T7]

/0 g™ — gy W (s)

<4 [ [ o) - gt as).

18



Therefore,

E { /0 o AQ,Q(t)dt}

mi(f)ad Nl Nl
B[ (o) —ged) ave)
no(t)At

At [T

<4Cp— Xn+1 (t,t+7)
2 0
T—r N-1

< 2C’BL2A15/ ZXnH (t,t+ 1) Z
0

o€&int

dK\L

T
UIE[/ lupt —up ]ds}dt
dk|rL 0
T—7 N-1

T
= QCBLQAt/ ZXn—H (t,t+7) dt/ ngzNﬁh} ds.

0 n=0

Because of (3.9) there holds

J

Therefore from (3.6) it follows

T_r N—1 N-1
> Xasi(t.t+7)dt=> 7=Nr.

n=0 n=0
T—1
E |:/ Asz(t)dt:| S 2CBL2TTK2. (312)
0

Finally (3.8) holds from (3.10), (3.11) and (3.12). O

Lemma 3.7. There exists a constant K5 > 0, independent of the discretization parameters
N € N* and h, such that for all T € (0,T) there holds

T—1
E [/ HuﬁlN(t +7) = Myn(t+T)— (uﬁlN(t) — Mh7N(t))H%2(A)dt < Ksr,  (3.13)
0

where for any (t,z) € [0,T] x A

Myx(t,2) = /0 ot (5, 2))dW (s). (3.14)

Proof. Let 0 < 7 < T. We can write using the fact that for any a,b,c € R, |a + b+ c|* <

19



3(Jal? + b2 + [cf?)
T—1
B [ Mo+ 7) = Mt ) = (0hr(0) = )]
T—T
< 3E { / ol (£ 4+ 7) — ML (b 7) — (ad y (0) — M,i,N<t>>||%2<A>dt]
T—1
+ 3E [/0 |\ Mpn(t+T)— Mh,N<t)H%2(A)dt:|

T—1
1 3E [ JANEYRETE MA,N@)H%Z(A)dt}
= 3(]1 + Ig + ]3)

From Lemma 3.6 we know that I} < K,7.
By the It6 isometry and Lemma 3.5 we get

T—1
b= [ Rl e st
T—1
o[ [
0 t

For t € [0,T], let no(t),n1(t) € {0,..., N — 1} be defined by
no(t)At <t < (no(t) + 1)At and ny ()AL <t+7 < (ni(t) + 1)At.

From the Ito isometry and Lemma 3.5 there arises

T—7 ny(t T—r ny(t)At
Iy = / / ||9 uj, N)HL?(A)} dsdt < / L2K3/ 1 dsdt.
0 no(t)At

Similarly to the proof of Lemma 3.6, let x,(t,t+7) =1 for n € Nif nAt € (t,¢t + 7] and
0 otherwise. Taking (3.9) into account, we can continue the above estimate by

sup ||uj,, N||L2 dsdt < L*K3TT.
t€[0,T]

T—r N-1 tnt1
I3 = / L2K52Xn+1(t7t+7_)/ 1d8dt
0 n=0 tn

_ L2K3At2/ Xns1(t,t 4+ 7)dt < L*KsTT,

and the assertion follows. ]

We conclude by giving the estimation of space translate. We do not give the proof here
as it is similar to the one given in [24, Theorem 10.3].

Lemma 3.8. Let @},  be dP ® dt ® dz-a.s. defined by ), y = uj, y on Qx (0,T) x A and
tj, ;=0 on Qx (R*\ ((0,T) x A)). Then there exists a constant C' > 0, only depending
on A, such that for all n € R? and almost every t € [0,T] and P-a.s in Q

[ttt ) = (6. 0)Pe < Clal (b O+ s ()

20



3.3 Bound on the Gagliardo seminorm
Our target is to apply [25, Theorem 2.1] which claims, that for any « € (0, %)
W20, 75 L2(A) N L0, T; W*(A))

is compactly embedded in
L*(0,T; L*(M)).

We denote by [ - Ja2(s) the Gagliardo seminorm such that for any function w : A — R

one has,
w(z) —w(y)|” :
[w ]Wa,2(A) = (/A o — g dedy | .

Lemma 3.9. For any fized o € (0,3), the sequences (u}, y)nn and (uj, y)nn are bounded
in L2(Q; L*(0, T; W*2(A))) independently of the discretization parameters N € N* and h.

Proof. We fix 0 < a < % and R > 0. For almost every ¢ € (0,7), thanks to Lemma 3.8

‘uhN (t,z) ﬂth(t?y)‘z
dx dy
R2 JR? |z — y|>2e
:/ / |uh,N t,l‘ _uﬁz,N<tax+77)|2dxdn
Inl>R JR? [n]20+e)

+/ / \az,N(t,:w—ﬂz,w,xw)\?dzdn
Inl<Rr JR? |n|20+e)

< Al (1)) / ]2+ dy

[n|>R

+ € (b O n + I (O) [ o204y

In|<R

27 0
—fud Oy [ [
0 R

2 R
0 (g + Wb l) [ [ o2 v drd
=t Cullujx (8)[72n) + Calu v (D]

where the constants C;, Cy > 0 only depend on A and R > 0. Consequently we have

|uhN (t,z) ﬂth(t,y)P
/0 [uhN( Wa?A)dt</ /R2/R2 7 g2 dz dy dt

< / (Colluh ¥ (Ol + Coluty (D31) .
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Therefore thanks to Lemmas 3.4 and 3.5 we get

T
2
E [l|uj,n 220,128y = E {/0 (g ()N 220y + [y ()] wez(a)) dt}
T

T
2(1+6) [ B[l (O] de+2Ca [ B[l y(0)] @
< 2TK3(1 4 C) + 205K,

So (uj, ) is bounded in L*(€; L*(0, T; W*?(A))) and also (uj, 5)p, v With similar arguments.
O]

In order to establish the L?(Q; W*2(0,T; L*(A)))-bound on the discrete solutions we give
the following auxiliary result:

%) the sequence (uj, y — My n)nn defined by (3.14) is

Lemma 3.10. For any fized a € (0,
)) independently of the discretization parameters N €

bounded in L*(Q; W*2(0,T; L*(A)
N* and h.

Proof. Forany x € A, let @5 n(t,x) := uﬁhN(t, x)—My n(t,x) fort € [0,T] and ¢y N (t,2) =
0 for t € R\ [0,7]. We get by applying Fubini’s theorem

T {|@n,n(8) = @nn (O 1720 s di
t_s|1+204 s

. / /T enn(t+7) = enn(O)lza ) drdt]

‘7-|1+2a

T= || @nn(t+7) — @h,N(t)H%Q(A)
_E / / T dtdr| .

Note, that for any x € A, ¢, n(t,2) =0 for t € (—00,0), so we get by (3.13)

T=7 || @nn(t+7) — @h,N(t)H%Q(A)
dtdr
[z

- / 1= [ B [lonatt 4 7l »
, (3.15)
[T [ R It 7) = Gn O dt i

T T T
< [ B (oo dsdr + K [ 7
0 0 0

Let s € (0,7) be arbitrary. By It6 isometry there holds

B [Iona o)) < 28 [l s O] + 2 | [ ot DlBscnct]
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Using Lemma 3.5, we obtain

T
sup B [16n,x(5) 320 §2y%wEﬂwmémJ+2ﬁEL/H%wﬁmémﬁ
s€[0,T] n=0,..., - 0

<201+ L*T)K3 =: C.
Using this estimate in (3.15) yields

T T |5 — 5 2
Pn.N(8) — Pnn(E)]72
E / / [&n,n(s) flzz\;( i) ™) gt
o Jo |t — |+
T T T
S/ T_2a_lTCdT+K5/ T_Qo‘dTgC/ T2
0 0 0
and the above integral is finite for o € (0, %) ]

Lemma 3.11. For any fized o € (0,3), the sequence (ul y)nn is bounded in

L2(Q; W*2(0,T; L*(A))) independently of the discretization parameters N € N* and h.

Proof. From Lemma 3.10 we know that (uj, y — My n)nn is bounded in L*(€; W*2(0, T;
L*(A))). Since

<TKjs

T
| B [ty ] e < TE| s 1l

te[0,T

by Lemma 3.5, we get by applying [20, Lemma 2.1| that (M), n)nn is bounded
in L?(Q; W*2(0,T; L*(A))). O

4 Convergence of the finite-volume scheme

We now have all the necessary material to pass to the limit in the numerical scheme.

In the sequel, for m € N*, let (7). be a sequence of admissible meshes of A in the sense
of Definition 2.1 such that the mesh size h,, tends to 0 when m tends to +oo and let
(Nm)m C N be a sequence with lim,, ., N,, = +oc and At,, := Nlm

For the sake of simplicity we shall use the notations T = T,,, h = size(T,,), At = At,,

and N = N,, when the m-dependency is not useful for the understanding of the reader.

4.1 Weak convergence of finite-volume approximations

First, thanks to the bounds on the discrete solutions, we obtain the following weak
convergences.

Lemma 4.1. There exist not relabeled subsequences of (uj, y)m and of (uj, x)m respectively
and a function v € L*(Q; L*(0,T; H'(A))) such that
uﬁhN —u and up y — u

for m — +oo weakly in L*(Q; L*(0,T; L*(A))).

23



Proof. From Lemma 3.3 it follows that the sequences (uj, y)m, (U}, y)m respectively are
bounded in L?(Q; L*(0,T; L?*(A))), thus, up to a not relabeled subsequence, weakly convergent
in L*(Q; L*(0,T; L*(A))) towards possibly distinct elements u, @ respectively. Moreover,
from Lemma 3.4 and Remark 2.6, it follows that

IV uj, w720 0.0y < 2K7.

Consequently, there exists x € L?(Q; L?(0,T; L*(A))) such that, passing to a not relabeled
subsequence if necessary, V"uj,  — x weakly in L*(€; L*(0,T; L*(A))) for m — +ooc.
With similar arguments as in [23, Lemma 2| and |24, Theorem 14.3] we get the additional
regularity u € L?(Q; L?(0,T; H'(A))) and x = Vu. Since, by Proposition 3.2,

E | [Jupn — UZ,N“%?(O,T;LQ(A))} = AtE < GoAt, (4.1)

N-1
Z ||UZJrl - UZH%Q(A)
n=0

it follows that (uj y — u}, y)m converges to 0 strongly in L*(Q; L*(0,T; L?(A))) when
m — 400, hence also weakly and therefore u = . O

Our aim is to show that u is the unique solution to (1.1). But weak convergence is not
enough to pass to the limit in the nonlinear diffusion term of our finite-volume scheme.
Therefore we will apply the method of stochastic compactness.

4.2 The stochastic compactness argument

From Lemmas 3.9 and 3.11 we get immediately the following bounds.

Lemma 4.2. For any fived o € (0,3), (u}, y)m is bounded in L*(Q; L*(0,T; W*2(A))) N

2

L2(Q; W*2(0,T; L*(A))) independently of the parameter m € N*.

In the following, for a random variable X defined on a probability space (€2, .4, P) the law
of X will be denoted by P o X!,

Lemma 4.3. The sequence of laws (P o (uj, )™ )m on L*(0,T; L*(A)) is tight.

Proof. For better readability we define V := L*(0,T; L*(A)) and W := W*2(0, T; L*(A))N
L2(0, T;W*2(A)). By [25, Theorem 2.1] we know that W is compactly embedded in V.
Let € > 0 be arbitrary. For any R > 0 the ball By,(0,R) := {v € W : |v|lw < R} is
compact in V. There holds

[P o (u ) ' 1(Bw(0, R)) = 1 — [P o (up, ) "' ](Bw(0, R)) =1 — / LdPp,

(I, yllw>R}

where we can estimate further

1 1 C
1P < - o P < 5 [ By P < 5
/{uL,N||w>R} B2 S, cw>ry R? Jo o R?
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for a constant C' > 0. In the last inequality we used that (UZ,N)h,N is, thanks to Lemma 4.2,
bounded in L*(Q;W). It follows

-1 C
[P o (uhn) 1 (Bw(0, R) > 1 = .

If we choose an appropriate R, the assertion follows. O

For the next lemmas, we recall that the initial value of Problem (1.1) denoted wg is Fo-
measurable and belongs to L*(Q2; H'(A)). Moreover, its spatial discretization denoted
uy is defined by (2.3). In the following, we will write (W (¢));>o =: W, whenever the
t-dependence is not relevant for the argumentation.

In order to apply Skorokhod theorem and to prove the almost surely convergence, we
begin by proving the convergence in law.

Lemma 4.4. For m € N* we consider the sequence of random vectors

ol r l 0
Yo = ((Uhm,Nma Uhp Nom — Whoy N s w, uhm)

with values in
X = L*(0,T; L*(A)) x L*(0,T; L*(A)) x C([0,T]) x L*(A).

There ezists a not relabeled subsequence of (Y,)m converging in law, i.e., there exists a
probability measure pioo = (pl,, 00, Po W1 Po (ug)™t) on X such that

Ewmmmﬁfljmw

for all bounded, continuous functions f : X — R.

Proof. We recall that a subsequence of (Y,,),, converges in law if and only if all its
components converge in law. The tightness of laws of (u}, y )n was shown in Lemma 4.3.
Then, from the Theorem of Prokhorov (see [9, Theorem 5.1|) it follows that, passing to a
not relabeled subsequence if necessary, (ulhm ~., )m converges in law towards a probability
measure u’ defined on L?(0,T; L*(A)).

Clearly, as a constant sequence, the Brownian motion W converges in law towards PoW 1.
Since (uj )m converges to ug in L*(A) for m — +o0 as. in Q (see |1, Proposition
3.5]), it follows that (u) ), converges in law towards P o (ug)~'. From (4.1) it follows
that (uj, n —uj n )m converges to 0 for m — +oo in L*(Q; L*(0,T; L*(A))) and this
convergence implies for all bounded, continuous functions f : L*(0,T; L*(A)) — R

r - r m—+00
/ f d(]P © (uh’mvN'm - UthMNTrL) 1) = E [f(uhm7Nm o ué}maN’m)} 1) E [f(o)] ?
L2(0,T5L2(A))

hence the convergence in law of (uf — ul m towards dg. O
hm N"L h'"L N’UL 0
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Thanks to Lemma 4.4 we may apply the Skorokhod representation Theorem (see [9,

Theorem 6.7]): There exists a probability space (€', A’, P’

) and random variables

YT/rL = (Um7 Zm Bm7 ’Ugn), Uoo, WOO7 Vo
with
Po(Y ) '=Po(Y,) " foralmecN,
P’ o (vg) ' =P o (ug)t,
P’ o (uoo)_l = /Liov
Po(Wye)'=PoW™
and such that
m—r+00 . 2 2 / . /
Um — Us in L*(0,T;L*(A)), P-a.s. in Q
m =20 in L2(0,T; L*(A)), P-as. in
m—-+oo (42)
B, — W, inC([0,7]), P-as. in Q'
0 M2EX 0, in L*(A), P-a.s. in (.

In Lemmas 4.5 and 4.6 we will show that, thanks to equality in law, v,, and z,, are in
fact finite-volume functions with the same piecewise constant structure as uﬁlm’ ,, and

r l :
Up N, = U, N, Tespectively.

Lemma 4.5. For m € N* fized, v,, is a step function with respect to time and space in the
sense that there exists v}, Non € R¥m>Nm sych that P'-a.s. in vm =}, ... Moreover,

v N, (0,2) i= 0 (x) = v () for all z € A and, in particular vl), = v} is a spatial step
function.
Proof. By |35, Lemma A3| with E = L?(0,T; L?>(A)) and F = R%mn*Nm it follows that

there exists (v%)  ke7,,  in R%m*Nm guch that

n€e{0,...,Nm—1}

vm = (Vi) ker, P'—as. in Q.

ne{0,...,Npy—1}

In the same manner with £ = L?(A) and F =
in R?%m such that

R it follows that there exists (9% )ke7,

0 — (~0 / : /
v, = (Ug ) ke, P-a.s. in Q.

We recall the notation of Subsection 2.2 and in particular that

up N, = Wk) ket

P—a.s. in €.
ne{0,....,Nm—1}
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For any K € 7,, we consider the non-negative, Borel measurable mapping
£yt R%m ¢ Rwm Ny R
((anr)ars (Ohp)ank) = lar — O]

Since

P o ((uy)ar, (uh)are)) ™ =P o (00 ars (Vi) ark) "

it follows that

0 =E [ ((ul)ars (uh)ae)] = B [ (03 ar, (Vi) ark)] = E [|0% — vi]]

and therefore, for all x € K and all K € T, v,(0,2) = o), = 0% = v (z) P-a.s. in

Q. O
Lemma 4.6. For m € N* fized, 2,,(t,x) = vyt —v% for all (t,z) € (tn,tns1] x K and
P'-a.s. in QY for any K € T,, andn € {0,...,N,,, — 1}, where (v}t) ke, is defined

ne{0,...,Npy,—1}
as in the proof of Lemma 4.5.

Proof. With similar arguments as in Lemma 4.5 it follows that there exists
(2%)  KeTn € Rém*Nm guch that
ne{0,...,Npm—1}

2m = (2%)  ker,, P—as. in Q.
ne{0,...,Ny—1}

For any fixed K € 7,,, n € {0,..., N,, — 1}, the mapping
B+ R s RN 3 R, () (V) > [ — e — b

is non-negative and Borel measurable. Since

Po ((uﬁ/[)M,lm (Uﬁfl - U?W)M,k)_l =P'o ((U?W)M,k» (Zz@)M,k) )

it follows that for any K € 7,, and all n € {0,..., N,, — 1}

0 =E [®%((uhs)arm, (uhy " — i) arn)] = B [@% (V5 arks (257)aan)]

=E [Jop™ — v — 21]] .

Therefore, for all K € 7,, and all n € {0,..., N,, — 1} there holds 27 = v7-™ — v P-a.s.
in (. O

Next we prove that the finite-volume function (v}');<,<ny we have just constructed verifies
the following numerical scheme.

27



Lemma 4.7. For m € N* fized, any n € {0,..., N,, — 1} and any K € T,,, vi! satisfies
the semi-implicit equation

TR =)+ Y R ) -

c€ENEK
P'-a.s. in Y, where Ay 1By := By(the1) — Bi(tn).

Proof. From Lemma 4.6 it follows that 27 = vt — % P-a.s. in ' for all K € 7T, and
alln € {0,...,N,, — 1}. Then, for arbitrary K € T,,,, n € {0,..., N,, — 1} the mapping

W s R XN s R *Nm 5 0(10,T]) — R

(abian Ohaass 1) B+ Y

0€Eint ﬁgK

mpg

EQ(U@AnHBm =0 (NIE)

K +ak) — (bf +af)

~ AL (ag)(f (tns1) = f(tn))
is non-negative and Borel measurable. Since

P o ((uhy)arge (Wit = ub)arse, W)™ =P o (Vi) ask, (250) ages B) ™

from Proposition 2.8 it follows that
0=E [‘I’n ((UM)M k> (Uﬁj - U%)M,lm W)] =K [q’%((vﬁf)M,k, (Zﬂ)M,ka Bmﬂ

o l

Mg n Mgy n n mg n
=E vt =) + Z (v = o™ = =g (0k) Anii B

—
At e drL At
Thus, for all K € T,,,, n € {0,..., N, — 1} and P’-a.s. in

n n Mg n n n
0= At St =)+ ) (Vi — ) — A V) A B

c€EnNEK

4.3 The martingale identification argument

In this subsection, we show that each B,, is a Brownian motion with respect to the
filtration given in Definition 4.8. With this result at hand, we may show that (W (t)):>0
is a Brownian motion with respect to the filtration given in Definition 4.11. In Lemma 4.13
we prove that u., is admissible for the stochastic It6 integral with respect to (W (t))i>0-
Finally, in Lemma 4.14 we provide an approximation result for the stochastic It6 integrals.

Definition 4.8. Fort € [0,T] we define F[™ to be the smallest sub-o-field of A" generated
by v° and B, (s) for 0 < s < t. The right-continuous, P’'-augmented filtration of
(FiM)ieo,r) denoted by (F7")icjo,r) s defined by

=(o[Flru{N € A : P'(N) =0}

s>t

for any t € [0,T].
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Remark 4.9. We recall that for the augmented filtration and for given processes (X;):>o,
(Y:)i>0 such that (X;);> is adapted and Y; = X; holds a.s. for all ¢, it holds true that
(Y)t>0 is also adapted.

Lemma 4.10. (vy,)n is adapted to (7" )icjo,r) and (B (t))icpr) @5 a Brownian motion
with respect to (§7")ecpon-

Proof. Since (§)")icjo.r] is a filtration induced by v), and B, in particular vy, is §'-
measurable. Thus, applying the same arguments as in the proof of Proposition 2.8, from
(NIE) it follows that v,, is adapted to (§}")tco,r]. Since P’ o (B,,)™' =P oW, we get
the following results:

e E'[|B,,(0)|]] =E[|[W(0)]] =0, hence B,,(0) =0 P’-a.s. in (V.

e By Burkholder-Davis-Gundy inequality there exists a constant C'z > 0 such that

E' | sup |Bn(t)?| =E < CpT? < . (4.3)

te[0,7]

sup [ (t)/*

te[0,7)

e For all 0 < s <t < T and all bounded, continuous functions ¢ : C,(L*(A) x

c([0,s]) = R
0 =B 0V10) = W08, Wlos)] = E'[(Bu) = Bal) bl Bl
and
0=E [(WQ(t) — WQ(S) - (t - S))¢<ugma W|[075])} (4.5)

=E'[(By(t) — By(s) = (t — 5))¥(Up, Binlpo,s))]
Recalling Definition 4.8, F/™ = 0,(v°,, B,,) for t € [0, T]. The real-valued random variable

A3 =Pl W), Bpo,s(w"))

is F"-measurable. Using the properties of conditional expectation from (4.4) it follows
that

0 =E' [(Bn(t) = Bun($))¥(vhy, Buljo.s))]
=E' [E' ((Bn(t) = Bun(5))¥ (v, Bunljo,)| F1")] (4.6)
=E' [¢/(08,, Bl io,9)E' (Bun(t) — B (s)| F)]

Since (4.6) applies to every bounded and continuous function ¢ : Cy(L?(A)xC([0, s]) — R,
from the Lemma of Doob-Dynkin it follows that

0 =E [L4E" (Bn(t) = Bm(s)| F7")]
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for all F"-measurable subsets A € A" and for all 0 < s <t < T. From the above equation
it now follows that E' (B,,(t) — By (s)| F*) = 0 P'-a.s. in @ for all 0 < s <¢ < T and
therefore (B, (t)):cpo,r is a martingale with respect to (F;")icjo,r7. Using [17, p.75] we may
conclude that (B, (t)):co,r) is also a martingale with respect to the augmented filtration
(F7)tepo,r)- With similar arguments from (4.5) it follows that ((B,(t))* — t)iepr) is a
martingale with respect to (§")icpo,r) and consequently the quadratic variation process
((Bm))t of (Bin())tejo,r) is given by ¢ for all ¢ € [0, 7] (for the Definition of the quadratic
variation of a stochastic process see [8, Definition 2.19]). Summarizing the above results,
(B (t))icpo,r is a square integrable martingale with respect to (§7"):cjo,r] starting in 0 with
almost surely continuous paths and quadratic variation ((B,,)); = t. From |14, Theorem
3.11] (B (t))iepo,r is a Brownian motion with respect to (§7*)ejo,r)- O

In the following, we want to show firstly that the stochastic process (W (%))cjo,r) := Woo
is a Brownian motion and secondly that a filtration may be chosen in order to have
compatibility of u., with stochastic integration in the sense of Itd6 with respect to W.
Since U, is a random variable taking values in L?*(0,T; L?(A)), us(t, -) is only defined for
a.e. t € [0, 7] and the construction of an appropriate filtration induced by wus, becomes
delicate.

Definition 4.11. Fort € [0,T] let F;° be the smallest sub-o-field of A" generated by vy,
Wao(s) and [} use(r)dr for 0 < s < t. The right-continuous, P'-augmented filtration of
(F)teo,r denoted by (§7°)ico,r) is defined by

o =)o[Fu{N e A P'(W) =0}]

s>t
fort €[0,T7.

In the following, we will show that W, is a Brownian motion with respect to (§5°):cjo,r]
and ue admits a (F7°)sejo,r-predictable representative.

m——+00

Lemma 4.12. There holds B,, "— Wy in L*(Q;C([0,T])) and (Wso(t))iep,r is a
Brownian motion with respect to (§5°)iecpo,n-

Proof. Combining (4.3) with P’ o (W, )™! = P o W1 it follows that

E' | sup [Wo(t)*| =E

t€[0,T]

sup |W(t)\2] < 00

t€[0,T]

and consequently W, € L*(Q; C([0,T])). Moreover, since P’ o B! = PoW ™!, it follows

that
lim E' =F

m—00

sup | By (t)[*

te[0,T] te[0,T)

sup |Woo(t)]2] )
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We already know, that, for m — 400, B, converges to Wy, in C([0,7]) a.s. in Q.
Therefore, a version of the Lemma of Brézis and Lieb (see [35, Lemma A2|) provides the
desired convergence result in L*(Q'; C([0,T])). From

IP/ © (Ugw Bm7 Um)il = IP © (u?lnﬂ VV? uézm,Nm>71

it follows that for any 0 < s <t < T and every bounded and continuous function
Y L2(A) x C([0,s]) x C([0,s]; L*(A)) — R, we have

[ m(s))¥ (U%Bmho,s]v/o. U (7) d?“|[o7s})}

~E [<w< )= W (1 Wl [ th ()l ) | "

Now, using the fact that u) is Fo-measurable, by construction [juj, n (r)dris F-
measurable for all m € N and that (W (t));>0 is a martingale with respect to (F;)¢>0 one
gets that

B {0 - WD (1 Wl [ th )10 )| =0 (18)

We recall that, P'-a.s. in €', 02, — vg in L?(A) and B,, — W, in C([0,T]), hence also in
C(]0, s]) for all 0 < s <t < T. Moreover, by Cauchy-Schwarz inequality,

2 2

= sup

dr — .OO dr ZUmr—uoor dr
wyar= [y = | [ ntr) = ()

T
<S%p (/ lom(r) = toe () 208 ) / () — to() gy
zE s

Since vy, =5 U in L2(0,T; LA(A)) Pl-as. in €, it follows that

/ U (1) dr "2E5° / Uso (1) dr
0 0
in C([0, s]; L*(A)), P'-a.s. in €. Using the upgraded convergence of B,, towards W, in

L*(QY;C(]0,TY)), the convergence results from above and Lebesgue’s dominated convergence
theorem it follows that

lim E {(Bm(t) — Bp(s))Y (vfn,Bml[o,s}a /0 | Um(T) drl[o,s1>}
= &[0 = W) (10, Wil [ )|

Now, combining (4.7), (4.8) and (4.9) it follows that

L2(A)

(4.9)

B (V) = W) (0 Wil [ uxhrlos )] =0, (a10)
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From (4.10) it follows that E' (W (t) — We(s)| F°) = 0P’-a.s. in Y forall0 < s <¢ < T
and therefore (W (t))sco,r is a martingale with respect to (F7°)scp,m. Using [17, p.75]
we may conclude that (W (t))co,r) is also a martingale with respect to the augmented
filtration (F7°)scjo,r)- With similar arguments it follows that

E’(Wﬁiﬂ—ﬂyiw)—(t—SDw(MLWGJMﬂZAQwJﬂdﬂm4>}=0,

therefore ((Wso(t))? —t)ico.r] is a martingale with respect to (§5°)ieo.r] and consequently
the quadratic variation process ((Wu))s of (Wao(t))sejo,r] is given by ¢ for all ¢ € [0,7].
Summarizing the above results, (Wuo(t))icjo,r] is a square integrable martingale with
respect to (§;°):cpo,r) starting in 0 with almost surely continuous paths for all ¢ € [0, 7] and
quadratic variation ((Wx)); =t . From [I4, Theorem 3.11] it follows that (W (t)):cjo,1]
is a Brownian motion with respect to (§7°):c(0,17- O

By [10, Theorem 2.6.3] it is always possible to choose (€', A", P") = ([0, 1], B([0, 1]), \),
where B([0,1]) denotes the Borel sets on [0, 1] and A denotes the Lebesgue measure on
[0,1]. We will need this particular choice of the new probability space in the proof of the
following Lemma.

We recall that, for a filtered probability space (€2, A, P) with F = (F;);>0 and T' > 0, the
predictable o-field on © x [0, 7] is the o-field generated by the sets

(s,t] x Fy, 0<s<t<T, F, € F,and {0} x Fy, Fy € Fo.
For more details on stochastic integration, we refer to [14].

Lemma 4.13. There exists a (§;°)icjo,r)-predictable, dP' @ dt-representative of too.
Proof. For § > 0 we define u’_ : ' x [0,T] — L*(A) by

(1) = % /<:5>+ oo (5) ds = % ( /0 s (s) ds /0 T ®) ds>

where the integrals on the right-hand side are understood as Bochner integrals with values
in L2(A). Since ul is an (F5°)ieor-adapted stochastic process with a.s. continuous
paths, it is predictable with respect to (§7°)iwcp,r. For fixed k € N the cut-off function
Ty : R — [—k, k] defined by Ty(r) :=r if |r| < k and T (r) := sign(r)k if |r| > k induces

a continuous operator L*(A) 3 v + Ty(v) € L*(A). Hence the stochastic process
Q' % [0,T] 3 (W, 1) = Ti(ul (W, 1) € L*(A)

is (§7°)ieo,r-predictable. Again we recall that, P-a.s. in €', vy, T2 e in L2(0, T; L2(A)),
hence also in L'(0,T; L?>(A)) and therefore

T

T
lim ||vm(t)||L2(A)dt:/ oo (t) ]| 22(a) dt
0

m—-+00 0
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P'-a.s. in €. Using Fatou’s lemma, P'o(v,,) " = Po(uj,  )~', and the Cauchy-Schwarz
inequality we obtain

T T
E [ | @l dt] < lminf E! { | Tem®lzzen dt]
0 m—0o0 0

T
= hmlnf]E |:/0v Huilm,Nm(t)HL%A) dt} S \/?thHi}IOIéf Hulhm,Nm|’%2(Q;L2(0,T;L2(A)))'

m— 00

From Lemma 3.3 it follows that the right-hand side of the equation is uniformly bounded
and consequently, uy, € L'(Q; L'(0,T; L*(A))). In particular, us, € L*(Q; LY(0,T; L' (A))).
Since (', A", P") = ([0,1], B([0,1]); \) according to |21, Remark after Proposition 1.8.1]
we have

LN L0, T3 LY (A))) = LHQ % (0,T); LY(A)) = L0, T3 LN (25 LY(A))).

For almost every ¢ € (0,7") and 0 < 6 < ¢ we have

1 t
(=0 LY @LA (M)
1 t
< 5 U0 (8) = teo (B) || L1 ;21 (a)) d5-
(t=o)*

By the generalisation of Lebesgue differentiation theorem for vector-valued functions (see,
e.g. |18, Theorem 9, Chapter II]) the right-hand side of the above inequality goes to 0 for
§ — 07 for almost every t € (0,T), hence u’_(t) — us(t) a.e in L1(Y; LY(A)) for § — 0F.
Then, Lebesgue’s dominated convergence theorem provides

: 5
6113{(1;1+ Ti(ud,) = Ti(too)
in L1(0,T; L*(SV; LY(A))), thus also in L*(QY x (0,T); L*(A)).
Thus, passing to a not relabeled subsequence if necessary, (Tj(u’ (w',t)))s>0 converges
for almost every (w';t) in Q' x (0,7T) to Ti(uso(w',t)) inL'(A) as & — 0" and therefore
Th(us (W', t)) has a dIP’ ® dt representative that is (F7°).cjo,r-predictable for every k € N.
Obviously there holds

Uso (W', 1) = sup T (oo (', 1)) in LY(A) for a.e. (o',t) in Q' x (0,7),
keN

where the set of measure zero can be chosen independently of & € N. This provides the
existence of a dIP’ ® dt representative of u., that is (§5°)icp,m-predictable. ]

Lemma 4.14. Passing to a not relabeled subsequence if necessary,

M, N, "= Moo in L2(0,T; L2(A)) P-a.s. in €Y, (4.11)

msyiVm
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where fort € [0,T], x € A, P’-a.s. in
t
M (8:0) 1= [ gloh, v, (5.2)) dB(s)
0

Ma(t z) = /0 ot (5,2)) AW (5).

Proof. From Lemma 4.12, we know that (B,,),, converges in L*(Q;C([0,T])) towards
W which is a Brownian motion with respect to (§7°)scjo,r)- Particularly, this convergence
result also holds in probability in C([0,7]). Moreover, from the convergence (4.2) and
Lemma 4.5, we know that (v}, y )n converges towards ue in L*(0,T; L*(A)), P-a.s. in €0
thus up to a subsequence denoted in the same way, using the Lipschitz property of g, it
follows that (g(v}, . ))m converges towards g(us) in probability in L*(0,T; L*(A)). Now,
we can apply Lemma 2.1 in [15] and conclude that the convergence in (4.11) holds true
in probability in L?(0,7; L?>(A)) and therefore, passing to a subsequence if necessary, the
assertion follows. ]

4.4 Convergence towards a martingale solution

For the sake of simplicity we use the notations 7 = 7,,, h = h,,, At = At,, and N =
Np,. For any n € {0,...,N} and K € T, setting M, = M n(t,,2x) we can define
/\//\lh,N using Definition (2.2) and we obtain the following strong convergence result in
LP(QY; L2(0,T; L3(A))).

Lemma 4.15. Passing to a not relabeled subsequence if necessary, we have the following
convergence results for any 1 < p < 2:

Up s Uy and Dp T in LP(SY; L*(0,T; L*(A))),
Moy and M,y "= Mo in LP(Q; L2(0, T; L2(A)))

and
00 25 0 in LP(QY; LA(A)).
Moreover, u, € L*(QV; L*(0,T; H'(A))) and M, € L*(Y;C([0,T]; L*(A))).
Proof. We recall that thanks to convergence (4.2), (v}, y)m converges to uq for m — oo

in L*(0,T; L*(A)) P-a.s. in Q. Since P’ o (v}, y)' = P o (u}, y) 7", from Lemma 3.3 it
follows that there exists a constant C' > 0 such that

E’ [||U§1,N||%2(0,T;L2(A))] <C (4.12)

for all m € N and from Fatou’s lemma we obtain u,, € L*(€; L?*(0,T; L*(A))). The
convergence of (v}, y)m towards us in LP(Q; L*(0,T; L*(A))) is a consequence of (4.12)
and of the theorem of Vitali (see, e.g., |21, Corollaire 1.3.3]). Now, using (4.1) we get

m—-+00

E HUZ,N - UﬁL,NH%Q(O,T;LQ(A))} =E [HUZ,N - U%,NH%Q(O,T;LQ(A)) 0,
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hence (v v — v} y) — 0 in L*(Q; L*(0,T; L*(A))) as m — +oco and, thanks to the
continuous embedding of L*(Q'; L*(0, T; L*(A))) into LP(SY'; L*(0, T; L*(A))), also in LP(€Y';
L*(0,T; L*(A))) for all 1 < p < 2. Therefore, v, y — s a8 m — 400 in LP(SY;
L*(0,T; L*(A))) for all 1 < p < 2. Now we apply a similar argumentation to (05 n)m. We

have
bt/ \ 2
an-&-l o Un||22 / ( n) dt
ZI w |
Z ||anrl UZHQLQ(A)] ~

Repeating the arguments of Proposition 3.2 on (NIE) it follows that there exists a constant

C% > 0 such that
[/ |UhN|1hdt:| +E

Combining (4.13) with (4.14) it follows that (v} y — Upn) — 0 in L*(; L*(0,T; L*(A)))

and we may conlude that Upny — us in LP(Q; L2(0,T;L*(A))) for all 1 < p < 2.

Using (4.14) and the same arguments as in the proof of Lemma 4.1 on the discrete

gradient V"vj,  of v}, y it follows that, passing to a not relabeled subsequence if necessary,

(V"0], v )m converges weakly in L?(€'; L*(0, T'; L*(A)?)) towards Ve, hence us € L*(Q'; L2(0, T; H' (A))
We recall that, according to Lemma 4.14, M, y — M., for m — +o0 in L*(0,T; L*(A))

P’-a.s. in Q. Using the Lipschitz continuity of g, the Burkholder-Davis-Gundy inequality

and Lemma 3.3 it follows that there exist constants C'g > 0, C' > 0 such that

E'[lvhy = B2z = E

(4.13)
= —E’

Z ||U7hLl UZH%Q(A)

n=0

<. (4.14)

T
E | sup Mol | < Col’E! [/ ||vz,N||%z(A)dt]
0

t€[0,T

. (4.15)
:%m%/MM@Wﬂg%BG
0

Now, the convergence of (M}, ), towards M, in LP(Q'; L2(0,T; L*(A))) forall 1 < p < 2
follows from (4.15) and the theorem of Vitali (see, e.g., |21, Corollaire 1.3.3]). Using the
It6 isometry, the Lipschitz continuity of ¢ and Lemma 3.3 it follows that there exists
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Cs3 > 0 such that

T
E’ |:/ HMh,N — Mh,N”%ﬂ(A) dt:|
0

N-1 ot t l _t tnt1 l 2
/ n
=E Z/t /t g(vp ) dBpy — A7 /t 9(vp,n) dBp, 2 dt
[N=1 o0 || gt 2 F_t N2 o+ 2
<o | [ [ otharana| ( At”) JRCLN
|0 Jtn tn L2(A) tn L2(A)
TN—1 tn+l t . ) t _ t 2 tn+l . )
/ n
2 | [ [ otk s+ (52) [ N B ds ) at
| =0 /tn tn tn
8At T m—+00
< TL2IE’ [/ o, w1120 dt] < C3At — 0 .
0

Hence, M, y —/T/l\h,N — 0 for m — 400 in L*(SY; L*(0,T; L*(A))) and therefore M\hJ\[ —
M, for m — +oo in LP(Q; L*(0,T; L*(A))) for all 1 < p < 2. Recalling that M, is a
stochastic Ito integral with respect to the Brownian motion (W (t))>0, we may conclude
that M., has P’-a.s. continuous paths in L*(A). From (4.15) and Fatou’s lemma it
now follows that M., € L*(Q; C([0,T); L*(A))). Since P’ o (v))~! = P o (ul))~!, from
Lemma 3.1 it follows that

B {lefl3e] = E [luhl3am| < E [luolZae) -

Together with the P-a.s. convergence of v e in L*(A) from the convergence
result (4.2), the last assertion follows again from the theorem of Vitali (see, e.g., [21,
Corollaire 1.3.3]). O

We now have all the necessary tools to pass to the limit in the scheme.

Proposition 4.16. There exists a subsequence of (VUn,n)m, still denoted by (Up N )m, converging
for m — 400 towards a (F°)iejor)-adapted stochastic process u with values in L*(A)
and P'-a.s. continuous paths. Moreover, us, € L*(Q; L*(0,T; H'(A))) satisfies for all

t 0,77,

t t
Uoo (t) — 1o — / Ay, ds = / G(toe) dWoo in L*(A) and P'-a.s. in .
0 0

Proof. Let A € A, £ € D(R) with £(T) = 0 and ¢ € D(R?) with Vo -n = 0 on OA.
Moreover we define the piecewise constant function oy (z) := ¢(xg) forz € K, K € T.
For K€ T,ne€{0,...,N—1} and ¢ € [t,, t,+1) we multiply (NIE) with 14£(¢)¢(zk) to
obtain

LA () S [t — o — g (03) At Bulp(wre )+ 1aE(E) Y

| -
At
c€EnNEK

dK\L(U?(H_UzH)S@(xK) = 0.

36



Summing over K € T, integrating over [t,,%,.1], summing over n = 0,..., N — 1 and
integrating over ' yields

N=1 g0
V= / Z/ > muLag(t At[ vt — v — 9(Vi) A1 B o(kc) dt dP’

n  KeT
tnt1 (416)
S [T S st e
! tn KeTaesmmsK
= Tl,m + Tg’m.

In the following, we will pass to the limit with m — +o0 on the right-hand side of (4.16).
Using partial integration we obtain

T —_~
_ / / / D [nn — MunE (D) n() da dt dP’
AJO A

- /A /OT /AW’“N = Mo NJE (O)pn(v) do dt dP’ — /A /A vRé(0)pn () dax AP

Thanks to the convergence results of Lemma 4.15, passing to a not relabeled subsequence
if necessary, we can pass to the limit and obtain

_//T/[@h,N—M\h,N]fl(t)goh(x) dxdtd]P’—//vgg(o)%(x) du dP’
il // /“O"_ ol (D)o (w) du dt P //vof ©) de dP'.

Now our aim is to show the following convergence result:

T
Ts M —/ / /f(t)Aap(z)uoo dx dt dIP’.
ado Ja

First, we can note that the term 75, can be written as

/,Z/tn+l]lf45 DYt S m, (90(5CK)_90($L)) dt dP’.

d
KeT c€ENEK K|L

Then, since Vi -n =0 on dA, thanks to the Stokes formula one has,

[ acwyae= | Vo) ninw) = ¥ [ Vel niwdoto)

UEEmt FTEK
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Thus, we have

TQm -
tn+1
/ Z/ 146(0) ) ot (/ Ap(z)de— > /w Ny do(x )) dt dP’
! KeT c€EmNER
n+l Tr) — oz
/Z/ L) Y ot > m, (90( KC)ZK:O( L)) dt dPP’
KGT cE€ENEK ‘

_ /Q | /0 14E(1) / of xAp(x) da dt dP’

tn41
/Z / 148(8) Y mo (vt — vp ™ RE dt dP,
" n=0

Uegll’lt

with

R? = —/VSO ) -ngpdo(z) — SO(:UL)d;ZO@K).

Using Lemma 4.15 and passing to a not relabeled subsequence if necessary, one gets

— / , /0 ' 14£(1) /A vh Ap(x) da dt P — /A /0 ' /A () usAp(z) du dt dP'.

Concerning the second term in 75 ,,, for any 0 = K|L € &y, the orthogonality condition
implies x;, — rx = dg 0k, thus thanks to the Taylor formula for any = € o one has,

QD(:EL) - 90<xK) + O(h),

Vo(z) -ngp = dK\L

that gives,
RZ < Cyh.

Therefore, thanks to the Cauchy-Schwarz inequality and inequality (4.14) the second term
in 15, satisfies,

N— n+1
/ > / 148(t) Y mo (vt — vp ) RE dt dP’
/ — tn

Uegmt

1

n+1 n+1 n+1|2
<C h/ Z/ T4lE(2) (Z mgdKL> (Z mg“’T>

O'Egmt Uegint

< VACLA [ [ a0l
QO Jo .
1 I ? motoo
< V20, |AZ R[4 2 x o)) | E |vh 1 dE — 0.
0
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Thus, we have shown that

/ /(“oo—/ (ttoo) AW )5( Je(x) d:cdt—/Avog(O)go(x) dx
/ /uooAgo t) dx dt = /T/AVUOO-Vgo(x)g(t) de dt

P-a.s. in ' for all £ € D(R) with £(T) = 0 and all p € D(R?) such that Vo -n =0 on
OA. By |22, Theorem 1.1] the set {¢ € D(R?) | Vo -n =0 on JA} is dense in H'(A) and
therefore (4.17) applies to all p € H*(A).

In the following, we denote the dual space of H'(A) by H'(A)*, recall that

HY(A) = L*(A) — H'(A)*

(4.17)

with continuous and dense embeddings and we will denote the H'(A)-H'(A)* duality
bracket by (-,-) and the L*(A) scalar product by (-,-). With the additional information

Uso € L2(V; L(0,T; H'(A)))
from Lemma 4.15, it follows that
Aug, € L*(Y; L*(0,T; H(A)*))

and

—/A/OT Voo Vio(z)§(t) dz dt = /OT<AuOO,<p)§(t) dt (4.18)

P’-a.s. in 0, for all ¢ € D(R) such that £(T) = 0 and all p € H'(A). Combining (4.17)
with (4.18) and with the identity

/vogo dx—/ /vogo t) dz dt (4.19)

(see, |31, Lemma 7.3]), from Fubini’s theorem it follows that

<_ / ' (Umu) - / gl W ) &(t)dt, 90> - < / " Aunt(t) i so>

P’-a.s. in Q' for all £ € D(R) such that £(T) = 0 and all ¢ € H'(A) and therefore

[ (0~ [ twrave - w) = [ aweww

in H'(A)*, for all £ € D(R) such that £(T) = 0, P’-a.s. in " and by a separablity argument
the exceptional set in €' may be chosen independently of ¢ and £. Consequently, (see,
e.g. |12, Proposition A6|)
t
Uso — / G(Uso) AW — v € WH2(0,T; HY(A)*) P'-a.s. in O
0
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and
d
dt
Since g is Lipschitz continuous, from the chain rule for Sobolev functions it follows that
g(use) € L*(QV; L2(0,T; H(A))) and

\% (/Otg(uoo) dWOO) = /Ot G (tUeo) Vitioo AW,

hence s — [, 9(tos) dWoo € L*(Q; L?(0,T; H'(A))). From [31, Lemma 7.3] we obtain
Uso € L2(QY;C([0,T]; L*(A)) and together with (4.20) the following rule of partial integration
forall0<¢<T, P-a.s. in 0:

(1xt0- [ i) AW — 6(0)) — (1(0) = 0, 6(0)

(uoo - /0 () d W — UO) ~ Aus in LA I2(0,T: HY(A)). (4.20)

= /Ot (Aus(s),((s)) ds+ /Ot <C’(s),uoo(s) - /Osg(uoo) AW — v0> ds e

for all ¢ € L*(0,T; H'(A)) with ¢’ € L?(0,T; H'(A)*)). Choosing ((t,z) = £(t)p(x) with
o€ H'(A), £ € D(R) with £(T) = 0 in (4.21), we get

(1x0- [ ) AW — ¢) €0 = (1n(0) - 1, e
= [ Buntsha) ds+ [ €t (o) = [ gty w0 s

P’-a.s. in @'. The particular choice of t = T and £ € D(R) with £(T) = 0 and £(0) =1
in (4.22) combined with (4.17), (4.18) and (4.19) yields

(oo (0) — w0, 0) = 0 for all p € H'(A), P"-a.s. in

(4.22)

and therefore 1. (0) = vy P’-a.s. in Q.
Now, we fix t € [0,7") and choose £ € D(R) with £(T) = 0 and &(s) = 1 for all s € [0,].
With this choice, from (4.22) we obtain

t t
(e [stu) @V un0)0) = [(Qusrias a2
0 0
P’-a.s. in ' for all o € H'(A). Since, for fixed ¢ € H'(A),

£ (uoo(t)—/Otg(uoo)dWoo—uoo(O),go) and m/ot (Auno(s), ) ds

are continuous in [0, 7], P’-a.s. in €, the exceptional set in " in (4.23) may be chosen
idenpendently of ¢ € [0,7") and (4.23) also holds for ¢ = T. This yields

¢ ¢
Uoo () — Uao(0) — / G(Uoo) AW = / Aug(s)ds in H'(A)* and P'-a.s. in
0 0
and, since the left-hand side of the above equation is in L?(A), also in L*(A). O
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Remark 4.17. Applying the chain rule in (4.21) for t = T and ¢ = ¥ € D(R x R?) such
that W(7,-) = 0 we immediately get that u., is a weak solution, i.e.,

/ /uoo (t, )0V (t, x)d:cdt—/ /Vuoo (t,x)-VU(t, x)dxdt—i—/Auo( YU (0, x) dz

/// (Uoo (8, ) AW oo (5)Op VY (t, ) d dt

P-a.s. in V.

4.5 Strong convergence of finite-volume approximations

In the previous subsections, we have shown that our finite-volume approximations converge
towards a martingale solution of (1.1), i.e., the stochastic basis

(AP (87 eeo.r)s Woo(t))eeo.r))

is not a-priori given, but part of the solution. In this subsection, we want to show
convergence of our finite-volume approximations with respect to the initially given stochastic
basis

(AP, (Fo)izo, (W(T))i0)-

To do so, we will proceed in several steps. First, pathwise uniqueness of the heat
equation with multiplicative Lipschitz noise is a consequence of Proposition 4.18: Roughly
speaking, martingale solutions of (1.1) on a joint stochastic basis and with respect to
the same initial datum coincide. In the proof of Proposition 4.20, we construct two
convergent finite-volume approximations with respect to a joint stochastic basis, namely
(vh,) and (v} ), from the function (uj, 5) of our original finite-volume scheme using the
theorems of Prokhorov and Skorokhod. Then, as a consequence of pathwise uniqueness,
the limits coincide and we may apply |28, Lemma 1.1] in order to obtain the convergence
in probability of (uj, ). Thanks to our previous result we can improve the convergence

and pass to the limit in the originally given finite-volume scheme (see Lemma 4.21).

Proposition 4.18. Let (2, A, P, (F;)i>0, (W (t))i>0) be a stochastic basis and uy, us be
solutions to (1.1) with respect to the Fo-measurable initial values uf and ud in L*(Q; L*(A))
respectively on (2, A, P, (Fi)i>0, (W (t))i>0). Then, there exists a constant C' > 0 such that

E | llur(t) = wa(t) 22| < CE [l = w320n)
for all t € [0,T].

Proof. We apply the 1to formula ([30, Theorem 4.2.5]) to the process u; — ug, discard the
nonnegative term on the left-hand side of the resulting equation and take expectation.
Then, the assertion is a straightforward consequence of Gronwall’s inequality. O
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Remark 4.19. If uy, ug are solutions to (1.1) on (2, A, P, (F})i>0, (W (t))i>0) with respect to
the same initial value ug, from Proposition 4.18 it follows that u (t) = ua(t) in L?(A) for all
t € [0,T], P-a.s. in €. Since uy, up have continuous paths in L?(A), the exceptional set in
Q2 may be chosen independently of ¢ € [0, 7] and it follows that u; = uy in L*(0,T; L*(A))
P-a.s. in Q.

Proposition 4.20. Let (uﬁlN)m be given by Proposition 2.8. Then, there exists a subsequence
of (uf, )m, still denoted by (uj, y)m, converging for m — +oo in L*(0,T; L*(A)) P-a.s.
in Q towards a stochastic process u with values in L*(A), having P-a.s. continuous paths
and belonging to L*(Q; L*(0,T; H*(A)).

Proof. For the sake of simplicity, we will write uj, := uj, y and uj, := uj, 5 in the

following. We consider an arbitrary pair of subsequences (ul,),, (u}), of (ul,)m. Our
aim is to apply [28, Lemma 1.1], therefore we show that there exists a joint subsequence
(ul, Jul e convergmg in law to a probability measure n on L?(0,T; L*(A))? such that

n({(z,y) € L*(0,T: L*(N))* | w = y}) = 1.

We define the random vector-valued sequence (Y}, ,),, by

YVP (ufnulp?(uz _ul> (u —u ) W7 uwupv(ug _u2>>
for any v, p € N* and extract a joint subsequence
Yy = (uf’k’ Ulpk’ (ultk B uf’k)’ (u:’k ) W, qu’ pk’ (ugk B ugk))

for any k € N that converges in law towards a probability measure
Moo = (nio7 7]307 507 507 Po W_17 Po (UO)_I’ Po (UO)_17 50)

where we include the difference of the random initial data into the vector to ensure,

that uok and uok converge to the same limit. With straightforward modifications of the

arguments of Subsectlons 4.2-4.4, we can find random elements ul_, u2_, vo,

01 Uses
Y, = (vf,k, vik, Zues Zoes W vyk, ng, (vgk — ng>>
such that
Po(Y) '=Po(Y,) *forallkeN

and a joint stochastic basis (€', A", P’, (F°)epo,r1, (Woo(t))tep,r) such that ul, and uZ
are both solutions of (1.1) with initial value vy on (', A", P’, (§5°)tco,r1, (Woo(t))tejo,r1)-
Thus, from Proposition 4.18 and Remark 4.19 it follows for n = (nl,n%)
=P'({ug = uge}) = P o (ug, uge) ' ({(2,y) € L0, T5 L*(A)* | = = y})
= i({(wy) € 2O, T; XA | 2 = y}).
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From [28, Lemma 1.1] we get the convergence of u, in probability to a random element
@ in L*(0,T; L*(A)). Obviously by Lemma 4.1 @ = u. We can extract a not relabeled
subsequence of (ul,),, that converges a.s. in L?(0,T; L?(A)) and in particular

||u£n||L2(0,T,L2(A)) m—_>O>O Hu||L2(O,T;L2(A)) IP—a.s. iIl Q
From Lemma 3.4 and Fatou’s Lemma we obtain v € L*(Q; L*(0,T; L*(A))). For all

f : L*0,T; L*(A)) — R continuous and bounded it follows from Lebesgue dominated
convergence theorem that

E [f(up,)] = E[f(w)],

L)t — nl for m — oo and by Lemma 4.4 n!, = pl . Hence there holds in

so P o (uy,
particular

m—0o0
E ldha 22072200 ™5 E [Iullizozazqay] < oo

From Vitali’s theorem we get u!, — @ in LP(Q; L*(0,T; L*(A)))) for 1 < p < 2. But
from Lemma 4.1 we know ul, — u for m — +oo weakly in L(Q; L*(0,T; L*(A)))) for

1 <q<2withue L*(Q; L*(0,T; H'(A))). Now the Lemma of Brézis and Lieb (see [13])
vields ul, "% in L2(Q: L2(0,T; L2(A))). 0

Lemma 4.21. The semi-implicit finite-volume scheme (2.4) converges towards u given in
Proposition /.20 which is a solution to (1.1) in the sense of Definition 1.3.

Proof. With similar arguments as in Proposition 4.20 it follows that wj y and

converge to u in L*(Q; L*(0,T; L*(A))) for m — oo. Moreover there holds g(uj, y)
g(u) in L*(Q; L*(0,T; L*(A))). Therefore

m——+00

Myy = / gl ) AW S / g(w)dW in L2(9;C(0, T]; I2(A))).

As shown in Lemma 4.15 it follows M), y "= Jo g(u) dW in L*(€%; L*(0, T; L*(A))). Now
we consider the semi-implicit finite-volume scheme (2.4), multiply it with 14£¢, where
Ae A &€ DMR) with £(T) = 0 and ¢ € D(R?) with V¢ - n = 0, then we sum over
K € T, integrate over [t,,t,41) and sum over n =0,..., N — 1 to get

N-—1 tngl 1
0 :/Q Z/ Z mK]lA£<t)E[u7IL(+1 i U% — Q(U%)AnHW]QO(xK) dt dP
n=0 v in KeT

T / Z / TN )Y S Bt () de dP

d
n KeT KeT oc&mnex KIL
::Tl,m + TZ,m-
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If we define ¢y () := ¢(zk) for x € K, K € T, there holds

T
Tl,m:// /8t[ﬁh,N—Mh7N}f(t)(ph({E) dx dt dP
AJO A

__ /A /0 ' /A (G — Mo )€ (0 on () der dt P — /A /A Won() da dP.

From |1, Proposition 3.5| we know that ud "= uy in L2(A), P-a.s. in Q, and thanks
to Lemma 3.1 we can apply Lebesgue’s dominated convergence theorem. The passage to
the limit is analogous to that on ' ]
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