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DAMPING OPTIMIZATION OF VISCOELASTIC CANTILEVER

BEAMS AND PLATES UNDER FREE VIBRATION

A. JOUBERT1, G. ALLAIRE2, S. AMSTUTZ3, AND J. DIANI4

Abstract. The goal of this work is to significantly enhance the damping of
linear viscoelastic structures under free vibration by relying on optimal design.

Homogeneous cantilever slender beams and plates satisfying, respectively, the

Euler-Bernoulli and Kirchhoff-Love assumptions are considered. A sizing op-
timization of the beam or plate thickness is proposed, as well as a coupled

optimization of the thickness and geometry of the plate applying Hadamard’s

boundary variation method. The isotropic linear viscoelastic material is mod-
eled by a classical generalized Maxwell model, well suited for polymers. Gra-

dients of the objective functions are computed by an adjoint approach. Opti-

mization is performed by a projected gradient algorithm and the mechanical
models are evaluated by the finite element method. Numerical tests indicate

that the optimal designs, as well as their damping properties, strongly depend

on the material parameters.
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4 Laboratoire de Mécanique des Solides LMS, CNRS UMR 7649, École Polytechnique,
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1. Introduction

Viscoelastic damping materials, such as elastomers or polymers within their glass
transition, are widely used to absorb vibrations of structures. The polymer linear
viscoelastic properties exhibiting several relaxation times, well reproduced by rhe-
ological models such as the generalized Maxwell model, confer them a large range
of applications [35]. The current paper focuses on finding the optimal design of
viscoelastic cantilever beams and plates to maximize their damping capacities.

The optimal material distribution is reached using sizing and shape optimization
methods. While the former allows the optimization of one or more design variables
such as the thickness, the latter seeks for the optimal shape of the domain which be-
comes the design variable. These methods are well known and very efficient within
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the elastic framework, for various objective functions such as compliance, maxi-
mal displacements, von Mises stress and so on (see textbooks [7, 1, 2]). Optimal
design of elastic structures for frequency response is also a classical topic [29, 3].
Even if the extension of these methods to viscoelastic materials is rather recent,
some contributions have to be mentioned. In the scope of the design sensitivity
analysis for transient response of damped systems, Yun and Youn [36] used the
adjoint method and, more recently, Ding et al. [15] used model order reduction
techniques. Various numerical techniques are employed to find the optimal distri-
bution of viscoelastic material. Among these, density-based methods are commonly
used to perform topology optimization of microstructures, multilayered materials
or layer damping treatments. Andreassen and Jensen [5] investigated the topology
optimization of periodic microstructures in order to maximize the attenuation of
propagating waves. Elsabbagh and Baz [16] conducted the topology optimization
of unconstrained layer damping (UCLD) treatments, optimizing the distribution of
the viscoelastic treatment. Zhang and Khandelwal [38] proposed the topology op-
timization of multimaterial dissipative systems at finite strains. More specifically,
the popular solid isotropic material with penalization (SIMP) method is considered
in a number of works. Kang et al. [27] carried out the topology optimization of
damping layers in shell structures under harmonic excitations by optimizing the
distribution of damping material. Chen and Liu [12] conducted the microstruc-
tural topology optimization of viscoelastic structures, in view of maximizing the
modal loss factor. James and Waisman [25, 26] proposed the topology optimization
for minimum mass of viscoelastic structures subjected to dynamic loads using a
time-dependent adjoint method. Yun and Youn [37] performed the topology opti-
mization of damping layers attached to shell structures. More recently, Fang et al.
[17] proposed the topology optimization of plates with constrained layer damping
(CLD) treatments to maximize the modal loss factor. Other methods for struc-
tural topology optimization have been applied to viscoelastic materials, such as the
Bidirectional Evolutionary Structural Optimization (BESO) method or the evolu-
tionary structural optimization (ESO) method. Liu et al. [28] applied the BESO
method to maximize the modal loss factor of composite materials. Fang and Zheng
[18] applied the ESO method to the minimization of the resonant response of plates
with CLD treatment. Boundary variation methods, such as the level-set method,
have also been applied to layer damping treatments. Ansari et al. [6] used the
level-set approach to find the optimal shape and location of CLD patches onto the
surface of plate structures. In a recent paper from Delgado and Hamdaoui [13], the
level-set method is employed to perform the structural optimization of multilayered
and homogeneous viscoelastic structures.

The goal of the present paper is to go further on the optimization of homogeneous
viscoelastic structures using Hadamard’s boundary variation method. We optimize
the thickness profile of a cantilever beam, and we simultaneously optimize the thick-
ness profile and the shape of a cantilever plate, in order to maximize the damping
of these structures under free vibration. The main novelty here is the represen-
tation of the viscoelastic properties of polymers by a generalized Maxwell model
taking into account the frequency dependence of Poisson’s ratio. This more gen-
eral model introduces some nonlinearity in the problem. We also study the impact
of viscoelastic parameters on the optimization, such as relaxation times but now
also Poisson’s ratios, without neglecting their frequency dependence. Coupled opti-
mization techniques are also adapted to perform the optimization of homogeneous
viscoelastic plates. Coupled optimization of two different sets of design parameters,
such as thickness and geometry here, is a classical issue. Let us mention some other
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examples like geometry and topology optimization (for example, coupling the level-
set method with the topological gradient), shape and infill optimization, shape and
anisotropy (for example, for fiber reinforced composites). Additionally, this paper
includes a comparison of possible cost functions related to damping optimization
and raises issues concerning the modal loss factor in particular.

The main results of this work are, on the theoretical side, the rigorous derivation
of sizing and shape sensitivities by the adjoint approach, which is new, to the best of
our knowledge, for a generalized Maxwell model with frequency-dependent Poisson’s
ratio, and, on the numerical side, the optimization of cantilever beams and plates as
well as a sensitivity analysis of the viscoelastic parameters. Our numerical examples
show that the optimal designs are very sensitive to the material parameters, with
a possible inversion of the thickness profile when the relaxation time is varying.

This paper is organized as follows. Section 2 presents the bending vibration
problem of a cantilever beam. The sizing optimization equations are detailed as
well as the sensitivity analysis of the objective function with respect to the design
variables. The optimized profiles of the beam have been estimated according to the
material parameters using finite element methods. Section 3 focuses on the bending
vibration of a cantilever plate and its coupled optimization. The derivatives of
the cost function and the numerical methods are detailed. The sizing and shape
optimization problems are extensively discussed before studying the impact of the
material properties. Finally, the opposite problem aiming at limiting the vibration
damping of the cantilever plate, which may draw some interest in sport applications,
is examined.

2. Optimization of the free vibration damping of a linear
viscoelastic beam

2.1. Free vibration problem. In this section, the problem of interest is a slender
cantilever viscoelastic beam (Figure 1) submitted to free vibrations and satisfying
the Euler-Bernoulli assumptions. Consequently, this study is limited to slender
beams for which the transverse shear effects can be neglected. L denotes the length
of the beam, W its width and h its thickness. The linear viscoelastic constitutive
material may be represented by a classic generalized Maxwell model (Figure 2) [33]
consisting in elementary Maxwell branches in parallel plus an elastic branch for the
long-term elasticity.

Figure 1. Slender cantilever beam or plate representation.

To introduce the model, let us first consider the three-dimensional (3D) bounded
domain of the beam

(1) Ω3D =
{

(x, y, z) ∈ R3 | x ∈ (0, L) , y ∈
(
−W

2
,
W

2

)
, z ∈

(
−h
2
,
h

2

)}
.
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Figure 2. Generalized Maxwell rheological scheme.

During beam deformation, we assume small deformations. Here and throughout the
paper, we focus on the out-of-plane displacement or deflection U(x, y, z, t). With
no external forces, it satisfies the principle of virtual power:

(2)

∫
Ω3D

ρ
∂2U

∂t2
ûdV +

∫
Ω3D

σ.ε(û)dV = 0 ∀t ∈ R+,

for all kinematically admissible û(x, y, z), where σ denotes the bending stress tensor,
ε(û) is the bending infinitesimal strain tensor and ρ is the constant material density.

In the following, the slender beam is considered as a 1D structure, meaning that
the only space variable for U and û is x, and its boundary is clamped at x = 0 and
stress-free at x = L. For 1D problems the bending stress and strain simplify into
scalars and satisfy the generalized Maxwell model (Figure 2) [35]:

(3) σ(x, y, z, t) = E∞ε(U)(x, y, z, t) +

n∑
j=1

Ej

∫ t

−∞
e
− t−ττj ∂ε(U)

∂τ
(x, y, z, τ)dτ.

For slender beams the bending strain and virtual strain are expressed by

(4) ε(U)(x, y, z, t) = −z ∂
2U

∂x2
(x, t) and ε(û)(x, y, z) = −z d

2û

dx2
(x).

Additionally, the solution U is assumed harmonic and writes as:

(5) U(x, t) = u(x)eiωt,

where the complex number ω stands for the system pulsation. Substituting ε(U)
and U in (3), we obtain the bending stress as

σ(x, y, z, t) = −zeiωt
E∞ +

n∑
j=1

Ej
iωτj

1 + iωτj

 d2u

dx2
(x).

Substituting now σ, ε(û) and U in (2), the problem becomes: find u ∈ U0, such
that

(6)

∫ L

0

h3

12ρ

d2u

dx2

d2û

dx2
dx =

ω2

E∞ +
n∑
j=1

Ej
iωτj

1+iωτj

∫ L

0

huû dx ∀û ∈ U0,
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with

U0 =

{
u ∈ H2([0, L];C) | u|x=0 = 0,

du

dx |x=0
= 0

}
.

Standard arguments lead to the corresponding strong form:

(7)



1
12ρ

d2

dx2 (h3 d2u
dx2 ) = ω2

E∞+
n∑
j=1

Ej
iωτj

1+iωτj

hu on (0, L) ,

u = 0 at x = 0,
du
dx = 0 at x = 0,
d2u
dx2 = 0 at x = L,
d
dx (h3 d2u

dx2 ) = 0 at x = L.

The eigenpair (ω, u) is a solution of the above nonlinear eigenproblem in which
ω ∈ C and u : [0, L] → C. It is useful to note that this system can be simplified
into a real linear eigenproblem by setting

(8) λ =
ω2

E∞ +
n∑
j=1

Ej
iωτj

1+iωτj

.

Since this formulation involves a self-adjoint positive definite operator, its eigen-
values are positive real. Therefore, the complex pulsation ω is obtained by solving
the real linear eigenproblem for the eigenvalue λ, then by solving the complex poly-
nomial equation of degree n + 2 resulting from (8). The pulsation of interest is
selected within the set

F = {ω ∈ C | Re(ω) > 0 and Im(ω) > 0} .

As the function λ 7→ Re(ω) ∈ F is monotonic, the pulsation corresponding to the
first mode of vibration is obtained from the first eigenvalue of the linear eigenprob-
lem in λ. For differentiability issues we further assume that this λ is simple, and
the corresponding real and imaginary parts of the pulsation ω are denoted by

ωr = Re(ω), ωi = Im(ω).

2.2. Objective function. We aim at maximizing the damping of the beam free
vibration. Several quantities characterizing the damping behavior of viscoelastic
structures are reported in the literature and may be chosen as cost functions. Three
options are discussed below.

First, a common quantity stands in the modal loss factor,

(9) η =
Im(ω2)

Re(ω2)
=

2ωiωr
ω2
r − ω2

i

,

defining the ratio of the dissipated energy to the stored one [28, 21]. However,
it may happen that the minimization simply leads to equalizing ωr and ωi. This
phenomenon occurs more often when large thicknesses and shape variations are
allowed or when the real and imaginary parts of the eigenfrequency are initially
close. Therefore, η will be discarded.

Second, the vibration amplitude criterion defined by the logarithmic decrement
as the ratio of the decay rate to the vibration frequency,

(10) δ =
ωi
ωr
,

is also used [31].
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Finally, a third option is to focus on the decay rate of the vibration and directly
use it as a cost function [4, 19],

(11) α = ωi.

In the following, the quantities δ and α will be considered as possible cost functions.

2.3. Sizing optimization. Our objective is to optimize the beam thickness profile
in order to obtain the best damping properties. The cost function J (λ) writes as:

(12) J (λ) = −ωi(λ)

ωr(λ)
or J (λ) = −ωi(λ),

and it is also denoted by J (λ) = j(h) to highlight its dependence on the design
variable h. Additionally, a volume constraint is applied on the structure and the
minimization problem reads as:

(13) inf
h∈Had

j(h) subject to V (h) =

∫ L

0

h(x)dx = V0,

where V0 represents the initial volume of the beam and the set of admissible thick-
ness profiles is

Had = {h ∈ L∞(0, L) | hmin ≤ h(x) ≤ hmax in [0, L]} .
The computation of the first order derivative of the cost function with respect to

the design variable is required to perform the numerical resolution of the optimiza-

tion problem with a gradient method. We develop the procedure for J (λ) = − ωi(λ)
ωr(λ)

only.
We recall that the Fréchet derivative of a function f : E ⊂ X → Y , where X and

Y are normed vector spaces, at a point h is a continuous linear map Df(h) : X → Y
such that

lim
‖h̃‖→0

‖f(h+ h̃)− f(h)−Df(h)h̃‖Y
‖h̃‖X

= 0.

The partial Fréchet derivative with respect to h is denoted Dh. In the following
we will extensively use standard differential calculus rules, as reported in classical
textbooks.

The derivative of (6) with respect to h is first computed. For clarity the equation
is denoted as

a(h, u, û) = λ(h)b(h, u, û) ∀û ∈ U0,

with a and b bilinear in their second and third arguments, keeping in mind that u
is also a function of h. Applying the chain rule yields

Dha(h, u, û)h̃+a(h,Dhuh̃, û) = Dλ(h)h̃b(h, u, û)+λ(h)
(
Dhb(h, u, û)h̃+ b(h,Dhuh̃, û)

)
∀û ∈ W0.

Using the symmetry of a and b and choosing û = u, we obtain

Dha(h, u, u)h̃ = Dλ(h)h̃b(h, u, u) + λ(h)Dhb(h, u, u)h̃,

whereby

(14) Dλ(h)h̃ =
Dha(h, u, u)h̃− λ(h)Dhb(h, u, u)h̃

b(h, u, u)
.

The application of the composite function rule to the cost function j(h) using (14)
provides the following expression,

Dj(h)h̃ = −
ωr
(
λ(h)

)
∂ωi
∂λ

(
λ(h)

)
− ωi

(
λ(h)

)
∂ωr
∂λ

(
λ(h)

)
ω2
r

(
λ(h)

) ∫ L

0

 1

4ρ
h2

(
d2u
dx2

)2

∫ L
0
hu2dx

− λ(h)
u2∫ L

0
hu2dx

 h̃ dx.
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The real and imaginary parts of the derivative of ω with respect to λ is found by
rewritting (8) as

ω2 = λ

E∞ +

n∑
j=1

Ej
iωτj

1 + iωτj

 ,

which entails

2ω
dω

dλ
= E∞+

n∑
j=1

Ej
iωτj

1 + iωτj
+λ

n∑
j=1

Ej

(
iτj

1 + iωτj

dω

dλ
+ iωτj

−iτj dωdλ
(1 + iωτj)2

)
.

After simplification we arrive at

dω

dλ
=

E∞ +
n∑
j=1

Ej
iωτj

1+iωτj

2ω − λ
n∑
j=1

Ej
iτj

(1+iωτj)2

,

and we infer dωr
dλ = Re

(
dω
dλ

)
and dωi

dλ = Im
(
dω
dλ

)
.

This paper is limited to eigenvalue optimization problems which are self-adjoint,
the work could be extended to other objective functions through the construction
and resolution of the adjoint problem.

2.4. Numerical methods. The bending problem of a viscoelastic cantilever beam
is a fourth-order problem set in a subspace of H2(0, L), hence conforming finite
elements need to be C1. This C1 continuity is a rather strong restriction and causes
some computational difficulties as the finite element space has a more complex
structure and a significantly larger dimension compared with C0 elements. In this
1D problem we bypass this difficulty with the help of a mixed formulation.

The mixed formulation is based on the introduction of the additional variable
v = − h3

12ρ
d2u
dx2 , with the help of which the strong form (7) can be rewritten as

− d2v
dx2 = λhu on (0, L) ,

−d
2u
dx2 = 12ρh−3v on (0, L) ,

u = 0 at x = 0,

v = 0 at x = L,
du
dx = 0 at x = 0,
dv
dx = 0 at x = L.

Setting

U1 =
{

(u, v) ∈ H1([0, L],C)×H1([0, L],C) | u|x=0 = 0, v|x=L = 0
}
,

we have the corresponding variational formulation: find (u, v) ∈ U1, such that

(15)


∫ L

0

dv

dx

dû

dx
dx = λ

∫ L

0

huû dx∫ L

0

du

dx

dv̂

dx
dx−

∫ L

0

12ρh−3vv̂ dx = 0

∀(û, v̂) ∈ U1.

All algorithms discussed in this paper were implemented in FreeFem++ [22], an
open-source PDE solver using the finite element method. In the mixed formulation
the eigenfunction belongs to H1, therefore the problem can be solved with usual
finite elements such as classic P1 elements. The linear eigenproblem is solved using
the ARPACK library included in FreeFem++, and the roots of the complex poly-
nomial arising from (8) are found using Python polynomial solvers from the library
PyFreeFem for the Python/FreeFem++ interface.
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The optimization problem is solved using the steepest descent method with line
search. Moreover, the gradient is regularized using the H1 inner product to prevent
“checkerboards” irregularities [1]. The thickness h now belongs to the regularized
set of admissible thickness profiles

Hregad =
{
h ∈ H1(0, L) | hmin ≤ h(x) ≤ hmax in [0, L]

}
,

and the gradient j′(h) is identified through

〈j′(h), h̃〉H1 = Dj(h)h̃ ∀h̃ ∈ H1(0, L),

using the H1 inner product

〈j′(h), h̃〉H1 =

∫ L

0

(
η2 dj

′(h)

dx

dh̃

dx
+ j′(h)h̃

)
dx

where η is to be interpreted as a regularization length-scale of the order of a mesh
cell size.

The box and volume constraints are enforced by projection. The projection
operator onto Hregad is approximated by the projection onto Had given by(

Pad(h)
)
(x) = max (hmin,min(hmax, h(x) + `)) ,

where ` is determined by bisection such that
∫ L

0
Pad(h)dx = V0, using the mono-

tonicity of the function

`→ V (`) =

∫ L

0

max (hmin,min(hmax, h(x) + `)) dx.

This projection method ensures that the constraints are satisfied at each iteration.
A 200 × 1 mesh is used to solve the problem. Finer meshes have shown to

provide similar results. The optimization algorithm stops when the relative change

of the objective function Jn−Jn+1

Jn+1
, where Jn is the value of the objective function

at iteration n, reaches a small enough value ξ0 = 10−4.

2.5. Materials of interest. Polymers are good candidates for damped oscillation
applications as they show linear viscoelastic properties at infinitesimal strain that
can be tailored according to the physics and chemistry of the polymers. Their
linear viscoelasticity may be simply characterized by dynamic mechanical analysis
in torsion or in uniaxial tension. The sinusoidal mechanical tests give access to
either the shear or the Young’s storage and loss moduli with respect to the applied
frequency. The generalized Maxwell model parameters (Figure 2) are then obtained
by a mere fit of the experimental data. In order to run simulations close to realistic
applications, we consider generalized Maxwell model parameters fit on the linear
viscoelastic behavior measured in tension of an actual amorphous acrylate network
(Figure 3) [14]. The model is characterized by the set of parameters table 1. For
later plate vibration applications, the bulk modulus K may be assumed elastic
constant equal to 3000 MPa. While this assumption is not strictly correct, it is
often made [11, 10] since the viscoelasticity of polymers upon hydrostatic loadings
is very difficult to measure experimentally, and while the Young’s modulus drops
of about three order of magnitude from the high to the low frequencies, the bulk
modulus changes from a factor two or three only [8]. With this assumption, the

frequency dependent Poisson’s ratio can be simply calculated, νj =
3K−Ej

6K [34].
Note that in general several relaxation times τj are required to provide an accu-

rate representation of the linear viscoelasticity of an actual polymer. This renders
difficult the study of the impact of material parameters on the presented results.
Therefore, the simpler Zener model consisting in only one Maxwell viscous branch
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Figure 3. Storage modulus master curve and generalized Maxwell
model fit for an acrylate polymer network.

E∞ = 6.2 MPa

Ej (MPa) τj (s)

4.761× 102 1.396× 10−7

2.126× 102 1.054× 10−6

58.665 7.231× 10−6

12.255 6.001× 10−5

2.012 4.526× 10−4

7.866× 10−1 1.582× 10−3

Table 1. Generalized Maxwell model parameters used to fit ex-
perimental data

in parallel with an elastic branch will also be considered, limiting the model pa-
rameters to E∞, E1, τ1 for the beam, added of ν∞ and ν1 for the plate.

2.6. Results. First, the thickness profile of a cantilever beam of initial thickness
h0, density ρ = 1000kg.m−3 and mechanical properties described Figure 3, is opti-

mized for J (λ) = − ωi(λ)
ωr(λ) . The final thickness profile as well as the free vibration

amplitudes of the beam for L = 60mm and an initial displacement at the free end
u0 = 3mm are given and compared to their initial counterparts in Figure 4. The
best geometry redistributes the material from the free end to the clamped end of
the beam, saturating the bounds. The optimized beam shows a significant increase
in damping compared to the initial beam asserting the relevance of the method.
The good performance of the algorithm can be observed on the objective function
convergence displayed in Figure 5.

In order to study the impact of the material properties on the optimization,
the Zener model is now used. The reference material parameters are conveniently
chosen to E∞ = 18 MPa, E1 = 30 MPa and τ1 = 0.001 s in order to witness
some damping. By increasing E∞, the material tends toward an elastic material,
therefore the damping of the structure decreases. On the contrary, increasing E1,
the modulus of the viscoelastic branch, increases the damping. These tendencies
are noticeable when comparing different initial beams as well as when comparing
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(a) (b)

Figure 4. (a) Thickness profiles of the initial and optimized
beams and (b) free vibration amplitudes of the considered beams
at x = L for material parameters listed in table 1.

Figure 5. Cost function convergence with respect to the num-
ber of iterations for the damping optimization of the generalized
Maxwell rectangular beam.

the optimized beams without affecting significantly the final thickness profile or the
optimization efficiency. When the relaxation time τ1 tends to zero or to infinity
the material behaves as a purely elastic material, these cases stray away from the
purpose of the algorithm. Figure 6 shows the final thickness profile as well as the
free vibration amplitudes of the beam for different values of τ1. The thickness
profile and the free vibration amplitudes of the optimized beams are considerably
different especially for high values of τ1, Figure 6 (b). In this case the material
is distributed at the free end of the beam, similarly to a pendulum, decreasing
both the exponential decay rate and the frequency (respectively the numerator and
denominator of the cost function).

Contrastingly, the maximization of the decay rate α instead of δ leads to the same
optimized thickness profile similar to Figure 4 (a), independently of the material
parameters, assessing δ as the most interesting cost function.

3. Optimization of viscoelastic plates under free vibration

3.1. Plate free vibration problem. The free vibration of thin plates satisfying
the Kirchhoff-Love assumptions is now of interest. Accordingly, both transversal
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(a)

(b)

Figure 6. Impact of the relaxation time on the thickness profile
and free vibration amplitudes of optimized beams for a Zener ma-
terial of same Young’s moduli E∞ = 18 MPa, E1 = 30 MPa and
different relaxation times (a) τ1 = 0.0005 s - (b) τ1 = 0.02 s.

shear and normal strains are neglected. The working domain is now the midsurface
of the 3D plate defined by

(16) Ω =
{

(x, y) ∈ R2 | x ∈ (0, L) , y ∈
(
−W

2
,
W

2

)}
.

Dirichlet conditions are applied on the clamped part denoted ΓD at x = 0 and
stress-free Neumann conditions are applied on the remaining boundaries denoted
ΓN . The isotropic material behavior representation as a generalized Maxwell model
remains. The state equation (2) is adapted to the 2D case where U(x, y, t) represents
the plate deflection. We still consider small deformations. Note that due to the
plate structure, the free vibration is now not only dependent on Young’s modulus
E but also on Poisson’s ratio ν. Adapting (3) to the 2D case, the linear plane strain
tensor ε(U) is expressed as the 3-component vector

ε(U)(x, y, z, t) =


ε1

ε2

γ12

 =


−z ∂

2U
∂x2

−z ∂
2U
∂y2

−2z ∂
2U

∂x∂y

 ,

and the scalar displacement U(x, y, t), with (x, y) ∈ Ω, writes for the free vibration
of the plate as

U(x, y, t) = u(x, y)eiωt.
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The bending plane stress tensor is given by

σ(x, y, z, t) = C∞ε(U)(x, y, z, t) +

∫ t

−∞
R(t− τ)

∂ε(U)

∂τ
(x, y, z, τ)dτ,

where the first term represents the relaxed stress with C∞ the second-order stiffness
tensor at equilibrium, and the second term represents the stress history with R the
second-order tensor of relaxation function. They are expressed as

C∞ =


E∞

1−ν2
∞

ν∞
E∞

1−ν2
∞

0

ν∞
E∞

1−ν2
∞

E∞
1−ν2

∞
0

0 0 E∞
2(1+ν∞)

 , R(τ) =

n∑
j=1


Ej

1−ν2
j

νj
Ej

1−ν2
j

0

νj
Ej

1−ν2
j

Ej
1−ν2

j
0

0 0
Ej

2(1+νj)

 e
− τ
τj .

After integration by parts the expression becomes

(17) σ(x, y, z, t) = C0ε(U)(x, y, z, t) +

∫ t

−∞

∂R

∂τ
(t− τ)ε(U)(x, y, z, τ)dτ,

where the first term represents the instantaneous response by

C0ε(U)(x, y, z, t) =


c11 c12 0

c12 c22 0

0 0 c33



ε1

ε2

γ12

 with



c11 = c22 = E∞
1−ν2

∞
+

n∑
j=1

Ej
1−ν2

j
,

c12 = ν∞
E∞

1−ν2
∞

+
n∑
j=1

νj
Ej

1−ν2
j
,

c33 = E∞
2(1+ν∞) +

n∑
j=1

Ej
2(1+νj)

.

The second term reads

∫ t

−∞

∂R

∂τ
(t−τ)ε(U)(x, y, z, τ)dτ = −

∫ t

−∞


r11 r12 0

r12 r22 0

0 0 r33



ε1

ε2

γ12

 dτ with



r11 = r22 =
n∑
j=1

Ej
(1−ν2

j )τj
e
τ−t
τj ,

r12 =
n∑
j=1

νjEj
(1−ν2

j )τj
e
τ−t
τj ,

r33 =
n∑
j=1

Ej
2(1+νj)τj

e
τ−t
τj ,

which becomes in the frequency domain

∫ t

−∞

∂R

∂τ
(t−τ)ε(U)(x, y, z, τ)dτ =


r̃11 r̃12 0

r̃12 r̃22 0

0 0 r̃33




z ∂
2u
∂x2

z ∂
2u
∂y2

2z ∂2u
∂x∂y

 eiωt with



r̃11 = r̃22 =
n∑
j=1

Ej
(1+iωτj)(1−ν2

j )
,

r̃12 =
n∑
j=1

νj
Ej

(1+iωτj)(1−ν2
j )
,

r̃33 =
n∑
j=1

Ej
2(1+iωτj)(1+νj)

.

The set of kinematically admissible displacements is defined by

(18) U2 =

{
u ∈ H2(Ω,C) | u|ΓD = 0,

du

dn |ΓD
= 0

}
.

Given u, û ∈ U2, the expressions of σ and ε(û) are substituted in (2), and after
explicit integration with respect to z, one obtains the spatial equation:

− ω2ρh

∫
Ω

uû dA+
h3

12

∫
Ω

(
(c11 − r̃11)

(
∂2u

∂x2

∂2û

∂x2
+
∂2u

∂y2

∂2û

∂y2

)
+ (c12 − r̃12)

(
∂2u

∂x2

∂2û

∂y2
+
∂2u

∂y2

∂2û

∂x2

)

+ 2 (c33 − r̃33)
∂2u

∂x∂y

∂2û

∂x∂y

)
dA = 0.
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This equation is then rewritten as a complex polynomial eigenproblem of form

(19)

n+2∑
j=0

ωjaj(h, u, û) = 0 ∀û ∈ U2,

where the pulsation ω denotes the complex eigenvalue of the vibration problem
and aj are complex symmetric bilinear forms independent of ω, explicitly given in
Appendix A. Note that when Poisson’s ratio is identical in every Maxwell branch,
(19) may be factorized similarly to the beam case and simply solved as a real linear
eigenproblem followed by a complex polynomial root-finding problem. However,
considering a constant elastic bulk modulus yields a frequency dependent Poisson’s
ratio, introducing non-linearity in the eigenproblem. Consequently, this factoriza-
tion is no longer valid as the relation between the strain and stress tensors is less
straightforward. The general case is considered in what follows.

3.2. Coupled optimization. This subsection is focused on the coupled optimiza-
tion of the shape and thickness of a thin rectangular plate modeled by the general-
ized Maxwell model. The design parameters are (h,Ω) ∈ Had × Uad. The clamped
boundary ΓD is fixed while the position of the free boundary ΓN is subject to
optimization. An inner shape denoted by Ωf is fixed in the working domain as a
geometrical constraint, see Figure 7. The main purpose of this constraint is to pre-
vent possible trivial results with accumulated material at the clamped boundaries,
usually in the form of circular shapes, which may be less interesting for potential
applications. The set of admissible shapes Uad is then defined by

Figure 7. Representation of the initial plate with the geometric constraint.

Uad =
{

Ω ∈ R2 | ΓD ⊂ ∂Ω,Ωf ⊂ Ω
}
,

while the set of admissible thickness profiles becomes

Had = {h ∈ L∞(Ω) | hmin ≤ h(x, y) ≤ hmax in Ω} .

For this problem the complex pulsation ω = ωr + iωi depends implicitly on h and
Ω. Using the logarithmic decrement as cost function

(20) J (h,Ω) = −ωi(h,Ω)

ωr(h,Ω)

and the volume constraint, the minimization problems reads:

(21) inf
(h,Ω)∈Had×Uad

J (h,Ω) subject to V (h,Ω) =

∫
Ω

h(x, y)dA = V0.
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3.2.1. Sizing optimization. The proposed resolution method is a coupled optimiza-
tion alternating sizing and shape optimization, both using a gradient algorithm.
The sizing optimization is performed using the derivative of J with respect to the
thickness. In this subsection the shape Ω is fixed and the pulsation is denoted ω(h).

The derivative of (19) is first established. As each aj is a bilinear form we obtain

n+2∑
j=0

jω(h)j−1Dω(h)h̃ aj(h, u, û)+ω(h)j
(
Dhaj(h, u, û)h̃+aj(h,Dhuh̃, û)

)
= 0 ∀û ∈ U2.

Using the symmetry of aj and chosing û = u we arrive at

n+2∑
j=0

jω(h)j−1Dω(h)h̃ aj(h, u, u) + ω(h)jDhaj(h, u, u)h̃ = 0,

whence

(22) Dω(h)h̃ = −

n+2∑
j=0

ω(h)jDhaj(h, u, u)h̃

n+2∑
j=1

jω(h)j−1aj(h, u, u)

.

Using the expression of the bilinear forms as aj(h, u, û) =
∫

Ω
gj(h(x), u(x), û(x))dA,

(22) can be rewritten in the form

(23) Dω(h)h̃ =

∫
Ω

W (h, u, u)h̃ dA, W (h, u, u)h̃ = −

n+2∑
j=0

ω(h)jDhgj(h, u, u)h̃

n+2∑
j=1

jω(h)j−1aj(h, u, u)

,

where the duality pairing Dhgj(h, u, u)h̃ is simply an algebraic product. The chain
rule applied to the cost function J (h) provides the expression

(24) DJ (h)h̃ = −ωr(h)Dωi(h)h̃− ωi(h)Dωr(h)h̃

ωr(h)2
.

Plugging (23) into (24) yields

(25) DJ (h)h̃ =

∫
Ω

−
ωr(h) Im

(
W (h, u, u)

)
− ωi(h) Re

(
W (h, u, u)

)
ωr(h)2

h̃ dA,

from which the gradient relatively to the L2-inner product is immediately inferred.

3.2.2. Shape optimization. Shape optimization is performed by means of the con-
cept of shape derivative. We use the framework of Murat-Simon [32] following the
spirit of Hadamard’s method, see also [1, 23]. Given a reference domain Ω, we
consider the perturbed domain

Ωθ = (Id+ θ)Ω with θ ∈W 1,∞(R2,R2).

This θ can be seen as a (bounded and Lipschitz) vector field advecting the reference
domain. For any θ small enough in the norm of W 1,∞(R2,R2) the map (Id+ θ) is
a bijection of R2.

Definition 3.1. The shape derivative of a functional F (Ωθ) at Ω is the Fréchet
derivative of the mapping θ 7→ F ((Id + θ)Ω) at θ = 0 which can be expressed as
follows:

F ((Id+ θ)Ω) = F (Ω) +DΩF (Ω)θ + o(θ) with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0
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for all θ ∈W 1,∞(R2,R2), where DΩF (Ω) is a continuous linear form on W 1,∞(R2,R2)
called the shape derivative of F .

We recall a classical result on the shape derivatives, see [1] for a proof.

Lemma 3.1. Given f ∈W 1,1(R2), consider the functional

F (Ω) =

∫
Ω

f(x)dA.

Then F is shape differentiable at Ω and its shape derivative is

DΩF (Ω)θ =

∫
Ω

div
(
θ(x)f(x)

)
dA =

∫
∂Ω

f(s)θ(s).n(s)ds.

Before computing the shape derivative in the present context, the evolution of the
thickness during the shape optimization has to be specified. Following the frame-
work of [20], the thickness profile h will be transported by the same diffeomorphism
while deforming the shape:

hθ = h ◦ (Id+ θ)−1.

The cost function is now denoted by

j(Ω) = J (hθ,Ω),

and for the sake of clarity the pulsation ω(hθ,Ω) is simply denoted ω. The problem
(19) is rewritten as

n+2∑
j=0

ωjaj(h,Ω, u, û) = 0 ∀û ∈ U2,

where the complex symmetric bilinear forms are expressed as

aj(h,Ω, u, û) =

∫
Ω

gj(h, u, û)dA ∀j ∈ [[0, n+ 2]].

Proposition 3.1. For any θ ∈W 1,∞(R2,R2) such that θ = 0 on ΓD and Ωf ⊂ Ω,
the shape derivative of j(Ω) is given by

(26)

DΩj(Ω)θ =−
∫

ΓN

ωr Im
(
f(ω, h, u)

)
− ωi Re

(
f(ω, h, u)

)
ω2
r

θ.n ds

+

∫
Ω

ωrDhωi − ωiDhωr
ω2
r

θ.∇h dA,

where f(ω, h, u) is defined by

(27) f(ω, h, u) = −

n+2∑
j=0

ωjgj(h, u, u)

n+2∑
j=1

jωj−1aj(h,Ω, u, u)

.

Proof. Using the chain rule and the linearity of aj , the derivative of problem (19)
with respect to the shape with u and û fixed, following the spirit of Céa’s method
[9], writes as:

n+2∑
j=0

jωj−1DΩωθ aj(h,Ω, u, û)+ωj
(
DΩaj(h,Ω, u, û)θ+aj(h,Ω, DΩuθ, û)

)
= 0 ∀û ∈ U2.
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By symmetry of aj and chosing û = u we obtain

n+2∑
j=0

jωj−1DΩωθ aj(h,Ω, u, u) + ωjDΩaj(h,Ω, u, u)θ = 0,

thence

DΩωθ = −

n+2∑
j=0

ωjDΩaj(h,Ω, u, u)θ

n+2∑
j=1

jωj−1aj(h,Ω, u, u)

.

By applying Lemma 3.1 the shape derivative of ω is expressed as:

(28) DΩωθ =

∫
ΓN

−

n+2∑
j=0

ωjgj(h, u, u)

n+2∑
j=1

jωj−1aj(h,Ω, u, u)

θ.n ds =

∫
ΓN

f(ω, h, u)θ.n ds.

For small θ the Taylor expansion of θ 7→ hθ reads

hθ = h ◦ (Id+ θ)−1 = h− θ.∇h+ o(θ),

the shape derivative of the cost function then writes as

DΩj(Ω)θ = DΩJ (h,Ω)θ −
∫

Ω

DhJ (h,Ω)θ.∇h dA.

The chain rule now yields

DΩj(Ω)θ = −ωrDΩωi − ωiDΩωr
ω2
r

θ +

∫
Ω

ωrDhωi − ωiDhωr
ω2
r

θ.∇h dA.

Substituting the shape derivative of ω using (28), we obtain the claim. �

Following the same method, the shape derivative of the volume v(Ω) =
∫

Ω
hθ(x)dA

is found as

(29) DΩv(Ω)θ =

∫
Γ

hθ.nds−
∫

Ω

θ.∇hdA.

3.3. Numerical methods. The bending problem of a viscoelastic cantilever plate
is a fourth-order problem, however in 2D the mixed formulation requires consider-
able additional work [30]. Here non-conforming Morley elements are used for the
resolution of the variational formulation. In order to solve the complex polynomial
eigenproblem (19), we employ polynomial eigensolvers from the library SLEPc [24]
which has been specifically interfaced with FreeFem++ for this study.

The general procedure for the coupled optimization is to alternatively optimize
the thickness and the shape, both by gradient descent using line search. The
thickness h is updated at each iteration using the previously introduced method
and the shape Ω is updated every m iterations using the Hadamard’s boundary
variation method as well as the mesh deformation method. Changing m affects
the convergence rate but can also lead to different local minima, the shown results
have been obtained with m = 3 which seemed to be the most efficient. Contrary
to the beam case, the coupled optimization of plates is prone to local minima
issues. Several optimizations with different initializations have been performed
and compared for each result to reduce the possibility of suboptimal designs. A
100x50 structured triangular mesh is used for the numerical resolution of the sizing
optimization problem and a 100x50 unstructured triangular mesh is used for the
shape and coupled optimizations. Similar results are obtained for finer meshes.
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In order to deform the mesh the displacement field θ ∈ H1(Ω,R2) advecting the
shape is constructed from the linear combination of the shape derivative of the cost
function (26) and the shape derivative of the volume (29):

(30)

DΩ (j + `v) (Ω)θ =

∫
ΓN

(
−
ωr Im

(
f(ω, h, u)

)
− ωi Re

(
f(ω, h, u)

)
ω2
r

+ `h

)
θ.n ds

+

∫
Ω

(
ωrDhωi − ωiDhωr

ω2
r

− `

)
θ.∇h dA,

where ` is the Lagrange multiplier associated with the volume constraint and f
has been defined in (27). Simple ideas to determine the advection field could be
used where θ is not only defined on the boundaries but also inside the shape as
mentioned in [20]. While this allows less frequent remeshing compared to an advec-
tion field defined only on the boundaries, it results in the discontinuity of θ at the
boundaries, which represents a major drawback. Therefore, a regularization of θ is
performed increasing the smoothness of the solution and avoiding potential bound-
ary oscillations. We again rely on a regularization through the H1 inner product
by

(31)

∫
Ω

(η2∇θ · ∇θ̂ + θ · θ̂)dA = −DΩ (j + `v) (Ω)θ̂ ∀θ̂ ∈ H1(Ω),

which implies that the advection field θ is then solution of the following system:

(32)


−η2∆θ + θ =

(
−ωrDhωi−ωiDhωrω2

r
+ `
)
∇h in Ω

θ = 0 on ΓD

η2 ∂θ
∂n =

(
Im
(
f(ω)

)
ωr−ωi Re

(
f(ω)

)
ω2
r

− `h
)
n on ΓN .

Here the regularization parameter η is of the order of a mesh cell size. Finally, the
whole mesh is deformed by the advection field θ solution of (32) and a remeshing
is performed at each update of the shape to ensure a better mesh quality. The
smoothness of θ enables less frequent remeshing, reducing the computational cost.
The constraints are applied by projecting h and θ on the admissible sets Had and
Uad respectively, noting that the latter merely consists in adjusting the Lagrange
multiplier `.

In this work, thermoset polymers have been considered since E∞ has been chosen
different from zero. One could also apply the optimization problem to viscous
thermoplastics. In this case E∞ is null and so is a0, the term of degree zero of
the polynomial eigenproblem, which can be an issue for the convergence of the
eigensolver. A mere factorization by ω performed beforehand reduces the degree of
the polynomial by one and considerably increases the accuracy of the solver.

3.4. Results.

3.4.1. Sizing optimization. First, the sizing optimization of several viscoelastic can-
tilever plates is performed. The bulk modulus is constant, L = 60mm and W =
30mm. The final thickness profile of the optimized plate as well as its free vibration
amplitude are shown and compared to those of the initial plate in Figure 8. Simi-
larly to the beam case, the material is distributed at the clamped end of the plate,
increasing the logarithmic decrement of vibration significantly. The cost function
converges, validating the algorithm efficiency as displayed in Figure 9. Note that
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(a) (b)

Figure 8. (a) Thickness profile of the optimized plate and (b)
free vibration amplitudes of the initial and optimized plates at M
for the generalized Maxwell material.

Figure 9. Cost function convergence with respect to the num-
ber of iterations for the damping optimization of the generalized
Maxwell rectangular plate.

the eigenmodes are mostly independent of the material properties and similar from
one optimization to another. Therefore, they will not be further investigated. In
the same way, the final designs of initially shorter and wider plates are similar and
provide no additional information.

The Zener model is now used to explore the impact of the material parameters.
The reference values are still: E∞ = 18 MPa, E1 = 30 MPa, τ1 = 0.001 s, added
of Poisson’s ratio values ν∞ = 0.499 and ν1 = 0.498 corresponding to K = 3
GPa. The modulus E1 has a considerable impact on the final design of the plate
represented Figure 10. If the value of E1 decreases while the other parameters
are kept constant, the free vibration becomes less dampened and the material is
increasingly accumulated to the clamped end of the plate.

The relaxation time is also an impactful parameter, Figure 11 shows the final
designs for 3 different values of τ1. For high values of relaxation time the material
is accumulated at the free extremity of the plate decreasing its frequency and decay
rate. For extreme values of τ1, the behavior tends to be purely elastic, therefore
the corresponding vibration curves for the initial plates are less dampened than
the curve corresponding to an intermediate value. However, the free vibration
amplitudes of the optimized plate for high values of relaxation time are completely
different due to its pendulum-like design.
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(a)

(b)

Figure 10. Thickness profiles and free vibration amplitude for (a)
the reference Zener material and (b) the same material parameters
except for E1 = 40 MPa.

3.4.2. Shape optimization. The shape optimization of the generalized Maxwell ma-
terial is now performed while maintaining the thickness constant. Similarly to the
previous cases, the material is redistributed toward the clamped end of the plate
increasing the frequency and the decay rate of the free vibrating structure (Fig-
ure 12). The shape of the plate significantly changes in order to achieve optimal
performance. Additionally, the final value of the cost function in this example is
close to the final value of the sizing optimization, the comparison of the convergence
curves Figure 9 and 13 shows a similar gain for the selected sets of admissible design
parameters.

3.4.3. Coupled optimization. Both the thickness and the shape are now optimized
alternatively. For the generalized Maxwell viscoelastic material, the final design
is represented Figure 14. The coupled optimization provides a substantial gain in
damping capacity as shown by the vibration curves. The final value of the cost
function is also significantly lower due to the combined optimization of the two
previous design parameters (Figure 15).

The Zener model is now used for material parameter analysis. As for the sizing
optimization, the modulus of the viscoelastic branch E1 has a considerable impact
on the thickness profile but also on the shape of the plate (Figure 16).

The last parameter of interest is Poisson’s ratio. In a first example, ν0 is fixed and
the impact of ν1 on the optimized results is studied. As one read in Figure 17, this
parameter also has a strong impact on the shape of the optimized plate. Although,
their Poisson’s ratios differ for only 0.02, the designs displayed for cases a) and b) are
noticeably different. However, the free vibration amplitudes show that the damping
remains almost unchanged, only the final designs are different. We have obtained
different designs that may drive to similar behavior in terms of free vibrations
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(a)

(b)

(c)

Figure 11. Thickness profiles and free vibration amplitudes of
Zener optimized plates characterized by different relaxation times
(a) τ1 = 0.0005 s (b) τ1 = 0.002 s (c) τ1 = 0.02 s.

which is interesting for accommodating engineering constraints. Assumptions of
either constant Poisson’s ratio or constant bulk modulus are considered. While
the former is the most commonly used and has proved to be a way to simplify
the numerical resolution, the latter may provide a more accurate representation of
actual material behaviors.

Considering our generalized Maxwell material, Poisson’s ratio is first assumed
constant in every Maxwell branch. According to the couples (Ej , τj), two different
configurations may be happening, the final design is either a sharp profile with
saturated bounds (Figure 18), or a smooth profile (Figure 19). When sharp profiles
are obtained, the same local minima are reached for a range of Poisson’s ratio values,
as illustrated by Figure 18, where two sharp configurations have been obtained for
Poisson’s ratio on either side of the threshold value 0.465.

When smooth profiles are obtained, Poisson’s ratio impacts the final design,
but without noticeably modifying the vibration damping. The magnitude of these
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(a) (b)

Figure 12. (a) Optimized shape for a constant 3mm thick plate
and (b) the resulting free vibration amplitudes of the optimized
plate compared to the rectangular plate free vibration.

Figure 13. Cost function convergence with respect to the number
of iterations of the shape optimization for the generalized Maxwell
material.

variations depends on the material, they may be important as previously discussed
or less significant (Figure 19).

Finally, the bulk modulus is assumed constant and the frequency dependence of
Poisson’s ratio is taken into account. Unlike when ν is considered constant, this
assumption ensures that the optimization does not lead to the wrong local mini-
mum when sharp profiles are obtained. For smooth profiles, the results accuracy is
enhanced with increasing ranges of Poisson’s ratio.

3.4.4. A peek at the opposite problem: limiting the damping effect. For other appli-
cations where high frequency and low decay rate are valued, one can be interested
in the minimization of the logarithmic decrement. Running shoes, demanding ef-
ficient bouncing properties, are an example of such applications. Minimizing the
logarithmic decrement of a viscoelastic cantilever plate leads to a structure where
the material is allocated at the free end, saturating the optimization bounds and
decreasing both the vibration frequency and decay rate. In the range of viscoelastic
properties commonly shown by polymers, the material distribution of the optimized
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(a) (b)

Figure 14. (a) Optimized shape and thickness profile for h0 =
3mm initial plate thickness and (b) free vibration amplitudes of
the optimized and initial plates.

Figure 15. Cost function convergence with respect to the num-
ber of iterations for the coupled optimization of the generalized
Maxwell rectangular plate.

plate does not depend on the material parameters and is always similar from one
optimization to another. To satisfy industrial needs, a more flexible objective func-
tion may be used, such as

(33) J (h,Ω) = ωi(h,Ω) + k
1

ωr(h,Ω)

where k is a constant related to the frequency penalty. The penalty parameter
allows to set priority between high vibration frequency and low decay rate depend-
ing on the application. Figure 20 shows the variation of decay rate with respect
to the frequency for various values of k as well as the different final designs. For
k = 1 the shape is identical to the previous case, the material is entirely allocated
to the free end of the plate. As k increases, the material tends to be progressively
redistributed to the clamped end.

4. Conclusion

Viscoelastic structures optimized by the proposed algorithm show a substantially
improved damping capacity. The optimization results also show the high influence
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(a)

(b)

(c)

Figure 16. Thickness profiles and free vibration amplitudes of
the initial and optimized plates for a Zener material and different
modulus (a) E1 = 10 MPa (b) E1 = 30 MPa (c) E1 = 40 MPa.

of some material properties on the final design and on the free vibration ampli-
tudes of the optimized structures. The Generalized Maxwell model used in this
work allows to take into account the frequency dependence of the material proper-
ties. Poisson’s ratio in particular is usually assumed constant in most works but has
proved to be an impactful parameter in some cases. Solving this optimization prob-
lem using polynomial eigensolvers provides a way to apply optimization algorithms
to actual viscoelastic materials whose spectrum of parameters have been deter-
mined experimentally. Therefore, it allows the use of such algorithms for industrial
applications using experimental data.
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(a)

(b)

(c)

Figure 17. Thickness profiles and free vibration amplitudes of
the considered plates for a Zener material and different Poisson’s
ratios (a) ν1 = 0.498 (b) ν1 = 0.48 (c) ν1 = 0.4.
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(a) (b)

Figure 18. Examples of final designs of plates modeled by a Zener
model for different ranges of Poisson’s ratio values (a) ν ≤ 0.465
(b) ν > 0.465.

(a) (b)

Figure 19. Possible designs of optimized plates for a Zener ma-
terial and different Poisson’s ratios (a) ν = 0.2 (b) ν = 0.4.

Appendix A. Expression of the bilinear forms

Let (ω, u) ∈ C× U2 and n ∈ N∗+. The complex polynomial eigenproblem writes:

n+2∑
j=0

ωjaj(u, û) = 0 ∀û ∈ U2,

where the dependence on the thickness h has been dropped for the sake of read-
ability. Denoting

ϕ(u, û) =
∂2u

∂x2

∂2û

∂x2
+
∂2u

∂y2

∂2û

∂y2
,

ψ(u, û) =
∂2u

∂x2

∂2û

∂y2
+
∂2u

∂y2

∂2û

∂x2
,

ξ(u, û) =
∂2u

∂x∂y

∂2û

∂x∂y
,

the bilinear forms are given by

a0 =

∫
Ω

−h
3

12

E0

(1− ν2
0)

(ϕ(u, û) + ν0ψ(u, û) + 2(1− ν0)ξ(u, û)) dA,

a1(u, û) =

∫
Ω

−h
3

12
p1

n∑
k=0

Ek
1− ν2

k

(ϕ(u, û) + νkψ(u, û) + 2(1− νk)ξ(u, û)) dA

+

∫
Ω

h3

12

n∑
k=1

q1,k
Ek

1− ν2
k

(ϕ(u, û) + νkψ(u, û) + 2(1− νk)ξ(u, û)) dA,
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Figure 20. Decay rate with respect to the vibration frequency
and design representations for plate inverse damping J (h,Ω) =
ωi(h,Ω) + k 1

ωr(h,Ω) optimization.

∀j ∈ [[2, n− 1]],

aj(u, û) =

∫
Ω

pj−2ρhuû dA−
∫

Ω

h3

12
pj

n∑
k=0

Ek
1− ν2

k

(ϕ(u, û) + νkψ(u, û) + 2(1− νk)ξ(u, û)) dA

+

∫
Ω

h3

12

n∑
k=1

qj,k
Ek

1− ν2
k

(ϕ(u, û) + νkψ(u, û) + 2(1− νk)ξ(u, û)) dA,

an(u, û) =

∫
Ω

pn−2ρhuû dA−
∫

Ω

h3

12
pn

n∑
k=0

Ek
1− ν2

k

(ϕ(u, û) + νkψ(u, û) + 2(1− νk)ξ(u, û)) dA,

an+1(u, û) =

∫
Ω

pn−1ρhuû dA,

an+2 =

∫
Ω

pnρhuû dA.

In the above the coefficients pj and qj,k are defined through the expansions

n∏
j=1

(1 + iωτj) =

n∑
j=0

pjω
j ,

n∏
j=1
j 6=k

(1 + iωτj) =

n∑
j=0

qj,kω
j .
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