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Approximation and prediction of the

numerical solution of some Burgers

problems

Marc Prévost and Denis Vekemans ∗

Abstract

The Aitken’s ∆2-prediction of Brezinski has already been used by Morandi Cec-
chi, Redivo Zaglia and Scenna in order to approximate the solution of a parabolic
initial-boundary value problem. The method used consists in two consecutive steps :
the approximation with a finite elements method where the solution of system of
nonlinear equations is computed by Gauss-Seidel method, followed by a prediction
with Aitken’s ∆2-process.

By comparison with this method, we use other methods of prediction and in
another way. On the first hand, we not only use the ∆2-prediction and we can
consider a generalization of this method of prediction, the ε-prediction. Moreover,
in this paper, we only make use of vector prediction which is more stable than the
scalar one. On the other hand, the methods of prediction presented will be used in
order to predict the starting vector of the Gauss-Seidel method.

Keywords : approximation, prediction, ε-prediction, vector prediction, Burgers problem

AMS Classification : 65B05, 65N

1 Introduction

From the knowledge of some terms of a sequence, a method of prediction can be used to
obtain an approximation or an estimation of the following ones. When the terms of a
sequence are difficult to compute exactly or even to approximate, it can be interesting to
use methods of prediction. In this paper, the complexity in time to obtain the terms of the
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sequence is very high and induces a special motivation for the use of methods of prediction.
The sequence to be computed in this paper needs the use of Gauss-Seidel method with an
arbitrary initial vector (for approximating the solution of a system of nonlinear equations)
and it often needs many iterations. We will show here that Gauss-Seidel method with a
predicted initial vector is quite performing.

2 Presentation of the Burgers problem

The Burgers problem that will be considered in this paper has already been studied by
Morandi Cecchi, Nociforo and Patuzzo Grego [2].

There are several reasons which lead us to look at this equation : this problem has a
time evolution and it seems to be natural to consider the sequence of the vectors which
define the approximated solution to be predicted as function of time ; it takes a long time
to evaluate each component of the approximated solution because a system of nonlinear
equations has to be solved and so, it makes sense to use methods of prediction ; as usual
solutions of Burgers problem seem to have an exponential behavior, it seems to be a priori

interesting to use the ε-prediction (see [5, theorem 3, pp.29-30]).

Let x ∈ Ω = [a, b] ⊂ IR and t ∈ [0, T ]. We consider the partial differential equation

ut(x, t)−
1

Re
uxx(x, t) + u(x, t)ux(x, t) = f(x, t),

where Re is a real parameter, with the homogeneous boundary conditions

u(x, 0) = u0(x) ; u(a, t) = u(b, t) = 0,

where f(x, t) and u0(x) are given real-valued functions (see [2, (2.1), p44]).

The ”weak solution” of this problem u satisfies

(ut, v) +
1

Re
(ux, vx) + (uux, v) = (f, v), ∀v ∈ H1

0 (Ω),

where (., .) is the inner product in L2(Ω) [2, (2.2), p44].

The numerical discretizated solution

In the sequel, we take f ≡ 0.

The discretization is homogeneous, i.e. ti = i∆t, i ∈ {0, 1, . . . , T/∆t} (∆t chosen) and
xj = a+ j∆x, j ∈ {0, 1, . . . , N} (∆x = (b− a)/N , N chosen).

We denote by ui,j the approximation of the solution u(xj, ti). Then, [2, (4.1), p49] gives
the equation

∆x

6∆t
[ui+1,j+1 + 4ui+1,j + ui+1,j−1 − ui,j+1 − 4ui,j − ui,j−1]
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+
1

36
[u2

i+1,j+1 + ui+1,j+1ui+1,j − ui+1,jui+1,j−1 − u2
i+1,j−1

+2ui+1,j+1ui,j+1 + ui+1,j+1ui,j + ui+1,jui,j+1

−ui+1,jui,j−1 − ui+1,j−1ui,j − 2ui+1,j−1ui,j−1

+3u2
i,j+1 + 3ui,j+1ui,j − 3ui,jui,j−1 − 3u2

i,j−1]

+
1

3Re∆x
[−ui+1,j+1 + 2ui+1,j − ui+1,j−1 − 2ui,j+1 + 4ui,j − 2ui,j−1] = 0. (1)

On the following scheme, the ◦ represent the quantities of u known as boundary condi-
tions, and the ⋆ represent the six quantities appearing in (1).

✲ t

◦
◦
◦
◦
◦
◦
◦
◦
◦

a

Ω

b

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

⋆
⋆
⋆

⋆
⋆
⋆

t0 = 0 ti ti+1

xj−1

xj

xj+1

To obtain the (N − 1) unknowns u1,j for j = 1, 2, . . . , N − 1 (i.e. at t1), we have to
solve a system of (N − 1) nonlinear equations. To compute the (N − 1) unknowns u2,j for
j = 1, 2, . . . , N − 1 (i.e. at t1), we have to solve a system of (N − 1) nonlinear equations.
And so on.

Now, in order to obtain an approximate solution of each of these nonlinear systems, we
can use the nonlinear Gauss-Seidel method. If we suppose that, for a fixed i, ui,j , j =
1, 2, . . . , N − 1 are known, ui+1,j , j = 1, 2, . . . , N − 1 can be computed (iteratively from
u0,j , j = 1, 2, . . . , N − 1 which is known from the homogeneous boundary conditions) by

1. Input parameters (independent of i)

• α←− ∆x/(6∆t),

• β ←− 1/36,

• γ ←− 1/(3Re∆x).

2. Initializations (i fixed)

•
ui+1,j(0)←− ui,j , j = 0, 1, . . . , N, (2)
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• k ←− 1.

3. Recursive rule (the stopping criterium is

|α[ui+1,j+1(k) + 4ui+1,j(k) + ui+1,j−1(k)− ui,j+1 − 4ui,j − ui,j−1]

+β[ui+1,j+1(k)
2 + ui+1,j+1(k)ui+1,j(k)− ui+1,j(k)ui+1,j−1(k)− ui+1,j−1(k)

2

+2ui+1,j+1(k)ui,j+1 + ui+1,j+1(k)ui,j + ui+1,j(k)ui,j+1

−ui+1,j(k)ui,j−1 − ui+1,j−1(k)ui,j − 2ui+1,j−1(k)ui,j−1

+3u2
i,j+1 + 3ui,j+1ui,j − 3ui,jui,j−1 − 3u2

i,j−1]

+γ[−ui+1,j+1(k) + 2ui+1,j(k)− ui+1,j−1(k)− 2ui,j+1 + 4ui,j − 2ui,j−1]| ≤ ξ, (3)

where ξ (the precision of the solution) has an arbitrary value)

• ui+1,0(k)←− 0,

• ui+1,N (k)←− 0,

• ui+1,j(k)←− −α[ui+1,j+1(k − 1) + ui+1,j−1(k)− ui,j+1 − 4ui,j − ui,j−1]
+β[ui+1,j+1(k − 1)2 − ui+1,j−1(k)

2 + 2ui+1,j+1(k − 1)ui,j+1 + ui+1,j+1(k − 1)ui,j

−ui+1,j−1(k)ui,j − 2ui+1,j−1(k)ui,j−1+3u2
i,j+1+3ui,j+1ui,j − 3ui,jui,j−1− 3u2

i,j−1]
/ {4α + β[ui+1,j+1(k − 1)− ui+1,j−1(k) + ui,j+1 − ui,j−1] + 2γ} ,
j = 1, 2, . . . , N − 1,

• k ←− k + 1 (k will be increased as long as the stopping criterium (3) is not
satisfied).

4. Output values

• ui+1,j ←− ui+1,j(k − 1), j = 0, 1, . . . , N .

3 Using the ε-prediction

The problem is that many iterations of the Gauss-Seidel method are generally needed in
the previous algorithm. In order to reduce the complexity in time of this algorithm, we
have to try to change the initialization (2) in order to start the iterations of the Gauss-
Seidel method nearer the solution. In that way, we use the ε-prediction (introduced by
Vekemans [6]) to predict the approximated solution. The ε-prediction is a very simple
(i.e. it does not use special properties of the sequence to predict) method of prediction
which is based on the ε-algorithm (the ε-algorithm of Wynn [7] is used to implement the
Shanks’ tranformation, a transformation for accelerating the convergence [1]).

In this paper, only the ε-prediction is used. For details, the interested reader is refered
to [5]. This method of prediction is based on the ε-algorithm which uses the rhumbus

rule that is : ε
(n−1)
k+2 = ε

(n)
k + 1/(ε

(n)
k+1 − ε

(n−1)
k+1 ), ∀n ≥ 1, ∀k ≥ −1, with ε

(n)
−1 = 0, ∀n and
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ε
(n)
0 = Sn, ∀n, where (Sn)n is the sequence to be accelerated.

ε
(n)
k

ε
(n)
k+1

ε
(n−1)
k+1

ε
(n−1)
k+2

✑
✑✑

◗
◗◗

◗
◗◗

✑
✑✑

Here, only the vector ε-prediction (the interested reader can be refered to [5] for the scalar
ε-prediction) is used (more precisely, the ε2-prediction (i.e. the Aitken’s ∆2-prediction),
the ε4-prediction and the ε6-prediction where the subscript denotes the number of columns
used for the computation). Effectively, on numerical examples, it has been observed
that the use of vector prediction is better than the scalar one because it is more stable.
In fact, we can introduce the vector ε-prediction, in order to generalize the scalar ε-
algorithm to the vector case : the division in the ε-algorithm has just to be replaced
by the pseudo-inverse of a vector in the vector ε-algorithm (i.e. if ̟ is a vector of
IRn, its pseudo-inverse ̟† is given by ̟† = ̟/||̟||22 and so, the rhumbus rule becomes

ε
(n−1)
k+2 = ε

(n)
k +(ε

(n)
k+1− ε

(n−1)
k+1 )†, ∀n ≥ 1, ∀k ≥ −1, with ε

(n)
−1 = 0, ∀n, with ε

(n)
−1 = 0, ∀n and

ε
(n)
0 = Sn, ∀n, where (Sn)n is the sequence of vectors to be accelerated).

How did we use the ε-prediction ?

The method of Morandi Cecchi, Redivo Zaglia and Scenna [4] can be summed up as
an approximation (i.e. with nonlinear Gauss-Seidel method) of the solution at t1 from
the knowledge of the solution at t0, then an approximation of the solution at t2 from the
approximated solution at t1, . . ., then an approximation of the solution at tl+2 (l ∈ IN)
from the approximated solution at tl+1, and only now a prediction (i.e. by mean of
Aitken’s ∆2-prediction) of the solution at tL (L ∈ IN) (L > l+2), from the approximated
solution at tl, tl+1 and tl+2. This is an approximation followed by a method of prediction.

Our method (so called prediction/approximation) is based on the use of the ε-prediction
to evaluate a good starting vector before using Gauss-Seidel method : when looking
at the Gauss-Seidel method for the initialization step, we can see ui+1,j(0) ←− ui,j ,
j = 0, 1, . . . , N (see (2)) ; the idea is now to replace ui+1,j(0)←− ui,j, j = 0, 1, . . . , N, by
ui+1,j(0)←− ui+1,j , j = 0, 1, . . . , N , where ui+1,j is a vector predicted from u0,j , u1,j , u2,j ,
... ui,j , j = 0, 1, . . . , N .

The vector ε2-prediction (respectively ε4-prediction, then ε6-prediction)

This algorithm uses the last three (respectively five, then seven) consecutive values of the
finite sequence to predict. It will define the vector ui+1,·. For example, for i fixed, starting
from a finite sequence (uk,·)k∈{0,1,...,i}, the ε2-prediction (respectively ε4-prediction, then
ε6-prediction) only uses ui−2,·, ui−1,· and ui,· (respectively ui−4,·, ui−3,·, ui−2,·, ui−1,· and
ui,·, then ui−6,·, ui−5,·, ui−4,·, ui−3,·, ui−2,·, ui−1,· and ui,·) and then it predicts the terms
ui+k,·, for k = 1, 2, . . . of the sequence (here, it is just for k = 1 as we only need to predict
one vector) which can be computed as we can see for the vector ε6-prediction (one can
imagine for the vector ε2-prediction or the ε4-prediction) by
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1. Initialization (u0,·, u1,·, . . ., u6,· are supposed to be approximated)

• ε
(l)
0 ← ul,·, l = 0, 1, . . . , 6 ;

• ε
(l)
1 ← (ε

(l+1)
0 − ε

(l)
0 )†, l = 0, 1, . . . , 5 ;

• ε(l)m ← ε
(l+1)
m−2 + (ε

(l+1)
m−1 − ε

(l)
m−1)

†, l = 0, 1, . . . , 6−m;m = 2, 3, . . . , 6 ;

• Storage of the subdiagonal εoldm ← ε(6−m)
m , m = 1, 2, . . . , 6.

u0

u1

u2

u3

u4

u5

u6

ε
(0)
1

ε
(1)
1

ε
(2)
1

ε
(3)
1

ε
(4)
1

εold1

ε
(0)
2

ε
(1)
2

ε
(2)
2

ε
(3)
2

εold2

ε
(0)
3

ε
(1)
3

ε
(2)
3

εold3

ε
(0)
4

ε
(1)
4

εold4

ε
(0)
5

εold5

εold6

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

✑✑✸

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

2. Recursive rule for i = 6, 7, . . . , T/∆t− 1

• εnew5 ← εold5 + (εold6 − εold4 )† ;

• εnew4 ← εold4 + (εnew5 − εold3 )† ;

• εnew3 ← εold3 + (εnew4 − εold2 )† ;

• εnew2 ← εold2 + (εnew3 − εold1 )† ;

• εnew1 ← εold1 + (εnew2 − εold0 )† ;

• ui+1,· ← ui,· + (εnew1 )† ; ui+1,· ← ui+1,·.

ui,·

ui+1,·, predicted value of ui+1,· used to start

the Gauss-Seidel procedure.

εnew1

εold1

εnew2

εold2

εnew3

εold3

εnew4

εold4

εnew5

εold5

εold6

εold6

✑✑✰

✑✑✰

✑✑✰

✑✑✰

✑✑✰

✑✑✰

◗◗s

◗◗s

◗◗s

◗◗s

◗◗s

• Gauss-Seidel procedure with (2 bis) : ui+1,j(0) ←− ui+1,j , j = 0, 1, . . . , N ,
instead of (2) : ui+1,j(0)←− ui,j , j = 0, 1, . . . , N .
And a restorage of the subdiagonal

(a) A← εold1 , εold1 ← (ε
(new)
0 − ε

(old)
0 )† ;

(b) B ← A, A← εold2 , εold2 ← ui,· + (ε
(old)
1 −B)† ;

(c) C ← B, B ← A, A← εoldm , εoldm ← C + (ε
(old)
m−1 −B)†, m = 3, 4, . . . , 6.
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3.1 Remark

Of course, these three methods of prediction (ε2-prediction, ε4-prediction and ε6-pre-
diction) can be generalized to an arbitrary ε2k-prediction for each integer k. However,
there is no need to use expensive methods of prediction (i.e. with ε2k-prediction where
k ≥ 4) because our main goal is to reduce the complexity in time when approximating
the numerical solution of Burgers problems. Moreover, some problem can occur about
numerical stability.

4 Numerical complexity of the algorithms

Divisions Multiplications Additions
vector ε2-prediction 3 + 8( T

∆t
− 2) (N − 1) · (3 + 8( T

∆t
− 2)) (N − 1) · (4 + 8( T

∆t
− 2))

vector ε4-prediction 10 + 16( T
∆t
− 4) (N − 1) · (10 + 16( T

∆t
− 4)) (N − 1) · (16 + 16( T

∆t
− 4))

vector ε6-prediction 21 + 24( T
∆t
− 6) (N − 1) · (21 + 24( T

∆t
− 6)) (N − 1) · (36 + 24( T

∆t
− 6))

Gauss-Seidel (N − 1) ·

T

∆t
∑

i=1

ηi 58(N − 1) ·

T

∆t
∑

i=1

ηi 49(N − 1) ·

T

∆t
∑

i=1

ηi

In the previous array, ηi is the number of iterations of the Gauss-Seidel procedure (de-
pending on ξ) for computing ui,j (moreover, it is self-evident that ηi depends also on the
method of prediction used). Consequently, (N − 1)ηi is the number of iterations of the

Gauss-Seidel procedure for computing ui,., and (N −1) ·
T/∆t
∑

i=1

ηi is the number of iterations

of the Gauss-Seidel procedure for computing ui,., i = 1, 2, . . . , T/∆t.

5 Numerical examples

The results are given for 500 terms (i.e. T/∆t = 500).

Three graphs are given (for each example) which represent the difference between the
approximated solution and the computed solution by the following methods

1. u0 is given. For i = 1, 2, ui is approximated by using Gauss-Seidel method with
ui,j(0) ←− ui−1,j , j = 0, 1, . . . , N (2). For i = 3, 4, . . . , 500, ui is approximated
by using Gauss-Seidel method with ui,j(0) ←− ui,j , j = 0, 1, . . . , N where ui,j is
predicted by the vector ε2-prediction based on ui−3, ui−2 and ui−1 (see Figures 2
and 6).
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2. u0 is given. For i = 1, 2, 3, 4, ui is approximated by using Gauss-Seidel method
with ui,j(0)←− ui−1,j , j = 0, 1, . . . , N (2). For i = 5, 6, . . . , 500, ui is approximated
by using Gauss-Seidel method with ui,j(0) ←− ui,j , j = 0, 1, . . . , N where ui,j is
predicted by the vector ε4-prediction based on ui−5, ui−4,ui−3, ui−2 and ui−1 (see
Figures 3 and 7).

3. u0 is given. For i = 1, 2, 3, 4, 5, 6, ui is approximated by using Gauss-Seidel method
with ui,j(0)←− ui−1,j , j = 0, 1, . . . , N (2). For i = 7, 8, . . . , 500, ui is approximated
by using Gauss-Seidel method with ui,j(0) ←− ui,j , j = 0, 1, . . . , N where ui,j is
predicted by the vector ε6-prediction based on ui−7, ui−6, ui−5, ui−4,ui−3, ui−2 and
ui−1 (see Figures 4 and 8).

In the figures, we give the difference u500,j − ǔ500,j , j = 0, 1, . . . , N (where u denotes the
approximated value and ǔ denotes the predicted/approximated value). In the captions,

GS indicates the number of iterations in the Gauss-Seidel method (i.e. GS =
∑T/∆t

i=0 ηi).
In order to take into account the complexity in time for the different methods, we will
give the value CT representing the equivalent number of multiplications of the algorithm,
which is calculated with the classical rules : for one multiplication or one division, CT = 1
and for one addition, CT = 0.

5.1 The first example

Parameters of the Burgers problem [2, example 1, p54] : Re = 100, a = 0, b = 2,
∆x = 0.05, T = 5, ∆t = 0.01,

u0(x) =
2π

Re

1
4
sin(πx) + sin(2πx)

1 + 1
4
cos(πx) + 1

2
cos(2πx)

,

f(x, t) = 0.

Parameter of the method of Gauss-Seidel : ξ = 1.10−10.

For these special values of parameters, we can explicitly give the exact solution

uexact(x, t) =
2π

Re

1
4
sin(πx)e−π2t/Re + sin(2πx)e−4π2t/Re

1 + 1
4
cos(πx)e−π2t/Re + 1

2
cos(2πx)e−4π2t/Re

.

Figure 1: GS = 4809, CT = 11.06 · 106
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The Figure 1 represents the approximated solution u(x, t) at t = T . The graph of
uexact(x, t) at t = T is nearly the same.

5.1.1 Results

10 20 30 40

-1´10
-9

-5´10
-10

5´10
-10

1´10
-9

10 20 30 40

-1´10
-9

-5´10
-10

5´10
-10

1´10
-9

10 20 30 40

-1´10
-9

-5´10
-10

5´10
-10

1´10
-9

Figure 2: (1) GS = 2857, CT = 6.73 ·106 (2) GS = 1012, CT = 2.64 ·106 (3) GS = 857, CT = 2.45 ·106

5.2 The second example

Parameters of the Burgers problem [2, example 2), p55] : Re = 100, a = 0, b = 2,
∆x = 0.05, T = 5, ∆t = 0.01,

u0(x) =











0 if x = 0
1 if 0 < x < 2
0 if x = 2

,

f(x, t) = 0.

Parameter of the method of Gauss-Seidel : ξ = 1.10−10.

Figure 3: GS = 6852, CT = 15.76 · 106

The Figure 3 represents the approximated solution at t = T

5.2.1 Results
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-5´10
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Figure 4: (1) GS = 3718, CT = 8.71·106 (2) GS = 2058, CT = 5.05·106 (3) GS = 1535, CT = 4.01·106

5.3 Remarks

1. It seems that we have obtained the precision expected by the chosen parameter
of the method of Gauss-Seidel : ξ = 1.10−10 (even for the second example which
presents a discontinuity of u0 at x = 0 and at x = 2).

2. When we consider the values of CT , in the following table

without
prediction

with the vector

ε2-prediction
with the vector

ε4-prediction
with the vector

ε6-prediction

11.06 · 106 6.73 · 106 2.64 · 106 2.45 · 106
First

example

15.76 · 106 8.71 · 106 5.05 · 106 4.01 · 106
Second

example

it appears that there surely exists a method of prediction which is better than the
others. For example, for the two examples, the use of the vector ε4-prediction has
reduced the complexity in time approximatively to the third of the method without
prediction. In fact, there exist two inverse effects :

(a) the more the method of prediction uses terms, the more the complexity in time
for the part of prediction is important ;

(b) the more the method of prediction uses terms, the better is the method of
prediction and the more it reduces the complexity in time for the part of
approximation.

The combination of these effects is often very performing when using methods of
prediction as the vector ε2-prediction or the vector ε4-prediction.

6 Conclusion

Mixing approximation and prediction is certainly the good way of using methods of pre-
diction. As used here, the method of prediction has no effect on the precision obtained.
Moreover, it is very performing when using very simple methods of prediction (vector
ε2-prediction or vector ε4-prediction).

Theoretical properties of consistency in column and in diagonal for vector ε-prediction
are under consideration.
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ences et Technologies de Lille, 1995.

[7] P. Wynn, On a device for computing the em(Sn) transformation. MTAC, 10:91–
96,1956.

11


