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of some Burgers problems

Introduction

From the knowledge of some terms of a sequence, a method of prediction can be used to obtain an approximation or an estimation of the following ones. When the terms of a sequence are difficult to compute exactly or even to approximate, it can be interesting to use methods of prediction. In this paper, the complexity in time to obtain the terms of the sequence is very high and induces a special motivation for the use of methods of prediction. The sequence to be computed in this paper needs the use of Gauss-Seidel method with an arbitrary initial vector (for approximating the solution of a system of nonlinear equations) and it often needs many iterations. We will show here that Gauss-Seidel method with a predicted initial vector is quite performing.

Presentation of the Burgers problem

The Burgers problem that will be considered in this paper has already been studied by Morandi Cecchi, Nociforo and Patuzzo Grego [START_REF] Cecchi | Space-time finite elements numerical solution of Burgers problems[END_REF].

There are several reasons which lead us to look at this equation : this problem has a time evolution and it seems to be natural to consider the sequence of the vectors which define the approximated solution to be predicted as function of time ; it takes a long time to evaluate each component of the approximated solution because a system of nonlinear equations has to be solved and so, it makes sense to use methods of prediction ; as usual solutions of Burgers problem seem to have an exponential behavior, it seems to be a priori interesting to use the ε-prediction (see [5, theorem 3, pp.29-30]).

Let x ∈ Ω = [a, b] ⊂ IR and t ∈ [0, T ]. We consider the partial differential equation u t (x, t) - 1 Re u xx (x, t) + u(x, t)u x (x, t) = f (x, t),
where Re is a real parameter, with the homogeneous boundary conditions u(x, 0) = u 0 (x) ; u(a, t) = u(b, t) = 0, where f (x, t) and u 0 (x) are given real-valued functions (see [2, (2.1), p44]).

The "weak solution" of this problem u satisfies

(u t , v) + 1 Re (u x , v x ) + (uu x , v) = (f, v), ∀v ∈ H 1 0 (Ω), where (., .) is the inner product in L 2 (Ω) [2, (2.2), p44].

The numerical discretizated solution

In the sequel, we take f ≡ 0.

The discretization is homogeneous, i.e. t i = i∆t, i ∈ {0, 1, . . . , T /∆t} (∆t chosen) and

x j = a + j∆x, j ∈ {0, 1, . . . , N } (∆x = (b -a)/N , N chosen).
We denote by u i,j the approximation of the solution u(x j , t i ). Then, [2, (4.1), p49] gives the equation

∆x 6∆t [u i+1,j+1 + 4u i+1,j + u i+1,j-1 -u i,j+1 -4u i,j -u i,j-1 ] + 1 36 [u 2 i+1,j+1 + u i+1,j+1 u i+1,j -u i+1,j u i+1,j-1 -u 2 i+1,j-1 +2u i+1,j+1 u i,j+1 + u i+1,j+1 u i,j + u i+1,j u i,j+1 -u i+1,j u i,j-1 -u i+1,j-1 u i,j -2u i+1,j-1 u i,j-1 +3u 2 i,j+1 + 3u i,j+1 u i,j -3u i,j u i,j-1 -3u 2 i,j-1 ] + 1 3Re∆x [-u i+1,j+1 + 2u i+1,j -u i+1,j-1 -2u i,j+1 + 4u i,j -2u i,j-1 ] = 0. (1) 
On the following scheme, the • represent the quantities of u known as boundary conditions, and the ⋆ represent the six quantities appearing in [START_REF] Brezinski | Extrapolation Methods. Theory and Practice[END_REF].

✲ t • • • • • • • • • a Ω b • • • • • • • • • • • • • • • • • •
To obtain the (N -1) unknowns u 1,j for j = 1, 2, . . . , N -1 (i.e. at t 1 ), we have to solve a system of (N -1) nonlinear equations. To compute the (N -1) unknowns u 2,j for j = 1, 2, . . . , N -1 (i.e. at t 1 ), we have to solve a system of (N -1) nonlinear equations. And so on. Now, in order to obtain an approximate solution of each of these nonlinear systems, we can use the nonlinear Gauss-Seidel method. If we suppose that, for a fixed i, u i,j , j = 1, 2, . . . , N -1 are known, u i+1,j , j = 1, 2, . . . , N -1 can be computed (iteratively from u 0,j , j = 1, 2, . . . , N -1 which is known from the homogeneous boundary conditions) by 1. Input parameters (independent of i)

• α ←-∆x/(6∆t), • β ←-1/36, • γ ←-1/(3Re∆x).

Initializations (i fixed)

• u i+1,j (0) ←-u i,j , j = 0, 1, . . . , N,

• k ←-1.

3. Recursive rule (the stopping criterium is

|α[u i+1,j+1 (k) + 4u i+1,j (k) + u i+1,j-1 (k) -u i,j+1 -4u i,j -u i,j-1 ] +β[u i+1,j+1 (k) 2 + u i+1,j+1 (k)u i+1,j (k) -u i+1,j (k)u i+1,j-1 (k) -u i+1,j-1 (k) 2 +2u i+1,j+1 (k)u i,j+1 + u i+1,j+1 (k)u i,j + u i+1,j (k)u i,j+1 -u i+1,j (k)u i,j-1 -u i+1,j-1 (k)u i,j -2u i+1,j-1 (k)u i,j-1 +3u 2 i,j+1 + 3u i,j+1 u i,j -3u i,j u i,j-1 -3u 2 i,j-1 ] +γ[-u i+1,j+1 (k) + 2u i+1,j (k) -u i+1,j-1 (k) -2u i,j+1 + 4u i,j -2u i,j-1 ]| ≤ ξ, (3)
where ξ (the precision of the solution) has an arbitrary value)

• u i+1,0 (k) ←-0, • u i+1,N (k) ←-0, • u i+1,j (k) ←--α[u i+1,j+1 (k -1) + u i+1,j-1 (k) -u i,j+1 -4u i,j -u i,j-1 ] +β[u i+1,j+1 (k -1) 2 -u i+1,j-1 (k) 2 + 2u i+1,j+1 (k -1)u i,j+1 + u i+1,j+1 (k -1)u i,j -u i+1,j-1 (k)u i,j -2u i+1,j-1 (k)u i,j-1 + 3u 2 i,j+1 + 3u i,j+1 u i,j -3u i,j u i,j-1 -3u 2 i,j-1 ] / {4α + β[u i+1,j+1 (k -1) -u i+1,j-1 (k) + u i,j+1 -u i,j-1 ] + 2γ} , j = 1, 2, . . . , N -1,
• k ←-k + 1 (k will be increased as long as the stopping criterium (3) is not satisfied).

Output values

• u i+1,j ←-u i+1,j (k -1), j = 0, 1, . . . , N .

Using the ε-prediction

The problem is that many iterations of the Gauss-Seidel method are generally needed in the previous algorithm. In order to reduce the complexity in time of this algorithm, we have to try to change the initialization (2) in order to start the iterations of the Gauss-Seidel method nearer the solution. In that way, we use the ε-prediction (introduced by Vekemans [START_REF] Vekemans | Algorithmes pour méthodes de prédiction[END_REF]) to predict the approximated solution. The ε-prediction is a very simple (i.e. it does not use special properties of the sequence to predict) method of prediction which is based on the ε-algorithm (the ε-algorithm of Wynn [START_REF] Wynn | On a device for computing the e m (S n ) transformation[END_REF] is used to implement the Shanks' tranformation, a transformation for accelerating the convergence [START_REF] Brezinski | Extrapolation Methods. Theory and Practice[END_REF]).

In this paper, only the ε-prediction is used. For details, the interested reader is refered to [START_REF] Prévost | Partial Padé prediction[END_REF]. This method of prediction is based on the ε-algorithm which uses the rhumbus rule that is : ε

(n-1) k+2 = ε (n) k + 1/(ε (n) k+1 -ε (n-1) k+1 ), ∀n ≥ 1, ∀k ≥ -1, with ε (n) -1 = 0, ∀n and ε (n) 0 = S n , ∀n
, where (S n ) n is the sequence to be accelerated.

ε (n) k ε (n) k+1 ε (n-1) k+1 ε (n-1) k+2 ✑ ✑ ✑ ◗ ◗ ◗ ◗ ◗ ◗ ✑ ✑ ✑
Here, only the vector ε-prediction (the interested reader can be refered to [START_REF] Prévost | Partial Padé prediction[END_REF] for the scalar ε-prediction) is used (more precisely, the ε 2 -prediction (i.e. the Aitken's ∆ 2 -prediction), the ε 4 -prediction and the ε 6 -prediction where the subscript denotes the number of columns used for the computation). Effectively, on numerical examples, it has been observed that the use of vector prediction is better than the scalar one because it is more stable. In fact, we can introduce the vector ε-prediction, in order to generalize the scalar εalgorithm to the vector case : the division in the ε-algorithm has just to be replaced by the pseudo-inverse of a vector in the vector ε-algorithm (i.e. if ̟ is a vector of IR n , its pseudo-inverse ̟ † is given by ̟ † = ̟/||̟|| 2 2 and so, the rhumbus rule becomes ε

(n-1) k+2 = ε (n) k + (ε (n) k+1 -ε (n-1) k+1 ) † , ∀n ≥ 1, ∀k ≥ -1, with ε (n) -1 = 0, ∀n, with ε (n) -1 = 0, ∀n and ε (n) 0 = S n
, ∀n, where (S n ) n is the sequence of vectors to be accelerated).

How did we use the ε-prediction ?

The method of Morandi Cecchi, Redivo Zaglia and Scenna [START_REF] Cecchi | Approximation of the numerical solution of parabolic problems[END_REF] can be summed up as an approximation (i.e. with nonlinear Gauss-Seidel method) of the solution at t 1 from the knowledge of the solution at t 0 , then an approximation of the solution at t 2 from the approximated solution at t 1 , . . ., then an approximation of the solution at t l+2 (l ∈ IN) from the approximated solution at t l+1 , and only now a prediction (i.e. by mean of Aitken's ∆ 2 -prediction) of the solution at t L (L ∈ IN) (L > l + 2), from the approximated solution at t l , t l+1 and t l+2 . This is an approximation followed by a method of prediction.

Our method (so called prediction/approximation) is based on the use of the ε-prediction to evaluate a good starting vector before using Gauss-Seidel method : when looking at the Gauss-Seidel method for the initialization step, we can see u i+1,j (0) ←-u i,j , j = 0, 1, . . . , N (see [START_REF] Cecchi | Space-time finite elements numerical solution of Burgers problems[END_REF]) ; the idea is now to replace u i+1,j (0) ←-u i,j , j = 0, 1, . . . , N, by u i+1,j (0) ←-u i+1,j , j = 0, 1, . . . , N , where u i+1,j is a vector predicted from u 0,j , u 1,j , u 2,j , ... u i,j , j = 0, 1, . . . , N .

The vector ε 2 -prediction (respectively ε 4 -prediction, then ε 6 -prediction)

This algorithm uses the last three (respectively five, then seven) consecutive values of the finite sequence to predict. It will define the vector u i+1,• . For example, for i fixed, starting from a finite sequence (u k,• ) k∈{0,1,...,i} , the ε 2 -prediction (respectively ε 4 -prediction, then ε 6 -prediction) only uses u i-2,• , u i-1,• and u i,• (respectively

u i-4,• , u i-3,• , u i-2,• , u i-1,• and u i,• , then u i-6,• , u i-5,• , u i-4,• , u i-3,• , u i-2,• , u i-1,
• and u i,• ) and then it predicts the terms u i+k,• , for k = 1, 2, . . . of the sequence (here, it is just for k = 1 as we only need to predict one vector) which can be computed as we can see for the vector ε 6 -prediction (one can imagine for the vector ε 2 -prediction or the ε 4 -prediction) by 1. Initialization (u 0,• , u 1,• , . . ., u 6,• are supposed to be approximated)

• ε (l) 0 ← u l,• , l = 0, 1, . . . , 6 ; • ε (l) 1 ← (ε (l+1) 0 -ε (l) 0 ) † , l = 0, 1, . . . , 5 ; • ε (l) m ← ε (l+1) m-2 + (ε (l+1) m-1 -ε (l) m-1 ) † , l = 0, 1, . . . , 6 -m; m = 2, 3, . . . , 6 ; • Storage of the subdiagonal ε old m ← ε (6-m) m , m = 1, 2, . . . , 6. u 0 u 1 u 2 u 3 u 4 u 5 u 6 ε (0) 1 ε (1) 1 ε (2) 1 ε (3) 1 ε (4) 1 ε old 1 ε (0) 2 ε (1) 2 ε (2) 2 ε (3) 2 ε old 2 ε (0) 3 ε (1) 3 ε (2) 3 ε old 3 ε (0) 4 ε (1) 4 ε old 4 ε (0) 5 ε old 5 ε old 6 ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ✑ ✑ ✸ ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s 2.
Recursive rule for i = 6, 7, . . . , T /∆t -1

• ε new 5 ← ε old 5 + (ε old 6 -ε old 4 ) † ; • ε new 4 ← ε old 4 + (ε new 5 -ε old 3 ) † ; • ε new 3 ← ε old 3 + (ε new 4 -ε old 2 ) † ; • ε new 2 ← ε old 2 + (ε new 3 -ε old 1 ) † ; • ε new 1 ← ε old 1 + (ε new 2 -ε old 0 ) † ; • u i+1,• ← u i,• + (ε new 1 ) † ; u i+1,• ← u i+1,• . u i,• u i+1,• , predicted value of u i+1,• used to start
the Gauss-Seidel procedure.

ε new 1 ε old 1 ε new 2 ε old 2 ε new 3 ε old 3 ε new 4 ε old 4 ε new 5 ε old 5 ε old 6 ε old 6 ✑ ✑ ✰ ✑ ✑ ✰ ✑ ✑ ✰ ✑ ✑ ✰ ✑ ✑ ✰ ✑ ✑ ✰ ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s ◗ ◗ s
• Gauss-Seidel procedure with (2 bis) : u i+1,j (0) ←-u i+1,j , j = 0, 1, . . . , N , instead of (2) : u i+1,j (0) ←-u i,j , j = 0, 1, . . . , N . And a restorage of the subdiagonal

(a) A ← ε old 1 , ε old 1 ← (ε (new) 0 -ε (old) 0 ) † ; (b) B ← A, A ← ε old 2 , ε old 2 ← u i,• + (ε (old) 1 -B) † ; (c) C ← B, B ← A, A ← ε old m , ε old m ← C + (ε (old) 
m-1 -B) † , m = 3, 4, . . . , 6.

Remark

Of course, these three methods of prediction (ε 2 -prediction, ε 4 -prediction and ε 6 -prediction) can be generalized to an arbitrary ε 2k -prediction for each integer k. However, there is no need to use expensive methods of prediction (i.e. with ε 2k -prediction where k ≥ 4) because our main goal is to reduce the complexity in time when approximating the numerical solution of Burgers problems. Moreover, some problem can occur about numerical stability.

4 Numerical complexity of the algorithms

Divisions Multiplications Additions vector ε 2 -prediction 3 + 8( T ∆t -2) (N -1) • (3 + 8( T ∆t -2)) (N -1) • (4 + 8( T ∆t -2)) vector ε 4 -prediction 10 + 16( T ∆t -4) (N -1) • (10 + 16( T ∆t -4)) (N -1) • (16 + 16( T ∆t -4)) vector ε 6 -prediction 21 + 24( T ∆t -6) (N -1) • (21 + 24( T ∆t -6)) (N -1) • (36 + 24( T ∆t -6)) Gauss-Seidel (N -1) • T ∆t i=1 η i 58(N -1) • T ∆t i=1 η i 49(N -1) • T ∆t i=1 η i
In the previous array, η i is the number of iterations of the Gauss-Seidel procedure (depending on ξ) for computing u i,j (moreover, it is self-evident that η i depends also on the method of prediction used). Consequently, (N -1)η i is the number of iterations of the Gauss-Seidel procedure for computing u i,. , and (N -1) • T /∆t i=1 η i is the number of iterations of the Gauss-Seidel procedure for computing u i,. , i = 1, 2, . . . , T /∆t.

Numerical examples

The results are given for 500 terms (i.e. T /∆t = 500).

Three graphs are given (for each example) which represent the difference between the approximated solution and the computed solution by the following methods 1. u 0 is given. For i = 1, 2, u i is approximated by using Gauss-Seidel method with u i,j (0) ←-u i-1,j , j = 0, 1, . . . , N (2). For i = 3, 4, . . . , 500, u i is approximated by using Gauss-Seidel method with u i,j (0) ←-u i,j , j = 0, 1, . . . , N where u i,j is predicted by the vector ε 2 -prediction based on u i-3 , u i-2 and u i-1 (see Figures 2 and6).

The Figure 1 represents the approximated solution u(x, t) at t = T . The graph of u exact (x, t) at t = T is nearly the same. 

Results

u 0 (x) =      0 if x = 0 1 if 0 < x < 2 0 if x = 2 , f (x, t) = 0.
Parameter of the method of Gauss-Seidel : ξ = 1.10 -10 . The Figure 3 represents the approximated solution at t = T 

Results

Remarks

1. It seems that we have obtained the precision expected by the chosen parameter of the method of Gauss-Seidel : ξ = 1.10 -10 (even for the second example which presents a discontinuity of u 0 at x = 0 and at x = 2). Second example it appears that there surely exists a method of prediction which is better than the others. For example, for the two examples, the use of the vector ε 4 -prediction has reduced the complexity in time approximatively to the third of the method without prediction. In fact, there exist two inverse effects :

(a) the more the method of prediction uses terms, the more the complexity in time for the part of prediction is important ; (b) the more the method of prediction uses terms, the better is the method of prediction and the more it reduces the complexity in time for the part of approximation.

The combination of these effects is often very performing when using methods of prediction as the vector ε 2 -prediction or the vector ε 4 -prediction.

Conclusion

Mixing approximation and prediction is certainly the good way of using methods of prediction. As used here, the method of prediction has no effect on the precision obtained. Moreover, it is very performing when using very simple methods of prediction (vector ε 2 -prediction or vector ε 4 -prediction).

Theoretical properties of consistency in column and in diagonal for vector ε-prediction are under consideration.

Figure 2 : ( 1 ) 6 5. 2

 2162 Figure 2: (1) GS = 2857, CT = 6.73 • 10 6 (2) GS = 1012, CT = 2.64 • 10 6 (3) GS = 857, CT = 2.45 • 10 6

Figure 3 :

 3 Figure 3: GS = 6852, CT = 15.76 • 10 6

Figure 4 : ( 1 )

 41 Figure 4: (1) GS = 3718, CT = 8.71•10 6 (2) GS = 2058, CT = 5.05•10 6 (3) GS = 1535, CT = 4.01•10 6

  2. When we consider the values of CT , in the following table

	without	with the vector	with the vector	with the vector	
	prediction	ε 2 -prediction	ε 4 -prediction	ε 6 -prediction	
	11.06 • 10 6	6.73 • 10 6	2.64 • 10 6	2.45 • 10 6	First example
	15.76 • 10 6	8.71 • 10 6	5.05 • 10 6	4.01 • 10 6	
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u 0 is given. For i = 1, 2, 3, 4, u i is approximated by using Gauss-Seidel method

with u i,j (0) ←-u i-1,j , j = 0, 1, . . . , N [START_REF] Cecchi | Space-time finite elements numerical solution of Burgers problems[END_REF]. For i = 5, 6, . . . , 500, u i is approximated by using Gauss-Seidel method with u i,j (0) ←-u i,j , j = 0, 1, . . . , N where u i,j is predicted by the vector ε 4 -prediction based on u i-5 , u i-4 ,u i-3 , u i-2 and u i-1 (see Figures 3 and7).

3. u 0 is given. For i = 1, 2, 3, 4, 5, 6, u i is approximated by using Gauss-Seidel method with u i,j (0) ←-u i-1,j , j = 0, 1, . . . , N (2). For i = 7, 8, . . . , 500, u i is approximated by using Gauss-Seidel method with u i,j (0) ←-u i,j , j = 0, 1, . . . , N where u i,j is predicted by the vector ε 6 -prediction based on u i-7 , u i-6 , u i-5 , u i-4 ,u i-3 , u i-2 and u i-1 (see Figures 4 and8).

In the figures, we give the difference u 500,j -ǔ500,j , j = 0, 1, . . . , N (where u denotes the approximated value and ǔ denotes the predicted/approximated value). In the captions, GS indicates the number of iterations in the Gauss-Seidel method (i.e. GS = T /∆t i=0 η i ). In order to take into account the complexity in time for the different methods, we will give the value CT representing the equivalent number of multiplications of the algorithm, which is calculated with the classical rules : for one multiplication or one division, CT = 1 and for one addition, CT = 0. Parameter of the method of Gauss-Seidel : ξ = 1.10 -10 .

The first example

For these special values of parameters, we can explicitly give the exact solution u exact (x, t) = 2π Re 1 4 sin(πx)e -π 2 t/Re + sin(2πx)e -4π 2 t/Re 1 + 1 4 cos(πx)e -π 2 t/Re + 1 2 cos(2πx)e -4π 2 t/Re .