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Abstract

This article explores, theoretically and experimentally, asymmetric absorbers made of detuned and folded quarter
wavelength resonators filled with air or porous materials. When used as acoustic lining in ducts, their thickness
can be sub-wavelength and they can be designed for perfect absorption in broad target frequency bandwidth. The
considered filling porous material can be easily 3D printed and is formed of a structured micro-lattice with variable
lattice constant, allowing precise control of its acoustic properties. The underlying physics of asymmetric absorbers is
discussed through a simplified analysis by means of the transfer matrix method. The behavior of the porous absorbers
is also predicted by a mode-matching technique accounting for the possible couplings between the resonators. An
absorber made of folded quarter-wavelength resonators is optimized, 3D printed and experimentally tested. The
experimental results are in good agreement with the theory and show a mean absorption coefficient of 99% over
almost an octave and below the quarter-wavelength frequency corresponding to the height of the absorber.

Keywords: duct acoustics, perfect absorption, asymmetric absorber, sub-wavelength, additive manufacturing, porous
material

1. Introduction1

A large variety of engineering applications involve duct noise problems such as car exhaust systems, mechanical2

housing ventilation systems, or aircraft engines. The width of the duct varies from less than a centimeter to meters.3

The noise frequency range depends on the main acoustic source, e.g., a car engine operating at a certain rotation speed,4

and of secondary sources such as the interaction of an air flux with the duct walls. Acoustic treatments can reduce5

noise emissions while allowing free air flow: mufflers are designed to reduce the transmission of sound waves, [1],6

anechoic terminations to avoid backward reflection at the end of a duct [2], and absorbers to simultaneously reduce the7

transmission while avoiding reflection, i.e., to absorb sound waves [3]. In this work, we focus on absorbers targeting8

perfect absorption, i.e., no reflection and no transmission, and more specifically on asymmetric absorbers, whose9

losses are carefully controlled by porous materials, that are flush mounted to the walls of a straight duct whose width10

is of the order of centimeters.11

Homogeneous open-cell porous materials are widely used as acoustic treatments. Their behavior is well de-12

scribed by propagation models and their efficiency to operate as broadband acoustic absorbing panels has long been13

theoretically, numerically and experimentally demonstrated. They are sometimes used to control noise propagation14

through ducts, e.g., in porous car mufflers [1]. Nevertheless, when perfect absorption is targeted in ducted propaga-15

tion, porous materials are often set aside so far due to physical reasons, mostly in favor of Helmholtz resonators (HRs)16

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Using conventional porous materials in an optimization problem is frequently17

not fully satisfactory because of the lack of flexibility in the choice of their properties and their low efficiency in the18

sub-wavelength regime. Yet, recent advances in additive manufacturing now makes it possible to easily design and19
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manufacture porous materials having controlled pore shapes and dimensions, which allows to fully control their in-20

trinsic acoustic behavior [14, 15, 16, 17, 18]. This way, the optimization of 3D printed acoustic treatments comprising21

porous materials is not limited to a catalog of existing materials.22

Targeting perfect absorption in a duct or waveguide requires either an asymmetric absorber [3, 10] or the use23

of degenerate resonators with symmetric (monopolar) and antisymmetric (dipolar) resonances [8, 9, 10]. So far,24

asymmetric absorbers achieving very high absorption over a broad target frequency bandwidth are either compact but25

make use of a very narrow waveguide (≤ 1 mm high) [5] or make use of a waveguide of the order of centimeters wide26

but are not compact, i.e., the resonators forming the absorber are spaced by several centimeters [11]. In this work,27

we explore the absorption capabilities of porous asymmetric absorbers because 3D printing allows to easily control28

porous materials intrinsic properties. The studied porous absorbers are composed of locally reacting, detuned and29

possibly folded quarter-wavelength resonators (QWRs) filled with porous materials with controlled pore size or air.30

The absorbers are flush mounted to the walls of a straight waveguide of a few centimeters wide and of rectangular31

cross-section.32

The objective of this work is twofold: (1) to show that compact absorbers can exhibit a very high absorption over33

broad target frequency bandwidths when flush mounted on waveguides of the order of centimeters wide and (2) to34

show that porous absorbers used in ducted problems can be efficient at frequencies below the quarter-wavelength35

frequency corresponding to the height of the absorbers.36

In a first stage, the physical principles and limitations of asymmetric absorbers are described through a transfer37

matrix method (TMM) analysis. This analysis leads to simple analytical conditions on the surface impedance to38

obtain perfect absorption. This analysis also provides an expression for the minimal absorber length (dimension in39

the direction of propagation of the incident wave) combining the frequency and the size of the duct. This expression40

highlights that the length of the absorber can easily be lower than a quarter of the targeted wavelength λ in air and that41

the real challenge is to consider a waveguide with a cross-section greatly larger than the area of the resonators surface42

connected to the waveguide. In a second stage, the absorbers are optimized by making use of a model that considers43

the potential coupling between the resonators for physically realistic waveguide configurations, demonstrating that an44

absorption coefficient of mean value close to unity over a broad target frequency bandwidth can be achieved in a duct45

using porous resonators in their sub-wavelength regime as acoustic lining. More specifically, a porous absorber with46

a height of less than λ/4, is designed by using folded QWRs to lower the resonance frequencies of the resonators47

without modifying their height. This absorber exhibits experimentally a 99% absorption over almost one octave.48

The article is organized as follows: first, the porous asymmetric absorbers are introduced in Sec. 2. The considered49

porous medium, its manufacturing and its acoustic behavior are presented, along with the geometry of the porous50

absorbers including that of folded porous resonators. Then, the analytical and numerical modeling procedures of51

waveguides lined by porous absorbers are described in Sec. 3. In Sec. 4, the analysis of the asymmetric absorbers52

is performed using TMM predictions. The conditions to reach perfect absorption by means of asymmetric sound53

absorbers are derived and expressed in terms of the resonators surface impedance. In Sec. 5, porous absorbers are54

numerically optimized for realistic conditions. In addition, an example of a sub-wavelength absorber optimized for55

perfect absorption over a broad target frequency range is manufactured and tested experimentally, showing a good56

correlation between measured and predicted absorption.57

2. Porous asymmetric absorbers58

This section introduces the asymmetric porous absorbers studied in this work and their constitutive elements:59

QWRs filled with a porous medium or by air.60

2.1. Asymmetric absorber lining a duct of constant cross section61

Perfect absorption in a duct propagation problem can be obtained when the propagation symmetry is broken [3],62

when degenerated resonators are used [9], or when symmetry inversion frequency is tuned [19]. The simplest system63

is thus an asymmetric absorber [3] that is composed of at least two different resonators placed at a finite distance from64

each other along the duct axial direction. In this work, we focus on ducts of the order of centimeters wide and of65

constant cross section. The absorbers are flush mounted to the walls of the duct walls, so as not to change its cross66

section. This feature is chosen to limit the perturbations of the air flow in the duct. The absorbers line part, or all, of67
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Figure 1: QWR filled with porous medium. (a) Diagram of the porous material microstructure named micro-lattice. The normal direction of the
medium is z and is aligned to the normal direction of the QWRs. (b) QWR of arbitrary cross-section and height h.

the walls of the duct. Usually, the resonators composing the duct absorbers are HRs. We focus here on QWRs filled68

either with air or with a porous medium.69

2.2. Porous medium70

The porous medium filling the QWRs is a micro-lattice. The optimizations are performed considering this specific71

medium for efficiency purposes, but other media such as stochastic foams could have also been used. An idealized72

representation of the micro-lattice is depicted in Fig. 1 (a). This medium is fibrous, structured, periodic, quasi-isotropic73

and can be 3D printed. It is composed of a superposition of layers of parallel rods, each layer being orthogonal to74

the previous one. Each rod is a combination of two filaments of diameter D fused with one another in the vertical75

direction. The vertical, (O, z), distance between the center of two successive filaments is 0.9D. The horizontal distance76

between the center of two rods, i.e., the lattice constant, is named A. Both D and A can be tuned.77

The optimized absorbers are made by additive manufacturing and more specifically by Fused Deposition Modeling78

(FDM) technique. The slicer software and printer used in this work are Simplify3D and RAISE3D Pro2, respectively.79

The extruded material is polylactic acid (PLA). A 200 µm diameter nozzle is used to produce the micro-lattice. The80

manufacturing parameter that controls the lattice constant, A, is named "infill factor", IF = 100/(AD), and is then81

inversely proportional to A.82

2.3. QWRs filled with an anisotropic porous medium or air83

The QWRs of the proposed absorbers are either filled with air or with the micro-lattice. This allows us to control84

the amount of losses introduced in each QWR.85

2.3.1. Equivalent fluid modeling86

To account for the acoustic losses occurring inside the QWRs, they are filled with equivalent fluids that are defined87

by an equivalent density ρeq and an equivalent bulk modulus Keq, both being complex and frequency dependent. Keq is88

a scalar and ρeq is a scalar if the filling medium is isotropic (e.g. air) or is a matrix if the filling medium is anisotropic89

(e.g. the quasi-isotropic micro-lattice).90

The losses in a QWR filled with air arise from the viscous and thermal boundary layers along its walls. These91

losses are accounted for by the Stinson’s model [20] considering an equivalent hydraulic radius to account for any92

type of QWR section. By contrast, the losses in a QWR filled with a porous medium arise mainly from the porous93

medium itself. Its corresponding equivalent fluid is described here by the well-known Johnson–Champoux–Allard–94

Lafarge (JCAL) model [21, 22]. It provides a frequency-dependent description of ρeq and Keq by means of parameters95

depending on the porous medium micro-structure and called JCAL parameters. These are the porosity, φ, the tortuosity96

α∞, the viscous and thermal characteristic lengths, Λ and Λ′ and the viscous and thermal static permeabilities q0 and97

q′0. As can be seen in Fig. C.13 of the Appendix, φ, Λ, Λ′, q0 and q′0 decrease and α∞ increases when the IF increases98

which indicates that the intrinsic losses and the resistivity of the micro-lattice increases when the IF increases (i.e., as99

the lattice constant decreases).100
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Figure 2: (color online) Normalized surface impedance of QWRs filled with homogeneous micro-lattices. The height of the QWRs is 30 mm or
20 mm. The diameter of the manufacturing nozzle is 200 µm and the IF is equal to 5%, 31% or 59%, corresponding to a porosity of 0.98, 0.75 or
0.50, respectively. (a) Normalized surface resistance. (b) Normalized surface reactance.

During the porous absorber optimization, IF can take values comprised between 3% and 70%. In practice, it is only101

possible to manufacture integer percentage values of IF. As the micro-lattice fills QWRs of small lateral dimensions,102

for very low IF values, the lattice constant is close to the lateral size of the QWRs and the micro-lattice can no longer103

be considered as a homogeneous porous medium. For this reason the micro-lattice is replaced by air when the IF104

values are lower than 5%.105

2.3.2. Surface impedance106

Expression of the surface impedance. The QWRs composing the porous absorbers are forced to be of sufficiently107

small lateral dimensions compared to the acoustic wavelength to be considered as locally reacting resonators which108

behavior can be expressed trough a surface impedance simplifying the waveguide propagation equations.109

With an implicit time dependence eiωt, and only accounting for normal propagation into the QWRs (locally re-
acting hypothesis), the surface impedance of a straight QWR filled with an homogeneous equivalent fluid is [22]

Zs = −iZeq cot(keqh), (1)

where h is the height of the QWR, see Fig. 1 (b). keq and Zeq are the equivalent fluid wave number and characteristic110

impedance, respectively, in the normal direction z. keq and Zeq can be derived from ρeq and Keq [23].111

Propagation models that do not account for high order modes in the main waveguide, such as the TMM, require
a length correction hδ at the opening of the QWRs. A purely imaginary impedance is then added to Zs and the QWR
corrected surface impedance is

Zc
s = Zs + iZ0k0hδ, (2)

in which k0 = ω/c0 is the wave number of air in the waveguide and Z0 is the characteristic impedance of the air in the112

waveguide. An expression of hδ is in Ref. [24] for QWRs sections much smaller than 1/k0.113

Discussion about the surface impedance. If a QWR is filled with air and its intrinsic losses are neglected, the surface114

impedance reduces to Zs = −iZ0 cot(k0h). The only parameter of the QWR that controls Zs is thus its height h. The115

surface resistance is zero for all frequencies and the surface reactance vanishes at the resonance frequencies of the116

QWR. Adding the length correction hδ does not change the resistance and slightly shifts the null reactance frequencies.117

In practice, the intrinsic losses of a QWR are never exactly zero. As a consequence, its surface resistance is never118

exactly zero but its surface reactance still vanishes at the resonance frequencies.119

If a QWR is filled with a micro-lattice, Zs still depends on the QWR height h but also on the micro-lattice properties120

which vary with the filaments diameter and the lattice constant. In practice, the lattice constant and the height of the121

QWR can be easily tuned. For a given QWR height and 3D printer nozzle diameter, increasing the micro-lattice IF122

decreases the porous material lattice constant and thus increases its porosity and decreases its resistivity. This results123
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Figure 3: (a) Geometry of the structure of the folded QWRs with respect to ξ. (b) Simplified geometry of the ξ = 1 folded QWR. (c) Normalized
height of the simplified folded QWRs in function of ξ. (d) Normalized section of the simplified folded QWRs in function of ξ.

in an increase of the quality factor of the porous QWR modes. Indeed, as depicted in Fig. 2, the peak of surface124

resistance and of surface reactance at the second quarter-wavelength frequency are sharper for lower IF values and125

the resistance is lower before and after the resistance peak. Moreover, the lower the IF, the higher the resonance126

frequency. Note that the surface resistance is never zero and its minimal value is obtained with the lowest authorized127

value of IF. In addition, as expected from Eq. (1), for a given IF (i.e., a given set of keq and Zeq) decreasing the height128

h of the QWR increases the second quarter-wavelength frequency of the QWR and modifies its surface resistance and129

reactance. In particular, before the second quarter-wavelength frequency, the surface reactance is reduced (see zoom130

in Fig. 2 (b)).131

Therefore, the surface impedance of a QWR filled with a homogeneous micro-lattice can be tuned by varying the132

IF of the micro-lattice and the QWR height. However, this tuning is limited by the fact that the surface impedance133

has peaks and valleys over the frequency range due to the QWR resonances and anti-resonances. Because of the134

intrinsic losses, a null surface resistance cannot be attained. The range of realizable impedance will determine how135

close the absorption coefficient of the absorber is to one. Around the resonance frequency of the QWR, where the136

QWR has the most impact on the absorber behavior, its surface reactance is mostly controlled by the QWR height137

and is approximately equal to −Z0 cot(k0h). The minimum (resp. maximum) reachable surface resistance is obtained138

by minimizing (resp. maximizing) the QWR intrinsic losses. A very permeable (resp. resistive) porous material will139

lead to low (resp. high) losses. The lowest losses are obtained when filling the QWR with air.140

2.3.3. Sub-wavelength folded QWRs141

The term “sub-wavelength” usually indicates that an acoustic treatment of height h reaches perfect absorption at142

normal incidence when rigidly backed for a frequency corresponding to a wavelength in air λ that is much larger than143

4h. In practice, it is used to differentiate conventional porous treatments having a weak sub-wavelength behavior, i.e.,144

that cannot reach perfect absorption at normal incidence with h � λ/4, from other types of resonator based structures145

or resonant structures having a strong sub-wavelength behavior, such as treatments based on HRs. Treatments made of146

porous materials can also achieve sub-wavelength absorption, for instance by incorporating resonant inclusions [25,147

26, 27], optimizing a gradient of properties through their thickness [28, 29, 30] or folding their structure [31, 32, 33].148

To retain the essence of the term “sub-wavelength”, we suggest using it for ducted propagation to qualify an acoustic149

liner whose height is much smaller than λ/4.150
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To reach the sub-wavelength regime, we introduce folded QWRs. The interest of folding the QWRs is that their
acoustic effective height ha is then larger than the bulk QWRs height hb. The sub-wavelength regime can then be
reached since hb < ha ≈ λ/4 while still filling the QWRs by simple homogeneous porous materials or air. Various
folding strategies have been proposed in the literature, in particular for aerospace applications [34, 35]. The QWRs
can be folded in a L- or U-shape or helically folded. The helically folded QWRs presented in Fig. 3 (a) are selected.
Unlike L- and U-shape QWRs, the volume occupied by helically folded QWRs is not affected by the folding as these
QWRs roll-up under themselves. Then, the optimization of a treatment made of a collection of helically folded QWRs
is simple as it does not require topology optimization. These helically folded QWRs have been used in Ref. [33] to
design a metaporous surface exhibiting broadband and sub-wavelength absorption at normal incidence. We now
use them to design a sub-wavelength duct absorber optimized in a particular configuration in §5.3. The parameters
governing the surface impedance of the helically folded QWRs are the number of revolutions ξ of their governing helix
over hb and the IF of their filling micro-lattices (if not replaced by air). The acoustic effective height and section of the
helically folded QWRs is obtained through the comparison of numerical and analytical computations [33]. A ξ-folded
QWR of height hb and section C2 is considered. First, the geometry of the QWR is simplified into an unfolded QWR
of section C2 made of a quartet of straight tubes of height ha and section Q2 as shown in Fig. 3 (b). Both the folded
QWR and the simplified unfolded QWR are filled with an arbitrary equivalent fluid. Then, the reflection coefficient at
normal incidence of the folded QWR is computed numerically. Finally, the ha and Q parameters are selected so that
the reflection coefficient of the simplified QWR computed analytically matches the numerically calculated impedance
of the folded QWR as closely as possible. The analytical reflection coefficient at normal incidence of the unfolded
QWR is given by

RQWR =

C
4Q2 Zc

s − Z0

C
4Q2 Zc

s + Z0
, (3)

with Z0 being the characteristic impedance of the air and Zc
s the corrected surface impedance of the straight tubes,151

Eq. (2). The variations of ha and 4Q2 in function of ξ are presented in Fig. 3 (c, d).152

3. Waveguide modeling153

The acoustic behavior of a flush mounted asymmetric absorber is described by its transmission coefficient T ( f ), its154

reflection coefficient defined for incident waves coming from upstream R+( f ) and its reflection coefficient defined for155

incident waves coming from downstream R−( f ). The absorption coefficient of the absorber is α±( f ) = 1 − |R±( f )|2 −156

|T ( f )|2 and has a maximal value of 1 when the absorption is perfect, i.e., when there is no transmission and no157

reflection for a given incident wave direction.158

This section introduces three methods to predict the acoustic behavior of asymmetric absorbers and to optimize159

them. The amplitude of the sound waves is low enough to consider linear propagation and there is no air flow in the160

waveguide.161

The dimensions of the waveguide cross section are greater than or equal to 1 cm, and the optimization target162

frequency is always greater than 1 kHz. Then, the visco-thermal losses along the rigid walls of the waveguide are163

much smaller than those introduced by the designed absorbers. Moreover, they are uncoupled from the losses of the164

loaded resonators. This way, the predicted losses only arise from the absorbers.165

3.1. Transfer Matrix Method166

The Transfer Matrix Method (TMM) provides an approximate description of the acoustic behavior of a waveguide167

lined by an absorber [36]. The absorbers are formed of point resonators (i.e., with no axial extent) and plane waves168

are assumed to propagate along the waveguide. The possible evanescent coupling between the resonators is therefore169

neglected. While the TMM provides a 1D model that does not account for all the complexity of the problem at hand,170

it still captures the key features. This method is thus useful to derive fundamental design rules for the asymmetric171

absorber.172

The problem considered by the TMM is outlined in Fig. 4: point resonators are connected to a propagation line173

representing the waveguide. The waveguide has a characteristic impedance Z̃0 = Z0/S w with Z0 being the impedance174

of air with no losses (the losses are neglected in the waveguide) and S w the cross-sectional area of the waveguide.175
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Figure 5: Diagram of a waveguide of rectangular section lined by two QWRs filled with equivalent fluids. (a) FEM representation. (b) MMT
representation.

Each point resonator i is modeled by the surface impedance Z̃i = Zc
i /S i where Zc

i is the surface impedance of the176

resonator (including a length correction) and S i is the area of the resonator surface connected to the waveguide. As177

the model is one-dimensional, the respective areas S w and S i allow to represent the correct fluxes. Appendix A178

provides the complete details about the formulation of the TMM model.179

3.2. Realistic waveguide models accounting for possible evanescent coupling180

In this section, two more realistic models are presented to predict the absorption achieved by the porous asym-181

metric absorbers. These models are three-dimensional and include high-order duct modes. The possible couplings182

between resonators are therefore accounted for.183

3.2.1. Finite element method184

A finite element method (FEM) model of the lined waveguide is designed with COMSOL Multiphysics® and used
for validation purposes. The QWRs are filled with an equivalent fluid and the waveguide is filled with air. The losses
in the system only arise from the equivalent fluids. Fig. 5 (a) provides a schematic representation of this model for a
waveguide lined with two straight QWRs filled with equivalent fluids. The main equation solved by the FEM model
is the generalized Helmholtz equation in the fluids (air or equivalent fluid),

ω2

K
p + div(ρ−1gradp) = 0, (4)

where ρ−1 and K are the inverse of the density matrix and the bulk modulus of the fluid, respectively, both being
complex and frequency dependent. Impervious walls are accounted by zero-flux boundary condition

gradp · n = 0, (5)

where n is the normal vector to the walls.185
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The R± and T coefficients of the absorber can be easily retrieved from the FEM simulations [37]. It involves186

projecting the pressure fields onto the modal basis of the rigid waveguide to obtain the modal amplitudes of the187

forward and backward waves and then computing R± and T . Below the first cut-off frequency of the waveguide, the188

reflection and transmission coefficients of the absorber can be directly computed by the same technique as with a189

4-microphone impedance tube (see ISO 10534-2:1998).190

3.2.2. Mode matching191

The mode matching technique (MMT) described by Bi et al. [38] for cylindrical waveguides is adapted here to192

rectangular section waveguides.193

The MMT considers a waveguide of constant section with impedance boundary conditions on the walls, see194

Fig. 5 (b). Unlike the FEM model, the full geometry of the QWRs is not directly represented as the resonators195

are replaced by their effective surface impedance. Rigid walls correspond to an infinite surface impedance. The196

surface impedance is piecewise continuous along the axial direction x and can be continuous or continuous by part197

in the transverse directions. In each duct section, the acoustic fields are decomposed onto the modal basis of the198

hard-wall waveguide. Pressure and axial velocity are matched on the axial interfaces between two duct sections with199

different wall impedances. Since high-order duct modes are included, frequencies above the cut-off frequency of the200

waveguide can be considered. Note that the modeling technique does not require any length correction at the opening201

of the resonators because the coupling is operated via the high-order modes of the waveguides that are accounted for.202

See Appendix B for more details on this MMT model.203

Unlike the TMM, the MMT does not allow to write simple expressions of optimal impedances but it considers the204

potential coupling between the resonators while delivering faster computation times than the FEM model. For this205

reason, the MMT is used to predict the behavior of the absorbers during their optimization.206

4. Conditions for perfect absorption in asymmetric absorbers207

In this section, the TMM model is used to derive conditions to achieve perfect absorption in waveguides with208

asymmetric absorbers. These conditions will be exploited in Sec. 5 to optimize asymmetric absorbers composed of209

QWRs but they are general enough to be applied to any types of resonators that can be considered as point resonators210

as a first approximation. The present analysis focuses on maximizing α+, i.e., minimizing |R+|2 + |T |2. This problem211

is twofold since one has to suppress both the transmission and the reflection at the incident side.212

4.1. Perfect absorption at a single frequency213

4.1.1. Perfect absorption conditions214

Analytical expression of the perfect absorption conditions. We start by considering a simple problem: an absorber215

made of two different point resonators of impedance Z̃1 and Z̃2, respectively, and separated by a distance δ > 0. This216

distance must be non-zero to produce an asymmetric absorber as shown in Fig. 4. Each resonator can be replicated217

and thus replaced by a group of N ≥ 1 identical resonators located at the same axial position, for instance on multiple218

(N) walls lined by the same acoustic treatment.219

The absorber transmission and reflection coefficients are

T =
2β1β2e−ik0δ

2β1β2 + β1 + β2 + i sin(k0δ)e−ik0δ
, (6)

R+ = −
β1e−2ik0δ + β2 + i sin(k0δ)e−ik0δ

2β1β2 + β1 + β2 + i sin(k0δ)e−ik0δ
, (7)

R− = −
β1 + β2e−2ik0δ + i sin(k0δ)e−ik0δ

2β1β2 + β1 + β2 + i sin(k0δ)e−ik0δ
, (8)

with β1( f ) = Z̃1( f )/(NZ̃0) and β2 = Z̃2( f )/(NZ̃0).220

Due to the reciprocity of the system composed of the waveguide lined by the absorber, the expression for T is
symmetric with respect to β1 and β2, i.e., the transmission coefficient of the absorber does not depend on the incident
wave direction or on the ordering of the resonator groups: T (β1, β2) = T (β2, β1). Either the resonator group 1 or
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Figure 6: Real part (dash-dot line) and imaginary part (solid line) of the right-hand side of Eq. (12) with respect to non dimensional distance
between resonators groups.

group 2 can be used to cancel the transmission. Here, the resonator group 2 is chosen to cancel T . To get zero
transmission at a given frequency f , this second group should be designed such that

β2 =
Z̃2( f )
NZ̃0

= 0 ⇔ Zc
2( f ) = 0. (9)

In a less stringent form, a quasi no-transmission condition can be written as

β2 =
Z̃2( f )
NZ̃0

� 1 ⇔
Zc

2( f )
Z0

�
NS 2

S w
. (10)

Assuming that the resonator group 2 cancels the transmission at a given frequency f , the reflection coefficients of
the absorber at that same frequency can be simplified in

R+( f ) = −
β1e−ik0δ + i sin(k0δ)
β1e+ik0δ + i sin(k0δ)

, R−( f ) = −1 , when β2( f ) = 0 . (11)

On the one hand, the downstream reflection coefficient R− is equal to −1, meaning that the pressure wave is fully
reflected by the resonator group 2. On the other hand, the upstream no-reflection condition R+ = 0 can be obtained by
canceling the numerator of R+, leading to

β1( f ) =
Z̃1( f )
NZ̃0

=
1

1 + i cot(k0δ)
⇔

Zc
1( f )
Z0

=
NS 1

S w

1
1 + i cot(k0δ)

. (12)

Discussion of the conditions for perfect absorption . The surface reactance of a resonator vanishes at its resonances.221

If there are no inner losses in a resonator, its surface resistance will vanish at any frequency and the perfect no-222

transmission condition Eq. (9) can be satisfied at the resonance frequencies of the resonator. However, in practice, the223

inner losses of a resonator are never zero. Its surface resistance cannot be exactly equal to zero while a zero surface224

reactance is still reached at the resonance frequencies of the resonator. The lowest transmission that can be achieved225

is limited by the surface resistance of the resonators and will depend on how well the Eq. (10) impedance condition is226

met. This way, for a given normalized surface impedance Zc
2/Z0, the larger NS 2/S w, the lower the transmission. This227

is the fundamental reason why reducing the transmission in narrow waveguides is easier than in wide waveguides.228

Note that duplicating the resonator group 2 and adjusting the new resonator group position can also greatly reduce the229

transmission, as described in Appendix A.3.1. Finally, while the resonator group 2 is responsible of canceling the230

transmission at a given frequency, the resonator group 1 also impacts the transmission at this frequency.231

The resonators impedance of resonator group 1 leading to perfect no-reflection, Eq. (12), is proportional to the ratio232

NS 1/S w and is governed by the distance δ and more precisely the dimensionless variable k0δ as illustrated in Fig. 6.233
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Moreover, Fabry-Perot interferences of the absorber are found whenever k0δ = nπ with n ∈ N (i.e., when δ = nλ/2).234

These interferences imply R+ = −1 for any value of Zc
1: this particular spacing forbids high absorption [3]. Away from235

Fabry-Perot interferences, perfect no-reflection can be obtained as the target resistance is not null. The no-reflection236

condition can also be understood as an impedance matching between the characteristic impedance of the propagation237

line and the impedance at the x position of the resonator group 1 [12]: (NZ̃0)−1 = (iNZ̃0 tan(k0δ))−1 + (Z̃1)−1.238

Perfect absorption consists in reflection and transmission coefficients exactly equal to zero. In practice, the trans-239

mission coefficient is never exactly equal to zero but can be extremely close to zero. The reflection coefficient can be240

exactly equal to zero. Then, perfect absorption is the objective of the optimization problem.241

The ratio between the area of the resonators surface connected to the propagation line NS 1 and NS 2 and the area of242

the propagation line cross-section S w, is common to the quasi no-transmission and no-refection conditions, Eqs. (10)243

and (12) and will appear in other expressions below. As it is an area ratio, it can be related to the leakage flux.244

Merkel et al. [3] , Jiménez et al. [5] and Long et al. [12] have designed asymmetric absorbers made of two HRs245

for perfect absorption at a single frequency by optimizing the absorbers parameters. The absorption is not predicted246

but explained a posteriori of the optimization. The pair of optimized HRs is found to be slightly detuned: the first247

resonance of resonator 2 f2 such that =(Zc
2( f2)) = 0 occurs at slightly lower frequency than that of resonator 1, f1,248

where = denotes the imaginary part of a complex number. The origin of this slight detuning can be explained by249

Eqs. (9) and (12). Resonator 2 makes the transmission vanish at its resonance frequency, f2, Eq. (9). To cancel the250

reflection, the resonator 1 surface reactance must take a small value, Eq. (12). The surface reactance of resonator 1251

is then low and, as the surface reactance of an HR or an homogeneously filled QWR monotonically increases until252

its first anti-resonance, =(Zc
1) = 0 occurs at a frequency f1 slightly different than f2. Resonators close to each other253

(0 < k0δ < π/2) implies that the optimal reactance for resonator 1 is negative at f2 and thus f1 > f2. Conversely,254

π/2 < k0δ < π leads to f2 > f1: the resonance of resonator 1 can occur at a lower frequency than that of resonator 2255

while still respecting the perfect no-reflection condition. Long et al. [11] have also shown that the HRs forming an256

asymmetric absorber decorated for perfect absorption can be tuned at the same resonance frequency. This particular257

configuration occurs for k0δ = π/2.258

Thus, two groups of point resonators (each group can be composed of a single resonator) separated by a distance259

δ can be designed for perfect absorption, with the surface impedance of the resonators of group 2 following Eq. (10)260

and that of group 1 following Eq. (12), as long as k0δ , nπ. To avoid designing unnecessary long absorbers, k0δ < π261

should be used.262

4.1.2. Minimal absorber length263

In many practical applications, the length of the absorber, lA, must be as short as possible. Considering an absorber
made of two different groups of resonators (see Fig. 4), if the surface impedance of the resonators can take any values
at a given frequency, the length of the absorber lAA = δ, can be very small but has to remain greater than zero. In
practice, the reachable values of impedance depend on the type of used resonator and on the resonator dimensions,
as presented in Fig. 2 and discussed in §2.3.2 for QWRs filled with a micro-lattice. The no-transmission condition
Eq. (9), or its approximation Eq. (10), does not depend on δ. For the group 2, it can be reached for instance by using a
QWR filled with air and adjusting its height, or a HR filled with air and adjusting the dimensions of its neck and cavity.
The no-reflection condition Eq. (12) depends on k0δ and is usually harder to achieve because the surface resistance
of the resonator must be of the order of NS 1/S w, i.e., higher than zero but still very low. Its reactance is simpler to
tune by varying the resonator height. Based on these considerations, at the targeted perfect absorption frequency, if
the normalized surface resistance of the resonators composing the group 1 is written<(Zc

1/Z0) = Γ, where< denotes
the real part of a complex number, and if the group 2 cancels the transmission, then achieving no-reflection requires

Γ =
NS 1

S w
sin2(k0δ). (13)

If k0δ tends to zero, i.e., for low frequency and small δ, this expression can be approximated as

δ = lA,min =
λ

2π

√
ΓS w

NS 1
, when k0δ � 1. (14)

This way, if the surface resistance of the group 1 resonators cannot be lower than a value Γ at the targeted perfect ab-264

sorption frequency, the minimum distance between the resonators groups, which is by consequence the minimum ab-265
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Figure 7: Schematic representation of a 1D asymmetric absorber composed of three different groups of resonators (N = 1) able to perfecly absorb
two arbitrary frequencies. Each resonator is located at a different axial position x.

sorber length, is approximated by Eq. (14). Thus, the minimum absorber length is governed by the targeted frequency266

or its corresponding wavelength in air λ, the ratio between the duct section and the resonators section S w/(NS 1), as267

well as the minimal reachable normalized resistance Γ at this frequency. Note that, as shown in Appendix A.3.2,268

increasing the number of resonator groups can help decrease the minimal absorber length but the main features high-269

lighted in Eq. (14) are maintained.270

In the literature, the length of duct liners, lA, is often compared to the longest mostly absorbed wavelength in air, λ,271

or λ/4 [4]. It does not allow to make a fair difficulty of design comparison between the absorbers because, in the view272

of Eq. (14), it is clear that the λ/δ ratio strongly depends on the area of the waveguide cross section, S w, and that the273

optimal impedance values are strongly linked to resonators and waveguide areas ratio, Eqs. (10) and (12). Moreover,274

multiple detuned resonators can be located at the same axial position [12] underlying the importance of accounting275

for the area covered by all the resonators instead of the length of the absorber.276

Instead of comparing lA to λ, we suggest comparing lA to the length λ
√

S w/S A, with S A being the total area of the277

walls of the waveguide covered by the absorber, i.e., the volume of the absorber divided by its height. This expression278

combines three dimensions: the acoustic wavelength, λ, the area of the cross section of the propagation line, S w, and279

the area of the walls of the waveguide covered by the absorber, S A. The height of the absorber is not included in this280

expression because there is no physical link between this height and the minimal length of the absorber.281

4.2. Conditions for perfect absorption at multiple close frequencies282

A pair of resonators can target unidirectional perfect absorption at a given frequency with one implementing the283

quasi-no-transmission impedance, Eq. (10) and with the other one satisfying the no-reflection impedance, Eq. (12).284

Targeting perfect absorption over a broad frequency range requires to couple absorption peaks resulting from a com-285

bination of more than two resonators.286

Long et al. obtained four absorption peaks (α+ ≈ 94%) using eight different HRs placed in two groups of four HRs287

and two close absorption peaks with one reaching 100% using three different HRs placed at different axial positions288

[12]. Long et al. obtained α+ > 95% between 280 and 431 Hz by combining twelve HRs placed in four groups of289

three HRs [11]. Note that, as long as at least two different resonators are placed at different axial positions to break290

the propagation symmetry, placing different resonators at the same axial position is not fundamentally different from291

spacing the different resonators provided they are not interacting, see Appendix A.4. In addition, Guo et al. obtained292

four absorption peaks using five different HRs having an optimized separation distance [39].293

The most straightforward way to target unidirectional perfect absorption at F frequencies, thus forming an asym-294

metric absorber for perfect multiband or broadband absorption, consists in putting together F pairs of resonators, with295

each pair being responsible for a single frequency. However, less than F pairs of resonators, i.e., 2F resonators, can296

be used while still reaching the same level of absorption at F frequencies. In fact, in an ideal case where resonators297

could take any surface impedance value at any frequency, perfect absorption for F frequencies could be achieved by298

a single pair of such resonators. In practice, the impedance of passive resonators such as HRs or QWRs is difficult or299

impossible to tune at several given frequencies simultaneously since the frequency dependence of the impedance is300

prescribed by the underlying physical mechanisms. In particular, standard resonators such as HRs and QWRs filled301

with air can only fulfill the quasi-no-transmission Eq. (10) at their resonance frequencies. The transmission is also302

reduced around the resonance frequencies and the thinner the waveguide, the stronger and the broader the attenuation.303

If the frequencies targeted by the broadband asymmetric absorber are arbitrary and the width of the duct is of the order304

of centimeters, then there should be at least F resonators to cancel the transmission at F frequencies. A multi-order305

resonator, i.e., a resonator composed of multiple resonant elements [13], should be considered as O resonators with306

O being the resonator order. The no-reflection impedance condition Eq. (12), with δ being the distance between the307

11



two resonators responsible for a given frequency, is slightly modified if other resonators are located between these308

two resonators. However, the necessity remains to reach a certain non-zero surface impedance that depends on k0δ to309

cancel the reflection. It can be reached at multiple frequencies by a single resonator. Then, the number of resonators310

of the broadband asymmetric absorber lining a duct having a width of the order of centimeters should at least be equal311

to F + 1 and can be lower than 2F. The absorber shown in Fig. 7 made of three resonators can thus target perfect312

absorption at two distinct frequencies.313

Tuning the distances between the resonators and using a type of resonators whose surface impedance can be easily314

adjusted at several frequencies help in reducing the required number of resonators.315

A minimum of F + 1 resonators is needed to reach unidirectional perfect absorption. To simultaneously reach316

perfect absorption from both sides of the system at the same frequency the absorber can be symmetrized around the317

last resonator. The absorber is then mirror symmetric and composed of 2F + 1 resonators [3]. This number can be318

reduced in the best realistic scenario to F + 2 resonators because F resonators are required to cancel the transmission319

at F frequencies and 1 resonator is required to cancel the reflection in each direction for all frequencies. The resonator320

canceling R+ is placed at the beginning of the absorber and the resonator canceling R− is placed at the end of the321

absorber.322

It is also important to note that every resonator impacts the reflection and transmission coefficients of the absorber323

at all frequencies. The increase of the number of resonators composing an absorber facilitates the obtaining of a high324

absorption and complicates the obtaining of the perfect no-reflexion.325

5. Optimization in realistic conditions326

Based on the TMM analysis presented in the previous section, it is possible to target perfect absorption at a single327

and at multiple frequencies by means of porous asymmetric absorbers. Moreover, the length of the absorbers could328

potentially be shorter than λ/4, provided the waveguide cross-section is not too large and its height is lower than329

λ/4 using folded QWRs. In this section, the porous absorbers are optimized using the more detailed MMT in order330

to show that the key results obtained with the TMM are still valid when possible coupling between the QWRs are331

accounted for.332

5.1. Single frequency optimization333

Absorbers made of two straight (ξ = 0) QWRs are optimized for three different configurations. The absorbers334

cover a single (x, y) wall of the waveguides. The lengths l1 and l2 of the QWRs are set to 5 mm. For simplicity, the335

cross section of the QWRs is square: the width of the QWRs is equal to their length, w1 = w2 = 5 mm. To keep336

the visco-thermal losses negligible in the main duct at the frequency range of interest, its width is ww = 10 mm. In337

order to fully cover the (x, y) wall of the waveguide forming the absorber, the QWRs are duplicated in the transverse338

direction of the waveguide y. Their height h1 and h2 and the IF of their filling micro-lattice are optimized to maximize339

the absorption at f = 2700 Hz corresponding to a wavelength in air λ = 127 mm. For the MMT predictions, 25 and340

2 modes were used in the z and y directions, respectively. Maximizing the absorption coefficient α+ is performed341

with the iterative Nelder-Mead algorithm [40] which is a heuristic direct search method implemented in the Matlab342

function fminsearch.343

The first configuration aims to illustrate the validity of the TMM analysis to predict optimal impedances. It344

consists in a hw = 10 mm waveguide and a long axial rigid section separating the QWRs of δr = 100 mm. The345

optimized parameters and the resulting QWRs surface impedances, Z1 and Z2, are summarized in Tab. 1 and α+( f =346

2700 Hz) = 100%. As expected, the second QWR is filled with air and has a sufficiently low surface impedance to347

strongly diminish the transmission, see Eq. (10). The TMM analysis led to the expression (12) for the impedance348

of the first resonator while the second resonator makes the transmission vanish. As summarized in Tab. 2, in the349

considered case, the TMM predicted an optimal impedance Zc
1/Z0 = 0.39 + 0.20i. For the MMT optimized absorber,350

the normalized surface impedance of the first QWR is close to this value with Z1/Z0 = 0.40 + 0.18i. Note that this351

last impedance value is not adjusted by a length correction because no length correction is needed in the MMT. In352

addition to the impact of the length correction, the small impedance difference with the TMM prediction may come353

from the fact that the second QWR does not perfectly makes the transmission vanish. Another explanation is that a354

coupling still occurs between the two resonators, despite the large distance δr between them, or that the resonators are355

too large to be perfectly modeled as point resonators.356
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The second and third configurations are more realistic: the distance between the two QWRs is reduced to δr =357

5 mm so that the total length of these absorbers is 15 mm = λ/8.5. The waveguide height is increased to either358

hw = 20 mm or hw = 40 mm. Their optimized parameters and the resulting QWRs surface impedances are summarized359

in Tab. 1 and their corresponding absorption coefficients are shown in Fig. 8 by the blue solid line and black dot-dashed360

line, respectively. For the hw = 20 mm waveguide the absorber is able to reach α+( f = 2700 Hz) = 100%. In contrast,361

for the larger waveguide (hw = 40 mm) the absorber achieves α+( f = 2700 Hz) = 90% with a narrower absorption362

peak. In these configurations, the optimal impedance of the first resonator predicted by the TMM, Eq. (12), and363

summarized in Tab. 2 is less accurate than in the first configuration. This is because the resonators are close to each364

other and thus most probably coupled. However, this equation still highlights that a large ratio S w/S 1 requires low365

Z1 that might not be reached by the available porous material. It is the case for the hw = 40 mm waveguide which366

results in an optimized first QWR filled with air. The surface impedance of the first QWR is then solely governed by367

the height of the QWR and its fixed (and thus not tuned) cross-section. Conversely, the first QWR optimal impedance368

for the hw = 20 mm waveguide can be attained by filling it with a tuned micro-lattice and α+ = 100% is then reached.369

These optimizations based on a propagation model that includes the potential coupling between the resonators370

confirm that, just as HRs, straight QWRs filled with homogeneous media (air or porous materials) can be used to371

target perfect absorption in a ducted propagation problem. The QWR placed the farthest from the incident wave372

is filled with air to obtain very low intrinsic losses. The transmission vanishes at the resonance frequency of the373

resonator. The QWR closer to the incident wave is filled with a porous medium with a controlled pore size. This374

way, its intrinsic losses are adjusted such that the absorber made of the two QWRs is impedance-matched with the375

waveguide [12], leading to no reflection. As underlined by Eq. (14), the length of the resulting absorber can be376

smaller than a quarter-wavelength in air at the fully absorbed frequency. These optimizations also show that the377

simple expressions (9) and (12) for the optimal impedances, derived considering no coupling between the resonators,378

give good trends of the actual optimal impedances and reliable predictions for large spacing between the resonators.379

Finally, these optimizations highlight that the critical parameter controlling the minimal absorber length is not only380

the wavelength but also the ratio between the waveguide section and the resonators section.381

Table 1: Optimized parameters and corresponding normalized surface impedances of absorbers made of two QWRs of length l1,2 = 5 mm,
separated by a rigid wall of length δr and lining a (x, y) wall of a waveguide of height hw. The width of the QWRs is equal to that of the waveguide,
w1 = w2 = ww = 5 mm.

hw δr IF1 h1 Z1/Z0 IF2 h2 Z2/Z0
(mm) (mm) (%) (mm) (2700 Hz) (%) (mm) (2700 Hz)

10 100 33.4 27.8 0.40 + 0.18i Air 30.0 0.02 − 0.06i
20 5 8.5 26.4 0.05 − 0.20i Air 29.7 0.02 − 0.08i
40 5 Air 28.4 0.02 − 0.15i Air 29.9 0.02 − 0.08i

Table 2: Optimal corrected surface impedances for perfect absorption at 2700 Hz, according to the TMM analysis assuming point resonators. The
absorbers are made of two QWRs of length l1,2 = 5 mm, separated by a rigid wall of length δr and lining a (x, y) wall of a waveguide of height hw.
The width of the QWRs is equal to that of the waveguide, w1 = w2 = ww = 5 mm.

hw δr δ Zc
1/Z0, Eq. (12) Zc

2/Z0, Eq. (9)
(mm) (mm) (mm) (2700 Hz) (2700 Hz)

10 100 105 0.39 + 0.20i 0.00 + 0.00i
20 5 10 0.06 − 0.10i 0.00 + 0.00i
40 5 10 0.03 − 0.05i 0.00 + 0.00i

5.2. Optimization for two close frequencies382

To target perfect unidirectional absorption at two close frequencies f = 2700 Hz and 3000 Hz, an absorber com-383

posed of three straight (ξ = 0) QWRs is optimized. A hw = 20 mm and ww = 10 mm waveguide is considered and384

w1 = w2 = w3 = l1 = l2 = l3 = 5 mm. As in the configuration described in §5.1, the QWRs are duplicated in the385

transverse direction of the waveguide. First, the parameters h1, h2, h3, IF1, IF2, IF3 of the absorber are optimized for386
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Figure 8: (color online) MMT predicted absorption coefficient of the optimized absorbers made of two QWRs of length l1,2 = 5 mm and separated
by a rigid wall of length δr = 5 mm. The waveguide height is hw = 20 mm (blue solid line) or 40 mm (black dot dashed line).

Table 3: Optimized parameters of the absorbers for maximizing α+ at 2700 Hz and 3000 Hz, made of three QWRs of length l1,2,3 = 5 mm,
separated by δr rigid walls and lining a (x, y) wall of a hw = 20 mm high waveguide. The width of the QWRs is equal to that of the waveguide,
w1 = w2 = w3 = ww = 5 mm and ᾱ = (α(2700 Hz) + α(3000 Hz))/2.

δr IF1 h1 IF2 h2 IF3 h3 ᾱ
(mm) (%) (mm) (%) (mm) (%) (mm)
5.0 20 23.7 Air 30 Air 28.2 0.870
29.0 27.8 23.7 Air 25.6 Air 28.6 0.996
20.0 28.2 23.7 Air 28.6 Air 25.6 0.995
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Figure 9: (color online) MMT predicted absorption coefficient of the optimized absorbers three QWRs of length l1,2,3 = 5 mm. The waveguide
height is 20 mm and the QWRs are separated by rigid walls of length δr = 5 mm (black dot dashed line), 20 mm (red dashed line) or 29 mm (blue
solid line).

a rigid separation distance δr = 5 mm between each QWR. The optimized parameters are given in Tab. 3 and the387

corresponding absorption coefficient is shown in Fig. 9 by a black dot-dashed line. The second and third QWRs are388

filled with air and cancel the transmission at the two targeted frequencies. The first QWR is filled with a micro-lattice389

and is not able to cancel perfectly the reflection at both frequencies. It means that with δr = 5 mm, the optimal390

impedance for the first QWR cannot be realized at these two frequencies with the considered filling porous medium.391

This behavior was already observed in [12] where three HRs with fixed axial separation distance could not reach very392

high absorption at two frequencies.393
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Table 4: Parameters of the folded QWRs composing the optimized ABSA of height hABS A = 30 mm.
Resonator ξ Layer 1 Layer 2 Simulation Manufacture

height (mm) height (mm) IF1(%) IF2(%) IF1(%) IF2(%)
1 0.27 24 6 30 29 26 25
2 0.65 9 21 28 25 34 21
3 1.57 9 21 15 9 12 6
4 0.50 30 - 10 - 7 -
5 0.41 30 - Air - Air -
6 0.86 30 - 8 - 5 -
7 1.01 30 - 8 - 5 -
8 1.19 30 - 7 - 4 -
9 1.33 30 - 9 - 6 -

10 1.91 30 - Air - Air -
11 1.59 30 - Air - Air -
12 1.73 30 - Air - Air -

In a second stage, the distance δr is also optimized, either forcing h2 < h3 or forcing h2 > h3. The optimized394

parameters are given in Tab. 3 and the corresponding absorption coefficients are depicted in Fig. 9 by the blue solid395

line and red dashed line, respectively. In both cases, considering δr as an additional optimization parameter allows396

to reach α+ > 99.5% at the two targeted frequencies. The surface impedance of the first porous QWR is matched to397

the optimal one. The axial position of the tallest QWR filled with air (i.e., the QWR making the transmission vanish398

at the lowest frequency) does not determine if α+ = 100% can be reached or not but it does influence the optimal399

δr and slightly influence the optimal IF1. The advantage of optimizing δr was already noted in [41, 39] where 5400

HRs with optimized axial separation distance could reach very high absorption at 4 frequencies. However, in the401

mentioned work, the total length of the optimized absorber is larger than 1 m. Since the optimal surface impedance402

for the resonator responsible for canceling the transmission, Eq. (12), is k0δ/π periodic, δ can be reduced as long as δ403

mod π/k0 is not modified and as along as the coupling between the resonators is moderate.404

Asymmetric sound absorbers made of QWRs for perfect absorption at multiple frequencies can thus be designed.405

The analysis of the system by means of TMM highlights that the minimal number of resonators to fully absorb F406

arbitrary frequencies is F + 1, as was illustrated by the α+ > 99.5% at two frequencies obtained by three QWRs. No407

clear rule could be derived for the positioning of the resonators responsible for canceling the transmission in function408

of the frequency. A more advanced type of porous absorber is presented in the following section.409

5.3. Broad target frequency bandwidth and sub-wavelength absorption410

Finally, an Asymmetric Broad target frequency bandwidth Sub-wavelength Absorber (ABSA) made of folded411

(ξ ≥ 0) QWRs filled with micro-lattices or air is optimized for perfect absorption. The proposed ABSA has a length412

lABS A = 200 mm, a width of 50 mm and is composed of folded QWRs of height hABS A = 30 mm. It lines the bottom413

wall of a waveguide of height hw = 40 mm and width ww = 50 mm, see Fig. 10 (a). Its open area ratio is then414

hw/(hw + hABS A) = 0.57. It is composed of 12 distinct and closely packed folded QWRs in the axial direction of the415

waveguide. These QWRs are duplicated 3 times along the width of the waveguide. After various numerical tests, it416

was found that a combination of 3 QWRs to make the reflection vanish and 9 QWRs to make the transmission vanish417

gave the most satisfactory results. The QWRs 1 to 3 are responsible for canceling the upstream reflection, R+. They418

are filled with bi-layer micro-lattices to provide more freedom to tune their surface impedance and thus realize the419

optimal surface impedance at multiple frequencies. The QWRs 4 to 12 are filled with a homogeneous micro-lattice420

or with air and are responsible for canceling the transmission. Obviously, QWRs 1 to 3 also have an impact on the421

transmission and QWRs 4 to 12 also have an impact on the reflection.422

5.3.1. Optimization423

The ABSA is optimized to maximize its absorption coefficient over the frequency range f ∈ [1250; 2150] Hz,424

evenly discretized by 24 points. The optimization is performed in two steps due to the large number of optimization425

15



Optimized during the first step

Optimized during the second step

(a)

ww

(b)

hABSA

hw

Incident wave 

1 2 3     4    5    6    7 8 9 10 11 12

Waveguide

ABSA

lABSA

(d)

(e)

(c)

Compression
chamber

Sample holder

Waveguide

ww

Figure 10: (color online) ABSA of length lABS A = 200 mm and height hABS A = 30 mm, flush mounted on a waveguide of height hw = 40 mm
and optimized for maximal average absorption over f ∈ [1250; 2150] Hz. (a) Numerical perspective view of the ABSA lining the waveguide.
(b) Numerical top view of the ABSA. (c) Picture of the duct test bench. (d) Picture of the 3D printed sample mounted in the duct test bench.
(e) Picture of the 3D printed sample, close-up view.

parameters. The folded QWRs labeled 4 to 12 responsible for canceling the transmission are first considered and426

optimized by minimizing the cost function427

JT =
∑

f

|T ( f )|2. (15)

Then, in a second step, all the QWRs (1 to 12) are considered and optimized. The QWRs 4 to 12 are initialized428

with the values found during the first optimization step. The cost function JRT for this second stage is429

JRT =
∑

f

|R+( f )|2 + |T ( f )|2. (16)

The optimized parameters for QWRs 4 to 12 are their ξ and IF. For QWRs 1 to 3, the optimized parameters are430

their ξ, the IF of the two layers named IF1 and IF2 and the height of layer 1, h1, layer 1 being the bottom layer. As431

the height of the folded QWRs is fixed and equal to hABS A, the height of layer 2 is h2 = hABS A − h1. The MMT is still432

used for the predictions of the acoustic behavior of the absorber during the optimization.433

The main role of the resonators can be verified numerically after their optimization. For instance, only considering the434

optimized QWRs 4 to 12 leads to a low transmission and a non controlled reflection in the frequency range of interest.435
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The optimized parameters of the ABSA are summarized in Tab. 4 and the corresponding acoustic behavior is436

presented in Fig. 11 in terms of (a) the absorption coefficient α+, (b) the transmission loss TL = −20 log(|T |) and (c)437

RL = −20 log(|R+|). The reflection and transmission coefficients are expressed in dB to highlight the differences at438

low absolute values. There is good agreement between the MMT predictions (dot-dashed black lines) and the FEM439

validation (solid blue lines). The small discrepancies in frequency and level can be ascribed to the simplified geometry440

of the folded porous QWRs when predicting their surface impedance used by the MMT. The FEM model predicts441

an absorption coefficient α+ ∈ [98.8; 99.6]% over the frequency range f ∈ [1255; 2130] Hz with a mean value of442

ᾱ+ = 99.2%. The TL and the RL are comprised between 20 dB and 40 dB. The frequency f = 1255 Hz corresponds443

to a wavelength in air of λ = 273 mm. The absorber is therefore sub-wavelength with respect to its height with444

hABS A = λ/9.1. Its length is such that lABS A = λ/1.4. Following the discussion in §4.1.2, lABS A = λ
√

S w/S ABS A/0.61.445

For frequencies lower than f = 1255 Hz both TL and α+ drop towards 0. No resonator has a surface impedance446

close enough to zero required to cancel the transmission, Eq. (9). Conversely, the RL exhibits sharp peaks at null447

frequency and f = 666 Hz due to the 0th and 1st Fabry-Pérot interferences associated to the length 200 mm of the448

ABSA [3]. For frequencies above 2130 Hz, the TL and RL are low and start to oscillate for frequencies greater than449

3 × 1255 Hz (α+ follows a similar trend). These oscillations are due to the resonator dynamics bringing their surface450

impedances close to optimal values for no transmission and no reflection because the impedances of QWRs take451

similar values around the QWRs first, third, fifth. . . quarter-wavelength frequencies, see Fig. 2.452

The designed and optimized ABSA is the first compact absorber to achieve α+ > 99% over a broad target fre-453

quency bandwidth while lining a waveguide of the order of centimeters wide. The absorber is compact in the sense454

that the resonators forming the ABSA are closely packed.455

5.3.2. Experimental validation456

We now describe the manufacturing process of the optimized ABSA and its acoustic testing in a rectangular duct457

with grazing incident waves.458

The folded QWRs composing the ABSA are 3D printed using Fused Deposition Modeling (FDM) technique. In459

addition to the 200 µm diameter nozzle responsible for the manufacturing of the micro-lattices (see §2.2), a 400 µm460

diameter nozzle is responsible for the manufacturing of the rigid structures (vertical and helical walls). Four blocks461

of 3 × 3 folded QWRs are manufactured separately and assembled with vacuum grease on their external walls in the462

duct sample holder as depicted in Fig. 10 (c) and (d).463

When the folded QWRs are filled with micro-lattices, the losses of the walls of the QWRs are neglected in all464

models. Experimentally, these additional losses can be approximately compensated by slightly decreasing the losses465

of the filling micro-lattices. To do so, their lattice constant is increased. More precisely, IF is decreased so that the466

micro-lattice porosity is increased by 0.03. This small value originates from the validation tests reported in [33]. The467

manufacturing parameters of the optimized ABSA are summarized in Tab. 4.468

The manufactured ABSA is mounted in the wall of a rectangular duct of inner height hw = 40 mm and width ww =469

50 mm ended by an anechoic termination. This experimental facility and the associated measurement techniques have470

already been introduced and detailed in [42]. On each side of the sample, three microphones are placed and permit the471

measurements of the R+ and T coefficients using a scattering matrix formalism. To that end, acoustic plane waves are472

generated by a compression chamber that can be mounted either upstream or downstream of the measurement section.473

The acoustic signal consists of a sine sweep going from 500 to 4000 Hz with a step of 2 Hz. The incident pressure474

wave amplitude is set to 90 dB at each frequency.475

The measured acoustic behavior of the ABSA is represented in Fig. 11 by red dashed lines. There is a good476

correlation between the measured and the predicted results. The experimental performance is slightly lower than477

predicted in the targeted frequency range, and slightly higher for lower and higher frequencies. The small differences478

between the measured coefficients and those predicted by FEM may come mainly from the imperfection of the 3D479

printing, leading in particular to walls thicker than expected. The mounting of the sample in the duct can also induce480

some supplementary and undesired reflections. Nevertheless, the measured data are still very close to the predicted481

results, demonstrating the relevance of the proposed design. In particular, the manufactured ABSA sample is able to482

deliver an absorption coefficient α+ ∈ [98.0; 99.5]% in the frequency range [1225; 2120] Hz, corresponding to a mean483

of value ᾱ+ = 98.7%, while the TL and RL values vary between 19 and 37 dB.484

This work considers no air flow in the main duct. Measurements of the ABSA with air flow are reported in [43].485
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Figure 11: (color online) Acoustic behavior of the optimized ABSA. Simulations with the MMT (black dot-dashed lines) and with FEM (blue solid
lines), measurements (red dashed lines). (a) Absorption coefficient α+. (b) Transmission loss −20 log(|T |). (c) −20 log(|R+ |).

6. Conclusions486

This work explores perfect, broad target frequency bandwidth and sub-wavelength acoustic absorption in waveg-487

uides of centimetric wide and constant cross section with porous asymmetric absorbers. A theoretical analysis based488

on the TMM provides insight and practical conditions for the understanding and design of such absorbers under the489

first cut-off frequency of the waveguide. Numerical simulations and experimental proof-of-concept illustrate that the490

theoretical results can be put into practice.491

An asymmetric absorber is made of at least two resonators, the resonator farther from the incident wave cancels the492

transmission while the closer one implements an impedance match leading to no reflection. The no-transmission and493

no-reflection conditions are expressed in terms of the resonators surface impedances. The no-transmission condition494

is fulfilled by a zero impedance which can only be quasi-perfectly reached in practice due to the resonators losses.495

The no-reflection condition can be perfectly fulfilled by a non-zero impedance that depends on the spacing between496

the resonators and the target frequency. In both cases, the larger the ratio between the areas of the waveguide cross497

section and the resonator sections, the more difficult it is to reach the optimal impedances. In addition, scaling the498

system is not straightforward as the impedance of the resonators forming the absorber depend on their geometrical499

dimensions and the optimal no-reflection impedance depend on the spacing of the resonators.500

The length of an asymmetric absorber, i.e., the distance in the propagation direction, optimized for perfect ab-501

sorption, can be strongly smaller than a quarter of the wavelength in air when using straight quarter-wavelength502

resonators filled with homogeneous media. Conversely, the height of an absorber made of such resonators cannot be503

sub-wavelength because no transmission is attained at resonant frequencies of the resonators. The height of an asym-504

metric porous absorber can be rendered sub-wavelength, for instance using folded quarter-wavelength resonators.505

Broadband and very high absorption can be obtained by combining pairs of resonators responsible for absorbing506
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different close frequencies, thus forming a rippled plateau of absorption. The minimal number of resonators to cancel507

F arbitrary frequencies is F + 1, with F resonators canceling the transmission, located at the same or at different axial508

positions, and one resonator canceling the reflection placed at a different location than the resonators canceling the509

transmission.510

Finally, a compact porous Asymmetric Broad target frequency bandwidth Sub-wavelength Absorber (ABSA)511

made of folded quarter-wavelength resonators is designed, optimized numerically, 3D printed and tested experimen-512

tally. A mean absorption coefficient of 99% is obtained experimentally over almost an octave and for frequencies513

smaller than the quarter-wavelength corresponding to the height of the absorber.514
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Appendix A. Transfer Matrix Method519

Appendix A.1. Presentation of the method520

A transfer matrix M links the pressure p and axial flux vx at two different positions along a transmission line [5].
For instance, between x and x + δ we write [

p
vx

]
x

= M
[

p
vx

]
x+δ

. (A.1)

The transfer matrix of a rigid section of the propagation line of length δ and of cross-sectional area S w is

Mδ =

[
c iZ̃0s

is/Z̃0 c

]
, (A.2)

with s = sin(k0δ), c = cos(k0δ) and Z̃0 = Z0/S w. The following is the transfer matrix for the i-th point resonator with a
surface impedance Zc

i (corrected by a length correction) and with a cross-sectional area connected to the propagation
line S i:

Mi =

[
1 0

1/Z̃i 1

]
, (A.3)

where Z̃i = Zc
i /S i. The transfer matrix for the i-th resonator group composed of Ni identical point resonators with a

surface impedance Zc
i and with a cross-sectional area connected to the propagation line S i is

Mg,i =

[
1 0

Ni/Z̃i 1

]
, (A.4)

The transfer matrix of an absorber made of K resonator groups evenly spaced by a distance δ is

Ma =

K∏
i=1

Mg,i Mδ. (A.5)

The R+, R− and T coefficients of the absorber are then given by

R+ =
Ma(1, 1) − Ma(2, 2) + Ma(1, 2)/Z̃0 − Ma(2, 1)Z̃0

Ma(1, 1) + Ma(2, 2) + Ma(1, 2)/Z̃0 + Ma(2, 1)Z̃0
, (A.6)

R− =
−Ma(1, 1) + Ma(2, 2) + Ma(1, 2)/Z̃0 − Ma(2, 1)Z̃0

Ma(1, 1) + Ma(2, 2) + Ma(1, 2)/Z̃0 + Ma(2, 1)Z̃0
, (A.7)

T =
2eik0Kδ

Ma(1, 1) + Ma(2, 2) + Ma(1, 2)/Z̃0 + Ma(2, 1)Z̃0
. (A.8)
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Appendix A.2. Absorber made of two resonator groups521

We consider the case of an absorber composed of two distinct resonator groups separated by a distance δ. Each
group is composed of N resonators. The transfer matrix corresponding to these two groups of resonators is

Ma = M1 MδM2 =


c + is

NZ̃0

Z̃2
iZ̃0s

cN
Z̃2

+
cN
Z̃1

+
isN2Z̃0

Z̃1Z̃2
+

is
Z̃0

c + is
NZ̃0

Z̃1

 . (A.9)

Appendix A.3. Absorber made of several resonator groups, with some of them being identical522

Appendix A.3.1. Two identical resonator groups to make the transmission vanish523

We consider the case where the two groups of resonators of an absorber are identical and composed of N identical
resonators. The groups are separated by a distance δ and are used to make the transmission vanish. The transfer matrix
corresponding to these two resonator groups is

Ma = M2 MδM2 =


c + is

NZ̃0

Z̃2
iZ̃0s

2cN
Z̃2

+
isN2Z̃0

Z̃2
2

+
is
Z̃0

c + is
NZ̃0

Z̃2

 . (A.10)

The corresponding transmission coefficient is

T = 2eik0δ
[
c
(
2 + 2β−1

2

)
+ is

(
2 + 2β−1

2 + β−2
2

)]−1
. (A.11)

Therefore, if β2 < 1 the transmission can be much lower than when using a single resonator group to cancel the524

transmission, Eq. (10). This is due to the term with the square of β2 in the expression for T for two identical resonator525

groups, Eq. (A.11).526

Appendix A.3.2. One resonator group to cancel the transmission and two identical resonator groups to cancel the527

reflection528

We consider an absorber that is composed of three resonator groups. Each group is formed of N identical res-
onators. The first and second resonator groups are identical and different that the third resonator group. The transfer
matrix of this absorber is

Ma = M1 MδM1 MδM3. (A.12)

If the third resonator groups is designed to make the transmission vanish, Z3/Z0 = 0, a new target impedance for the
resonator group responsible for making the reflection R+ vanish can be written as

Zc,±
1

Z0
=

NS 1

S w

2

1 + 3i cot(k0δ) ±
√

∆
, with sin(k0δ) , 0 and ∆ = (1 + 3i cot(k0δ))2 + 4

e−2ik0δ

sin2(k0δ)
. (A.13)

The value k0δ = nπ still implies R+ = −1 while k0δ = (0.27 + n/2)π leads to the highest optimal resistance equal529

to 1.5NS 1/S w.530

An absorber made of 3 resonator groups has a length of 2δ. For small values of k0δ, and with<(Zc,+
1 /Z0) = Γ the

lowest reachable resistance, numerically we find that the minimum absorber length for perfect absorption is

lA,min = 2δ =
0.9
k0

√
ΓS w

NS 1
, when k0δ � 1. (A.14)
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Figure A.12: Schematic representation of a 1D asymmetric absorber composed of two pairs of different resonators. Each pair is composed of two
different resonators located at a given x position. The pairs are separated by a distance δ.

Appendix A.4. Multiple resonators at the same axial position531

With the TMM, point resonators located at the same axial position xi form a parallel circuit. If the resonators are
independent, i.e., if they do no interact, the resonators i, 1 to i,N can be represented by a single equivalent resonator
of surface impedance Z̃i,eq given by

1
Z̃i,eq

=

N∑
j=1

1
Z̃i, j

. (A.15)

If the resonators at a given position are identical (Z̃i,1 = Z̃i,2 = . . . = Z̃i) then the equivalent surface impedance532

is simply Z̃i,eq = Z̃i/N. The group of identical resonators is equivalent to a resonator of lower impedance. This533

configuration was considered to derive the no-transmission condition, Eq. (10), the no-reflection condition Eq. (12)534

and the minimal absorber length Eq. (14). Everything goes as if the area S w of the cross-section of the propagation535

line was divided by the number N of resonators at the same position, or as if the areas of the resonators connected to536

the propagation line, S i, was multiplied by N. Identical resonators can be assembled in groups composed of different537

number of resonators and form an absorber than can be optimized for perfect absorption [13] as each group has a538

different equivalent impedance.539

As schematized in Fig. A.12, if the resonators at a given position are different, i.e., Z̃i,1 , Z̃i,2. . . the equivalent540

surface impedance is a combination of their respective impedances.541

Combining different resonators at a given axial position is useful to obtain an equivalent impedance having a542

frequency dependence than could not be realized by a single resonator [12]. For instance, if Z̃i,1( f1) ≈ 0 and Z̃i,2( f2) ≈543

0, then Z̃i,eq ≈ 0 at f1 and f2 and T ≈ 0 at f1 and f2 which could not be achieved with identical resonators (unless f2 is544

a multiple of f1). Note that to maximize the cancellation of the transmission at a single frequency, the best approach545

is to combine identical resonators having a zero reactance and the minimal resistance allowed by the considered type546

of resonator, see Eq. (10). Placing different resonators at the same axial position rather than at different positions does547

not reduce the number of resonators required for perfect absorption at F frequencies but may help in reducing the548

length of a broadband absorber.549

Appendix B. Mode matching technique550

This Appendix presents the MMT equations used in this work. They are adapted from the work of Bi et al.[38],551

considering cylindrical waveguides, to rectangular cross-section waveguides. Only the specificities of rectangular552

cross-section waveguides are detailed hereafter.553

554

Appendix B.1. Complete orthonormal basis555

In the hard walled regions of the waveguide, the modal transverse wave numbers in the y and z directions of order
n ∈ N+ and m ∈ N+, respectively, are

kyn =
nπ
dw
, kzm =

mπ
hw

. (B.1)
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The modal wave number in the direction of propagation x is

kxmn =

√
k2

0 − k2
yn − k2

zm, Im(kxmn) ≤ 0. (B.2)

A complete orthonormal basis of the hard walled waveguide region is the column vector ψ composed of the ψmn

elements defined as

ψmn(y, z) = cos
(
kyny

)
cos (kzmz)

√
εmεn

hwdw
, (B.3)

with ε0 = 1, εM = 2 ∀ M , 0.556

557

This way, the modal expression of the pressure field is

p(x, y, z) =
∑

m

∑
n

(P+
mn(x) + P−mn(x))ψmn(y, z), (B.4)

p(x, y, z) = tψ(P+ + P−), (B.5)
p(x, y, z) = tψP, (B.6)

with P, P+, and P− column vectors of same dimension than ψ, being the modal amplitudes of the pressure field, of the558

forward pressure field and of the backward pressure field, respectively. The transpose operator is noted t .559

560

Appendix B.2. Projection of p, ∂p/∂x and ∆⊥(p) over the hard walled waveguide modal basis561

The projection of p and ∂p/∂x on the ψ basis read, respectively∫ dw

y=0

∫ hw

z=0
pψmndydz = Pmn, (B.7)∫ dw

y=0

∫ hw

z=0

∂p
∂z
ψmndydz = P′′mn. (B.8)

The projection of ∆⊥(p) with ∆⊥ = ∂2/∂y2 +∂2/∂y2, on the ψ basis reads, according to the Green’s second identity:∫ dw

y=0

∫ hw

z=0
∆⊥(p)ψmndydz =

∫
y

∫
z

p∆⊥(ψmn)dydz +

∫
Γ

ψmngradr(p) − pgradr(ψmn)dΓ, (B.9)

with Γ the edge of the waveguide at a position x.562

563

As ∆⊥(ψmn) = −(k2
yn + k2

zm)ψmn, then∫ dw

y=0

∫ hw

z=0
p∆⊥(ψmn)dydz = −(k2

yn + k2
zm)Pmn. (B.10)

The edges terms are ∫
Γ

pgradr(ψmn)dΓ = 0, (B.11)

and, considering that all the waveguide walls can be lined by a treatment,∫
Γ

gradr(p)ψdΓ = − iωρ0PC(x), (B.12)

with

C(x) =

∫ dw

y=0

(
1

Zs(x, y, 0)
ψ(z = 0) tψ(z = 0) +

1
Zs(x, y, hw)

ψ(z = hw) tψ(z = hw)
)

dy (B.13)

+

∫ hw

z=0

(
1

Zs(x, 0, z)
ψ(y = 0) tψ(y = 0) +

1
Zs(x, dw, z)

ψ(y = dw) tψ(y = dw)
)

dz. (B.14)

and Zs the surface impedance at a given waveguide wall location.564
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Appendix B.3. Modal propagation equation565

Then, the pressure modal differential equation in a portion of the waveguide of constant axial surface impedance
is

P′′(x) + A(x)P(x) = 0, (B.15)

with A a picewise constant tensor along x that reads

A(x) = −L +
ω2ρ0

K0
I − iωρ0C(x). (B.16)

and L a diagonal matrix with k2
yn + k2

zm on the diagonal.566

Appendix C. JCAL parameters of the considered micro-lattice567

The variation of the porosity, φ, the tortuosity, α∞, the viscous and thermal characteristic lengths, Λ and Λ′ and568

the viscous and thermal static permeabilities q0 and q′0 of the considered micro-lattice in function of IF are presented569

in Fig. C.13. These variations are obtained through the inverse characterization of several homogeneous samples570

characterized in an impedance tube [44]. As the micro-lattice is a quasi-isotropic medium, the value of α∞, Λ, q0571

depend on the wave propagation direction (in-plane or out-of-plane).572
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process based on impedance tube measurements.
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