
HAL Id: hal-03663348
https://hal.science/hal-03663348v1

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model selection by penalization in mixture of experts
models with a non-asymptotic approach

Trungtin Nguyen, Faicel Chamroukhi, Hien Duy Nguyen, Florence Forbes

To cite this version:
Trungtin Nguyen, Faicel Chamroukhi, Hien Duy Nguyen, Florence Forbes. Model selection by penal-
ization in mixture of experts models with a non-asymptotic approach. JDS 2022 - 53èmes Journées
de Statistique de la Société Française de Statistique (SFdS), Jun 2022, Lyon, France. pp.1-6. �hal-
03663348�

https://hal.science/hal-03663348v1
https://hal.archives-ouvertes.fr


Model selection by penalization in mixture of
experts models with a non-asymptotic approach

TrungTin Nguyen 1, Faicel Chamroukhi 2, Hien Duy Nguyen 3 & Florence Forbes 1

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
trung-tin.nguyen@inria.fr, florence.forbes@inria.fr

2Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France.
faicel.chamroukhi@unicaen.fr

3School of Mathematics and Physics, University of Queensland, St. Lucia, Australia.
h.nguyen7@uq.edu.au

Résumé. Cette étude est consacrée au problème de la sélection de modèles parmi
une collection de modèles de mélanges d’experts avec experts gaussiens et fonctions
d’activations gaussiennes normalisées, caractérisés par le nombre de composantes du
mélange et la complexité des experts moyens, dans un cadre d’estimation par maximum de
vraisemblance pénalisée. En particulier, nous établissons des limites de risque non asymp-
totiques qui prennent la forme d’inégalités oracles faibles, sous une condition de limite
inférieure pour la pénalité. Leur bon comportement empirique est ensuite démontré en
simulation et sur des données réelles.

Mots-clés. Mélange d’experts, sélection de modèle, maximum de vraisemblance
pénalisée.

Abstract. This study is devoted to the problem of model selection among a collection
of Gaussian-gated localized mixtures of experts models characterized by the number of
mixture components, and the complexity of Gaussian mean experts, in a penalized max-
imum likelihood estimation framework. In particular, we establish non-asymptotic risk
bounds that take the form of weak oracle inequalities, provided that lower bounds of the
penalties hold. Their good empirical behavior is then demonstrated on synthetic and real
datasets.

Keywords. Mixture of experts, model selection, penalized maximum likelihood.

1 Introduction

Mixture of experts (MoE) models, originally introduced as neural network architectures
in Jacobs et al. (1991), are flexible models that generalize the classical finite mixture
and finite mixtures of regression models. The popularity of these conditional mixture
density models arise largely due to their universal approximation properties, which have
been studied in Nguyen et al. (2020b, 2021b), and which improve upon approximation
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capabilities of unconditional finite mixture models, as studied in Nguyen et al. (2016), Ho
et al. (2019), Nguyen et al. (2019, 2021a). Detailed reviews on the practical and theoretical
aspects of MoE models can be found in Nguyen and Chamroukhi (2018), Nguyen (2021).

In this work, we study the class of MoE models with Gaussian experts and normal-
ized Gaussian gating functions for clustering and regression, first introduced by Xu et al.
(1995) and recently studied numerically in Chamroukhi et al. (2019). From hereon in,
we refer to such models as Gaussian-gated localized MoE (GLoME) models. These mod-
els are useful to learn potentially nonlinear relationships between a multivariate output
and a high-dimensional input issued from a heterogeneous population. This involves per-
forming regression, clustering and model selection, simultaneously. While estimation can
be performed using standard Expectation-Maximisation algorithms, it crucially depends
and requires hyperparameter choices, including the number of mixture components (or
clusters), and the degree of complexity of each Gaussian expert’s mean function.

Traditional model selection criteria such as AIC, BIC, or ICL-BIC are based on asymp-
totic theory or Bayesian approaches. In contrast, the present contribution is to provide a
finite-sample oracle inequality indicative of the quality of a data-driven selected GLoME
model with respect to the true model. More specifically, we establish a non-asymptotic
risk bound that takes the form of a weak oracle inequality, provided that a lower bound
on the penalty holds true. Our non-asymptotic risk bound allows the number n of obser-
vations to be fixed while the dimensionality and cardinality of the models, characterized
by the number of covariates and the dimension of the response, are allowed to grow with
respect to n, and can be much larger than n. To the best of our knowledge, this is the
most recent and advanced effort in literature to develop a finite-sample oracle inequality
for the framework of MoE regression models.

From now on, we are interested in estimating the law of the random variable Y,
conditionally on X, respectively of dimension L and D. Subsequently,

(
X[n],Y[n]

)
:=

(Xi,Yi)i∈[n], [n] = {1, . . . , n} , n ∈ N?, denotes a random sample, and x and y stands for
the observed values of the random variables X and Y, respectively. For a matrix A, let
m(A) and M(A) be, respectively, the modulus of the smallest and largest eigenvalues of
A.

2 Collection of GLoME models

We consider models with inverse conditional PDFs of the form (2.1). Such models have
been considered in Xu et al. (1995), Deleforge et al. (2015) and are very useful in a high
dimensional regression context, where typically D � L.

sψK,d
(x | y) =

K∑
k=1

gk (y;ω)φD (x;υk,d(y),Σk) ; gk (y;ω) =
πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj,Γj)

· (2.1)
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Here, gk(·;ω) and φD (·;υk,d(·),Σk), k ∈ [K], K ∈ N?, d ∈ N?, are called normalized
Gaussian gating functions and Gaussian experts, respectively. Furthermore, we decom-
pose the parameters of the model as follows: ψK,d = (ω,υd,Σ) ∈ ΩK ×ΥK,d ×VK =:
ΨK,d, ω = (π, c,Γ) ∈ (ΠK−1 ×CK × V ′K) =: ΩK , π = (πk)k∈[K], c = (ck)k∈[K],
Γ = (Γk)k∈[K], υd = (υk,d)k∈[K] ∈ ΥK,d, and Σ = (Σk)k∈[K] ∈ VK . Note that ΠK−1 ={

(πk)k∈[K] ∈ (R+)
K
,
∑K

k=1 πk = 1
}

is a K − 1 dimensional probability simplex, CK is a

set of K-tuples of mean vectors of size L × 1, V ′K is a set of K-tuples of elements in
S++
L , where S++

L denotes the collection of symmetric positive definite matrices on RL,
ΥK,d is a set of K-tuples of mean functions from RL to RD depending on a degree d
(e.g., polynomial degree) and VK is a set containing K-tuples from S++

D .
In order to establish our finite-sample oracle inequality, Theorem 3.1, we need to explic-

itly impose some classical boundedness conditions on the parameter space. Specifically,
we assume that there exist deterministic positive constants aπ, Ac, aΓ, AΓ, and set

Ω̃K =

{
ω ∈ ΩK : ∀k ∈ [K], ‖ck‖∞ ≤ Ac, aΓ ≤ m (Γk) ≤M (Γk) ≤ AΓ, aπ ≤ πk

}
. (2.2)

The set ΥK,d will be chosen as a tensor product of compact sets of moderate dimension
(e.g., a set of polynomials of degree smaller than d, whose coefficients are smaller in
absolute values than TΥ). In particular, we focus on the bounded Y = [0, 1]L. In this case,
ϕΥ,i can be chosen as monomials with maximum (non-negative) degree d: yr =

∏L
l=1 yrl

l .
Then, ΥK,d = ΥK

p,d, where

Υp,d =
{

y 7→
( d∑
|r|=0

α(j)
r yr

)
j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

}
. (2.3)

For GLoME models, note that any covariance matrix Σk can be decomposed into
the form BkPkAkP

>
k such that: Bk = |Σk|1/D is a positive scalar corresponding to the

volume, Pk is the matrix of eigenvectors of Σk and Ak the diagonal matrix of normalized
eigenvalues of Σk; B− ∈ R+, B+ ∈ R+, A (λ−, λ+) is a set of diagonal matrices Ak,
such that |Ak| = 1 and ∀i ∈ [D], λ− ≤ (Ak)i,i ≤ λ+, where λ−, λ+ ∈ R; and SO(D)
is the special orthogonal group of dimension D. In this way, we obtain the classical
covariance matrix parameterization, described by Celeux and Govaert (1995) for Gaussian
parsimonious clustering models, defined by

VK =
{(

BkPkAkP
>
k

)
k∈[K]

: B− ≤ Bk ≤ B+,Pk ∈ SO(D),Ak ∈ A (λ−, λ+)
}
. (2.4)

For GLoME, we need to choose the degree of polynomials d and the number of com-
ponents K among finite sets DΥ = [dmax] and K = [Kmax], respectively, where dmax ∈ N?

and Kmax ∈ N? may depend on the sample size n. We wish to estimate the unknown
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true conditional density s0 by conditional densities belonging to the following collection
of models (Sm)m∈M, M = {(K, d) : K ∈ K, d ∈ DΥ},

Sm =
{

(x,y) 7→ sψK,d
(x | y) =: sm(x | y) : ψK,d ∈ Ω̃K ×ΥK,d ×VK

}
, (2.5)

where Ω̃K , ΥK,d and VK are define previously in (2.2), (2.3) and (2.4), respectively.

3 Oracle inequality for collection of GLoME models

In the maximum likelihood approach, the Kullback–Leibler divergence is the most natural
loss function. However, to take into account the structure of conditional densities and
the random covariates

(
Y[n]

)
, we consider a tensorized Kullback–Leibler divergence KL⊗n,

defined as:

KL⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

KL (s (· | Yi) , t (· | Yi))

]
, (3.1)

if s dy is absolutely continuous w.r.t. t dy, and +∞ otherwise. We refer to our result
as a weak oracle inequality, because its statement is based on a smaller divergence, when
compared to KL⊗n, namely the tensorized Jensen–Kullback–Leibler divergence (Cohen
and Le Pennec, 2011): given ρ ∈ (0, 1),

JKL⊗nρ (s, t) = EY[n]

[
1

n

n∑
i=1

1

ρ
KL (s (· | Yi) , (1− ρ) s (· | Yi) + ρt (· | Yi))

]
.

In a penalized maximum likelihood estimation context (PMLE), by adding a suitable
penalty pen(m), one hopes to create a trade-off between a good data fit and model
complexity. For a given choice of pen(m), the selected model Sm̂ is chosen as the one
whose index is an η′-almost minimizer of the sum of the negative log-likelihood and this
penalty. That is Sm̂ = ŝm̂, satisfying

n∑
i=1

− ln [ŝm̂ (xi | yi)] + pen (m̂) ≤ inf
m∈M

{
n∑
i=1

− ln [ŝm (xi | yi)] + pen(m)

}
+ η′, (3.2)

where
n∑
i=1

− ln [ŝm (xi | yi)] ≤ inf
sm∈Sm

n∑
i=1

− ln [sm (xi | yi)] + η. (3.3)

Note that ŝm̂ is then called the η′-penalized likelihood estimate and depends on both
the error terms η and η′. From hereon in, the term selected model (estimate) or best
data-driven model (estimate) is used to indicate that it satisfies (3.2).

Theorem 3.1, proved in Nguyen et al. (2021d), provides a lower bound on the penalty
function, pen(m), which guarantees that the PMLE selects a model in the collection that
performs almost as well as the best model.
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Theorem 3.1 (Finite-sample weak oracle inequality for GLoME models). Assume that
we observe

(
x[n],y[n]

)
, arising from an unknown conditional density s0. Given a collection

of GLoME models, (Sm)m∈M, there is a constant C such that for any ρ ∈ (0, 1), for any
m ∈ M, zm ∈ R+, Ξ =

∑
m∈M e−zm < ∞ and any C1 > 1, there is a constant κ

depending only on ρ and C1, such that if for every index m ∈M,

pen(m) > κ [(C + lnn) dim (Sm) + zm] ,

then the η′-penalized likelihood estimate ŝm̂, defined in (3.3) and (3.2), satisfies

EX[n],Y[n]

[
JKL⊗nρ (s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κC1Ξ + η + η′

n
.

(3.4)

It is worth noting that Theorem 3.1 extends a corollary of (Montuelle et al., 2014,
Theorem 1), which can be verified via Lemma 1 from Nguyen et al. (2021a), which makes
explicit the relationship between softmax and Gaussian gating classes. In particular,
for modeling a sample of high-dimensional regression data issued from a heterogeneous
population with hidden graph-structured interaction between covariates, we refer readers
to the works of Nguyen et al. (2021c) while Nguyen et al. (2020a) provides a stronger
oracle inequality but slower convergence rate of the error upper bound. More precisely,
in (3.4), we obtain a weak oracle inequality due to the different divergences on the left,
JKL⊗nρ , and on the right KL⊗n, but with a faster convergence rate O(n−1) of the error

upper bound compared to O(n−1/2) in Nguyen et al. (2020a, Theorem 3.2). A more
detailed comparison can be found in Nguyen (2021, Section 1.2.12.3).

Numerical experiments are available in Nguyen et al. (2021d) and https://github.com/Trung-
TinNGUYEN/NamsGLoME-Simulation, will be presented in the communication in order
to investigate how well the empirical tensorized Kullback–Leibler divergence between the
true model and the best data-driven model follows the finite-sample oracle inequality of
Theorem 3.1, as well as the convergence rate of the error upper bound (κC1Ξ + η + η′) /n.
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