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A Dynamic Real-Time Optimization Algorithm for the Revenue 

Assessment of a Vehicle-To-Grid System in Presence of Wear Cost 

Model 

Majid Mehrasa, Reza Razi, Mehrdad Gholami, Khaled Hajar, Antoine Labonne, Ahmad Hably, Seddik Bacha 

Abstract This paper presents a linear programming 

optimization algorithm with changeable weighting factors 

for reaching maximum revenue in the peak-value duration 

of the PV power and electricity price in a smart Vehicle-to-

Grid (V2G) system. In order to render an accurate revenue 

assessment, the EV battery wear model is also taken into 
consideration through the parameters including the 

equivalent daily discount, estimated cycle life, the battery 

capital cost and battery salvation value. Moreover, a linear 

objective function is proposed by exerting the forecasted PV 

power profile to constitute the dynamic weighting factors 

for the EV battery power variables. The comparative 

simulation results in MATLAB/Simulink verify that the 

proposed dynamic optimization algorithm can reach its 

maximum revenue in three times i.e., the peak-value 

duration of the PV power, the peak-value duration of 

electricity price and the end of the simulation. In addition, 

the results affected by the EV battery wear model are 

presented. 

1   Introduction  

Nowadays, Vehicle-to-Grid system has been paid attention 

due to the technological needs of various structures of power 

systems including microgrids [1-2] and smart grids [3]. The 

smart charging/discharging strategies designed for Electric 

Vehicles (EVs) as a vital part of V2G systems have faced 

different kinds of technical and control design challenges 

[4-5]. In order to attain reliable and cost-effective smart 

grids in presence of smart charged EVs, these challenges 
must be taken into account to the extent possible. One of 

these challenges is associated with the battery degradation 

[6-7]. A battery aging management system was proposed by 

[8] to regulate the battery capacity degradation for EVs by 

noticing the driving range, recharge time, drivability, 

maximum battery current, and the depth of discharge. Ref 

[9] concentrated on an auction-based energy commerce for 

reaching a specified optimized energy sharing to minimize 

the final payment of the present EVs by considering their 

practical battery condition. A model-free deep 

reinforcement learning was proposed in [10] to accurately 

estimate the battery degradation cost while the control 
challenge was shaped using Markov Decision Process 

(MDP) as well as the charging/discharging technique was 

designed based on a noisy network based deep 

reinforcement learning method. A vehicle-to-grid (V2G) 

system was optimized in [11] through a multi-objective 

function with variables and specifications including the 

peak demand, load variations, the battery degradation cost, 

EV charging/discharging cost, the driving distance of EV, 

the driving periods of EV, and the charging/discharging 

levels and also locations. The disparate vehicle-to-building 

(V2B) applications were discussed in [12] wherein the 
battery capacity faded due to the bidirectional power flow 

and also the extra discharging cycles with V2B were taken 

into account leading to the battery degradation integration 

into energy management development. 

Apart from the importance of battery lifespan consideration 

for EVs [13], selecting an appropriate optimization method 

has also a key role at providing a suitable 

charging/discharging strategy for a V2G system [14-15]. 
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The linear programming algorithm that is taken into account 

as a solver for optimization problem and global optimal 

solutions [16-17], have been applied to many V2G systems 

in disparate conditions [18]. In an on-demand EV fleet, a 

binary linear programming has combined with deep 

reinforcement learning to provide an optimal solution for a 

Markov decision process aiming to the EV fleet operator 

welfare maximization [19]. In Ref [20], a bi-level 

optimization algorithm was redrafted as an equivalent 

single-level linear program for an optimized planning 

process of a EV charging station to reach optimal 

configuration of the renewable energy resources (RCS), the 

maximized total profits of RCS owner, and the planned 

charging intentions of EV users. A single mixed integer 

linear programming algorithm acted as a model predictive 

energy management system in [21] for the EV fleet charging 

process from PV panels to provide the grid stability, employ 

a single EV charger for charging numerous EVs, and 

prevent the grid overload. It was also aimed in [22] to divide 

a mixed integer programming algorithm into two linear 

programming problems reaching an effective charging 

method for multiple EVs. 

In spite of the related discussions regarding the EVs-based 

and battery-based systems [23-25], in this paper, a linear 

programming optimization algorithm with changeable 

weighting factors is presented for a smart Vehicle-to-Grid 

(V2G) system to reach maximum revenue in the peak-value 

duration of the PV power and electricity price. The paper is 

organized as follows. The introduction is given in Section I. 
Section II focuses on the wear model of EV battery. In 

section III, the proposed dynamic optimization algorithm is 

discussed. Simulation results and conclusions are written in 

Sections IV and V, respectively. 

2   Wear Model of EV Battery 

The estimation process of the lithium-ion battery actual 

lifespan can be executed using two major factors including: 

1) Calendar life that determines how many years the 
lithium-ion battery can be expected to be retained.  

2) Cycle life that indicates the number of charge–discharge 

cycles wherein the lithium-ion battery is able to possess a 

persistent function before its exploitable capacity reaches 

80% of its initial rated capacity.  

However, the calendar life can somewhat confine the actual 

lifetime, but this life is not taken into account in the battery 

degradation formulation. It is worth mentioning that if the 

cycle life is higher than the calendar life, the V2G/G2V 

cycles can be increased to provide more revenue for the EV 

owner. The following components will affect the battery 
wear for both V2G and G2V applications [6]: 

 Temperature: When the resistance of the electrode 

film in the lithium-ion batteries is raised, the 

charging capacity is mitigated with an accelerated 

ramp. In order to hamper the resistance increment, 

the ambient temperature, as well as the charge and 

discharge currents, must be placed within 

acceptable ranges. 

 Charge and Discharge Currents: High charge and 

discharge currents will speed up the lithium-ion 

battery degradation. 

 Depth of Discharge (DOD): The DOD is equalized 

to (1-SOC) meaning that as DOD increases, the 

SOC decreases.  

 Cycle Numbers: High cycle number along with 
high charge-discharge current can make maximum 

degree of battery degradation. 

Since it is assumed that the temperature is attempted to 

remain at standard level and the charge and discharge 

currents are kept below the moderate value, only DOD 

effect is employed to attain the Daily Wear Cost (DWC) [6]. 

The relation (1) is used to calculate DWC wherein the λEDD 

and γECL are respectively the Equivalent Daily Discount 

(EDD) and Estimated Cycle Life (ECL).  
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In addition, the BCC and BSV are respectively the Battery 
Capital Cost and Battery Salvation Value while the cycle 

life is ended. The ECL is achieved through (2). It is assumed 

that the EVs with initial energy (E0) possess the average 

daily amounts of the consumed energy in the driving and 

discharging modes respectively as EDRV and EDIS. 
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In (2), the coefficient k is deliberated for when the higher 

capacity loss occurs in the driving state. The Kes is named as 

the discharge coefficient that can be 0.00015 (kW·h/kW·h) 

with an acceptable approximation. Fig. 1 depicts the 

estimated cycle life based on the factors EDRV and EDIS while 

coefficient k is diminished. The three-dimension curves in 

Fig. 1 verify that the γECL can reach its maximum value when 

both factors EDRV and EDIS approach to their minimum 
values.  

 

 
Fig. 1 The estimated cycle life based on the factors EDRV and EDIS while 
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coefficient k is mitigated. 

 
Fig. 2 The estimated cycle life based on the daily wear cost while β is 

increased or decreased. 

Noticing the inequalities k1>k2>k3>k4>k5 as the variation 

trend of k in Fig. 1, it can be found that the estimated cycle 

life increment can be intensified through the decrement of 
the coefficient k. It can be also investigated how the wear 

cost can impact on the cycle life. To this end, the relation 

(1) is rewritten to obtain the ECL as a function of DWC. 
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Where Ln(.) is the natural logarithm (Ln(.)=loge(.), 

e=2.718281828459). In order to reach authentic relation for 

(3), the equivalent daily discount must comply with the 

conditions (4).  
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   Assuming β= BCC/BSV, the estimated cycle life is plotted 

in Fig. 2 based on the daily wear cost while β is increased or 

decreased accordingly. In this figure, while β1(β2)<<<<1 

(meaning that BCC<<<<BSV), the estimated cycle life will 
be equalized to negative which is an unacceptable outcome. 

But, when β>>>>1 that happens for {β3<β4<β5< β6}, the 

estimated cycle life can be significantly increased as well. 

3   Proposed Dynamic Real-Time Optimization 

Algorithm 

The Vehicle-to-Grid (V2G) system under study is shown in 

Fig. 3. There are three types of electricity sources (ESs) in 

this system including 1) The PV panels as the ESs that only 
generate power, 2) The variable load as an ES that only 

consumes power, and 3) The power grid and EVs as other 

ESs that can function in both generation and consumption 

modes. 

Proposed Smart Charging

Load, PLoad

PV Panels,

PPV

Power Grid, PGrid

EV StationP
1
EV

P
2
EVP

3
EV

 
Fig. 3 The V2G system including EV station, power grid, load, and 

PV panels. 

 
(a) 

 
(b) 

Fig. 4 The power profiles for (a) Variable load, and (b) PV panels. 

It is realized from the categorized ESs that the flexible 
power exchange can be provided by both power grid and 

EVs. The relation between the flexible power generation 

units and other ESs is first written as follows, 
3

1

i

Grid EV Load PV

i

P P P P


                                                         (5) 

The relation (5) is regarded as one of the optimization 

constraints. The forecasted profiles shown in Fig. 4(a), and 

(b) are employed respectively for load (PLoad), and PV (PPV). 

The grid power is demonstrated by PGrid and the ith EV has 

the power Pi
EV. Since there is a flexible power feature for 

the grid and EVs, the objective function can be fortified by 

assigning dynamic coefficients to the related optimization 

variables. For this reason, a dynamic price profile (Cgrid(t)) 
for the grid power is aimed in the proposed objective 

function (6) as depicted in Fig. 5(a). 
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The set of {λ1
EV, λ2

EV, λ3
EV} are the dynamic coefficients of 

EV battery power. The V2G system in Fig. 3 is persistently 

encouraged to max out the utilization of PV power during 

the smart charging process. Noticing this aim, the dynamic 
coefficients (7) are proposed for the EV battery power. 
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(a) 

 
(b) 

 
(c) 

Fig. 5 The dynamic coefficients for the optimization variables 

including (a) The grid power, (b) The EVs power for cases 1, 3 and 

4, and (c) The EVs power for case 2. 

Supposing i=1,2,3, four cases are defined to obtain the 

dynamic coefficients (λi
EV). These cases that are given as 

follows, are exerted to the relation of the dynamic 

coefficeint in (7) leading to the results depicted in Figs. 5(b) 

and (c). 

 Case1: α1
EVi=1, α2

EVi=10000, and α3
EVi=1. 

 Case2: α1
EVi=1, α2

EVi=↑(increasing), and α3
EVi=1. 

 Case3: α1
EVi=↑(increasing), α2

EVi=10000, α3
EVi=1. 

 Case4: α1
EVi=1, α2

EVi=10000, α3
EVi=↑(increasing). 

In the case 1, all the parameters α1
EVi, α2

EVi, and α3
EVi are 

assumed to be constant. The importance of the parameter 

α2
EVi is specified when the PV power reaches zero. 

Consequently, in this condition, the dynamic coefficients 

λi
EV are equalized to 1/α2

EVi. The dynamic coefficient in case 

1 during the simulation interval is seen in Fig. 5(b). By 

noticing the PV panel power profile in Fig. 4(b), it can be 

realized that the coefficient in case 1 is completely inverted 

in comparison with the PV power profile. Based on Fig. 

5(b), the EV battery power dynamic coefficients for the case 
3 is more fluctuated compared to other coefficients. It may 

lead somewhat to the flucutaed optimal responses for the EV 

power as the solutions of the proposed linear optimization 

problem. However, as can be undrestood from Fig. 5(b), the 

case 3 provides smaller coefficients during the optimization 

run time compared to the coefficients achieved from the first 

case. When the PV power is placed within its peak value, 

the case 4 will enforce the dynamic coefficients λi
EV to reach 

its smallest values to the extent possible in comparison with 

other cases as depicted in Fig. 5(b). According to this figure, 

an irregular inverse curve compared to the PV power profile 
is indeed obtained for the dynamic coefficients of EV 

battery power in the fourth case. On the other hand, the 

dynamic coefficients λi
EV for the case 2 is approximately 

kept at its smaller values that is not suitable for the variable 
profile of the PV power.  

4   Simulation Results 

The V2G system shown in Fig. 3 is simulated in 

MATLAB/Simulink environment. The EVs parameters are 
given in Table I. The first part concentrates on comparing 

the revenue achieved from the constant weighting factors 

with the revenue due to the proposed dynamic weighting 

factors. In next part, the effects of the EV battery wear cost 

model is taken into consideration as well for assessing the 

revenue obtained from the dynamic weighting factors-based 

optimization algorithm. 

Table 1 The V2G system parameters 

The EVs EV1 EV2 EV3 

Max and Min SOC 20%, 90% 20%, 90% 20%, 90% 

Nominal EV Energy 55 kWh 48.2 kWh 55kWh 

Max and Min Pi
EV -8.5/8.5 kW -25/25 kW -15/15 kW 

Arrival Time 09:15  11:00 03:30 

Departure Time 21:15  23:30 23:00 
 

Fig. 6 illustrates the revenue obtained by using various 

values of the constant weighting factors in the proposed 

objective function. As it can be understood from this figure, 
when the constant weighting factors λi

EV are chosen as small 

as possible, more revenue in the peak-value duration of the 

PV power can be obtained. However, this decreasing trend 

does not impact the revenue in both the peak-value duration 

of electricity price and the end of the simulation. It is worth 

mentioning that the extent of this decrement is restricted 

because of the charging/discharging cycle numbers as will 
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be discussed in the final version of the paper. In Fig. 7, the 

revenue achieved from various values of the coefficients 

involved with the dynamic weighting factors are exhibited. 

The inequalities and equalities that are exerted for attaining 

these results are  (α2
EVi)2 > (α2

EVi)1 > (α2
EVi)3 and 

(α3
EVi)2=(α3

EVi)3 > (α3
EVi)1. Noticing the logical relations, the 

small and big values for respectively α2
EVi and α3

EVi, can lead 

to higher revenue within the peak-value duration of the PV 

power as depicted in Fig. 7. By paying attention to both Fig. 

6 and Fig. 7, it can be realized that using the dynamic 
weighting factors provides at least around two times more 

revenue in comparison with when the constant ones are 

employed. The accurate comparison can be carried out when 

the wear cost model of the EV battery is also considered. 

 
Fig. 6 The revenue achieved from various values of the constant 

weighting factors. 

 
Fig. 7 The revenue achieved from various values of the coefficients 

involved with the dynamic weighting factors. 

4.1 Revenue Assessment in Presence of Wear Cost Model 

In this sub-section, the revenue achieved from the proposed 

smart charging with dynamic weighting factors in presence 

of wear cost model is assessed. The battery and EV 

specifications are extracted from references [6] and [26]. 

The cost per kW. h due to wear model is calculated through 

the relation (KesDWC)/ϕ. Fig. 8 presents the optimal power 

of EVs while the dynamic weighting factors in (7) are used 

for the objective function (6). The revenues of these results 

for the EVs power when the wear model is/is not considered 

are illustrated in Fig. 9. As it can be understood from Fig. 8, 

the aims of proposed smart charging strategy are obtained. 

However, when the wear cost model is taken into account, 

the revenue is decreased as depicted in Fig. 9. 

 
Fig. 8 Optimal power of EVs while the dynamic weighting factors 

are used. 

 
Fig. 9 Revenue in the states of with/without wear model. 

5   Conclusions  

A dynamic optimization algorithm with changeable 

weighting factors has been proposed in this paper to attain 

its maximum revenue in three times i.e., the peak-value 

duration of the PV power, the peak-value duration of 

electricity price and the end of the simulation. The EV 

battery wear model has also exerted to the revenue achieved 
from optimization algorithm using the parameters including 

the equivalent daily discount, estimated cycle life, the 

battery capital cost and battery salvation value. The 

proposed dynamic optimization algorithm has consisted of 

a linear objective function with a changing pre-defined 

electricity price and the dynamic weighting factors for the 

EV power variables formed based on the forecasted PV 

power profile. Simulation results without considering the 

wear cost model have shown the high ability of proposed 

algorithm at reaching the specified aims. The results along 

with considering the EV battery wear model will be 

presented in the final version of the paper. 
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