
HAL Id: hal-03663273
https://hal.science/hal-03663273v1

Submitted on 20 Jun 2022 (v1), last revised 2 Jul 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-free control for resource harvesting in computing
grids

Quentin Guilloteau, Bogdan Robu, Cédric Join, Michel Fliess, Éric Rutten,
Olivier Richard

To cite this version:
Quentin Guilloteau, Bogdan Robu, Cédric Join, Michel Fliess, Éric Rutten, et al.. Model-free con-
trol for resource harvesting in computing grids. 6th IEEE Conference on Control Technology and
Applications, CCTA 2022, Aug 2022, Trieste, Italy. �hal-03663273v1�

https://hal.science/hal-03663273v1
https://hal.archives-ouvertes.fr


Model-Free Control for Resource Harvesting in Computing Grids

Quentin Guilloteau1, Bogdan Robu2, Cédric Join3,5, Michel Fliess4,5, Eric Rutten1 and Olivier Richard1

Abstract— Cloud and High-Performance Computing (HPC)
systems are increasingly facing issues of dynamic variability, in
particular w.r.t. performance and power consumption. They
are becoming less predictable, and therefore demand more
runtime management by feedback loops. In this work, we
describe results addressing autonomic administration in HPC
systems through a control theoretical approach. We more
specifically consider the need for controllers that can adapt to
variations a long timee in the behavior of controlled systems,
but also to being reused on different systems and processors.
We therefore explore the application of Model-Free Control
(MFC) in the context of resource harvesting in a Computing
Grid, by regulating the injection of flexible jobs while limiting
perturbation of the prioritary applications.

Keywords: Model-Free Control, Control for Computing,
Resource Harvesting

I. INTRODUCTION

A. Need of Control Theory for High Performance Computing

Using Control Theory for computing systems is a rela-
tively recent approach, for which the motivations detailed
elsewhere [1] are summarized here to introduce their need.
Scientists from many fields have to run experiments or analy-
sis requiring some kind of computations. Such computations,
also called job in High-Performance Computing (HPC), due
to the quantity of read/write operations, amount of required
memory, processor speed, etc. need to be submitted to super
computers with a high level of parallelism. These Com-
puting Grids or data-centers, used for Cloud and HPC, are
increasingly facing issues of dynamic variability, in particular
w.r.t. performance and power consumption. For example,
variability can come from computing architectures, where
processors, even of the very same model, show variability
in speed or thermal behavior. Clusters of such processors
can be constructed following different architectures and or-
ganizations, involving memory benches, and cache systems.
Variability also comes at run-time, due to phases involving
more memory accesses, read/write or input/outputs (I/O),
slowing the computation, whereas phases with less of them

1 Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France
Firstname.Lastname@inria.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Greno-
ble France
Bogdan.Robu@univ-grenoble-alpes.fr

3 CRAN (CNRS, UMR 7039), Université de Lorraine, 54506
Vandoeuvre-lès-Nancy, France
Cedric.Join@univ-lorraine.fr

4 LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau,
France
Michel.Fliess@polytechnique.edu

5 AL.I.E.N., 7 rue Maurice Barrès, 54330 Vézelise, France
{cedric.join, michel.fliess}@alien-sas.com

have a higher speed ; it can also be due to temperature of
processors influencing their speed.

Hence, HPC systems are becoming less predictable, and
therefore demand more run-time management by feedback
loops. In Computer Science and Software Engineering, Au-
tonomic Computing [2] is addressing this concern, proposing
software architectures with feedback loops involving a vari-
ety of decision mechanisms (e.g., programmatic, based on AI
and Machine Learning, scheduling, constraint programming).
A particularly interesting approach involves Control Theory
[3]–[5] with applications to HPC e.g., [6]–[8].

In our work, we more specifically consider the need for
controllers that can adapt to variations a long time in the
behavior of controlled systems, but also to being reused on
different systems and processors.

In consideration of our application domain of Computing
Systems, we also face a need for solutions with a particular
simplicity of implementation and operation, because HPC
system administrators are experts in Computer Science, but
typically not of Control Theory: indeed, for historical and
academic organization reasons, the curricula and scientific
cultures are very separate between these two domains.

B. Applying Model-Free Control

These two needs of adaptivity and simplicity of operation
motivate us to consider applying Model-Free Control (MFC)
[9], [10]:

• This data-driven setting is easy to implement.
• It has been successfully applied in many concrete ap-

plications, like energy management (see, e.g., [11]), car
driving (see, e.g., [12]) or electro-active actuators (see,
e.g., [13]).

• Several illustrations in computer science have already
been published: improving resource elasticity in cloud
computing [14], service in the Internet of Things [15],
and cybersecurity [16].

C. Our Control Problem: Resource Harvesting in HPC

Supercomputers are very expensive, therefore they are
shared between many users from research groups and labo-
ratories. A reservation process is used to access the machines
and execute the jobs. Users submit their computations, along
the estimate duration and the required number of machines,
to the scheduler. The latter is responsible to map the jobs
to the physical machines. However, the reservation system
also leads to the idleness of some machines, for different
reasons, e.g., a lack of demand from the users, representing
a non-negligible loss of computing power.



Therefore researchers have been looking at the problem
of harvesting those idle resources [17]–[19]. Resources are
harvested by submitting jobs that are more flexible (smaller,
interruptible) and viewed as second class citizens. However,
they still impact the shared resources of the cluster (e.g. file-
system, communication network), thus inevitably perturbing
the jobs of the premium users. There is a trade-off to
exploit between the amount of harvesting and the maximum
perturbation that these users can accept.

Our control problem is therefore to explore the application
of MFC in the context of resource harvesting in a Computing
Grid, by regulating the injection of flexible jobs while
limiting perturbation of the priority applications.

D. Contributions of this paper

Within the above context, the work presented in this paper
presents contributions in:

• a formulation of the problem in terms of MFC
• an analysis of the parameterization and method
• an experimental evaluation.

II. BACKGROUND

A. MFC : the ultra-local model and intelligent controllers

We summarize from [9] the main ideas and building blocks
of Model-Free control.

For simplicity’s sake, let us restrict ourselves to single-
input single-output (SISO) systems. The unknown global
description of the plant is replaced by the following first-
order ultra-local model:

ẏ(t) = F (t) + αu(t) (1)

where:
1) the control and output variables are respectively u(t)

and y(t), which are of course time-dependent.
2) the constant α ∈ R is chosen by the practitioner such

that the three terms in Equation (1) are of the same
magnitude.

The following comments are useful:
• F (t) is data driven: it is given by the past values of

u(τ) and y(τ), τ ≤ t.
• F (t) includes not only the unknown structure of the

system but also any disturbance.
Close the loop with the intelligent proportional controller,

or iP,

u(t) = − F̂ (t)− ẏ⋆(t) +KP e(t)

α
(2)

where
• y⋆(t) is the reference trajectory,
• e(t) = y(t)− y⋆(t) is the tracking error,
• F̂ (t) is an estimated value of F (t),
• the constant KP ∈ R is the proportional gain.
Equations (1) and (2) yield

ė(t) +KP e(t) = F (t)− F̂ (t) (3)

If the estimation F̂ is “good” i.e., F − F̂ ≃ 0, then
lim

t→+∞
e(t) ≃ 0 if KP > 0. It implies that the tuning of KP is

quite straightforward. This is a major benefit when compared
to the tuning of classic PID control (see, e.g., [20]).

The computation of F̂ , can be done with different tech-
niques as presented in [9]. However, as a first approach, we
can also compute F̂ using Equation (1) as

F̂ (tk) = ṡ(tk)− αu(tk−1) (4)

where tk is the current instant and ṡ(tk) the filtered derivative
of ẏ.1 For sake of simplicity, from now on we will write yk
or sk instead of y(tk) or s(tk).

B. Background on the HPC system

1) The CiGri Middleware: The computing resource har-
vesting we consider (see Section I-C) takes places in the
framework of the CiGri architecture depicted in Figure 1.
The injected jobs come from Bag-of-Tasks (BoT) applica-
tions, composed of many small independent parametric tasks
that can thus be executed in parallel. Some examples of BoT
applications are Monte-Carlo applications where the user has
to execute thousands of small independents tasks to produce
statistical results from the results of all the tasks. Other
examples can be jobs from the Big Data field, or parameter
sweep applications.

An important issue is linked to the potential overloading
of the file-server, due to too many I/O operations (i.e.,
reading/writing files), which risk to disturb the high priority
users of the clusters.

In the general architecture of the system the computing
grid is composed of clusters, grouping compute nodes re-
sources, connected by a network to a storage server, also
called file-server. OAR [21] servers are managing computa-
tions on the clusters, scheduling tasks coming mainly from
priority users, and also from CiGri. In this paper we only
focus on the case of a single cluster.

CiGri jobs are viewed by OAR as Best-effort jobs i.e.,
with the lowest priority on the cluster. If a priority user
of the cluster needs the resource where a Best-effort job is
running, then the latter will be stopped and the priority user
will get the resource for her job. Best-effort jobs will only
get scheduled on idle cluster nodes, as opposed to higher
priority jobs that can interrupt lower priority jobs in order to
run on a specific resource.

In its original version, CiGri uses a very simple algorithm
every 30 seconds, to decide of the quantity of jobs to submit
to OAR, and then will wait until all these jobs have finished
executing to submit a new subset of jobs. This current
solution has the drawback that it leads to an under-utilization
of the cluster, by waiting for the injected jobs to terminate
before the next injection, and also by not taking into account
the current state of the system (e.g., number of idle resources,
load of the file-system).

A significant aspect of this load is related to the fact that
every HPC job either writes a file (e.g., saving results), reads
a file (e.g., importing configuration) or both. Usually, in a
cluster, there is one, or several, dedicated machines by cluster

1See Section III-B for details on the implementation.



CiGri

OAR

I/O

File-Sys.

Submit

Schedule

Cluster

Local
Users

Campaign

Task

Controller

loadavg

OAR Sensors

Tap

Fig. 1. Architecture of the CiGri System

for the storage of the users data. The users then access the
data on this server using mechanisms such as NFS (Network
FileSystem). However, the performances of this server are
limited, and too many write/read requests can lead to an
overload and thus to a drop in performance, affecting the
priority users of the cluster by slowing them down. (i.e.,
increase in read/write times).

As we can see, the current behavior of the CiGri Mid-
dleware does not take into account the dynamic behavior of
the grid (sudden presence or absence of machines or higher
priority users) as well as the file-server load. The harvesting
of the idle resources by CiGri must be done dynamically
by taking into account the current state of the system: load
of the file-server and number of idle resources. Moreover, it
should be easily deployable in the production environment
and independent of the number of resources and job size. For
these reasons we decide to use tools from Control Theory to
tackle this issue.

2) CiGri in a Control Theory framework: The goal of the
controller is to avoid any file-server overload while mini-
mizing the under-utilization of the cluster by submitting
tasks from a Bag-of-Tasks application. Thus, by controlling
the load of the file-server to a constant value, we could make
sure that the latter is not overloaded by CiGri and thus is
not the bottleneck of some high priority user applications.

For sensing the load of the filesystem, we chose the UNIX
/proc/loadavg sensor. This sensor is well known in
system administration. A rule of thumb is that a system is
overloaded if the value returned by loadavg is greater than
the number of threads in the system. This metric has the
particularity of having some unknown inertia depending on
the number of threads.

The way of controlling the system (the actuator) is by
adjusting the number of jobs that CiGri can submit to OAR
at each cycle.

The number of jobs submitted by the premium users of
the cluster plays the role of an external signal on which we
do not have any influence (i.e., perturbation).

III. MODEL-FREE CONTROLLER DESIGN

A. Applying MFC to our problem

Administrators of HPC systems are not control theory
experts. This is why we want to benefit from the simplicity

of operation of the model-free approach, as well as from its
performance.

In [9], the authors present multiple intelligent controllers
(intelligent PIDs and their variations). In this work, as a
first approach, we decided to use an intelligent Proportional
controller (iP) due to its simplicity of implementation and
the fact that it leads to a zero steady state error.

a) Inputs: In our system, we have a single input signal
which is the number of jobs submitted by CiGri to OAR at
each submission cycle. We note u = #jobsCiGri.

b) Outputs: In this work we are interested in the
regulation of the fileserver load. We measure the UNIX
metric y = loadavg to sense this load. The machine
hosting the filesystem does also non I/O related work, (e.g.,
network requests). As the loadavg metric measured the
CPU activity, it also captures the non I/O behavior, thus
introducing perturbation in the sensing of the I/O load. This
is why we need to filter the loadavg sensor output to get
the I/O load of the filesystem.

c) Control Objective: Our objective is to harvest the
idle resources of a cluster of machines without perturbing
the premium users of the cluster and guarantee a Quality-of-
Service. The Quality-of-Service can be expressed as the the
inverse of load of the filesystem (y): the higher the load the
more perturbed the I/O of the users as it will take longer to
execute the I/O request.

B. The need to filter the sensor values

As we see from Equation (4) the approximation of the
system F needs the values of y and it’s temporal derivative
ẏ. As computing the derivative of a noisy signal can result
in an even noisier signal, we decided to use an exponential
moving average filter to smooth the output signal. The filter
has the following form:

sk = βsk−1 + (1− β)yk (5)

where sk is the filtered (smoothed) output at iteration k, yk
the real (noisy) output and β ∈ [0, 1] is the smoothing factor.

Figure 2 depicts the variations of the output signal deriva-
tive when smoothed (top) as well as the reaction delay
induced by the introduction of the smoothing (shaded area on
bottom graph). We can see that the greater β, the smoother



Fig. 2. Smoothed output, its derivative and the induced delay for different
smoothing factor (β).

is the output signal (bottom) as well as the derivative (top).
The smoother the derivative, the better the estimation of F .
However, we can also see that increasing β leads to some
delay in response, which will slow down the reaction time
of the closed loop system. There is thus a tradeoff between
smoothness and response time. A discussion about the choice
of β is given below in Subsection III-D.2.

C. The Control Law

CiGri works in a discrete fashion by submitting jobs
periodically, every ∆t = 30sec. We thus compute the control
law in a discrete manner. As described in Section II-A, the
control law at each iteration k is defined as follows:

F̂k =
sk − sk−1

∆t
− αuk

uk+1 = −
F̂k − ẏ⋆k +Kp × (sk − y⋆k)

α

(6)

where sk is the smoothed value of the output yk, uk is the
control value, F̂k is the estimation of the plant model, y⋆k
is the reference value and ẏ⋆k the derivative of the reference
value. If we want for example a constant Quality-of-Service
for the file-server, we then take y⋆k constant and its derivative
(ẏ⋆k) is null.

D. Choice of the Parameters

The model-free approach requires us to set up a few
parameters:

1) α: In [9], the authors recommend taking α such that
ẏ and α× u have the same order of magnitude.

From Figure 2, we see that an estimate for the order of
magnitude of the derivative ẏ is approximately 0.1×(1−β),
where 0.1 is the amplitude for the non filtered output (i.e.,
β = 0). Let us thus set:{

A0 ≃ 0.1

Aβ ≃ A0 × (1− β)
(7)

Hence, as u ∈ [0, rmax], where rmax is the total number of
resources available in the cluster, we find from Equation (6)
that for ẏ and α × u to have the same order of magnitude
we need:

α ≃ Aβ

rmax
(8)

2) Smoothing factor: The smoothing factor β is used in
filtering the derivative, as we see in Equation (5).

Furthermore, we try to find a relation between the value
of β and the reaction delay it introduces.

If we consider that y is constant and suppose the initial
condition of the smoothing filter s0 = 0, we can write:

sk = βsk−1 + (1− β)y = y
(
1− βk

)
(9)

We want to know the number of iterations needed to reach
a p percentage of the input step, with p ∈ [0, 1]. Hence, by
setting sk = p× y, we deduce the following relations:{

k = lnβ (1− p)

β = (1− p)
1
k

(10)

As the system output changes very rapidly, we can not
accept a delay greater than two cycles but we also need the
filtered value to be as close as possible to the real one (i.e.,
p ≃ 1). From Equation (10) if we set k = 2 and p = 0.95
we obtain β = 0.22 which manages to smooth enough the
signal by only delaying the output very slightly.

3) Controller gain Kp: The value of the gain of the
controller is also responsible for the closed loop behavior
of the system. Small values of Kp yield conservative and
slow controllers whereas greater values yield more aggressive
controllers prone to overshooting and oscillations.

From [9], we want the contribution of the controller (Kp×
error) and the estimation of the system (F̂ ) to have the same
order of magnitude. Indeed, the role played by F̂ in rejecting
errors and/or perturbations of the model must be important
with respect to the controller.

From Equations (6), (7) and (8), we get that for Kp×error
and F̂ to have the same order of magnitude we need:

Kp ≃ Aβ = A0 × (1− β) (11)

4) Summary: From the experiments done in Figure 2, as
well as Equations (8), (10) and (11), we infer the value of the
parameters of our Model-Free controller. The total number
of resources available in the cluster is rmax = 100. We first
pick the value of β as explained in Section III-D.2 and then
derive the values for α and Kp based on the smoothing factor.
This gives:

α = 0.008, Kp = 0.078, β = 0.22 (12)

IV. EXPERIMENTAL VALIDATION

In this section we detail the implementation of the Model-
Free controller defined in Section III on the experimental
setup containing the CiGri middleware. The behavior of
the controller and its capacity to reject disturbances will be
tested.



A. Experimental Setup

To test the controller described in Section III, we used the
following setup:

• One CiGri Server
• One OAR Server (Version 3)
• One Fileserver (implemented with NFS)
• One Cluster of 100 OAR resources (rmax = 100)
The experiments were done by using nodes from the

Grisou Cluster in Grid’5000 [22] which is a shared French
testbed for experimental research in distributed and parallel
computing. Each node of this cluster has two Intel Xeon
E5-2630 v3 CPU with eight cores per CPU and 128 GB of
memory. Each server of our system is being deployed onto
a single Grid’5000 node.

The experiment consisted in submitting campaigns to
CiGri with different I/O loads in order to test the robustness
of the method. The I/O load is given by writing a different
file of 50, 100 or 200MBytes to the fileserver.

We want to regulate the load of the fileserver around a
reference value (y⋆) given by the cluster administrators. A
discussion about this value is given below in Section but
for now we consider it constant (i.e., y⋆ = 3 in our case).
In practice, these load values translate an overhead on the
reading/writing time of a file: the higher the load, the longer
the overhead. Thus, the system administrators would choose
the reference value that yields an acceptable overhead for
their system and users, based on their experience.

B. Controller validation

In the following experiments we submitted campaigns with
a different quantity of I/O per job. We have three different
campaigns, each one has jobs that first emulate a CPU bound
computation (sleep for 30 seconds) and then write a file to
the file-server (emulating the saving of results). Different file
sizes of 50, 100 and 200MBytes are considered which have
a different impact on the file-server.

Figure 3 depicts the evolution of the load of the fileserver
(1st row), the number of jobs submitted by CiGri cycle (2nd

row), the contribution of F̂ (3rd row) and the contribution of
the error (4th row) for the control law.

We can see that, as desired, most of the contribution to u
(2nd row), the number of jobs submitted by CiGri, is done
by the estimation of F (3rd row), and that the error term (4th

row) only corrects slightly the input. We also see that when
the system reaches a steady state, the error term is close to
zero. This comforts us in the choice of the parameters.

Another remark concerns the stability of the load when
reaching a steady state. We can see that for 100MBytes
files, the load is quite stable, whereas for 200MBytes files
it does slightly oscillate. This might indicate that the choice
of Kp might not be completely adequate for this quantity
of I/O. Similarly for smaller quantity of I/O, the response
is slightly slower, indicating that a larger Kp might be
more appropriate. However, the choice of this parameters
(Equation (12)) still covers a large range of I/O, making this
controller relevant for such a range.

Fig. 3. Temporal evolution of the fileserver load (1st row), the number of
jobs submitted by CiGri (2nd row), and the contribution of F (3rd row) and
the contribution of the error term (4th row). Experiments run 10 times.

C. Controller robustness to external disturbances

In order to come closer to the real life behavior of the
CiGri environment, we need to observe the behavior of the
model-free controller with some perturbations, which in the
case of CiGri are the jobs from the premium users of the
cluster. The arrival of these jobs is considered unpredictable.
A degenerative case can be represented as a step input which
could represent the writing of a long file, or the frequent
writing of medium files for example.

In this experiment we submit a campaign to CiGri, as
discussed above, and set the reference value for the controller
to 3 (black dashed line in Figure 4). After some time,
we introduce a step perturbation (black dashed-dotted line)
and finally, we end the step perturbation and go back to a
disturbances free scenario.

For each campaign, we ran the experiment 10 times. The
color of the points in Figure 4 corresponds to a specific
experiment. We also show the mean behavior of the 10
experiments in plain lines.

We can see that the controller does increase progressively
the number of jobs submitted to OAR (bottom row) to get
the load of the fileserver (top row) to the reference value.
Before the start of the step, the load has converged to the
reference value.

At the start of the perturbation, we can see that the load
increases and that the controller reacts by decreasing the
number of jobs to submit in order to correct it and stabilize
it back to the reference value.

At the end of the step, the load drops and we can see
the controller increasingly submitting more and more jobs in
order to get back to the reference value, where it stabilizes.

We can also note that for campaigns with larger I/O, the
response of the controller is faster but also more aggressive.



Fig. 4. Evolution of the Fileserver Load and the number of submitted jobs for a step disturbance. Experiments are run 10 times.

Fig. 5. Trade-off between the Cluster Utilization and the Time Overhead
(I/O Perturbation to the Premium users jobs) with different reference values

D. Comparison with the Original CiGri Algorithm for sev-
eral reference values

We want in this Section to evaluate the advantage of
using our solution compared to the original CiGri submission
mechanism [7] presented in Section II-B.1. We will run the
MADbench2 application [23] as a premium user’s application
to assess of the impact of the idle resources harvesting.
MADbench2 is a tool for testing the integrated performance
of the I/O, communication and calculation subsystems of
massively parallel architectures under the stresses of a real
scientific application.

We submit a CiGri campaign and run our controller with
different reference values between 0 and 8 (range of possible
values for this configuration of the fileserver with NFS).
At the termination of the MADbench2 application, we will
measure the amount of resources left idle and the time
difference between the execution time with and without the
harvesting (time overhead). The results are depicted in Figure
5. We can see that the smaller the reference value, the less
we harvest (i.e., more resources are left idle) but also the
smaller the time overhead. For greater reference values, the
quantity of harvested resources is more important (i.e., few
resources are left idle) as well as the perturbation.

The black dashed line in Figure 5 represents the ideal

(optimal) values linking the reference value to the best
amount of idle resources and best I/O perturbation. We also
plot in Figure 5 the cluster usage and time overhead using
the original CiGri solution (square point).

Nevertheless, as this solution does not take into account
the load of the fileserver, it is not able to adapt its submission
to a changing Quality-of-Service.

V. CONCLUSION

In this work we applied the Model-Free approach to
the CiGri middleware. The objective was to harvest idle
resources of a set of computing machines while regulating
the load of the filesystem in order to maintain a given level
of perturbations, or Quality-of-Service.

The advantages of using a Model-Free control are the
simplicity of setup, the performances and the adaptativity.
The simplicity is important for HPC systems administrators
not experts in Control Theory, the adaptativity is important
w.r.t. variations in time of the system behavior, but also, more
originally, when using the controller for different machines,
or different applications running on the system.

In Section III, we defined the values of the different
parameters of the MFC. Then, in Section IV-C, we evaluated
our solution on a synthetic step perturbation. The controller
showed good tracking of the desired reference value, as
well as stability. Section IV-D presented the evaluation of
the perturbation of the harvesting on a premium user job.
It exhibited a trade-off between the harvesting and the
perturbing with the reference value being the main knob.

Inspired by [24], another interesting perspective is also the
adaptation of the parameters (especially Kp) to the operating
domain. Although the overall results obtained are good, this
idea could further improve the results obtained in the extreme
cases shown Figure 3.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

https://www.grid5000.fr


REFERENCES

[1] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. A. Müller,
H. Giese, R. Rouvoy, and E. Rutten, “What Can Control
Theory Teach Us About Assurances in Self-Adaptive Software
Systems?” in Software Engineering for Self-Adaptive Systems III.
Assurances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese,
Eds. Cham: Springer International Publishing, 2017, vol. 9640,
pp. 90–134. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-74183-3 4

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, pp. 41–50, Jan. 2003.
[Online]. Available: http://pages.cs.wisc.edu/swift/classes/cs736-fa06/
papers/autonomic-computing.pdf

[3] J. L. Hellerstein et al., Feedback Control of Computing Systems.
Wiley, 2004.

[4] A. Filieri et al., “Software engineering meets control theory,” in 2015
IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2015, pp. 71–82.

[5] P. K. Janert, Feedback control for computer systems: introducing
control theory to enterprise programmers. O’Reilly Media, Inc, 2013.

[6] A. G. Yabo et al., “A control-theory approach for cluster autonomic
management: maximizing usage while avoiding overload,” in 2019
IEEE Conference on Control Technology and Applications (CCTA).
Hong Kong, China: IEEE, Aug. 2019, pp. 189–195. [Online].
Available: https://ieeexplore.ieee.org/document/8920473/

[7] Q. Guilloteau et al., “Controlling the Injection of Best-Effort Tasks
to Harvest Idle Computing Grid Resources,” in ICSTCC 2021
- 25th International Conference on System Theory, Control and
Computing, Ias, i, Romania, Oct. 2021, pp. 1–6. [Online]. Available:
https://hal.inria.fr/hal-03363709

[8] S. Cerf et al., “Sustaining Performance While Reducing Energy
Consumption: A Control Theory Approach,” in EURO-PAR 2021 -
27th International European Conference on Parallel and Distributed
Computing, ser. Euro-Par, vol. 12820. Lisbon, Portugal: Springer,
Aug. 2021, pp. 334–349. [Online]. Available: https://hal.inria.fr/
hal-03259316

[9] M. Fliess and C. Join, “Model-free control,” International Journal of
Control, vol. 86, no. 12, pp. 2228–2252, 2013.

[10] ——, “An alternative to proportional-integral and proportional-
integral-derivative regulators: Intelligent proportional-derivative regu-
lators,” International Journal of Robust and Nonlinear Control, 2021.

[11] T. Kuruganti, M. M. Olama, J. Dong, Y. Xue, C. Winstead, J. J.
Nutaro, S. Djouadi, L. Bai, G. Augenbroe, and J. M. Hill, “Dynamic
building load control to facilitate high penetration of solar photovoltaic
generation: Final technical report,” Oak Ridge National Lab.(ORNL),
Oak Ridge, TN (United States), Tech. Rep., 2021.

[12] Z. Wang, A. Cosio, and J. Wang, “Implementation resource allocation
for collision-avoidance assistance systems considering driver capabili-
ties,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[13] C. Sancak, F. Yamac, M. Itik, and G. Alici, “Force control of electro-
active polymer actuators using model-free intelligent control,” Journal
of Intelligent Material Systems and Structures, vol. 32, no. 17, pp.
2054–2065, 2021.

[14] M. Bekcheva, M. Fliess, C. Join, A. Moradi, and H. Mounier,
“Meilleure élasticité ”nuagique” par commande sans modèle,”
Automatique, vol. 2, no. 1, Oct. 2018. [Online]. Available:
https://hal-polytechnique.archives-ouvertes.fr/hal-01884806

[15] C. Join, M. Fliess, and F. Chaxel, “Model-free control as a service
in the industrial internet of things: Packet loss and latency issues via
preliminary experiments,” in 2020 28th Mediterranean Conference on
Control and Automation (MED). IEEE, 2020, pp. 299–306.

[16] M. Fliess, C. Join, and D. Sauter, “Defense against dos and load alter-
ing attacks via model-free control: A proposal for a new cybersecurity
setting,” in 2021 5th International Conference on Control and Fault-
Tolerant Systems (SysTol). IEEE, 2021, pp. 58–65.

[17] D. Anderson, “BOINC: A System for Public-Resource Computing
and Storage,” in Fifth IEEE/ACM International Workshop on Grid
Computing. Pittsburgh, PA, USA: IEEE, 2004, pp. 4–10. [Online].
Available: http://ieeexplore.ieee.org/document/1382809/

[18] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard, “Big data and
HPC collocation: Using HPC idle resources for Big Data analytics,”
in 2017 IEEE International Conference on Big Data (Big Data).
Boston, MA: IEEE, Dec. 2017, pp. 347–352. [Online]. Available:
http://ieeexplore.ieee.org/document/8257944/

[19] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,
“Condor-G: a computation management agent for multi-institutional
grids,” in Proceedings 10th IEEE International Symposium on
High Performance Distributed Computing. San Francisco, CA,
USA: IEEE Comput. Soc, 2001, pp. 55–63. [Online]. Available:
http://ieeexplore.ieee.org/document/945176/

[20] K. J. Åström and R. M. Murray, “Feedback systems: An introduction
for scientists and engineers,” 2008.

[21] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounie, P. Neyron, and O. Richard, “A batch scheduler
with high level components,” in CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005. Cardiff,
Wales, UK: IEEE, 2005, pp. 776–783 Vol. 2. [Online]. Available:
http://ieeexplore.ieee.org/document/1558641/

[22] D. . Balouek et al., “Adding virtualization capabilities to the Grid’5000
testbed,” in Cloud Computing and Services Science, ser. Communi-
cations in Computer and Information Science, I. I. Ivanov, M. van
Sinderen, F. Leymann, and T. Shan, Eds. Springer International
Publishing, 2013, vol. 367, pp. 3–20.

[23] W. Dong, G. Liu, J. Yu, and Y. Zuo, “Characterizing i/o workloads
of hpc applications through online analysis,” in 2015 IEEE 34th In-
ternational Performance Computing and Communications Conference
(IPCCC). IEEE, 2015, pp. 1–2.

[24] P.-A. Gédouin, E. Delaleau, J.-M. Bourgeot, C. Join, S. A. Chirani,
and S. Calloch, “Experimental comparison of classical pid and model-
free control: position control of a shape memory alloy active spring,”
Control Engineering Practice, vol. 19, no. 5, pp. 433–441, 2011.

http://link.springer.com/10.1007/978-3-319-74183-3_4
http://link.springer.com/10.1007/978-3-319-74183-3_4
http://pages.cs.wisc.edu/ swift/classes/cs736-fa06/papers/autonomic-computing.pdf
http://pages.cs.wisc.edu/ swift/classes/cs736-fa06/papers/autonomic-computing.pdf
https://ieeexplore.ieee.org/document/8920473/
https://hal.inria.fr/hal-03363709
https://hal.inria.fr/hal-03259316
https://hal.inria.fr/hal-03259316
https://hal-polytechnique.archives-ouvertes.fr/hal-01884806
http://ieeexplore.ieee.org/document/1382809/
http://ieeexplore.ieee.org/document/8257944/
http://ieeexplore.ieee.org/document/945176/
http://ieeexplore.ieee.org/document/1558641/

	Introduction
	Need of Control Theory for High Performance Computing
	Applying Model-Free Control
	Our Control Problem: Resource Harvesting in HPC 
	Contributions of this paper 

	Background
	MFC : the ultra-local model and intelligent controllers
	Background on the HPC system
	The CiGri Middleware
	CiGri in a Control Theory framework


	Model-Free Controller Design
	Applying MFC to our problem
	The need to filter the sensor values
	The Control Law
	Choice of the Parameters
	
	Smoothing factor
	Controller gain Kp
	Summary


	Experimental Validation
	Experimental Setup
	Controller validation
	Controller robustness to external disturbances
	Comparison with the Original CiGri Algorithm for several reference values

	Conclusion
	References

