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Welded extensions and ribbon restrictions of diagrammatical moves

Boris Colombari

Abstract

In this paper, we consider local moves on classical and welded diagrams of string links, and the notion
of welded extension of a classical move. Such extensions being non-unique in general, the idea is to find
a topological criterion which could isolate one extension from the others. To that end, we turn to the
relation between welded string links and knotted surfaces in R4, and the ribbon subclass of these surfaces.
This provides a topological interpretation of classical local moves as surgeries on surfaces, and of virtual
local moves as surgeries on ribbon surfaces. Comparing these surgeries leads to the notion of ribbon
residue of a classical local move, and we show that up to some broad conditions there can be at most
one welded extension which is a ribbon residue. We provide three examples of ribbon residues, for the
self-crossing change, the Delta and the band-pass moves. However, for the latter, we note that the given
residue is actually not an extension of the band-pass move, showing that a classical move may have a
ribbon residue and a welded extension, but no ribbon residue which is an extension.

Introduction

Knot theory aims at studying embeddings of circles in R3 up to ambient isotopies and, more generally, em-
beddings of codimension 2 submanifolds in Rn. As shown by K. Reidemeister [13] in dimension 3, and then
extended to dimension 4 by D. Roseman [14], this topology–based study can be translated in a combinatorial
way through the use of diagrams, which are generic projections of the submanifold onto Rn−1 × {0} ⊂ Rn,
up to local moves corresponding to some elementary local isotopies. Using this diagrammatic approach, one
can extend the classical notion of knotted objects to the notion of welded objects, first defined for braids by
R. Fenn, R. Rimányi and C. Rourke in [7]. This welded theory is a quotient of the virtual extension, defined
independently by L. Kauffman in [10] and M. Goussarov, M. Polyak and O. Viro in [8] by allowing a new
type of, so-called virtual, crossings on diagrams and a new type of, so-called detour, moves which freely trade
any piece of strand supporting only virtual crossings for any other such virtual strand with same extremi-
ties. For welded objects, strands are also allowed to pass above (but not under) virtual crossings. Whereas
the works of Kauffman [10] and Goussarov–Polyak–Viro [8] are motivated by combinatorial aspects of link
diagrams description, T. Brendle and A. Hatcher showed in [5] that the work of Fenn–Rimányi–Rourke is
much more related to 4–dimensional topology, as their braid-permutation groups are closely related to paths
of circles configurations, which are surfaces in R4 just like paths of points configurations are topological
braids. As a matter of fact, welded link theory can be seen as an intermediary step between classical links
and knotted surfaces. For general welded objects, the connection with knotted surfaces was made clear by
S. Satoh [15] who extended the Tube map, first defined for classical objects by T. Yajima [16] by, roughly
speaking, inflating strands into knotted tubes in R4, to any such welded object. In particular, as it is the
codomain of the Tube map, it emphasized the important role played by the ribbon subclass of knotted
surfaces, corresponding to embedded surfaces which are the boundary of immersed solid handlebodies with
only ribbon singularities.

Besides ambient isotopies, other topological quotients were combinatorially modelled using additional
local diagrammatical moves. In [3], B. Audoux, P. Bellingeri, J-B. Meilhan and E. Wagner started to study
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the question of potential welded extensions for such additional moves. Even though motivated by topological
quotients in dimension 4, their study remained close to the classical knot theory side of the welded theory, a
local move Mw on welded diagrams being indeed said to extend a given local move Mc on classical diagrams
if two classical diagrams are related up to Mw and welded Reidemeister moves if and only if they are related
up to Mc and classical Reidemeister moves. Surprisingly enough, it appeared that there exists classical local
moves, e.g. the ∆ move (see Figure 8), admitting multiple non-equivalent welded extensions.

The main goal of the present paper is to resolve such ambiguities by making the study of welded exten-
sions closer to topology, using the knotted surface theory side of the welded theory. Indeed, another (actually
equivalent) way to relate classical knots with knotted surfaces is to spin a 1–dimensional knotted object in
R3 ⊂ R4 around a plane to obtain a surface. When similarly spinning a classical diagram, one obtains
a broken surface diagram, the 4–dimensional counterpart of link diagrams, and when spinning a classical
local move Mc, one obtains a surgery operation Spun(Mc) which modifies in an explicit way broken surface
diagrams inside some solid torus, and hence knotted surfaces inside some S1 ×B3 ⊂ R4. A local move Mw

is then said to be a ribbon residue of Mc if two ribbon surfaces S1 and S2 are related by Spun(Mc) surgeries
as knotted surfaces if and only if they can be realized as S1 = Tube(L1) and S2 = Tube(L2) with L1 and L2

being related by Mw and welded Reidemeister moves.

As in [3], we focus on the string link case, which are embedded intervals with prescribed fixed ends,
and consider specifically three local moves, namely SC which models link-homotopy, ∆ which models link-
homology and BP which models band-passing (see Figure 8). More precisely:

• for SC, it was proven in [3] that the self-virtualization move SV , which turns any classical crossing
involving portions of the same strand to a virtual crossing, is a welded extension. Without surprise,
we prove that it is also a ribbon residue (Theorem 2.13);

• for ∆, it was proven in [3] that both the fused move F , which allows any strand to pass under classical
crossings, and the virtual conjugation move V C, which surrounds a classical crossing by two virtual
ones, are welded extensions. We prove that F is a ribbon residue while V C is not (Theorem 2.17). This
provides a way to designate F as a preferred welded extension, carrying more topological meaning;

• for BP , we prove (Theorem 2.19) that the action of Spun(BP ) of knotted surfaces is much stronger
than that of BP on classical string links, as its ribbon residue is the V move, which trivializes welded
string links. Even after restricting the action of Spun(BP ) to avoid some artefacts, the ribbon residue
obtained (Theorem 2.23) still trivializes classical string links. As a result, no welded extension of BP
which w-generates the SV move can be a ribbon residue, including the one given in [3].

The paper is organized as follows. In Section 1, we set the global background: the general notation is
set in Section 1.1, welded knot theory and its relationship with ribbon surfaces are presented in Section 1.2,
and local moves, welded extensions and ribbon residues are defined in Section 1.3. Section 2 is devoted to
the above-mentionned moves, SC in Section 2.1, ∆ in Section 2.2 and BP in Section 2.3.

Aknowledgements. This article was inspired by results obtained during the redaction of my master’s
degree thesis. I would like to thank my thesis tutor B. Audoux for his guidance and helpful advice in the
writing of this paper. I am also grateful to l’Institut de Mathématiques de Marseille for hosting me during
my master research project, which was supported by l’École Normale Supérieure de Cachan.

1 Settings

1.1 Notation

We begin by introducing some notation. Let n and d be positive integers. We denote by I := [0, 1] the unit
interval, Bd the closed unit ball in Rd and Sd = ∂Bd+1 the d-dimensional sphere. More generally, for x ∈ Rd
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and r > 0 we denote by Bd(x, r) the closed ball centered at x and with radius r in Rd. Let Bd,1 := Bd × I,
Sd,1 := Sd × I, and ∂εB

d,1 := Bd × {ε}, ∂εSd,1 := Sd × {ε} for ε = 0, 1. The manifolds I and Bd are given
their usual orientation (induced by the canonical orientation of Rd), Sd is oriented as the boundary of Bd+1,
and Bd,1, Sd,1 are given the product orientation. Manifolds and maps are always in the smooth category.

We will work with submanifolds of Bd,1 which have a fixed cartesian product structure near ∂0B
d,1 ∪

∂1B
d,1. More precisely, let X be a manifold, and b : X → B̊d an embedding. We will consider embeddings

(resp. immersions) f : X × I → Bd,1 for which there exists 0 < δ < 1
2 such that:

• f(x, t) = (b(x), t) for t ∈ [0, δ) ∪ (1− δ, 1];

• f(X × [δ, 1− δ]) ⊂ B̊d,1.

We call the image Y = f(X × I) an embedded (resp. immersed) submanifold of Bd,1. We denote by
∂εY := f(X × {ε}) for ε = 0, 1 and ∂∗Y := f(∂X × I) the lower, upper and lateral boundaries of Y respec-
tively.

In what follows, we will consider sets of such submanifolds for a fixed oriented X (typically a disjoint
union of balls or spheres) and a fixed embedding b. Thanks to the boundary condition, we can define the
stacking product Y1 • Y2 for Yi = fi(X × I), i = 1, 2, by:

Y1 • Y2 = f(X × I), f(x, t) =

{
f1(x, 2t) if t ∈ [0, 12 ],
f2(x, 2t− 1) if t ∈ [ 12 , 1].

To preserve the cartesian product structure of submanifols near the lower and upper boundaries, we will
only consider isotopies of Bd,1 which are the identity in a neighborhood of ∂0B

d,1 ∪ ∂1Bd,1. Up to these
isotopies, the stacking product is associative.

Let p1 < · · · < pn be n ordered points in the interval (−1, 1), which are fixed once and for all (for example
take pi = (2i − 1 − n)/n). Moreover, let bD : B2

1 ⊔ · · · ⊔ B2
n → B̊3 be an embedding of n disjoint disks,

and bC : S1
1 ⊔ · · · ⊔ S1

n → B̊3 its restriction to the circles S1
i := ∂B2

i . We will use these as our fixed b in
Definitions 1.6 and 1.7.

We will also make use of some algebraic notions: for a group G normally generated by some elements
x1, . . . , xn, we denote by RG the reduced group defined as the quotient of G by the normal subgroup gener-
ated by the commutators [xi, gxig

−1] for 1 ≤ i ≤ n and g ∈ G. It is the biggest quotient of G in which the
xi’s commute with their conjugates.

For a group G normally generated by x1, . . . , xn, we denote by EndC(G) (resp. AutC(G)) the set of
conjugating endomorphisms (resp. automorphisms) of G, i.e. the subset of End(G) (resp. Aut(G)) whose
elements send each xi to one of its conjugates. We also define Aut0C(G) as the subset of AutC(G) whose
elements send the product x1 · · ·xn to itself.

1.2 Welded theory

1.2.1 Definition

Definition 1.1. An n–component string link is an embedding of ⊔
1≤i≤n

(Ii = {i} × I) in B2,1 with b(i) =

(0, pi) ∈ B2. The Ii are called the strands of the string link, and are oriented from ∂0Ii to ∂1Ii. We denote
by SLn the set of n–component string links up to isotopy. It is given a monoid structure by the stacking
product.

A string link can be represented in two dimensions by taking a generic projection on a plane, where the
singularities are transverse double points, called crossings. These crossings are represented by erasing part
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of the lower strand, and given a sign according to the orientation of the strands as indicated below:

positive crossing negative crossing

Welded string links can be defined using this diagrammatic approach. First, we need to consider a third
type of crossing, called virtual crossing :

Definition 1.2. An n–component virtual string link diagram is an immersion of ⊔
1≤i≤n

Ii in B
1,1 such that:

• b(i) = pi, and Ii is oriented from (pi, 0) to (pi, 1);

• there is a finite number of singularities, which are transverse double points;

• each double point is labelled to indicate a positive, negative or virtual crossing.

We denote by vSLDn the set of n–component virtual string link diagrams up to isotopy and reparametriza-
tion. It is given a monoid structure by the stacking product. We denote by SLDn the subset of vSLDn

composed of diagrams with no virtual crossing, which are called classical diagrams.

For a diagram D ∈ vSLDn, the portions of strands delimited by the undercrossings are called arcs. If
D is a classical diagram, the arcs are simply the connected components obtained after erasing parts of the
lower strands as described above. The arcs connected to ∂0B

1,1 are called the bottom arcs, and the ones
connected to ∂1B

1,1 are called the top arcs.

As proven by Reidemeister (see [13] in the case of knots and links, which extends to string links), two
classical diagrams represent the same string link if and only if one can be obtained from the other by applying
some local moves, called Reidemeister moves, illustrated in Figure 1.

R1 R1 R2

R3

R3

Figure 1: Reidemeister moves

We use this diagrammatical approach to define welded string links, by considering virtual string link
diagrams up to some local moves. We keep the (classical) Reidemeister moves, but also add new moves
involving virtual crossings, illustrated in Figure 2.

We denote by Reid (resp. vReid) the classical (resp. virtual) Reidemeister moves R1, R2, R3 (resp. vR1,
vR2, vR3), and by wReid the welded Reidemeister moves, consisting of Reid, vReid, Mixed and OC. These
welded Reidemeister moves enable what is called the detour move: if a portion of a strand only involves
virtual crossings, it can be changed for any other portion of strand involving only virtual crossings and
having the same extremities.
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vR1 vR2 vR3

Mixed OC

Figure 2: Additional moves on virtual diagrams

Definition 1.3. An n–component welded string link is an equivalence class of vSLDn under wReid. We
denote by wSLn the monoid of n–component welded string links.

Welded string links can be represented in a more combinatorial way by Gauss diagrams.

Definition 1.4. A Gauss diagram on n strands ⊔
1≤i≤n

Ii is a finite set of triplets (t, h, ε) ∈ ( ⊔
1≤i≤n

Ii)
2×{±1}

such that the t’s and the h’s are all distinct. These triplets are called arrows, with a tail t and a head h
positionned on the n strands, and a sign ε. We denote by GDn the set of Gauss diagrams on n strands up
to isotopy.

A virtual diagram can be described by a Gauss diagram by associating an arrow to each classical crossing,
the tail (resp. the head) indicating the position of the preimage on the upper (resp. lower) strand, and the
sign indicating the type of crossing. Virtual crossings are not represented.

+

+

−
+ +

Figure 3: A virtual diagram, and the associated Gauss diagram

Similarly to virtual string link diagrams, we need to allow local moves on Gauss diagrams in order to
obtain a one-to-one correspondance with welded string links. The moves on Gauss diagrams corresponding
to the welded Reidemeister moves are illustrated in Figure 4. Since the virtual Reidemeister moves only
involve virtual crossings, they do not affect Gauss diagrams, and neither does the Mixed move. The R3
move is labelled with a (∗) to indicate that it must satisfy some sign conditions: to apply R3, we must have
δ1ε1 = δ2ε2 = δ3ε3, where δi = 1 or −1 depending on whether the ith portion of strand read from left to
right is oriented upward or downward.

It is well known and straightforwardly checked that up to these local moves, virtual diagrams and Gauss
diagrams are faithful representations of string links:

Proposition 1.5. The following monoid isomorphisms hold:

• SLn ≃ SLDn/{Reid};

• vSLDn/{vReid,Mixed} ≃ GDn;

• wSLn = vSLDn/{wReid} ≃ GDn/{Reid, OC}.
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ε R1

−ε

ε
R2

ε3
ε2

ε1
R3

(∗)

ε3
ε2

ε1

ε1 ε2
OC

ε1 ε2

Figure 4: Local moves on Gauss diagrams

1.2.2 Relation with knotted surfaces

String links can be related to knotted surfaces through two maps, called Spun and Tube. The Spun map
spins a classical string link around a plane in 4 dimensions to obtain a surface, while the Tube map, first
defined for classical knots by T. Yajima in [16] and then extended to the welded case by S. Satoh in [15],
inflates a welded string link and takes the boundary to obtain “tubes”. One important fact is that the Tube
map sends welded string links to the ribbon subclass (see Definition 1.8 below) of the surfaces considered here.

A knotted surface is an embedding of a surface in R4. As in the case of knots, such surfaces can be
projected on a hyperplane, in order to obtain a surface in R3 with three types of singularities (see [14] or
[6]): lines of double points (where it is locally the intersection of two planes), isolated triple points (locally the
intersection of three planes in a point) and isolated branch points (where the projection is not an immersion).

line of double points triple point branch point

Such a projection, together with the information of upper/lower parts of the surface at singularities,
is called a broken surface diagram of the knotted surface. As in the 1–dimensional case, a broken surface
diagram can be represented by deleting thin bands around the lines of double points on the lower part of
the diagram. This is illustrated below, where the upper and lower parts of the diagrams have been chosen
arbitrarily:

line of double points triple point branch point

6



As in the case of knots, there are local moves on broken surface diagrams which identify different diagrams
associated to the same knotted surface. These are called Roseman moves (see [14] for a detailed description).

We now define an analogue of string links in the case of surfaces.

Definition 1.6. An n–component string 2–link is an embedding of ⊔
1≤i≤n

S1,1
i = ⊔

1≤i≤n
(S1

i × I) in B3,1 with

b = bC as our fixed boundary embedding. We denote by 2−SLn the set of n–component string 2–links up to
isotopy. It is given a monoid structure by the stacking product.

We will also consider the ribbon subclass of string 2–links, which is the string 2–link analogue of the
ribbon subclass of knots.

Definition 1.7. An n–component 3–ribbon is an immersion of ⊔
1≤i≤n

B2,1
i = ⊔

1≤i≤n
(B2

i × I) in B3,1 with

b = bD, and a singular set composed of a finite number of ribbon singularities, which are defined as follows:
a connected singularity is ribbon if it is a disk δ given by a transverse intersection of the images of two
components B2,1

i and B2,1
j (with possibly i = j), with preimages δc ⊂ B2,1

i and δess ⊂ B2,1
j of δ satisfying

the following conditions:

• δc ⊂ B̊2,1
i ;

• δ̊ess ⊂ B̊2,1
j and ∂δess ⊂ ∂B2

j × I is non-trivial in H1(∂B
2
j × I).

We call δc the contractible preimage and δess the essential preimage.

By considering the images of tangent vectors at the points xc ∈ δc and xess ∈ δess in the preimage of a
point x ∈ δ, we can associate a sign to a ribbon singularity. See [1, §3.2.1] for more details.

i

δc

xc

j

δess

xess

f

i j

δ

x

Figure 5: Ribbon singularity

Definition 1.8. An n–component ribbon string 2–link is an n-component string 2–link L which is the lateral
boundary of a 3–ribbon R: L = ∂∗R. We say that R is a ribbon filling of L. We denote by 2−rSLn the
monoid of n –component ribbon string 2–links.

As described in Section 3.2 of [1], we can associate a Gauss diagram to each 3–ribbon, with arrows corre-
sponding to ribbon singularities. This induces a one-to-one monoid homomorphism between 3–ribbons up to
istotopy and Gauss diagrams up to the OC move. The inverse of this homomorphism becomes invariant under
Reidemeister moves when composed with the “lateral boundary” map ∂∗ : {3–ribbon}/{isotopy} → 2−rSLn,
and induces a surjective homomorphism Tube : GDn/{Reid, OC} → 2−rSLn.
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Figure 6: Broken surface diagram of a ribbon singularity

Figure 6 illustrates a broken surface diagram of a ribbon string 2–link at a ribbon singularity. We can
give a more geometric definition of the Tube map in terms of broken surface diagrams:

Definition 1.9. For a welded string link L ∈ wSLn, let D ∈ vSLDn be a diagram of L, which we place in
B2,1 using the embedding (y, z) ∈ B1,1 7→ (0, y, z) ∈ B2,1. Let N be a tubular neighborhood of D in B2,1,
and ∂∗N its lateral boundary. At each crossing of D, we modify ∂∗N as indicated in Figure 7: a positive
(resp. negative) crossing gives a broken surface diagram of a positive (resp. negative) ribbon singularity,
and a virtual crossing gives two disjoint tubes. The Tube map is then defined as sending L to the element
of 2−rSLn represented by this broken surface diagram.

Figure 7: Image under Tube of each crossing

We now define the Spun map, which gives another way to obtain a knotted surface from a string link.
Note however that this map is only defined on classical string links, while the Tube map is defined on welded
objects.

Definition 1.10. Let L ∈ SLn be given by a parametrization (xi(t), yi(t), zi(t)) ∈ B2,1 for 1 ≤ i ≤ n and
t ∈ [0, 1]. Then Spun(L) is defined to be the string 2–link parametrized by :(

xi(t)

2
,
yi(t)− 1

2
cos(θ),

yi(t)− 1

2
sin(θ), zi(t)

)
∈ B3,1,

for 1 ≤ i ≤ n, t ∈ [0, 1], and 0 ≤ θ ≤ 2π. In other words, we start by placing L inB2
(
(0,− 1

2 ),
1
2

)
×{0}×[0, 1] ⊂

B3,1 ⊂ R4 by applying the map (x, y, z) 7→ (x/2, (y − 1)/2, 0, z), then we take its trace under a complete
rotation around the plane R × {0}2 × R. This defines a map Spun : SLn → 2−SLn. Indeed, an isotopy of
B2,1 induces an isotopy of B3,1 by the same construction.
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Suppose L ∈ SLn is represented by a diagram D ∈ SLDn, which is obtained by projecting L onto
the (yOz) plane. Then Spun(L) is represented by the broken surface diagram obtained by rotating D,
parametrized by: (

yi(t)− 1

2
cos(θ),

yi(t)− 1

2
sin(θ), zi(t)

)
∈ B2,1,

for 1 ≤ i ≤ n, t ∈ [0, 1], and 0 ≤ θ ≤ 2π, with the upper/lower information being given by the value of
xi(t). Note that the only singularities of this broken surface diagram are lines of double points, obtained by
rotating the crossings of D.

1.3 Local moves

We will now consider local moves in a general way.

1.3.1 Definition

Definition 1.11. A classical local move is a local move which only involves classical crossings. A virtual
local move can involve any type of crossings.

In particular, classical local moves are virtual local moves (in the same way as classical diagrams are also
virtual). The latter will also be simply referred to as local moves, with the mention virtual being added
when necessary to distinguish between classical and virtual moves.

CC SC VC

V SV SR

∆ F UC

BP wBP BV

Figure 8: Some local moves on virtual string link diagrams

A few examples are illustrated on Figure 8, where a dotted line indicates that the crossing occurs between
two portions of the same strand. Some classical local moves are derived from topological operations on links.
For example, the CC (for “crossing change”) move corresponds to homotopy, which allows strands to cross
each other, while SC (for “self-crossing change”) corresponds to link homotopy, only allowing each strand
to cross itself. The BP (for “band-pass”) move represents the crossing of two ”bands”, delimited by parallel
strands.

In an effort to extend the effect of some classical local moves to welded string links, certain local moves
on virtual diagrams, which closely resemble their classical counterparts, are introduced. For example, V (for
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“virtualization”) and SV (for “self-virtualization”) are derived from CC and SC respectively, while F (for
“fused”) is derived from ∆, and BV (for “band virtualization”) is derived from BP . This notion of extension
will be discussed in the next section.

Finally, some virtual local moves come naturally from Gauss diagrams. For example, V C (for “virtual
conjugation”) reverses the orientation of the arrow representing the classical crossing, while SR (for “sign
reversal”) changes its sign.

We also give their version on Gauss diagrams in Figure 9. The dotted lines in SC and SV indicate that the
extremities of the arrows belong to the same strand, but are not necessarily adjacent on this strand. These
are called self-arrows. As before, the (∗) indicates the presence of some sign conditions: the ∆ move must
verify the same conditions as the R3 move, while the BP , wBP and BV moves must verify εijεkl = δiδjδkδl,
where the δ’s are defined as in Section 1.2.1.

ε CC −ε
ε

SC

−ε

ε VC ε

ε V
ε

SV ε SR −ε

ε3 ε1

ε2 ∆

(∗)

ε3 ε1

ε2
ε η

F
ε η ε η

UC
ε η

ε13

ε12

ε43

ε42

BP

(∗)

−ε13

−ε12
−ε43

−ε42

ε13

ε12

ε43

ε42

wBP

(∗)

ε13

−ε12
−ε43

−ε42

ε13

ε12

ε43

ε42

BV

(∗)

Figure 9: Some local moves on Gauss diagrams

Definition 1.12. [3] Let M1 and M2 be local moves on classical (resp. virtual) string link diagrams. We
say that M2 c-generates (resp. w-generates) M1 if M1 can be realized using M2 and classical (resp. welded)

Reidemeister moves. We denote it by M2
c⇒ M1 (resp. M2

w⇒ M1). If M1
c⇒ M2 and M2

c⇒ M1 (resp.

M1
w⇒M2 and M2

w⇒M1), we say that M1 and M2 are c-equivalent (resp. w-equivalent).
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Examples: As proven in [3], we have the following relations:

V
w⇒ CC, SV

w⇒ SC, F
w⇔ UC, V C

w⇒ F
w⇒ ∆, wBP

w⇒ SR,F,BP.

1.3.2 Welded extension

For a classical (resp. virtual) local move M , we denote by SLM
n (resp. wSLM

n ) the quotient of classical

(resp. welded) string links by the equivalence relation induced by this move. We then have M2
c⇒M1 (resp.

M2
w⇒M1) if and only if the identity map of SLn (resp. wSLn) induces a well defined map SLM1

n → SLM2
n

(resp. wSLM1
n → wSLM2

n ).

If Mc is a classical local move and Mw is a local move such that Mw
w⇒Mc, then the inclusion SLDn →

vSLDn induces a map SLMc
n → wSLMw

n .

Definition 1.13. [3] When a local move Mw w-generates a classical move Mc, we say that Mw is a welded
extension of Mc if the induced map SLMc

n → wSLMw
n is injective.

The local move Mw extends Mc in the sense that if two classical diagrams are related by welded Reide-
meister moves and Mw, then they are also related by classical Reidemeister moves and Mc.

Definition 1.14. [3] Let M be a classical (resp. virtual) local move, A a monoid and ϕ : SLDn → A
(resp. ϕ : vSLDn → A) a monoid homomorphism. We say that ϕ c-classifies (resp. w-classifies) M if it is
preserved by M and classical (resp. welded) Reidemeister moves, and the induced map ϕ : SLM

n → A (resp.
ϕ : wSLM

n → A) is an isomorphism.

Definition 1.15. [8] For i, j ∈ {1, . . . , n}, i ̸= j, we define the virtual linking number vlkij : vSLDn → Z
by counting, with signs, the number of crossings where the ith component passes over the jth one. If
D ∈ vSLDn is represented by a Gauss diagram, vlkij(D) is the number of arrows going from the ith to
jth strands, counted with their signs. We note that the (classical) linking number lkij : SLDn → Z is the
restriction of vlkij to classical string link diagrams.

The (virtual) linking numbers are preserved by classical and welded Reidemeister moves, hence they are
well-defined on classical and welded string links. By taking combinations of the linking numbers, we obtain
classifying invariants for certain local moves. We will make use of vlki∗ :=

∑
j ̸=i vlkij , vlk∗i :=

∑
j ̸=i vlkji

and vlkmod
ij := vlkij mod 2 ∈ Z2. The same notation is used on classical linking numbers.

Proposition 1.16. We have the following classifications:

• [12] (lkij)1≤i<j≤n : SLDn → Zn(n−1)/2 c-classifies ∆ ;

• [3] (vlkij − vlkji)1≤i<j≤n : vSLDn → Zn(n−1)/2 w-classifies CC ;

• [3] (vlkij)1≤i ̸=j≤n : vSLDn → Zn(n−1) w-classifies F ;

• [3] (vlkij + vlkji)1≤i<j≤n : vSLDn → Zn(n−1)/2 w-classifies V C ;

• [11] and [12] (lkmod
i∗ )1≤i≤n−1 : SLDn → Zn−1

2 c-classifies BP ;

• [3] (vlkmod
ij + vlkmod

ji )1≤i<j≤n ⊕ (vlkmod
i∗ )1≤i≤n−1 : vSLDn → Zn(n−1)/2

2 ⊕ Zn−1
2 w-classifies wBP .

From this classification, we obtain the following extensions:

Corollary 1.17. [3] The F and V C moves both extend ∆, and the wBP move extends BP .

It can be noted that, as in the case of ∆, a classical move can have several welded extensions. When so,
we will try to use the relation between string links and knotted surfaces to isolate one extension among the
others.
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1.3.3 Ribbon residue

In this section, we provide two ways to extend the action of the local moves on (welded) string links to
(ribbon) string 2–links using the Tube and Spun maps. The final goal is to compare the action of a move
Tube(Mw) with the restriction on ribbon string 2–links of the action of Spun(Mc) when Mw is a welded
extension of Mc.

Definition 1.18. Let M be a local move. Let us consider the binary relation on 2−rSLn which identifies
two elements R1, R2 ∈ 2−rSLn if there exists L1 ∈ Tube−1(R1), L2 ∈ Tube−1(R2) such that L1 and L2 are
equivalent under M . This relation is reflexive and symmetric, but not necessarily transitive, so we define
Tube(M) as the transitive closure of this relation, which is an equivalence relation on 2−rSLn.

Remark: If M w-generates the SV move, we can show (see the last remark in Section 2.1.3) that the
binary relation defined above is already an equivalence relation, so there is no need to take its transitive
closure. In this case, the induced map Tube : wSLM

n → 2−rSLn/Tube(M) is bijective. Hence for two local
moves M1 and M2, each w-generating SV , we have Tube(M1) = Tube(M2) if and only if M1 and M2 are
w-equivalent.

Definition 1.19. Let L and L′ be string 2–links represented by broken surface diagrams D and D′, respec-
tively. For a classical local move M , we say that L and L′ are related by a Spun(M) move if there exists
a solid torus T ⊂ B2,1 such that D and D′ are identical except in T , where they differ by the spun of the
move M . We denote by Spun(M) the equivalence relation on 2−SLn which identifies two such string 2–links
L and L′.

For a classical local move M , we can consider both Spun(M) and Tube(M). In general, the restriction of
Spun(M) to ribbon string 2–links is not equal to Tube(M). For example, for M = CC, every ribbon string
2–link is trivial up to Spun(CC) (see the example below), while 2−rSLn/Tube(CC) is not trivial. This can
be proved using the classification of CC on welded string links and the generalization of linking numbers for
string 2–links developed in Section 2.2.

Definition 1.20. Let Mc be a classical local move. We say that a local move Mw is a ribbon residue of Mc

if Tube(Mw) is the restriction to 2−rSLn of the equivalence relation Spun(Mc) on 2−SLn. This amounts to
say that two ribbon string 2–links are equivalent under Tube(Mw) if and only if they are equivalent under
Spun(Mc) in the set of string 2–links.

Notation: Considering an equivalence relation R on a set X as its defining subset {(x, x′) |xRx′} of
X × X, for Y ⊂ X we denote by R|Y := R ∩ (Y × Y ) the restriction of R to Y . If R and R′ are two
equivalence relations on X, R ⊂ R′ means that xRx′ implies xR′ x′ for x, x′ ∈ X.

With this notation, a local move Mw is a ribbon residue of Mc if and only if Spun(Mc)|2−rSLn
=

Tube(Mw).

From the remark above, it follows that a classical move can have at most one ribbon residue which
w-generates the SV move. As we will see in Section 2.2, the F and V C moves both w-generate SV , and by
their classification they are not w-equivalent, so only one of them (if any) can be a ribbon residue of ∆.

Example: It is not difficult to see that V is a ribbon residue of CC: since wSLV
n is trivial, so is

2−rSLn/Tube(V ), so it is enough to verify that Tube(V ) can be performed using a Spun(CC) move. Figure
10 illustrates how this can be done, with the Spun(CC) move being used in a torus neighborhood of the top
right line of double points. We can then use Roseman moves to separate the two tubes.

In what follows, we focus on three different cases. In order to prove that a local moveMw is a residue of a
classical moveMc, we will use the following strategy: first we find a w-classifying invariant φ : wSLn → A of

12



Tube

Spun(CC)
Roseman
moves

Tube

V

Figure 10: Performing Tube(V ) using Spun(CC)

Mw, and a homomorphism ψ : 2−SLn → A which is invariant under Spun(Mc) and such that ψ ◦Tube = φ.
This gives Spun(Mc)|2−rSLn ⊂ Tube(Mw). We then check on broken surface diagrams that Tube(Mw) can
be performed using a Spun(Mc) move, so that Spun(Mc)|2−rSLn

⊃ Tube(Mw).

2 Three examples of residues

2.1 The SC and SV moves

2.1.1 Classification of the SC move

We begin by introducing a c-classifying invariant of the SC move, which was established by Habegger and
Lin in [9] as a classification of string links up to link homotopy.

For an n–component string link L, let XL denote the complement of an open tubular neighborhood of L
in B2,1. For ε = 0, 1, ∂εXL is a disk with n smaller and disjoint open disks removed. Hence π1(∂εXL) ≃ Fn,

with generators m
(ε)
i , called meridians, given by the positively oriented boundaries of these small disks, up

to some given fixed path joining them to the basepoint.

Lemma 2.1. [9, Cor. 1.4] For ε = 0, 1, the inclusion maps ιε : ∂εXL → XL induce isomorphisms
ι∗ε : Rπ1(∂εXL) → Rπ1(XL).

Using the identification Rπ1(∂εXL) ≃ RFn, we can then define φL := (ι∗0)
−1 ◦ ι∗1 ∈ Aut(RFn). As

seen in the Wirtinger presentation of L, for each i the meridians m
(0)
i and m

(1)
i are conjugates of each

other, so φL ∈ AutC(RFn). Moreover, the product m
(0)
1 · · ·m(0)

n is homotopic to m
(1)
1 · · ·m(1)

n in XL, so
φL ∈ Aut0C(RFn).

Proposition 2.2. [9, Lem. 1.6] The map ΦSLn
: L ∈ SLn 7→ φL ∈ Aut0C(RFn) is a monoid homomorphism

which is invariant under the SC move.

We obtain the following classification result:

Proposition 2.3. [9, Thm. 1.7] The homomorphism ΦSLn
c-classifies SC.

2.1.2 Classification of the SV move

We now give a w-classifying invariant of the SV move, which was established in [2] by Audoux–Bellingeri–
Meilhan–Wagner using the notion of coloring on Gauss diagrams. In order to facilitate the transition to
string 2-links, we use the equivalent approach of virtual string link diagrams, rather than Gauss diagrams.
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The correspondence between the two consists in identifying arcs of virtual diagrams with what is referred to
as “tail intervals” of Gauss diagrams in [2].

We can generalize the Wirtinger presentation to virtual string link diagrams by associating a generator to
each arc, and the usual conjugating relation at each classical crossing (and no relation at virtual crossings).
For D ∈ vSLDn, we denote by π1(D) the group given by this presentation.

Definition 2.4. Let {x1, . . . , xn} be a generating set of Fn. If yi ∈ RFn is a conjugate of xi for each i, a
(y1, . . . , yn)–coloring of a virtual string link diagram D is a map from the arcs of D to RFn, which sends the
ith bottom arc to yi, and which satisfies the Wirtinger relation at each classical crossing. Equivalently, this
last condition can be replaced by stating that the coloring induces a homomorphism from π1(D) to RFn.

Proposition 2.5. [2, Lem. 4.20] If D,D′ ∈ vSLDn are related by one of the wReid or SV moves, then
there exists a one-to-one correspondance between the (y1, . . . , yn)–colorings of D and D′, which preserves
the image of the top arcs.

It is clear that a virtual pure braid diagram (i.e. a diagam with monotone strands) admits a unique
(y1, . . . , yn)–coloring. Since up to SV , any virtual string link diagram is equivalent to a virtual pure braid dia-
gram (see [2, Thm. 4.12]), it follows from Proposition 2.5 that any virtual string link diagram admits a unique
(y1, . . . , yn)–coloring. Hence for L ∈ wSLn represented by a diagram D, we can define ψL ∈ EndC(RFn) by
ψL(xi) = zi, where zi ∈ RFn is the image of the ith top arc in the unique (x1, . . . , xn)–coloring of D.

Proposition 2.6. [2, Lem. 4.20] The map ΦwSLn
: L ∈ wSLn 7→ ψL ∈ EndC(RFn) is a monoid homomor-

phism which is invariant under the SV move. Moreover, we have ψL ∈ AutC(RFn).

We obtain the following classification result:

Proposition 2.7. [2, Thm. 4.17] The homomorphism ΦwSLn
: wSLn → AutC(RFn) w-classifies SV .

Remark: If L ∈ SLn and π1(XL) is given by the Wirtinger presentation associated to a diagram D of L,
then (ι∗0)

−1 : Rπ1(XL) ≃ Rπ1(D) → Rπ1(∂0XL) ≃ RFn gives an (x1, . . . , xn)–coloring of D, and since ι∗1
sends xi to the generator of π1(XL) associated to the ith top arc, we have ψL(xi) = (ι∗0)

−1(ι∗1(xi)) = φL(xi)
for ψL = ΦwSLn

(L) and φL = ΦSLn
(L), so ΦwSLn

(L) = ΦSLn
(L).

In particular, we obtain that the inclusion SLDn → vSLDn induces an injection SLSC
n → wSLSV

n , so
SV is a welded extension of SC. We will now see that it is also a ribbon residue of SC.

2.1.3 Extension to string 2–links

Let L ∈ 2−SLn be a string 2–link, XL the complement of an open tubular neighborhood of L, and D a
broken surface diagram of L. As described in [6], we get a Wirtinger presentation of π1(XL) from D, with
one generator for each connected component, called oversheet, and a relation of the form g+ = g−1

0 g−g0 at
a line of double points as indicated in the figure below:

g−

g0

g+
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Definition 2.8. If yi ∈ RFn is a conjugate of xi for each i, a (y1, . . . , yn)–coloring of a broken surface
diagram D is a map from the oversheets of D to RFn, which sends the ith bottom oversheet to yi, and which
satisfies the Wirtinger relation at each line of double points.

As in the case of string links, we have:

Proposition 2.9. [4, §4.1] For a string 2–link L, the inclusion maps ιε : ∂εXL → XL induce isomorphisms
ι∗ε : Rπ1(∂εXL) ≃ RFn → Rπ1(XL).

Proposition 2.10. For L ∈ SLn (resp. L ∈ wSLn), there exists a one-to-one correspondence between the
set of (y1, . . . , yn)–colorings of L and that of Spun(L) (resp. of Tube(L)), which preserves the image of the
top and bottom arc/oversheet of each component.

Proof: In the case of the Spun map, it follows directly from the fact that a broken surface diagram of
Spun(L) can be obtained from a diagram of L by a rotation, which sends arcs to oversheets and crossings
to lines of double points with the same Wirtinger relations.

In the case of the Tube map, we begin by taking a broken surface diagram D of Tube(L), obtained by
the construction described after Definition 1.9. There is a correspondence between arcs of a diagram L and
oversheets of D, except for one additional small disk in D at each ribbon singularity. However it is easily
seen that given the images of the other oversheets of D, the Wirtinger relations give a unique value for these
disks, hence removing all ambiguity. □

Using the invariance of the number of colorings up to link-homotopy and the fact that any string 2–link
is link-homotopic to a ribbon one, it was proven in [4] that a string 2–link admits a unique (y1, . . . , yn)–
coloring. From this we can define θL ∈ AutC(RFn) for L ∈ 2−SLn in the same way as ψL was for a welded
string link L. Moreover, the map Φ2−SLn

: L ∈ 2−SLn 7→ θL ∈ AutC(RFn) is a monoid homomorphism.

Proposition 2.11. The homomorphism Φ2−SLn
is invariant under the Spun(SC) move.

Proof: Let L ∈ 2−SLn be a string 2–link, represented by a broken surface diagram D. Executing a
Spun(SC) move on D yields a broken surface diagram D′, identical to D outside of a solid torus T in
which the move occurs. Inside this torus, D is subdivided in three annuli, which are all coming from the
same component S1,1

i of L. We illustrate a slice of these annuli in the torus T below, which highlights the
Spun(SC) move.

a b

bD Spun(SC)

a

a

b

D′

The elements a, b ∈ RFn on the left are the images of these annuli in the unique (x1, . . . , xn)–coloring of
D. Since they come from the component S1,1

i , a and b are both conjugates of xi, which commute in RFn.
Hence the conjugating relation at the line of double points is trivial, and we obtain the same element of RFn

on either side of this line of double points. Since the same holds for D′, we can obtain the (x1, . . . , xn)–
coloring of D′ by taking the coloring of D outside of T , and extending it inside of T according to its values
on ∂T . In particular, we have θL(xj) = θL′(xj) for all j, where L

′ ∈ 2−SLn is represented by D′, and thus
Φ2−SLn(L) = Φ2−SLn(L

′). □

As a direct corollary of Proposition 2.10, we obtain the following relations between the Spun and Tube
maps and the invariants on string links, welded string links and string 2–links described above:

Proposition 2.12. We have Φ2−SLn
◦ Tube = ΦwSLn

and Φ2−SLn
◦ Spun = ΦSLn

.
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We can now prove the main result of this section, i.e. the relation between Spun(SC) and Tube(SV ).

Theorem 2.13. The SV move is a ribbon residue of the SC move.

Proof: As indicated earlier, we first prove that Spun(SC)|2−rSLn ⊂ Tube(SV ). Let R1, R2 ∈ 2−rSLn be
equivalent under Spun(SC). Let L1 ∈ Tube−1(R1) and L2 ∈ Tube−1(R2). By Propositions 2.11 and 2.12,
we have:

ΦwSLn
(L1) = Φ2−SLn

(R1) = Φ2−SLn
(R2) = ΦwSLn

(L2),

and since ΦwSLn
is a w-classifying invariant of SV , L1 and L2 are equivalent under SV . By definition, this

implies that R1 and R2 are equivalent under Tube(SV ).

The other inclusion Spun(SC)|2−rSLn ⊃ Tube(SV ) follows by Figure 10 when restricting ourselves to
ribbon singularities of a component with itself. □

Remark: Another consequence of Proposition 2.12 is that if L,L′ ∈ wSLn have the same image by the
Tube map, then ΦwSLn

(L) = ΦwSLn
(L′), so L and L′ are equivalent under the SV move. This is also true

for any local move M w-generating SV , which proves the remark given in Section 1.3.3.

2.2 The ∆ and F moves

We begin by defining the linking numbers for string 2–links. This will be done using the Φ2−SLn
map defined

in the previous section, so let us first show how the virtual linking numbers on welded string links can be
obtained via ΦwSLn

.

For 1 ≤ j ≤ n, let RF
(j)
n−1 denote the subgroup of RFn generated by the xk’s for k ̸= j. For a conjugating

automorphism φ ∈ AutC(RFn), let λj ∈ RFn be such that φ(xj) = λ−1
j xjλj . As proven in [2, Lem. 4.25],

this λj can be modified into an element of RF
(j)
n−1 by deleting occurrences of xj in it, and is then uniquely

determined by φ.

Applying this to ψL ∈ AutC(RFn) for a welded string link L, we obtain unique elements λj ∈ RF
(j)
n−1

for 1 ≤ j ≤ n such that ψL(xj) = λ−1
j xjλj . Let x∗i : RFn → Z be the group homomorphism defined by

x∗i (xi) = 1 and x∗i (xk) = 0 for k ̸= i. Keeping track of the undercrossings of L on the jth strand, it is not
difficult to check that vlkij(L) = x∗i (λj).

By making use of the invariant Φ2−SLn
(L) ∈ AutC(RFn) for L ∈ 2−SLn, this gives us a way of extending

the notion of linking numbers to string 2–links.

Definition 2.14. For i ̸= j ∈ {1, . . . , n}, we define the linking number LKij : 2−SLn → Z by LKij(L) :=

x∗i (λj), where λj is the unique element of RF
(j)
n−1 such that θL(xj) = λ−1

j xjλj for θL = Φ2−SLn
(L).

Proposition 2.15. The map LKij is a monoid homomorphism, which is invariant under the Spun(∆) move.

Proof: That LKij is a monoid homomorphism follows from the fact that L ∈ 2−SLn 7→ θL is a homomor-
phism: if θL(xj) = λ−1

j xjλj and θL′(xj) = λ′−1
j xjλ

′
j , then:

θL•L′(xj) = (θL ◦ θL′)(xj) = λ−1
j λ′−1

j xjλ
′
jλj ,

so LKij(L • L′) = x∗i (λ
′
jλj) = x∗i (λ

′
j) + x∗i (λj) = LKij(L

′) + LKij(L).

In order to show that LKij is invariant under the Spun(∆) move, we give a more geometric interpretation
as follows: let L ∈ 2−SLn be represented by a broken surface diagram D, with D1, . . . , Dn ⊂ D denoting the
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n components of the underlying string 2–link. Let γj be a path on Dj from ∂0Dj to ∂1Dj , having transverse
intersections with lines of double points. Then LKij(L) is the number of times (counted with a sign given
by the orientation) γj crosses a line of double points where Dj passes behind Di.

From this interpretation, it follows that LKij(L) only depends on the components Di and Dj . A Spun(∆)
move modifies the relative position of three components of the diagram, but not the relative position of any
pair of components, so it does not affect the linking number of L. □

Proposition 2.16. For i, j ∈ {1, . . . , n}, i ̸= j, we have LKij ◦ Tube = vlkij and LKij ◦ Spun = lkij .

Proof: For the Tube map, it follows directly from Proposition 2.12 and Definition 2.14. For the Spun map,
we also use the fact that ΦwSLn |SLn = ΦSLn and vlkij |SLn = lkij . □

We can now determine the relation between Spun(∆) and Tube(F ).

Theorem 2.17. The F move is a ribbon residue of the ∆ move.

Proof: Let R1, R2 ∈ 2−rSLn be equivalent under Spun(∆), and let L1 ∈ Tube−1(R1), L2 ∈ Tube−1(R2).
By Propositions 2.15 and 2.16, we have vlkij(L1) = LKij(R1) = LKij(R2) = vlkij(L2), and since F is w-
classified by the virtual linking numbers, L1 and L2 are equivalent under F . Hence R1 and R2 are equivalent
under Tube(F ), and we have Spun(∆)|2−rSLn

⊂ Tube(F ).

Since F is w-equivalent to UC, we have Tube(F ) = Tube(UC), so to prove Spun(∆)|2−rSLn ⊃ Tube(F )
it is enough to verify that we can perform a Tube(UC) move using Spun(∆) on a broken surface diagram.
This is illustrated on Figure 11 at the end of the article, with the following conventions:

• it is to be read from left to right and top to bottom, beginning and ending with the images under Tube
of the situations before and after a UC move.

• on the second row of this figure, we represent a portion of a broken surface diagram of a ribbon string
2–link by only drawing the intersection of the tubes with a median hyperplane, so as to make it more
readable. In this representation, crossings correspond to lines of double points, which is why we first
used Roseman moves to pull the diagonal blue tube “inside” the vertical red tube. The represented
strands are then treated as pieces of string links, keeping in mind that the moves we use must be
compatible with Roseman moves on broken surface diagrams.

• in the dotted rectangle, the surface is obtained by a rotation around an axis, so we can perform a
Spun(∆) move.

• on the second to last picture, we come back to a proper representation of a broken surface diagram,
skipping the intermediate step where the blue tube is pulled outside the red one.

This shows how to perform a Tube(UC) move using Spun(∆), at least for the case where the orientation
of the strands matches the one in Figure 11. But it is not difficult to check that the UC move with this
specific orientation is w-equivalent to the other UC moves, so there is no loss of generality. □

Hence F is a welded extension of ∆ which is also a ribbon residue. From the remark following the
definition of a residue, we obtain that the F move is the only SV w-generating welded extension of ∆ which
is also a residue; in particular, the V C move is not a ribbon residue of ∆.

2.3 The BP move

As we will see in the case of the BP move, for some classical move M the action of Spun(M) on knotted
surfaces can be drastically different from that of M on classical string links, and produce a ribbon residue
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which fails to be a welded extension.

A natural candidate to be a ribbon residue of BP is the BV move, defined in Section 1.3.1. However, it
turns out that the action of Spun(BP ) on knotted surfaces is much stronger than that of Tube(BV ). Let
us consider the DV move (for “double virtualization”) defined as follows:

DV

Proposition 2.18. The DV move is w-equivalent to the V move.

Proof: The DV move can be realized by two V moves, and the V move can be performed using the DV
move by introducing a second crossing with R1 and vR1 moves:

R1 DV vR1

□

Theorem 2.19. The V move is a ribbon residue of the BP move.

Proof: Since the V move identifies all welded string links on n strands, we trivially have Tube(V ) ⊃
Spun(BP )|2−rSLn

. By Proposition 2.18 we have Tube(V ) = Tube(DV ), so for the other inclusion we only
need to check that a Tube(DV ) move can be performed using Spun(BP ), which is illustrated on Figure 12,
where we use the same convention as in the proof of Theorem 2.17.

To go from the 3rd picture to the 4th one in Figure 12, we inflate the horizontal black tube and then push
part of it inside itself, passing in front of the vertical red and blue tubes, by a finger-move using a Roseman
(a) move (in [14, Fig. 1]). This brings us in a position where we can perform a Spun(BP ) move.

On this figure, a choice has been made regarding the orientation of the vertical strands (note that the
orientation of the horizontal strand is irrelevant). If they have the same orientation, an extra step is needed
in between the 3rd and 4th pictures, where we need to slide one of the vertical tubes into the other in order
to obtain parallel vertical lines with the same relative position to the horizontal ones. □

The action of Spun(BP ) on knotted surfaces is very different from that of BP on classical string links, as
it identifies all ribbon string 2–links. This is in part due to the nature of the line of double points involved
in a Spun(BP ) move: these lines of double points are circles on annuli, so they can be of two types, essential
or contractible. The occurrence of a line of double points whose preimages are both contractible is what
can make the Spun of a local move much stronger than the move itself. Indeed, on Figure 12, in order to
use a Spun(BP ) move we created lines of double points whose preimages are contractible on the horizontal
black annulus and the vertical blue and red annuli. This allowed us to go down from four strands involved
in a BP move to only three in a DV move, which is much stronger than the BV move involving four strands.

Even if it will eventually fail to produce a welded extension as a ribbon residue in this case, a strategy
to counteract this feature of the Spun(BP ) move is to introduce some restrictions on the type of lines of
double points involved.

Definition 2.20. We define the Spun∗(BP ) move by imposing that preimages of the lines of double points
inside the torus where the Spun(BP ) move occurs must all be essential on one of the two pairs of parallel
annuli, and all be contractible on the other pair. As before, we also denote by Spun∗(BP ) the equivalence
relation on 2−SLn which identifies two string 2–links related by this move.
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This new move cannot be used to perform a Tube(DV ) move but, as we will see, it is strong enough to
obtain Tube(BV ). Let us first provide a classification of the BV move.

Lemma 2.21. The BV move w-generates the F , SR and V C moves.

Proof: First, we show on virtual diagrams that BV w-generates F , as illustrated below:

R1, R2 BV

Detour
move

BVR1, R2

F

Since F
w⇔ UC, we can use UC to show that BV w-generates SR. It is easily checked that, up to one

R2 move, the move described below is w-equivalent to SR.

R1 UC

R1

BVvReid

SR

Hence the sign restriction on the BV move on Gauss diagrams can be omitted. We can now show that
BV w-generates V C on Gauss diagrams, without worrying about signs:

R2 R1 BV

□

We have the following classification of the BV move:

Proposition 2.22. The BV move is w-classified by (vlkmod
i∗ + vlkmod

∗i )1≤i≤n−1 : vSLDn → Zn−1
2 .
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Proof: This combination of virtual linking numbers gives the parity of the number of classical overcrossings
and undercrossings involving each strand (except for the nth one). Note that we can include the self-crossings,
since these count as two crossings on one strand. Since the BV move deletes or adds an even number of
classical crossings on each strand, the homomorphism defined above is invariant under BV .

For a given element z = (z1, . . . , zn−1) ∈ Zn−1
2 , we define a Gauss diagram Gz as follows: for 1 ≤ i ≤ n−1,

we put a positive arrow from the ith strand to the nth strand if zi = 1, and no arrow if zi = 0. These arrows
are taken to be horizontal, with the heads on the nth strand arranged in the order given by the index i. The
figure below shows an example. By construction, we have vlkmod

i∗ (Gz) + vlkmod
∗i (Gz) = zi for 1 ≤ i ≤ n− 1.

+

+

+

G(1,0,1,1)

Using Lemma 2.21, we can show that any Gauss diagram representing a welded string link L with
vlkmod

i∗ (L) + vlkmod
∗i (L) = zi for 1 ≤ i ≤ n− 1 is equivalent up to BV to the diagram Gz defined above. To

achieve this, we first use V C moves to transform arrows from Li to L1 into arrows from L1 to Li (where
Lk denotes the kth strand of L). Self-arrows of L1 are deleted using SV moves, which are allowed since

BV
w⇒ F

w⇒ SV . The following move as indicated in the figure below allows us to turn arrows from L1 to
Li for 1 < i < n into arrows from L1 to Ln, by creating an additional arrow between Li and Ln. Since we
have access to SR, signs are irrelevant, and are not displayed:

1 i n

R1, R2

1 i n

BV

1 i n

Using F , UC and OC moves, we can regroup the arrows from L1 to Ln, then asign them alternating
signs using SR in order to delete them by pairs using R2. After these steps, there is at most one arrow
attached to L1, which points to Ln, and can be made positive by SR. Moreover, its head can be positionned
at the bottom of Ln.

We then iterate this process on the diagram obtained by ignoring the first strand. In the end, we are
left with a diagram of the form Gz′ . Since the process described above does not change the invariant
(vlkmod

i∗ + vlkmod
∗i )1≤i≤n−1, we have z = z′, which completes the proof. □

The BV move is a “restricted ribbon residue”of the BP move in the following sense:

Theorem 2.23. We have Spun∗(BP )|2−rSLn = Tube(BV ).

Proof: Using the geometric interpretation of the linking numbers LKij given in the proof of Proposi-

tion 2.15, it can be checked that for 1 ≤ i ≤ n, the homomorphism LKmod
i∗ + LKmod

∗i : 2−SLn → Z2 is
invariant under a Spun∗(BP ) move. Indeed, the contribution to this combination of linking numbers of the
lines of double points inside the torus where the move occurs is always zero before and after the move (note
that it is not the case for the Spun(BP ) move used in the proof of Theorem 2.19). Using the classification
of the BV move given in Proposition 2.22, we can conclude that Spun∗(BP )|2−rSLn

⊂ Tube(BV ) with the
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same reasoning as in Theorem 2.17.

For the other inclusion, we only need to check that a Tube(BV ) move can be performed using Spun∗(BP ),
which is illustrated on Figure 13. As in the proof of Theorem 2.19, the orientation of the horizontal strands
is irrelevant, but the orientation of the vertical strands matter, with the same step added in between the 3rd

and 4th pictures in Figure 13 if they have the same orientation.

The move used to go from the 4th picture to the 5th one is indeed a Spun∗(BP ) move: the preimages
of the lines of double points on the horizontal annuli are essential, and the ones on the vertical annuli are
contractible. □

As opposed to the ribbon residue V of BP , the BV move does not identify all welded string links
on n strands. However, because of the symmetry of linking numbers on SLDn, its classifying invariant
(vlkmod

i∗ + vlkmod
∗i )1≤i≤n−1 vanishes on classical diagrams. Hence the BV move still identifies all classical

string links on n strands, and as a result this restricted ribbon residue is still not a welded extension of BP .

The BP move illustrates the case of a classical move where no SV w-genereating welded extension can
be a ribbon residue (or some restricted one) of the move.
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Tube

Spun(∆)

Tube

Figure 11: Performing Tube(UC) using Spun(∆)
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Tube

Spun(BP)

Tube

Figure 12: Performing Tube(DV ) using Spun(BP )
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Tube

Spun∗(BP)

Tube

Figure 13: Performing Tube(BV ) using Spun∗(BP )
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