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Abstract. We investigate a class of infinite tridiagonal matrices which define unbounded
self-adjoint operators with discrete spectrum. Our purpose is to establish the asymptotic
expansion of large eigenvalues and to compute two correction terms explicitly.
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1. Introduction

1.1. General remarks. Infinite Jacobi matrices have appeared in many recent papers
related to various questions of pure and applied mathematics (see [2], [9], [14], [19],
[23]). In this paper we consider a Hermitian tridiagonal matrix

d(1) a(1) 0 0 · · ·
a(1) d(2) a(2) 0 · · ·

0 a(2) d(3) a(3) · · ·
0 0 a(3) d(4) · · ·
...

...
...

...
. . .

 (1.1)

such that (d(k))∞k=1 is an increasing sequence going to infinity and (a(k))∞k=1 is a
complex valued sequence dominated by (d(k))∞k=1. Then (1.1) defines in `2 a self-adjoint
operator J with discrete spectrum (see [8]). Moreover, J is bounded from below and
the eigenvalue sequence of J is defined as the non-decreasing sequence (λn(J))∞n=1 such
that Jvn = λn(J)vn for n ∈ N∗ and (vn)∞n=1 is an orthonormal basis of `2.

We begin the discussion of known results by the fundamental paper of J. Janas,
S. Naboko [14]. In this paper the authors describe a method of approximative diago-
nalization and its application to the analysis of large eigenvalues in certain quantum
models. The paper [14] gives also explanations why this type of analysis is important
in Quantum Physics.

Concerning non self-adjoint problems, we refer to [10] and [16]. Concerning the
self-adjoint problem, we remark that the papers [2]-[5], [14] and [15] use the following

Hypothesis. There exist µ, ρ, C, c, k0 ∈ (0; ∞) such that for k ≥ k0 one has

(H1) ckµ ≤ d(k) ≤ Ckµ,

(H2) d(k + 1)− d(k) ≥ ckµ−1,

(H3) |a(k)| ≤ Ckµ−ρ .
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2 A. HARRAT, E. H. ZEROUALI, AND L. ZIELINSKI

It turns out that asymptotic estimates crucially depend on whether ρ > 1 or not.
Case ρ > 1. The papers [14] and [2] treat a type of coefficients satisfying (H1)-(H3)
with µ = 2 and ρ = 3

2 . An asymptotic expansion of large eigenvalues is constructed in
[15] using (H1)-(H3) with µ ≥ 1, ρ > 1 and in [3] using (H1)-(H3) with µ > 0, ρ > 1.
Case ρ ≤ 1. It appears that ρ = 1

2 is the most important value for the Quantum
Optics and the asymptotic behaviour of large eigenvalues for models considered in [3]-[7],
[20]-[22] turned out to have a quite special form. However, it is an open problem to
describe eigenvalue asymptotics without additional regularity of entries. Other special
models are investigated in papers [11], [13] and [17].

In this paper we construct an asymptotic expansion of large eigenvalues under
additional regularity conditions imposed on the entries and we give explicit expressions
for correction terms in the asymptotic formula with error O(nµ−6ρ). In Theorem 1.1
we assume that the entries have a classical expansion at infinity. The case ρ = 1

2 gives
a nice surprise by ensuring a classical expansion of eigenvalues. A similar construction
still works if entries satisfy regularity conditions of symbol type (see Section 1.3). The
restriction to tridiagonal matrices is not essential in our approach and we can work all
the time with band matrices, but tridiagonal matrices make formulas and calculus more
simple. We mention as well that this paper can be viewed as a development of [1] (see
also [15]).

1.2. Asymptotic expansion of large eigenvalues. We denote by `2 the Hilbert
space of square summable complex valued sequences x : N∗ → C with the norm

‖x‖ =
( ∞∑

k=1

|x(k)|2
)1/2

and the scalar product 〈x, y〉 =

∞∑
k=1

x(k)y(k). For any θ > 0 we denote

`2,θ := {x ∈ `2 :

∞∑
k=1

|kθx(k)|2 <∞}. (1.2)

Let (d(k))∞k=1, (a(k))∞k=1 satisfy the hypothesis (H1)-(H3) for a fixed µ > 0 and ρ > 0.
For x ∈ `2,µ we define Jx ∈ `2 by the formula

Jx(k) = d(k)x(k) + ā(k)x(k + 1) + a(k − 1)x(k − 1) for k ∈ N∗, (1.3)

where we assume x(0) = 0 and a(0) = 0. The formula (1.3) defines the operator J on
the domain of definition D(J) = `2,µ. Then J is self-adjoint in `2, bounded from below
and has compact resolvent (see [8]). We will prove the following

Theorem 1.1. Let µ > 0, ρ > 0 be fixed and assume

d(k) ∼ kµ
∞∑
i=0

δi
ki

as k →∞, (1.4)

a(k) ∼ kµ−ρ
∞∑
i=0

αi
ki

as k →∞, (1.5)
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where αi ∈ C, δi ∈ R for i ∈ N and δ0 > 0. Then (H1)-(H3) hold and (1.3) defines in `2
the self-adjoint operator J on the domain D(J) = `2,µ. If (λn(J))∞n=1 is the eigenvalue
sequence of the operator J , then

λn(J) = d(n) + r(n), (1.6)

where r(n) obeys the asymptotic expansion of the form

r(n) ∼ nµ−2ρ
∞∑

i,j=0

ci,j
ni+2jρ

as n→∞ (1.7)

and ci,j are real coefficients obtained by the induction scheme in Section 5. The explicit
values of c0,0, c1,0, c2,0 are computed in Section 6.4 and the value of c0,1 in Section 6.5
(see also (1.16) and (1.19)-(1.20)).

The operator J is a relatively compact perturbation of the diagonal operator
diag(d(n))∞n=1 and the special form of this perturbation allows one to deduce

λn(J) = d(n) +O(nµ−ρ) (1.8)

from the min-max principle (see Corollary 3.3). It appears that the assumptions of
Theorem 1.1 allow one to replace (1.8) by the stronger estimate

λn(J) = d(n) +O(nµ−2ρ) (1.9)

and the remainder r(n) = λn(J)− d(n) obeys the asymptotic formula

r(n) = r1(n) +O(nµ−4ρ), (1.10)

where r1(n) is given by (1.14). The quantity r1(n) is of order nµ−2ρ and we call it the
first correction term. We mention that the expression (1.14) for the first correction
term was obtained in [15] under the assumptions (H1)-(H3) with µ ≥ 1, ρ > 1 (and
with weaker remainder estimates).

The next step of precision is attained in Theorem 6.2 which describes the asymptotic
behaviour of r(n) modulo O(nµ−6ρ). We show the formula (1.17) and give explicit
expressions (1.18)-(1.20) for the leading coefficient of the second correction term, which
is of order O(nµ−4ρ).

In order to obtain a complete asymptotic expansion, we use a method of approximative
diagonalization. The idea of our approach is similar to the method presented in [14],
but we do not need the assumptions µ ≥ 1 and ρ > 1 used in [14].

At the end of this discussion we remark that the result of Theorem 1.1 is inspired by
the paper [18]. The main differences between [18] and our work are the following:
– we consider the Hilbert space `2 = `2(N∗) instead of `2(Z),
– we give a simple algorithm of computing the coefficients ci,j adopted to our problem,
– our approach allows us to see that (1.7) contains only even powers of n−ρ.

1.3. Further results. We construct an asymptotic expansion for large eigenvalues
under assumptions slightly weaker than used in Theorem 1.1.

Notation 1.2. For any f : N∗ → C we write ∂0f(k) := f(k),

∂f(k) = f(k + 1)− f(k),

and, by using induction, we define ∂m+1f := ∂(∂mf) for m = 0, 1, 2, . . . .
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If ν ∈ R then Sν1 denotes the set of p : N∗ → C such that the estimate

∂mp(k) = O(kν−m)

holds for every m ∈ N.

Throughout the paper µ > 0, ρ > 0 are fixed and we centre our analysis on the
Jacobi operators (1.3) such that

d ∈ Sµ1 , (1.11)
a ∈ Sµ−ρ1 (1.12)

and (H1)-(H2) hold. These conditions could be weakened if one wants to obtain the
remainder estimate O(n−η) for a fixed value of the exponent η (see Theorem 4.1), but
for simplicity we use (1.11)-(1.12) throughout Section 5 and 6.

As before J is the self-adjoint operator in `2 with D(J) = `2,µ and (λn(J))∞n=1 denotes
its non-decreasing eigenvalue sequence (counted with multiplicities). We consider the
asymptotic formula for (λn(J))∞n=1 with three different degrees of precision.
(i) The asymptotic formula with one correction term. We show that

λn(J) = d(n) + r1(n) +O(nµ−4ρ) (1.13)

holds with

r1(n) :=
|a(n− 1)|2

d(n)− d(n− 1)
− |a(n)|2

d(n+ 1)− d(n)
. (1.14)

If (1.4)-(1.5) hold, then (1.11)-(1.12) hold as well. Under the assumptions (1.4)-(1.5),
it is easy to see that the quantity r1(n) defined by (1.14) satisfies

r1(n) ∼ nµ−2ρ
∞∑
i=0

ci,0
ni

as n→∞. (1.15)

In Section 6.4 we show that in the case δ0 = 1 one has (1.15) with{
c0,0 = −µ−2ρ+1

µ |α2
0|,

c1,0 = µ−2ρ
µ

( (
µ− ρ+ δ1

(
1− 1

µ

))
|α2

0| − 2Re(α0α1)
)
.

(1.16)

It is clear that the general case can be reduced to the case δ0 = 1 by means of the
multiplication of J by a suitable constant.

(ii) The asymptotic formula with two correction terms. In Theorem 6.2 we prove

λn(J) = d(n) + r1(n) + r2(n) +O(nµ−6ρ), (1.17)

where r1 is given by (1.14) and r2 ∈ Sµ−4ρ1 .
Let us assume that (1.4) holds and (1.5) holds with δ0 = 1. Then (1.15)-(1.16) are

still true and in Section 6.5 we show that

r2(n) = c0,1n
µ−4ρ +O(nµ−4ρ−1) (1.18)

holds with
c0,1 = c1 + c2 + c3, (1.19)

where 
c1 = −(µ− 2ρ)(µ+ 1− 2ρ)(µ+ 1− 4ρ)

|α4
0|

2µ3 ,

c2 = (µ− 1)(µ+ 2− 4ρ)(µ+ 1− 4ρ)
|α4

0|
4µ3 ,

c3 = − (µ− 1)2(µ+ 1− 4ρ)
|α4

0|
4µ3 .

(1.20)
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(iii) A complete asymptotic expansion. In Section 5 we construct rl ∈ Sµ−2
lρ

1 , where
l = 1, 2, . . . and for every m ∈ N∗ one has

λn(J) = d(n) +

m∑
l=1

rl(n) +O(nµ−2
m+1ρ).

This construction is used to deduce Theorem 1.1.

2. Preliminaries

2.1. Basic notations and properties. Throughout the paper {ek}k∈Z denotes the
canonical basis in `2 (i.e. ek(j) = δk,j) and the shift operator is denoted by S (i.e. S is
the linear bounded operator in `2 satisfying Sek = ek+1 for k ∈ N∗). We denote by Λ
the self-adjoint operator in `2 defined by the formula (Λx)(k) = kx(k) on the domain of
definition D(Λ) = `2,1. Using the functional calculus, we can define f(Λ) as the closed
linear operator satisfying f(Λ)ek = f(k)ek for all k ∈ N∗. These notations allow us to
write down the Jacobi operator (1.3) in the form

J = d(Λ) + Sa(Λ) + ā(Λ)S∗, (2.1)

where S∗ is the adjoint of S. Below we introduce more notations.

Notation 2.1. Let i ∈ Z. We write S(i) = Si if i ∈ N and S(i) = S∗|i| if i ∈ Z \ N.
According to this notation, the operator S(i) is the linear mapping on `2 satisfying

(i) S(i)ek = ek+i if k + i ≥ 1,
(ii) S(i)ek = 0 if k + i ≤ 0.

Let i ∈ Z and f : N∗ → C. Then τif denotes the sequence N∗ → C satisfying
(i) τif(k) = f(k + i) if k + i ≥ 1,
(ii) τif(k) = 0 if k + i ≤ 0.

We denote by ∂if the sequence N∗ → C given by the formula

∂if(k) := τif(k)− f(k). (2.2)

In particular ∂0f = 0 and ∂1f(k) = ∂f(k) = f(k+ 1)−f(k) is the derivative introduced
in Section 1. We observe that for any fixed i ∈ Z,

∂f(k) = O(kν) =⇒ ∂if(k) = O(kν). (2.3)

Remark 2.2. The above notations allow us to write S(i)x = τ−ix and

f(Λ)S(i) = S(i) (τif)(Λ), (2.4)

where (τif)(Λ) is the shifted diagonal operator satisfying (τif)(Λ)ek = τif(k)ek.

Notation 2.3. If ν∈R and N ∈N, then Sν1(N) denotes the set of all p : N∗ → C such
that ∂mp(k) = O(kν−m) holds for m ∈ {0, . . . , N}.

Lemma 2.4. (i) If N ≥ 1, i ∈ Z and p ∈ Sν1(N) then ∂ip ∈ Sν−11 (N − 1).
(ii) If p ∈ Sν1(N) and q ∈ Sη1(N) then pq ∈ Sν+η1 (N).
(iii) Assume that p ∈ Sν1(N) and there exists c > 0 such that |p(k)| ≥ ckν for all k ∈ N∗.
Then 1/p ∈ S−ν1 (N).
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Proof. (i) It suffices to use (2.3) and the definition of Sν1(N).
(ii) We obtain ∂m(pq)(k) = O(kν+η−m) by induction with respect to m using

∂(fg) = f∂g + g∂f + ∂f∂g.

(iii) We obtain ∂m
(
1/p
)
(k) = O(k−ν−m) by induction with respect to m using

∂
(
1/p
)
(k) = − ∂p(k)

p(k)p(k + 1)
.

�

2.2. Operator valued errors. In this section we introduce notations used throughout
the paper to control errors of large eigenvalues. As before S denotes the shift operator
in `2, i.e. Sek = ek+1. If θ ≥ 0, Λθ denotes the self-adjoint operator in `2 such that
Λθek = kθek and D(Λθ) = `2,θ. If θ ≤ 0, then Λθ is the inverse of Λ|θ|. In order to
deal with these operators, we introduce the subspace of fast decaying sequences

S−∞ =
⋂
θ>0

`2,θ = {x ∈ `2 : x(k) = O(k−N ) for any N ≥ 0}. (2.5)

The space S−∞ defined by (2.5) will be assumed to be invariant for all operators
considered further on and we use the fact that this type of operators form an algebra.
Clearly S−∞ is invariant for the shifts S,S∗ and for f(Λ) if f : N∗ → C is polynomially
bounded.

We adopt the following convention: for a linear mapping P : D(P )→ `2 we write
P ∈B(`2) if and only if the closure of P is a bounded operator `2 → `2.

Let η ∈ R. We introduce the notation

P = O(Λη) ⇐⇒ ∀ θ ∈ R, ΛθPΛ−θ−η ∈ B(`2). (2.6)

Then (2.6) immediately ensures the properties

P = O(Λη) =⇒ S−∞ is an invariant subspace of P, (2.7)

f(k) = O(kη) =⇒ f(Λ) = O(Λη), (2.8)

P = O(Λη), Q = O(Λη̃) =⇒ PQ = O(Λη+η̃). (2.9)

The notation P =O(Λ−∞) means that P =O(Λ−θ) holds for all θ ≥ 0 and the notation

P = Q+O(Λη) (2.10)

means that P −Q = O(Λη) and S−∞ is invariant for both operators P , Q.

2.3. Finite difference operators. Any complex matrix (P (i, j))∞i,j=1 can be written
in the form 

p0(1) p−1(2) p−2(3) p−3(4) . . .
p1(1) p0(2) p−1(3) p−2(4) . . .
p2(1) p1(2) p0(3) p−1(4) . . .
p3(1) p2(2) p1(3) p0(4) . . .
...

...
...

...
. . .

 , (2.11)

where (pi(k))∞k=1 is a complex valued sequence (for any i ∈ Z).
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Definition 2.5. We say that P is a band matrix if and only if P has the form (2.11)
and there is i0 ∈ N such that |i| > i0 implies pi(k) = 0 for all k ∈ N∗. We say that P
is off-diagonal if and only if p0(k) = 0 holds for all k ∈ N∗. If P is given by (2.11),
then p0(Λ) is called the diagonal part of P .

Lemma 2.6. We fix ν ∈ R and i0 ∈ N. Assume that pi(k) = O(kν) for all i ∈ Z and
|i| > i0 implies pi(k) = 0 for all k ∈ N∗. Then the band matrix P given by (2.11) can
be identified with the linear mapping acting on S−∞ according to the formula

(Px)(k) =

min{i0, k−1}∑
i=−i0

pi(k − i)x(k − i). (2.12)

Moreover P = O(Λν).

Proof. We observe that (2.12) can be written in the form

Px =
∑

−i0≤i≤i0

S(i) pi(Λ)x for x ∈ S−∞. (2.13)

The assumptions pi(k) = O(kν) ensure pi(Λ) = O(Λν) and due to (2.9) it remains to
show that S = O(Λ0) and S∗ = O(Λ0). In order to show ΛθSΛ−θ ∈ B(`2) for any θ ∈ R,
we use (2.4) to write ΛθSΛ−θ = S(Λ + 1)θΛ−θ and observe that (Λ + 1)θΛ−θ ∈ B(`2).
Taking the adjoint, we get Λ−θS∗Λθ ∈ B(`2). �

2.4. Class of operators FDOν
1(N).

Notation 2.7. If ν ∈ R and N ∈ N, then FDOµ
1 (N) denotes the set of all band matrices

P given by (2.11), where pi ∈ Sν1(N) for all i. Further on the elements of FDOν
1(N) are

always identified with linear mappings given by (2.13) where pi ∈ Sν1(N).

Lemma 2.8. If P ∈ FDOν
1(N + 1) and Q ∈ FDOη

1(N + 1), then the commutator

[P,Q] := PQ−QP ∈ FDOν+η−1
1 (N).

Proof. It suffices to prove the formula

Bi,j := [S(i)pi(Λ), S(j)qj(Λ)] = S(i+j)(qj∂jpi − pi∂iqj)(Λ). (2.14)

Indeed, if pi ∈ Sν1(N + 1) and qj ∈ Sµ1 (N + 1), then bi,j := qj∂jpi − pi∂iqj ∈ Sν+µ−11 (N),
which ensures that the right hand side of (2.14) belongs to FDOν+µ−1

1 (N).
In order to prove (2.14), we observe that (2.4) allows us to express

Bi,j = S(i)pi(Λ)S(j)qj(Λ)− S(j)qj(Λ)S(i)pi(Λ)

= S(i)S(j)(τjpi)(Λ)qj(Λ)− S(j)S(i)(τiqj)(Λ)pi(Λ).

Since bi,j = qjτjpi − piτiqj , it remains to check the equalities

S(i)S(j)(τjpi)(Λ)qj(Λ) = S(i+j)(τjpi)(Λ)qj(Λ), (2.15)

S(j)S(i)(τiqj)(Λ)pi(Λ) = S(i+j)(τiqj)(Λ)pi(Λ). (2.16)
Case j ≥ 0. In this case S(i)S(j) = S(i+j) holds for any i ∈ Z.
Case j < 0, i < 0. In this case S(i)S(j) = S(i+j) holds as well.
Case j < 0, i ≥ 0. In this case S(i)S(j)ek = S(i+j)ek holds if k>−j. Assume now that
k≤−j. Then S(i)S(j)ek = 0 and (τjpi)(Λ)ek = τjpi(k) = 0, hence (2.15) holds.
Similarly we check (2.16). �
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3. Main ingredients

3.1. Consequences of the min-max principle. In this section we prove Proposition
3.2 which is the first fundamental tool of our approach. Its purpose is to detect pertur-
bations which give small errors for large eigenvalues. The importance of Proposition
3.2 lies in the fact that it is used as the ingredient of our approach replacing Lemma 2.1
of J. Janas, S. Naboko [14].

We notice that Lemma 2.1 from [14] is used in [2], [15]-[16], [21], but we prefer using
Proposition 3.2 for several reasons. One of them is the fact that Lemma 2.1 from [14]
needs the additional assumption µ ≥ 1 in the hypothesis (H1).

Notation 3.1. If L is a self-adjoint, bounded from below operator with compact
resolvent in `2, then λ1(L) ≤ · · · ≤ λn(L) ≤ λn+1(L) ≤ . . . are eigenvalues of L,
enumerated in non-decreasing order, counting multiplicities.

Proposition 3.2. We fix µ, ρ, η ∈ (0;∞). Let D = d(Λ) be the diagonal operator with
d satisfying (H1). Let A be a symmetric operator such that D(A) ⊃ `2,µ and

A = O(Λµ−ρ). (3.1)

Let J be the operator defined by
J = D +A (3.2)

and D(J)=`2,µ. Then J is self-adjoint, bounded from below and has compact resolvent
in `2. If R is a symmetric operator such that D(R) ⊃ `2,µ and

R = O(Λµ−η), (3.3)

then the operator J +R is self-adjoint in `2 on the domain D(J +R) = `2,µ. Moreover,
J +R is a bounded from below operator with compact resolvent and one has

λn(J +R) = λn(J) +O(nµ−η). (3.4)

Proof. Let C̃ > 0 and denote D̃ := D+ C̃I. Assume that C̃ is fixed large enough. Then
(H1) ensures C−1Λµ ≤ D̃ ≤ CΛµ with C > 0, hence D̃−1 is compact. Since A has zero
relative bound with respect to D̃ (due to (3.1)), the operaror

J̃ := J + C̃I = D̃ +A (3.5)

is self-adjoint, bounded from below, has compact resolvent and

(2C)−1Λµ ≤ J̃ ≤ 2CΛµ (3.6)

holds if C̃ is large enough. Since λn(J̃) = λn(J)+C̃ and λn(J̃+R) = λn(J+R)+C̃, it
remains to prove

λn(J̃+R) = λn(J̃) +O(nµ−η). (3.7)
Step 1. We prove that (3.7) holds if η ≤ 2µ.
Since λn((2C)±1Λµ) = (2C)±1nµ, the min-max principle used in (3.6) gives

(2C)−1nµ ≤ λn(J̃) ≤ 2Cnµ. (3.8)

The well known result concerning the powers of positive operators ensures that

(2C)−|s|Λµs ≤ J̃s ≤ (2C)|s|Λµs (3.9)

follows from (3.6) if −1 ≤ s ≤ 1. Since 0 ≤ η ≤ 2µ, we can use (3.9) with s = 1− η/µ
ensuring existence of positive constants C1, C2 such that

±R ≤ C1Λµ−η ≤ C2J̃
1−η/µ. (3.10)
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Let f± : (0;∞)→ R be given by the formula f±(t) := t±C2t
1−η/µ. Then (3.10) ensures

f−(J̃) ≤ J̃ +R ≤ f+(J̃) (3.11)

and the min-max principle ensures

λn(f−(J̃)) ≤ λn(J̃ +R) ≤ λn(f+(J̃)). (3.12)

Since f± is increasing on (t0;∞) if t0 is fixed large enough, there is n0 ∈ N such that

n ≥ n0 =⇒ λn(f±(J̃)) = f±(λn(J̃)). (3.13)

Combining (3.12) and (3.13), we find that for n ≥ n0 one has

λn(J̃)− C2λn(J̃)1−η/µ ≤ λn(J̃ +R) ≤ λn(J̃) + C2λn(J̃)1−η/µ. (3.14)

Using once more (3.9) with s = 1− η/µ, we conclude that (3.14) ensures

|λn(J̃ +R)− λn(J̃)| ≤ C2λn(J̃)1−η/µ = O(nµ−η). (3.15)

Step 2. Let k ∈ N∗. We claim that the assertion of Proposition 3.2 holds if η ≤ 2kµ.
Indeed, the case k = 1 was proved in Step 1 and using induction with respect to k ∈ N∗,
we fix k ∈ N∗ and assume that the assertion of Proposition 3.2 holds if η ≤ 2kµ.
As before C̃ > 0 is fixed large enough, D̃ = d(Λ) + C̃ I and d satisfies (H1) for a given
µ > 0. Let J̃ = D̃ +A where A = O(Λµ−ρ) and ρ > 0. Then

J̃2 = D̃2 +A′ holds with A′ = D̃A+AD̃ +A2 = O(Λ2µ−ρ), (3.16)

i.e. J ′ := J̃2 satisfies the hypotheses of Proposition 3.2 with µ′ := 2µ instead of µ.
Assume now that R = O(Λµ−η) and 0 < η ≤ 2k+1µ = 2kµ′. Then

(J̃ +R)2 = J̃2 +R′ holds with R′ = J̃R+RJ̃ +R2 = O(Λ2µ−η) (3.17)

and by using Proposition 3.2 with J ′ := J̃2, µ′ := 2µ instead of J , µ, we obtain

λn((J̃ +R)2) = λn(J̃2) +O(n2µ−η). (3.18)

Let C̃ be large enough to ensure J̃ +R ≥ 0. Then (3.18) implies

λn(J̃ +R)2 = λn(J̃)2 +O(n2µ−η) = λn(J̃)2
(
1 +O(n−η)

)
, (3.19)

where the last estimate follows from (3.8). Thus

λn(J̃ +R) = λn(J̃)
(
1 +O(n−η)

)1/2
= λn(J̃)

(
1 +O(n−η)

)
(3.20)

and using (3.8) in the last estimate, we deduce (3.7). �

Corollary 3.3. Let µ > 0 and ρ > 0. Assume that (H1) and (H3) hold and there exists
k0 such that d(k + 1) ≥ d(k) for k ≥ k0. If the operator J is given by (1.3), then

λn(J) = d(n) +O(nµ−ρ). (3.21)

Proof. Denote D = d(Λ) and R = Sa(Λ) + ā(Λ)S∗. Since (H3) ensures R = O(Λµ−ρ),
we can write (3.4) with D instead of J and find λn(D +R) = λn(D) +O(nµ−ρ).
To complete the proof, we observe that λn(d(Λ)) = d(n) for n ≥ n0. �
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3.2. Special self-adjoint operators.

Lemma 3.4. Let P be a symmetric operator on S−∞ given by the formula

Px =
∑

1≤i≤i0

(
Sipi(Λ) + pi(Λ)S(−i))x for x ∈ S−∞. (3.22)

If pi(k) = O(k) for i = 1, . . . , i0, then P is essentially self-adjoint on S−∞.

Proof. Let θ ≥ 0. Then [iP,Λ2θ] is symmetric on S−∞ and we claim that

[iP,Λ2θ] = O(Λ2θ). (3.23)

Indeed, if fθ(k) = k2θ, then ∂ifθ(k) = O(k2θ−1), hence (2.4) ensures

[P,Λθ] =
∑

1≤i≤i0

(
Si(pi∂ifθ)(Λ) + hc

)
with (pi∂ifθ)(k) = O(k2θ).

By (3.23) we can find a constant Cθ > 0 such that

±〈y,Λ−θ[iP,Λ2θ]Λ−θy〉 ≤ Cθ||y||2 for y ∈ `2.

Writing y = Λθx, we get

±〈x, [iP,Λ2θ]x〉 ≤ Cθ||Λθx||2 for x ∈ `2,θ. (3.24)

Using (3.24) with θ = 1/2 and the fact that

||Px|| ≤ C||Λx|| for x ∈ S−∞, (3.25)

we deduce the assertion by Nelson’s Commutator Theorem. Indeed, the properties
(3.25) and (3.24) with θ = 1

2 allow us to apply Corollary 1.1 in [12] (using P , Λ and
S−∞ instead of H, N and C in [12]). �

Notation 3.5. If P ∈ FDOν
1(N) is given by (2.13), then the adjoint matrix (P †(i, j))∞i,j=1

= (P (j, i) )∞i,j=1 satisfies

P †x =
∑

−i0≤i≤i0

pi(Λ)S(−i)x =
∑

−i0≤i≤i0

S(−i)(τ−ipi)(Λ)x for x ∈ S−∞ (3.26)

and it is clear that P † ∈ FDOν
1(N). We will use the notation

P + hc := P + P †. (3.27)

If moreover pi(k) = O(k) for i = 1, . . . , i0, then

P =
∑

1≤i≤i0

(
Sipi(Λ) + hc

)
(3.28)

will always denote the self-adjoint operator satisfying (3.22).

Proposition 3.6. Assume that pi(k) = O(k) for i = 1, . . . , i0 and P is the self-adjoint
operator given by (3.28). If θ ≥ 0 then `2,θ is an invariant subspace of eitP for any
t ∈ R. Moreover there is a constant Cθ such that

||Λθ eitPx|| ≤ eCθ|t| ||Λθx|| (3.29)

holds for all x ∈ S−∞ and t ∈ R.
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Proof. Let D(P ) denote the domain of the self-adjoint operator P equipped with its
graph norm. Let ε > 0 and denote Λ

(θ)
ε := Λ2θ(εΛ2θ + I)−1 = ε−1I − ε−1(εΛ2θ + I)−1

and we define the quadratic form

q(θ)
ε (x) = 〈iPx,Λ(θ)

ε x〉+ 〈Λ(θ)
ε x, iPx〉 for x ∈ D(P ).

We claim that there is a constant Cθ > 0 such that

± q(θ)
ε (x) ≤ Cθ||Λθ(εΛ2θ + I)−1/2x||2 = Cθ〈x,Λ(θ)

ε x〉 (3.30)

holds for all x ∈ D(P ). Indeed, if x ∈ S−∞ then we compute

q(θ)
ε (x) = 〈x, [Λ(θ)

ε , iP ]x〉 = 〈(εΛ2θ + I)−1x, [iP,Λ2θ](εΛ2θ + I)−1x〉 (3.31)

and by using (εΛ2θ +I)−1x instead of x in (3.24), we find that (3.30) holds for x ∈ S−∞.
Since S−∞ is dense in D(P ), the estimate (3.30) holds for x ∈ D(P ) as well.

Let x ∈ D(P ) and denote xt := eitPx for t ∈ R. By using d
dt 〈xt,Λ

(θ)
ε xt〉 = q

(θ)
ε (xt)

and (3.30), we obtain

± d

dt
〈xt,Λ(θ)

ε xt〉 ≤ Cθ〈xt,Λ(θ)
ε xt〉

and the Gronwall’s inequality ensures

〈xt,Λ(θ)
ε xt〉 ≤ eCθ|t| 〈x,Λ(θ)

ε x〉. (3.32)

If x ∈ S−∞, then the limit ε→ 0 in (3.32) gives xt ∈ `2,θ and (3.29) holds. Since S−∞

is dense in `2,θ, we still have (3.29) for all x ∈ `2,θ and xt ∈ `2,θ if x ∈ `2,θ. �

Corollary 3.7. Let P be as in Lemma 3.4. Then
(i) S−∞ is an invariant subspace of eitP for any t ∈ R,
(ii) t→ eitPx is a smooth function R→ `2,θ for any θ ≥ 0 if x ∈ S−∞.

Proof. (ii) Let x ∈ S−∞, ε ≥ 0 and denote xε,θt := Λθ(εΛθ + I)−1eitPx. It is clear
that t → xε,θt is smooth R → `2 if ε > 0. Let us fix N ∈ N∗ and t0 > 0. Then
the family (xε,θt )0<ε≤1 is bounded in CN ([−t0, t0]; `2) due to (3.29), hence using the
Ascoli Theorem we can find a sequence (εn)∞n=0 which converges to 0 and (xεn,θt )∞n=0 is
convergent in CN−1([−t0, t0]; `2). We conclude that the pointwise limit t→ ΛθeitPx is
a function belonging to CN−1([−t0, t0]; `2). �

3.3. Application of the Taylor formula. Let P be the operator satisfying the
assumptions of Lemma 3.4 and assume Q = O(Λµ). We will denote

FtP (Q) := e−itPQeitP for t ∈ R.

Let x ∈ S−∞ and η ∈ R. Then the function t→ ΛηFtP (Q)x is smooth R→ `2 due to
Corollary 3.7. Denoting ad1

iPQ = adiPQ := [Q, iP ] and adm+1
iP Q = [admiPQ, iP ], we can

express the m-th derivative with respect to t ∈ R in the form

dm

dtm
FtP (Q)x = FtP (admiPQ)x for x ∈ S−∞

and by using the Taylor formula in t = 1, we obtain on S−∞ the equality

e−iPQeiP = Q+

N−1∑
m=1

1

m!
admiPQ+RN (adNiPQ), (3.33)
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where

RN (T ) :=
1

(N − 1)!

∫ 1

0

e−itPT eitP (1− t)N−1 dt. (3.34)

It is clear that Proposition 3.6 ensures

T = O(Λν) =⇒ RN (T ) = O(Λν). (3.35)

4. Asymptotic formula with one correction term for band matrices

4.1. Statement of the result. In this section we will prove

Theorem 4.1. Let µ > 0 and ρ > 0 be fixed. Assume that d ∈ Sµ1 (2) satisfies (H1) and
(H2). Assume that ai ∈ Sµ−ρ1 (1) for i = 1, . . . , i0, and define the operator

A = d(Λ) +
∑

1≤i≤i0

(
Siai(Λ) + hc

)
(4.1)

on the domain D(A) = `2,µ. Then A is a self-adjoint and bounded from below operator
with compact resolvent in `2. Moreover
(i) the eigenvalue sequence of A satisfies

λn(A) = d(n) +O(nµ−2ρ), (4.2)

(ii) if d ∈ Sµ1 (3) and ai ∈ Sµ−ρ1 (2) for i = 1, . . . , i0, then

λn(A) = d(n) + r1(n) +O(nµ−3ρ) (4.3)

holds with

r1(n) :=

i0∑
i=1

(
|ai(n− i)|2

d(n)− d(n− i)
− |ai(n)|2

d(n+ i)− d(n)

)
. (4.4)

4.2. Solution of an auxiliary matrix equation. We observe that the assumptions
(H1) and (H2) concern the sequence (d(k))∞k=k0 where k0 ∈ N is fixed. Since any
modification of {d(k) : k < k0} can be viewed as a perturbation R satisfying R =
O(Λ−∞), the corresponding error of the n-th eigenvalue is O(n−∞) due to Proposition
3.2. Neglecting such errors we may assume that (H2) holds with k0 = 1, i.e.

∃ c > 0 ∀ k ∈ N∗, d(k + 1)− d(k) ≥ ckµ−1. (4.5)

Lemma 4.2. Let µ>0, ρ>0 and consider a symmetric operator on S−∞ given by

A0 =
∑

1≤i≤i0

(
Siai(Λ) + hc

)
. (4.6)

Assume that ai(k) = O(kµ−ρ) for i = 1, . . . , i0, (d(k))∞k=1 satisfies (4.5) and denote

pi(k) = i
ai(k)

d(k + i)− d(k)
= i

ai(k)

∂id(k)
. (4.7)

(i) If P is expressed by (3.22) with pi given by (4.7), then

[D, iP ] +A0 = 0. (4.8)

(ii) If d ∈ Sµ1 (N + 1) and ai ∈ Sµ−ρ1 (N), then pi ∈ S1−ρ
1 (N).
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Proof. (i) By (2.4), we have

[D, iP ] =
∑

1≤i≤i0

(
[d(Λ), Sipi(Λ)] + hc

)
=

∑
1≤i≤i0

(
Si∂id(Λ)ipi(Λ) + hc

)
(4.9)

and (4.8) holds if and only if ∂id(k) ipi(k) + ai(k) = 0 for all k ∈ N∗.
(ii) It suffices to use Lemma 2.4. �

4.3. Proof of Theorem 4.1(i). Step 1. Let A be given by (4.1). Then

A = D +A0 (4.10)

holds with D = d(Λ) and A0 given by (4.6). Let P ∈ FDO1−ρ
1 (1) be as in Section 4.2.

According to Section 3.2 the operator P is self-adjoint and we claim that

e−iPA0eiP = A0 +O(Λµ−2ρ). (4.11)

Indeed, A0 ∈ FDOµ−ρ
1 (1) and P ∈ FDO1−ρ

1 (1) ensure [A0, P ] ∈ FDOµ−2ρ
1 (0) due to

Lemma 2.8, hence [A0, P ] = O(Λµ−2ρ) and the Taylor formula gives

e−iPA0eiP = A0 +R1([A0, iP ]),

where R1([A0, iP ]) = O(Λµ−2ρ) follows from [A0, iP ] = O(Λµ−2ρ) due to (3.35).

Step 2. We claim that

e−iPDeiP = D −A0 +O(Λµ−2ρ). (4.12)

Indeed, by using [D, iP ] = −A0 in the Taylor formula

e−iPDeiP = D + [D, iP ] +R2([[D, iP ], iP ]),

we obtain
e−iPDeiP = D −A0 −R2([A0, iP ])

and R2([A0, iP ]) = O(Λµ−2ρ) follows from [A0, iP ] = O(Λµ−2ρ) due to (3.35).

Step 3. Denote Â := e−iPAeiP . Summing up (4.11) and (4.12), we obtain

Â = e−iP (D +A0)eiP = D +O(Λµ−2ρ). (4.13)

Using (4.13) and Proposition 3.2, we obtain

λn(A) = λn(Â) = λn(D) +O(nµ−2ρ) = d(n) + O(nµ−2ρ).

4.4. Proof of Theorem 4.1(ii). Step 1. As before we write A = D + A0 and P is
defined as in Section 4.2. Then

A0 ∈ FDOµ−ρ
1 (2), P ∈ FDO1−ρ

1 (2) ⇒ [A0, P ] ∈ FDOµ−2ρ
1 (1)

follows from Lemma 2.8 and we claim that the diagonal part of [A0, iP ] satisfies

[A0, iP ](k, k) = 2r1(k), (4.14)

where r1(k) is given by (4.4). Indeed, for i = 1, . . . , i0, we have

[Siai(Λ), ip̄i(Λ)(Si)∗] = Si(iaip̄i)(Λ)(Si)∗ − (iaip̄i)(Λ) = ∂−i(iaip̄i)(Λ) (4.15)

and the diagonal part of [A0, iP ] equals∑
1≤i≤i0

(
[Siai(Λ), ip̄i(Λ)(Si)∗] + hc

)
=

∑
1≤i≤i0

qi(Λ), (4.16)
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where qi(Λ) = ∂−i(iaip̄i)(Λ) + hc, i.e.

qi = 2Re ∂−i(iaip̄i) = −2∂−iIm (aip̄i) (4.17)

and

[A0, iP ](k, k) =
∑

1≤i≤i0

qi(k) =
∑

1≤i≤i0

2∂−i

(
|ai(k)|2

∂id(k)

)
= 2r1(k).

Step 2. We claim that

e−iPA0eiP = A0 + [A0, iP ] +O(Λµ−3ρ). (4.18)

Indeed, Lemma 2.8 ensures

[A0, iP ] ∈ FDOµ−2ρ
1 (1), P ∈ FDO1−ρ

1 (2) ⇒ ad2
iPA

0 ∈ FDOµ−3ρ
1 (0),

hence ad2
iPA

0 = O(Λµ−3ρ) and the Taylor formula gives

e−iPA0eiP = A0 + [A0, iP ] +R2(ad2
iPA

0),

where R2(ad2
iPA

0) = O(Λµ−3ρ) follows from ad2
iPA

0 = O(Λµ−3ρ) and (3.35).
Step 3. We claim that

e−iPDeiP = D −A0 − 1
2 [A0, iP ] +O(Λµ−3ρ). (4.19)

Indeed, it suffices to use [D, iP ] = −A0 in the Taylor formula

e−iPDeiP = D + [D, iP ] + 1
2 [[D, iP ], iP ] +R3(ad3

iPD)

and R3(ad3
iPD) = O(Λµ−3ρ) follows from ad3

iPD = −ad2
iPA

0 = O(Λµ−3ρ).

Step 4. Denote Â := e−iPAeiP . Summing up (4.18) and (4.19), we obtain

Â = e−iP (D +A0)eiP = D + 1
2 [A0, iP ] +O(Λµ−3ρ) (4.20)

and Proposition 3.2 ensures

λn(A) = λn(Â) = λn(A1) +O(nµ−3ρ), (4.21)

where we denoted

A1 := D + 1
2 [A0, iP ].

Let d1(k) := d(k) + 1
2 [A0, iP ](k, k) = d(k) + r1(k). Then D1 = d1(Λ) is the diagonal

part of A1 and we can write

A1 = d1(Λ) +A0
1, (4.22)

where A0
1 ∈ FDOµ−2ρ

1 (1) is off-diagonal. Thus Theorem 4.1(i) can be applied to A1

with d1(k) = d(k) + r1(k) instead of d(k) and 2ρ instead of ρ. We obtain

λn(A1) = d1(n) +O(nµ−4ρ), (4.23)

which completes the proof due to (4.21).
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5. A method of approximative diagonalization

5.1. Introduction. In this section J satisfies (H1)-(H3) and assuming (1.11)-(1.12),
we describe a special sequence of operators (J

(l)
N )∞l=0 such that J (l)

N is self-adjoint in `2

on the domain D(J
(l)
N ) = `2,µ for any l, N ∈ N. Moreover J (l)

N is a bounded from below
operator with compact resolvent and the eigenvalue sequence (λn(J

(l)
N ))∞n=1 satisfies

λn(J) = λn(J
(l)
N ) +O(nµ−ρN ). (5.1)

Besides (5.1), the operators (J
(l)
N )∞l=0 have a special structure of band matrices (see

(5.4), (5.5)) and in Section 5.2 we describe its construction. Using (J
(l)
N )∞l=0 and suitable

classes of operators defined in Section 5.3, we complete the proof of Theorem 1.1 in
Section 5.4.

Notation 5.1. If ν∈R then FDOν
1 denotes the set of all linear operators on S−∞ of

the form
P =

∑
−i0≤i≤i0

S(i) pi(Λ) with pi ∈ Sν1 for i ∈ [−i0, i0] ∩ Z. (5.2)

Clearly Lemma 2.4 holds with Sν1 instead of Sν1(N) and the proof of Lemma 2.8 ensures

P ∈ FDOν
1 , Q ∈ FDOη

1 =⇒ [P,Q] ∈ FDOν+η−1
1 . (5.3)

The structure of (J
(l)
N )∞l=0 is the following. We write ρl := 2lρ and construct J (l)

N such
that J (0)

N = J and

J
(l)
N = d

(l)
N (Λ) +A

(l)
N with A(l)

N ∈ FDOµ−ρl
1 , (5.4)

where A(l)
N is off-diagonal and

d
(l)
N (k) = d(k) +

∑
1≤m≤l

rm,N (k) with rm,N ∈ Sµ−ρm1 . (5.5)

Remark 5.2. Since (5.5) ensures d(l)N − d ∈ Sµ−2ρ1 , (H1) and (H2) ensure

d
(l)
N (k) ≥ 1

2 ck
µ for k ≥ k(l)N , (5.6)

∂d
(l)
N (k) ≥ 1

2 ck
µ−1 for k ≥ k(l)N , (5.7)

where k(l)N ∈ N∗ is fixed large enough.

Remark 5.3. It is clear that (5.4) implies

J
(l)
N = d

(l)
N (Λ) +O(Λµ−ρl). (5.8)

Thus the operator J (l)
N has the domain `2,µ and is a bounded from below self-adjoint

operator with compact resolvent in `2 due to (5.5)-(5.6).

Remark 5.4. The estimate (5.1) ensures

λn(J) = d
(l)
N (n) +O(nµ−Nρ) if l ≥ log2N. (5.9)

Indeed, using (5.8) and Proposition 3.2, we obtain

λn(J
(l)
N ) = λn(d

(l)
N (Λ)) +O(nµ−ρl). (5.10)
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Combining (5.10), (5.1) with ρl = 2lρ ≥ Nρ, we obtain

λn(J) = λn(d
(l)
N (Λ)) +O(nµ−Nρ) if l ≥ log2N. (5.11)

To deduce (5.9) from (5.11), we observe that due to (5.6) and (5.7) we can find n(l)N ∈ N∗

large enough to ensure λn(d
(l)
N (Λ))) = d

(l)
N (n) for n ≥ n(l)N .

5.2. Construction of the sequence (J
(l)
N )∞l=0. We fix N and skip this index writing

J (l) instead of J (l)
N . If l = 0, then J (0) = J and (5.4) takes the form

J (0) = d(Λ) +A(0) with A(0) = Sa(Λ) + hc, (5.12)

i.e. A(0) ∈ FDOµ−ρ0
1 holds with ρ0 = ρ.

Next we fix l ∈ N and make the induction hypothesis that J (l) has the properties
given in Section 5.1. Our purpose is to construct J (l+1) having analogical properties for
l+1 instead of l. At the beginning we assume that A(l)∈FDOµ−ρl

1 is off-diagonal, i.e.

A(l) =
∑

1≤i≤il

(
Sia

(l)
i (Λ) + hc

)
with a(l)i ∈ Sµ−ρl1 . (5.13)

Let k(l) ∈ N∗ be fixed large enough. Then ∂d(l)(k) ≥ 1
2 ck

µ−1 holds for k ≥ k(l) (see
(5.7)), hence we can define p(l)i ∈ S1−ρl

1 by the formula

p
(l)
i (k) = i

a
(l)
i (k)

d(l)(k + i)− d(l)(k)
for k ≥ k(l) (5.14)

and p(l)i (k) = 0 if k < k(l). Similarly as in Section 4.2 we find that the operator

P (l) =
∑

1≤i≤il

(
Sip

(l)
i (Λ) + hc

)
(5.15)

satisfies
[d(l)(Λ), iP (l)] +A(l) = O(Λ−∞). (5.16)

We observe that (5.3) ensures

P (l) ∈ FDO1−ρl
1 , A(l) ∈ FDOµ−ρl

1 =⇒ [P (l), A(l)] ∈ FDOµ−2ρl
1 (5.17)

and it is easy to see that using induction, we obtain

adm−1
iP (l)A

(l) ∈ FDOµ−mρl
1 holds for m ≥ 2. (5.18)

Next we choose ml ∈ N∗ large enough and write the Taylor formula

e−iP
(l)

D(l) eiP
(l)

= D(l) +

ml−1∑
m=1

1

m!
admiP (l)D

(l) +Rml(adml
iP (l)D

(l)), (5.19)

where D(l) := d(l)(Λ). Since admiP (l)D(l) = −adm−1
iP (l)A

(l) +O(Λ−∞) holds due to (5.16),
we can rewrite (5.19) in the form

e−iP
(l)

D(l) eiP
(l)

= D(l) −A(l) −
ml−2∑
m=2

1

m!
adm−1

iP (l)A
(l) +O(Λµ−ρlml), (5.20)

where the estimate of last term follows from adml−1
iP (l) A

(l) = O(Λµ−ρlml) and (3.35).
Writing m− 1 instead of m in the Taylor’s formula (3.33), we get

e−iP
(l)

A(l) eiP
(l)

= A(l) +

ml−2∑
m=2

1

(m− 1)!
adm−1

iP (l)A
(l) +O(Λµ−ρlml). (5.21)
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Combining (5.21) with (5.20), we obtain

e−iP
(l)

(D(l) +A(l))eiP
(l)

= D(l) + Ã(l) +O(Λµ−ρlml), (5.22)

where

Ã(l) :=

ml−2∑
m=2

( 1

(m− 1)!
− 1

m!

)
adm−1

iP (l)A
(l) ∈ FDOµ−2ρl

1 . (5.23)

Let us denote
J (l+1) := D(l) + Ã(l). (5.24)

Using (5.24) and J (l) = D(l) +A(l), we find that (5.22) gives

e−iP
(l)

J (l)eiP
(l)

= J (l+1) +O(Λµ−mlρl). (5.25)

Applying Proposition 3.2, we find that (5.25) ensures

λn(J (l)) = λn(e−iP
(l)

J (l)eiP
(l)

) = λn(J (l+1)) +O(nµ−mlρl). (5.26)

Let A(l+1) be the off-diagonal part of Ã(l) and let rl+1(Λ) be its diagonal part. Then

Ã(l) = rl+1(Λ) +A(l+1), (5.27)

where A(l+1)∈FDO
µ−ρl+1

1 , rl+1∈S
µ−ρl+1

1 due to (5.23) and ρl+1 = 2ρl. Thus setting

d(l+1) := d(l) + rl+1 (5.28)

we find
J (l+1) = d(l)(Λ) + rl+1(Λ) +A(l+1) = d(l+1)(Λ) +A(l+1),

i.e. (5.4), (5.5) hold with l + 1 instead of l. Finally (5.1) and (5.26) ensure

λn(J) = λn(J (l+1)) +O(nµ−mlρl) +O(nµ−Nρ),

hence (5.1) holds with l + 1 instead of l if mlρl ≥ Nρ, i.e. if we choose ml ≥ 2−lN .

5.3. Auxiliary classes of symbols and operators.

Notation 5.5. If ν ∈ R, ρ > 0, then Sν[1,2ρ] denotes the set of p : N∗ → C such that

p(k) ∼
∞∑

i,j=0

γi,jk
ν−2ρj−i (5.29)

holds for a certain complex valued sequence (γi,j)
∞
i,j=0. The formula (5.29) means that

p(k) =

N−1∑
i,j=0

γi,jk
ν−2ρj−i +O(kν−N min{2ρ,1}) (5.30)

holds for any N ∈ N∗. One checks easily the following properties

Sν−2kρ−m[1,2ρ] ⊂ Sν[1,2ρ] if k,m ∈ N, (5.31)

p ∈ Sν[1,2ρ] =⇒ τip ∈ Sν[1,2ρ], ∂ip ∈ Sν−1[1,2ρ], (5.32)

p ∈ Sν[1,2ρ], q ∈ Sη[1,2ρ] =⇒ pq ∈ Sν+η[1,2ρ]. (5.33)

If there exists c > 0 such that |p(k)| ≥ ckν for all k ∈ N∗, then

p ∈ Sν[1,2ρ] ⇒ 1/p ∈ S−ν[1,2ρ]. (5.34)
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Notation 5.6. We denote by FDOν
[1,2ρ] the set of all linear operators on S−∞ of the

form
P =

∑
−i0≤i≤i0

S(i) pi(Λ) with pi ∈ S
ν−ρ|i|
[1,2ρ] for i ∈ [−i0, i0] ∩ Z. (5.35)

Lemma 5.7. If P ∈ FDOν
[1,2ρ] and Q ∈ FDOη

[1,2ρ] then [P,Q] ∈ FDOν+η−1
[1,2ρ] .

Proof. It suffices to check that the right hand side of (2.14) belongs to FDOν+µ−1
[1,2ρ] , i.e.

qj∂jpi − pi∂iqj ∈ S
ν+η−1−ρ|i+j|
[1,2ρ] . (5.36)

If qj ∈ S
η−ρ|j|
[1,2ρ] , pi ∈ S

ν−ρ|i|
[1,2ρ] , then ∂iqj ∈ S

η−1−ρ|j|
[1,2ρ] , ∂jpi ∈ S

ν−1−ρ|i|
[1,2ρ] and

qj∂jpi − pi∂iqj ∈ S
ν+η−1−ρ|i|−ρ|j|
[1,2ρ] . (5.37)

Hence (5.36) follows if we know that S
ν+η−1−ρ|i|−ρ|j|
[1,2ρ] ⊂ S

ν+η−1−ρ|i+j|
[1,2ρ] . We deduce the

last inclusion using (5.31) with k = 1
2 (|i|+ |j| − |i+ j|), m = 0 and ν + η − 1 instead of

ν. Indeed, it is easy to see that 1
2 (|i|+ |j| − |i+ j|) ∈ N for every i, j ∈ Z. �

5.4. Proof of Theorem 1.1. The assertion of Theorem 1.1 follows from

Theorem 5.8. Let µ > 0, ρ > 0 and let J be given by (1.3) with entries satisfying
(H1)-(H3). If d ∈ Sµ[1,2ρ] and a ∈ Sµ−ρ[1,2ρ], then n→ λn(J) belongs to Sµ[1,2ρ].

Proof. Let N ∈ N∗ and as in Section 5.2 denote J (l) instead of J (l)
N . We claim that

J (l) ∈ FDOµ
[1,2ρ] (5.38)

holds for every l ∈ N. Indeed, J (0) =d(Λ)+(Sa(Λ) + hc)∈FDOµ
[1,2ρ] follows from the

assumptions d ∈ Sµ[1,2ρ] and a ∈ Sµ−ρ[1,2ρ]. Assume now that (5.38) holds for a given l ∈ N.
Then a

(l)
i ∈ S

µ−ρ|i|
[1,2ρ] and ∂kd

(l) ∈ Sµ−1[1,2ρ] implies p(l)i ∈ S
1−ρ|i|
[1,2ρ] , hence P

(l) ∈ FDO1
[1,2ρ]

and [P (l), A(l)] ∈ FDOµ
[1,2ρ] due to Lemma 5.7.

We observe that admiP (l)A(l) ∈ FDOµ
[1,2ρ] follows by induction with respect to m, hence

Ã(l) ∈ FDOµ
[1,2ρ] and (5.38) still holds with l + 1 instead of l.

In order to deduce that n→ λn(J) belongs to Sµ[1,2ρ], it suffices to observe that for

any N ∈ N∗ one has the estimate (5.9) and d(l)N ∈ Sµ[1,2ρ] holds due to (5.38). �

6. Expression of the second correction term

6.1. Statement of the result.

Notation 6.1. If i, j ∈ Z and a, b : N∗ → C, then we denote

{a, b}i,j(k) := b(k)∂ja(k)− a(k)∂ib(k), (6.1)

{a, b}(k) := {a, b}1,1(k) = b(k)∂a(k)− a(k)∂b(k). (6.2)

Theorem 6.2. Let µ > 0 and ρ > 0. Let a ∈ Sµ−ρ1 , let d ∈ Sµ1 be such that (H1), (H2)
hold for all k ∈ N∗ and define

p := i
a

∂d
, (6.3)

r1 := −∂−1Im (ap̄) = ∂−1

( |a|2
∂d

)
. (6.4)
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If J is given by (1.3), then its eigenvalue sequence (λn(J))∞n=1 satisfies

λn(J) = d(n) + r1(n) + r2(n) +O(nµ−6ρ), (6.5)

where r1 is given by (6.4) and

r2 = r2,1 + r2,2 + r2,3 (6.6)

holds with
r2,1 := − 1

2 ∂−1(|p|2∂r1), (6.7)
r2,2 := 1

4 ∂−1Im (p̄ {{a, p}, τ−1p̄}2,−1), (6.8)

r2,3 := 1
4 ∂−2

( |{a, p}|2
∂2d

)
. (6.9)

6.2. Analysis of commutators. As in Section 4 we assume that (d(k))∞k=1 is strictly
increasing. We also assume that p is given by (6.3), r1 is given by (6.4) and the operators
A(0) ∈ FDOµ−ρ

1 , P ∈ FDO1−ρ
1 are defined by

A(0) = Sa(Λ) + hc, (6.10)

P = Sp(Λ) + hc. (6.11)

Lemma 6.3. If A(0) and P are given by (6.10) and (6.11), then

adiPA
(0) = q0(Λ) + (S2q2(Λ) + hc), (6.12)

ad2
iPA

(0) = (Sq ′1(Λ) + S3q ′3(Λ)) + hc, (6.13)
ad3

iPA
(0) = q ′′0 (Λ) + (S2q ′′2 (Λ) + hc) + (S4q ′′4 (Λ) + hc), (6.14)

ad4
iPA

(0) = (Sq ′′′1 (Λ) + S3q ′′′3 (Λ) + S5q ′′′5 (Λ)) + hc (6.15)
hold with

q0 = 2r1, (6.16)
q2 = {a, ip}, (6.17)

q ′1 := 2ip∂r1 − {{a, p}, τ−1p̄}2,−1, (6.18)
q ′′0 = −2∂−1Im (q ′1p̄) (6.19)

and
qi ∈ Sµ−2ρ1 , q ′i ∈ Sµ−3ρ1 , q ′′i ∈ Sµ−4ρ1 , q ′′′i ∈ Sµ−5ρ1 (6.20)

hold for any i.

Proof. In this proof we deal with operators of the form S(i)pi(Λ), which are written in
the shortened way as S(i)pi. In particular, the formula (2.14) expressed in the shortened
way, takes the form

[S(i)pi, S
(j)qj ] = S(i+j){pi, qj}i,j . (6.21)

Step 1. Analysis of Q := adiPA
(0). The diagonal part of Q = [Sa+ hc, iP ] is

[Sa, ip̄ S∗] + hc = ∂−1(iap̄) + hc = 2∂−1Re (iap̄) = −2∂−1Im (ap̄) = 2r1 (6.22)

and the off-diagonal part of [Sa+ hc, iP ] is

[Sa, iSp] + hc = S2 {a, ip}+ hc. (6.23)

Thus (6.12) holds with q0, q2 given by (6.16) and (6.17).
Step 2. Analysis of Q ′ := ad2

iPA
(0). Combining (6.12) with Q ′ = [Q, iP ], we get

Q ′ = [q0, iP ] + [S2q2 + hc, iS∗τ−1p̄] + [S2q2 + hc, iSp] = Q ′1 + Q̃ ′1 +Q ′3,
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where
Q ′1 = [q0, iP ] = [q0, iSp] + hc = S ip∂q0 + hc,

Q̃ ′1 = [S2q2, iS
(−1)τ−1p̄] + hc = S i{q2, τ−1p̄}2,−1 + hc,

Q ′3 = [S2q2, iSp] + hc = S3 i{q2, p}2,1 + hc = S3 q ′3 + hc.

Thus (6.13) holds with q ′1 =ip∂q0+i{q2,τ−1p̄}2,−1 and we get (6.18) from (6.16)-(6.17).
Step 3. Analysis of Q ′′ := ad3

iPA
(0). Using (6.13), (6.18), we find that the diagonal

part of Q ′′ = [Q ′, iP ] can be obtained, similarly as in (6.22), by taking q ′1 instead of a,
i.e.

[Sq ′1, ip̄S
∗] + hc = 2∂−1Re (iq ′1p̄) = −2∂−1Im (q ′1p̄) = q ′′0 .

The off-diagonal part of Q ′′ is the sum of

[Sq ′1, iSp] + hc = S2 i{q ′1, p}+ hc,

[S3q ′3, iS
(−1)τ−1p̄] + hc = S2 i{q ′3, τ−1p̄}3,−1 + hc,

[S3q ′3, iSp] + hc = S4 i{q ′3, p}3,1 + hc.

Step 4. End of the proof. Denote Q ′′′ := ad4
iPA

(0). By using (6.14), we find easily that
the commutator Q ′′′ = [Q ′′, iP ] has the form given in (6.15). To complete the proof,
we observe that the properties (6.20) follow from (5.18). �

6.3. End of the proof of Theorem 6.2. Writing J = J (0) = D(0)+A(0) = d(Λ) +
(Sa(Λ) + hc) in (5.22)-(5.23) with l=0, ρ0 =ρ and m0 =6, we obtain

e−iPJeiP = J ′ +O(Λµ−6ρ), (6.24)

where

J ′ = d(Λ) + 1
2 adiPA

(0) + 1
3 ad2

iPA
(0) + 1

8 ad3
iPA

(0) + 1
30 ad4

iPA
(0). (6.25)

Taking into account the assertion of Lemma 6.3, we find

J ′ = d ′(Λ) +A ′, (6.26)

where
d ′ = d+ 1

2 q0 + 1
8 q
′′
0 (6.27)

and
A ′ =

∑
1≤i≤5

(Siai(Λ) + hc) (6.28)

holds with
a1 = 1

3 q
′
1 + 1

30 q
′′′
1 , (6.29)

a2 = 1
2 q2 + 1

8 q
′′
2 , (6.30)

ai ∈ Sµ−3ρ1 if i 6= 2. (6.31)
We observe that by using the expressions for q0, q ′′0 given by (6.16), (6.19), we can write
(6.27) in the form

d′ = d+ r1 + r2,1 + r2,2, (6.32)
where r1, r2,1, r2,2 are given by (6.4), (6.7), (6.8) respectively.

We observe that A ′ ∈ FDOµ−2ρ
1 and applying Theorem 4.1 to d ′, A ′, 2ρ instead of

d, A0, ρ, we obtain
λn(J ′) = d ′(n) + r ′1(n) +O(nµ−6ρ), (6.33)
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where

r ′1 :=
∑

1≤i≤5

∂−i

( |ai|2
∂id
′

)
∈ Sµ−4ρ1 . (6.34)

Since (6.24) ensures
λn(J) = λn(J ′) +O(nµ−6ρ), (6.35)

the assertion of Theorem 6.2 will follow from (6.32)-(6.33), if we check that the quantity
r ′1 introduced in (6.34) satisfies the estimate

r ′1(n) = r2,3(n) +O(nµ−6ρ), (6.36)

where r2,3 is given by (6.9). In order to check (6.36), we first observe that (6.31) ensures

r ′1(n) = ∂−2

( |a2(n)|2

∂2d ′(n)

)
+O(nµ−6ρ). (6.37)

We observe that ∂2d ′(n) = ∂2d(n)(1 +O(n−2ρ)) ensures

r ′1(n) = ∂−2

( |a2(n)|2

∂2d

)
+O(nµ−6ρ). (6.38)

Using a2 − 1
2q2 ∈ S

µ−4ρ
1 , it is easy to check that (6.38) still holds if a2 is replaced by

1
2q2 = i

2{a, p}, i.e. (6.36) holds with r2,3 given by (6.9).

6.4. Expressions for coefficients c0,0, c1,0, c2,0 in (1.15).

Notation 6.4. We write p(k) = q(k)+Sν1 if and only if p, q : N∗ → C satisfy p−q ∈ Sν1 .

Step 1. Expansion of ∂d(k). Assume that (1.4) holds. Then for any N ∈ N∗ one has

∂d(k) =

N−1∑
i=0

δik
µ−i((1 + k−1)µ−i − 1

)
+O(kµ−N ).

Let us assume δ0 =1. Then

∂d(k) = µkµ−1(1 + δ′1k
−1 + δ′2k

−2) + Sµ−41 (6.39)

holds with δ′1 := 1
µ

((
µ
2

)
+ (µ− 1)δ1

)
, δ′2 := 1

µ

((
µ
3

)
+
(
µ−1
2

)
δ1 + (µ− 2)δ2

)
.

Step 2. Expansion of |a(k)|2. We assume that (1.5) holds. Then

|a(k)|2 = k2µ−2ρ(|α0|2 + β1k
−1 + β2k

−2) + S2µ−2ρ−3
1 (6.40)

holds with β1 := 2Re(α0α1), β2 := 2Re(α0α2) + |α1|2.

Step 3. Expansion of |a(k)|2/∂d(k). Since

|α0|2 + β1k
−1 + β2k

−2

1 + δ′1k
−1 + δ′2k

−2 = |α0|2 + γ1k
−2 + γ2k

−2 + S2µ−2ρ−3
1

holds with γ1 := β1 − |α0|2δ′1, γ2 := β2 − β1δ′1 + |α0|2(δ′1
2 − δ′2), we find

|a(k)|2

∂d(k)
=
kµ−2ρ+1

µ

(
|α0|2 + γ1k

−1 + γ2k
−2)+ Sµ−2ρ−21 .

Step 4. Expansion of r1(k). We conclude that

r1(k) = ∂−1
|a|2

∂d
(k) = kµ−2ρ(c0,0 + c1,0k

−1 + c2,0k
−2) + Sµ−2ρ−31 (6.41)
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holds with 
c0,0 := − 1

µ (µ− 2ρ+ 1)|α0|2,
c1,0 := 1

µ

((
µ−2ρ+1

2

)
|α0|2 − (µ− 2ρ)γ1

)
,

c2,0 := 1
µ

(
−
(
µ−2ρ+1

3

)
|α0|2 +

(
µ−2ρ

2

)
γ1 − (µ− 2ρ− 1)γ2

)
.

(6.42)

We deduce (1.16) using r1 expressed in (6.42) with γ1 given in Step 3, β1 given in Step
2 and δ′1 given in Step 1.

6.5. Expression of c0,1 in (1.18). Due to (6.6), it suffices to show that

r2,i(k) = cik
µ−4ρ +O(kµ−4ρ−1) for i = 1, 2. 3, (6.43)

holds with r2,1, r2,2, r2,3 given by (6.7)-(6.9) and c1, c2, c3 given by (1.20).

Case i = 1. By using (6.41)-(6.42), we obtain

∂r1(k) = −|α0|2

µ
(µ+ 1− 2ρ)(µ− 2ρ)kµ−2ρ−1 + Sµ−2ρ−21 . (6.44)

Then we observe that (6.44) and p(k) = i a∂d (k) = iα0

µ k
1−ρ + S−ρ1 imply

|p(k)|2∂r1(k) = −|α0|4

µ3
(µ+ 1− 2ρ)(µ− 2ρ)kµ−4ρ+1 + Sµ−4ρ1 . (6.45)

In order to deduce (6.43) for i = 1, it remains to remark that (6.45) gives

∂−1(|p|2∂r1)(k) =
|α0|4

µ3
(µ+ 1− 2ρ)(µ− 2ρ)(µ+ 1− 4ρ)kµ−4ρ +O(kµ−4ρ−1).

Case i = 2. Denote q2 := {a, ip}. By using

q2(k) = {α0k
µ−ρ,−α0

µ
k1−ρ}+ Sµ−2ρ−11 = −α

2
0

µ
(µ− 1)kµ−2ρ + Sµ−2ρ−11 (6.46)

and τ−1p̄(k) = p̄(k) + S−ρ1 = −iα0

µ k
1−ρ + S−ρ1 , we find

p̄(k){q2, τ−1p̄}2,−1(k) = −i
α0

µ
k1−ρ {−α

2
0

µ
(µ− 1)kµ−2ρkµ−2ρ,−i

α0

µ
k1−ρ}2,−1 + Sµ−3ρ1

=
|α0|4

µ3
(µ− 1)(µ+ 2− 4ρ)kµ+1−4ρ + Sµ−4ρ1 .

In order to deduce (6.43) for i = 2, it remains to remark that the last estimate gives

∂−1Im (p̄{−iq2, τ−1p̄}2,−1)(k) =

|α0|4

µ3
(µ− 1)(µ+ 2− 4ρ)(µ+ 1− 4ρ)kµ−4ρ +O(kµ−4ρ−1)

Case i = 3. As before q2 := {a, ip}. Since (6.46) provides

|q2(k)|2

∂2d(k)
=
|α0|4

2µ3
(µ− 1)2kµ+1−4ρ + Sµ−4ρ1 , (6.47)

in order to deduce (6.43) for i = 3, it remains to remark that (6.47) gives

∂−2
|q2|2

∂2d
(k) = −|α0|4

µ3
(µ− 1)2(µ+ 1− 4ρ)kµ−4ρ +O(kµ−4ρ−1).
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