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We investigate a class of infinite tridiagonal matrices which define unbounded self-adjoint operators with discrete spectrum. Our purpose is to establish the asymptotic expansion of large eigenvalues and to compute two correction terms explicitly.

1. Introduction 1.1. General remarks. Infinite Jacobi matrices have appeared in many recent papers related to various questions of pure and applied mathematics (see [START_REF] Boutet De Monvel | The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model[END_REF], [START_REF] Djakov | Simple and double eigenvalues of the Hill operator with a two term potential[END_REF], [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF], [START_REF] Teschl | Jacobi operators and completely integrable nonlinear lattices[END_REF], [START_REF] Volkmer | Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation[END_REF]). In this paper we consider a Hermitian tridiagonal matrix such that (d(k)) ∞ k=1 is an increasing sequence going to infinity and (a(k)) ∞ k=1 is a complex valued sequence dominated by (d(k)) ∞ k=1 . Then (1.1) defines in 2 a self-adjoint operator J with discrete spectrum (see [START_REF] Cojuhari | Discreteness of the spectrum for some unbounded Jacobi matrices[END_REF]). Moreover, J is bounded from below and the eigenvalue sequence of J is defined as the non-decreasing sequence (λ n (J)) ∞ n=1 such that Jv n = λ n (J)v n for n ∈ N * and (v n ) ∞ n=1 is an orthonormal basis of 2 . We begin the discussion of known results by the fundamental paper of J. Janas, S. Naboko [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF]. In this paper the authors describe a method of approximative diagonalization and its application to the analysis of large eigenvalues in certain quantum models. The paper [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF] gives also explanations why this type of analysis is important in Quantum Physics.

       d(1) a(1) 0 0 • • • a(1) d(2) a(2) 0 • • • 0 a ( 
Concerning non self-adjoint problems, we refer to [START_REF]Trace formula and spectral Riemann surfaces for a class of tri-diagonal matrices[END_REF] and [START_REF] Malejki | Asymptotics of the discrete spectrum for complex Jacobi matrices[END_REF]. Concerning the self-adjoint problem, we remark that the papers [START_REF] Boutet De Monvel | The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model[END_REF]- [START_REF]Asymptotic behaviour of large eigenvalues for Jaynes-Cummings type models[END_REF], [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF] and [START_REF] Malejki | Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices[END_REF] 

use the following

Hypothesis. There exist µ, ρ, C, c, k 0 ∈ (0; ∞) such that for k ≥ k 0 one has (H1)

ck µ ≤ d(k) ≤ Ck µ , (H2) d(k + 1) -d(k) ≥ ck µ-1 , (H3) |a(k)| ≤ Ck µ-ρ .
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1 It turns out that asymptotic estimates crucially depend on whether ρ > 1 or not. Case ρ > 1. The papers [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF] and [START_REF] Boutet De Monvel | The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model[END_REF] treat a type of coefficients satisfying (H1)-(H3) with µ = 2 and ρ = 3 2 . An asymptotic expansion of large eigenvalues is constructed in [START_REF] Malejki | Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices[END_REF] using (H1)-(H3) with µ ≥ 1, ρ > 1 and in [START_REF] Boutet De Monvel | Explicit error estimates for eigenvalues of some unbounded Jacobi matrices, Spectral Theory, Mathematical System Theory[END_REF] using (H1)-(H3) with µ > 0, ρ > 1.

Case ρ ≤ 1. It appears that ρ = 1 2 is the most important value for the Quantum Optics and the asymptotic behaviour of large eigenvalues for models considered in [START_REF] Boutet De Monvel | Explicit error estimates for eigenvalues of some unbounded Jacobi matrices, Spectral Theory, Mathematical System Theory[END_REF]- [START_REF]On the spectrum of the quantum Rabi Models[END_REF], [START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF]- [START_REF] Yanovich | Asymptotics of eigenvalues of an energy operator in a problem of quantum physics[END_REF] turned out to have a quite special form. However, it is an open problem to describe eigenvalue asymptotics without additional regularity of entries. Other special models are investigated in papers [START_REF] Edward | Spectra of Jacobi matrices, differential equations on the circle, and the su(1, 1) Lie algebra[END_REF], [START_REF] Janas | Alternative approaches to asymptotic behaviour of eigenvalues of some unbounded Jacobi matrices[END_REF] and [START_REF] Masson | Spectral theory of Jacobi matrices in l 2 (Z) the su(1,1) Lie algebra[END_REF].

In this paper we construct an asymptotic expansion of large eigenvalues under additional regularity conditions imposed on the entries and we give explicit expressions for correction terms in the asymptotic formula with error O(n µ-6ρ ). In Theorem 1.1 we assume that the entries have a classical expansion at infinity. The case ρ = 1 2 gives a nice surprise by ensuring a classical expansion of eigenvalues. A similar construction still works if entries satisfy regularity conditions of symbol type (see Section 1.3). The restriction to tridiagonal matrices is not essential in our approach and we can work all the time with band matrices, but tridiagonal matrices make formulas and calculus more simple. We mention as well that this paper can be viewed as a development of [START_REF] Boutet De Monvel | Asymptotics of large eigenvalues for a class of band matrices[END_REF] (see also [START_REF] Malejki | Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices[END_REF]).

1.2. Asymptotic expansion of large eigenvalues. We denote by 2 the Hilbert space of square summable complex valued sequences x : N * → C with the norm

x = ∞ k=1 |x(k)| 2 1/2
and the scalar product x, y = ∞ k=1

x(k)y(k). For any θ > 0 we denote

2,θ := {x ∈ 2 : ∞ k=1 |k θ x(k)| 2 < ∞}. (1.2) Let (d(k)) ∞ k=1 , (a(k)) ∞
k=1 satisfy the hypothesis (H1)-(H3) for a fixed µ > 0 and ρ > 0. For x ∈ 2,µ we define Jx ∈ 2 by the formula

Jx(k) = d(k)x(k) + ā(k)x(k + 1) + a(k -1)x(k -1) for k ∈ N * , (1.3) 
where we assume x(0) = 0 and a(0) = 0. The formula (1.3) defines the operator J on the domain of definition D(J) = 2,µ . Then J is self-adjoint in 2 , bounded from below and has compact resolvent (see [START_REF] Cojuhari | Discreteness of the spectrum for some unbounded Jacobi matrices[END_REF]). We will prove the following Theorem 1.1. Let µ > 0, ρ > 0 be fixed and assume

d(k) ∼ k µ ∞ i=0 δ i k i as k → ∞, (1.4) a(k) ∼ k µ-ρ ∞ i=0 α i k i as k → ∞, (1.5) 
where α i ∈ C, δ i ∈ R for i ∈ N and δ 0 > 0. Then (H1)-(H3) hold and (1.3) defines in 2 the self-adjoint operator J on the domain D(J) = 2,µ . If (λ n (J)) ∞ n=1 is the eigenvalue sequence of the operator J, then

λ n (J) = d(n) + r(n), (1.6) 
where r(n) obeys the asymptotic expansion of the form

r(n) ∼ n µ-2ρ ∞ i,j=0 c i,j n i+2jρ as n → ∞ (1.7)
and c i,j are real coefficients obtained by the induction scheme in Section 5. The explicit values of c 0,0 , c 1,0 , c 2,0 are computed in Section 6.4 and the value of c 0,1 in Section 6.5 (see also (1.16) and

(1.19)-(1.20)).
The operator J is a relatively compact perturbation of the diagonal operator diag(d(n)) ∞ n=1 and the special form of this perturbation allows one to deduce

λ n (J) = d(n) + O(n µ-ρ ) (1.8)
from the min-max principle (see Corollary 3.3). It appears that the assumptions of Theorem 1.1 allow one to replace (1.8) by the stronger estimate

λ n (J) = d(n) + O(n µ-2ρ ) (1.9)
and the remainder r(n) = λ n (J) -d(n) obeys the asymptotic formula

r(n) = r 1 (n) + O(n µ-4ρ ), (1.10) 
where r 1 (n) is given by (1.14). The quantity r 1 (n) is of order n µ-2ρ and we call it the first correction term. We mention that the expression (1.14) for the first correction term was obtained in [START_REF] Malejki | Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices[END_REF] under the assumptions (H1)-(H3) with µ ≥ 1, ρ > 1 (and with weaker remainder estimates). The next step of precision is attained in Theorem 6.2 which describes the asymptotic behaviour of r(n) modulo O(n µ-6ρ ). We show the formula (1.17) and give explicit expressions (1.18)-(1.20) for the leading coefficient of the second correction term, which is of order O(n µ-4ρ ).

In order to obtain a complete asymptotic expansion, we use a method of approximative diagonalization. The idea of our approach is similar to the method presented in [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF], but we do not need the assumptions µ ≥ 1 and ρ > 1 used in [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF].

At the end of this discussion we remark that the result of Theorem 1.1 is inspired by the paper [START_REF] Rozenbljum | Near-similarity of operators and the spectral asymptotic behaviour of pseudodifferential operators on the circle (Russian), Trudy Maskov[END_REF]. The main differences between [START_REF] Rozenbljum | Near-similarity of operators and the spectral asymptotic behaviour of pseudodifferential operators on the circle (Russian), Trudy Maskov[END_REF] and our work are the following: -we consider the Hilbert space 2 = 2 (N * ) instead of 2 (Z), -we give a simple algorithm of computing the coefficients c i,j adopted to our problem, -our approach allows us to see that (1.7) contains only even powers of n -ρ . 1.3. Further results. We construct an asymptotic expansion for large eigenvalues under assumptions slightly weaker than used in Theorem 1.1.

Notation 1.2. For any

f : N * → C we write ∂ 0 f (k) := f (k), ∂f (k) = f (k + 1) -f (k),
and, by using induction, we define

∂ m+1 f := ∂(∂ m f ) for m = 0, 1, 2, . . . . If ν ∈ R then S ν 1 denotes the set of p : N * → C such that the estimate ∂ m p(k) = O(k ν-m )
holds for every m ∈ N.

Throughout the paper µ > 0, ρ > 0 are fixed and we centre our analysis on the Jacobi operators (1.3) 

such that d ∈ S µ 1 , (1.11) 
a ∈ S µ-ρ 1

(1.12) and (H1)-(H2) hold. These conditions could be weakened if one wants to obtain the remainder estimate O(n -η ) for a fixed value of the exponent η (see Theorem 4.1), but for simplicity we use (1.11)-(1.12) throughout Section 5 and 6.

As before J is the self-adjoint operator in 2 with D(J) = 2,µ and (λ n (J)) ∞ n=1 denotes its non-decreasing eigenvalue sequence (counted with multiplicities). We consider the asymptotic formula for (λ n (J)) ∞ n=1 with three different degrees of precision. (i) The asymptotic formula with one correction term. We show that

λ n (J) = d(n) + r 1 (n) + O(n µ-4ρ ) (1.13) holds with r 1 (n) := |a(n -1)| 2 d(n) -d(n -1) - |a(n)| 2 d(n + 1) -d(n) . (1.14) 
If (1.4)-(1.5) hold, then (1.11)-(1.12) hold as well. Under the assumptions (1.4)-(1.5), it is easy to see that the quantity r 1 (n) defined by (1.14) satisfies

r 1 (n) ∼ n µ-2ρ ∞ i=0 c i,0 n i as n → ∞.
(1.15)

In Section 6.4 we show that in the case δ 0 = 1 one has (1.15) with

c 0,0 = -µ-2ρ+1 µ |α 2 0 |, c 1,0 = µ-2ρ µ µ -ρ + δ 1 1 -1 µ |α 2 0 | -2Re(α 0 α 1 ) . (1.16)
It is clear that the general case can be reduced to the case δ 0 = 1 by means of the multiplication of J by a suitable constant.

(ii) The asymptotic formula with two correction terms. In Theorem 6.2 we prove

λ n (J) = d(n) + r 1 (n) + r 2 (n) + O(n µ-6ρ ), (1.17) 
where r 1 is given by (1.14) and r 2 ∈ S µ-4ρ 1 . Let us assume that (1.4) holds and (1.5) holds with δ 0 = 1. Then (1.15)-(1.16) are still true and in Section 6.5 we show that

r 2 (n) = c 0,1 n µ-4ρ + O(n µ-4ρ-1 ) (1.18) holds with c 0,1 = c 1 + c 2 + c 3 , (1.19) where        c 1 = -(µ -2ρ)(µ + 1 -2ρ)(µ + 1 -4ρ) |α 4 0 | 2µ 3 , c 2 = (µ -1)(µ + 2 -4ρ)(µ + 1 -4ρ) |α 4 0 | 4µ 3 , c 3 = -(µ -1) 2 (µ + 1 -4ρ) |α 4 0 | 4µ 3 .
(1.20) (iii) A complete asymptotic expansion. In Section 5 we construct r l ∈ S µ-2 l ρ 1

, where l = 1, 2, . . . and for every m ∈ N * one has

λ n (J) = d(n) + m l=1 r l (n) + O(n µ-2 m+1 ρ ).
This construction is used to deduce Theorem 1.1.

Preliminaries

2.1. Basic notations and properties. Throughout the paper {e k } k∈Z denotes the canonical basis in 2 (i.e. e k (j) = δ k,j ) and the shift operator is denoted by S (i.e. S is the linear bounded operator in 2 satisfying Se k = e k+1 for k ∈ N * ). We denote by Λ the self-adjoint operator in 2 defined by the formula (Λx)(k) = kx(k) on the domain of definition D(Λ) = 2,1 . Using the functional calculus, we can define f (Λ) as the closed linear operator satisfying f (Λ)e k = f (k)e k for all k ∈ N * . These notations allow us to write down the Jacobi operator (1.3) in the form

J = d(Λ) + Sa(Λ) + ā(Λ)S * , (2.1) 
where S * is the adjoint of S. Below we introduce more notations.

Notation 2.1. Let i ∈ Z. We write

S (i) = S i if i ∈ N and S (i) = S * |i| if i ∈ Z \ N.
According to this notation, the operator S (i) is the linear mapping on 2 satisfying (i)

S (i) e k = e k+i if k + i ≥ 1, (ii) 
S (i) e k = 0 if k + i ≤ 0. Let i ∈ Z and f : N * → C. Then τ i f denotes the sequence N * → C satisfying (i) τ i f (k) = f (k + i) if k + i ≥ 1, (ii) τ i f (k) = 0 if k + i ≤ 0.
We denote by ∂ i f the sequence N * → C given by the formula

∂ i f (k) := τ i f (k) -f (k). (2.2) 
In particular

∂ 0 f = 0 and ∂ 1 f (k) = ∂f (k) = f (k + 1) -f (k)
is the derivative introduced in Section 1. We observe that for any fixed i ∈ Z,

∂f (k) = O(k ν ) =⇒ ∂ i f (k) = O(k ν ). (2.3) 
Remark 2.2. The above notations allow us to write S (i) x = τ -i x and

f (Λ) S (i) = S (i) (τ i f )(Λ), (2.4) 
where

(τ i f )(Λ) is the shifted diagonal operator satisfying (τ i f )(Λ)e k = τ i f (k)e k . Notation 2.3. If ν ∈ R and N ∈ N, then S ν 1 (N ) denotes the set of all p : N * → C such that ∂ m p(k) = O(k ν-m ) holds for m ∈ {0, . . . , N }. Lemma 2.4. (i) If N ≥ 1, i ∈ Z and p ∈ S ν 1 (N ) then ∂ i p ∈ S ν-1 1 (N -1). (ii) If p ∈ S ν 1 (N ) and q ∈ S η 1 (N ) then pq ∈ S ν+η 1 (N ). (iii) Assume that p ∈ S ν 1 (N ) and there exists c > 0 such that |p(k)| ≥ ck ν for all k ∈ N * . Then 1/p ∈ S -ν 1 (N ).
Proof. (i) It suffices to use (2.3) and the definition of

S ν 1 (N ). (ii) We obtain ∂ m (pq)(k) = O(k ν+η-m
) by induction with respect to m using

∂(f g) = f ∂g + g∂f + ∂f ∂g. (iii) We obtain ∂ m 1/p (k) = O(k -ν-m
) by induction with respect to m using

∂ 1/p (k) = - ∂p(k) p(k)p(k + 1)
.

2.2.

Operator valued errors. In this section we introduce notations used throughout the paper to control errors of large eigenvalues. As before S denotes the shift operator in 2 , i.e. Se k = e k+1 . If θ ≥ 0, Λ θ denotes the self-adjoint operator in 2 such that

Λ θ e k = k θ e k and D(Λ θ ) = 2,θ . If θ ≤ 0, then Λ θ is the inverse of Λ |θ| .
In order to deal with these operators, we introduce the subspace of fast decaying sequences

S -∞ = θ>0 2,θ = {x ∈ 2 : x(k) = O(k -N ) for any N ≥ 0}. (2.5)
The space S -∞ defined by (2.5) will be assumed to be invariant for all operators considered further on and we use the fact that this type of operators form an algebra.

Clearly S -∞ is invariant for the shifts S, S * and for

f (Λ) if f : N * → C is polynomially bounded.
We adopt the following convention: for a linear mapping P : D(P ) → 2 we write P ∈ B( 2) if and only if the closure of P is a bounded operator 2 → 2 .

Let η ∈ R. We introduce the notation

P = O(Λ η ) ⇐⇒ ∀ θ ∈ R, Λ θ P Λ -θ-η ∈ B( 2 ). (2.6) 
Then (2.6) immediately ensures the properties

P = O(Λ η ) =⇒ S -∞ is an invariant subspace of P, (2.7 
)

f (k) = O(k η ) =⇒ f (Λ) = O(Λ η ), (2.8) 
P = O(Λ η ), Q = O(Λ η ) =⇒ P Q = O(Λ η+ η ).
(2.9)

The notation P = O(Λ -∞ ) means that P = O(Λ -θ ) holds for all θ ≥ 0 and the notation

P = Q + O(Λ η ) (2.10) means that P -Q = O(Λ η )
and S -∞ is invariant for both operators P , Q.

2.3. Finite difference operators. Any complex matrix (P (i, j)) ∞ i,j=1 can be written in the form

       p 0 (1) p -1 (2) p -2 (3) p -3 (4) . . . p 1 (1) p 0 (2) p -1 (3) p -2 (4) . . . p 2 (1) p 1 (2) p 0 (3) p -1 (4) . . . p 3 (1) p 2 (2) p 1 (3) p 0 (4) . . . . . . . . . . . . . . . . . .        , (2.11) 
where (p i (k)) ∞ k=1 is a complex valued sequence (for any i ∈ Z).

Definition 2.5. We say that P is a band matrix if and only if P has the form (2.11) and there is i 0 ∈ N such that |i| > i 0 implies p i (k) = 0 for all k ∈ N * . We say that P is off-diagonal if and only if p 0 (k) = 0 holds for all k ∈ N * . If P is given by (2.11), then p 0 (Λ) is called the diagonal part of P .

Lemma 2.6. We fix ν ∈ R and i 0 ∈ N. Assume that p i (k) = O(k ν ) for all i ∈ Z and |i| > i 0 implies p i (k) = 0 for all k ∈ N * . Then the band matrix P given by (2.11) can be identified with the linear mapping acting on S -∞ according to the formula

(P x)(k) = min{i0, k-1} i=-i0 p i (k -i)x(k -i).
(2.12)

Moreover P = O(Λ ν ).
Proof. We observe that (2.12) can be written in the form

P x = -i0≤i≤i0 S (i) p i (Λ)x for x ∈ S -∞ . (2.13)
The assumptions

p i (k) = O(k ν ) ensure p i (Λ) = O(Λ ν
) and due to (2.9) it remains to show that S = O(Λ 0 ) and S * = O(Λ 0 ). In order to show

Λ θ SΛ -θ ∈ B( 2 ) for any θ ∈ R, we use (2.4) to write Λ θ SΛ -θ = S(Λ + 1) θ Λ -θ and observe that (Λ + 1) θ Λ -θ ∈ B( 2 ).
Taking the adjoint, we get

Λ -θ S * Λ θ ∈ B( 2 ). 2.4. Class of operators FDO ν 1 (N ). Notation 2.7. If ν ∈ R and N ∈ N, then FDO µ 1 (N )
denotes the set of all band matrices P given by (2.11), where p i ∈ S ν 1 (N ) for all i. Further on the elements of FDO ν 1 (N ) are always identified with linear mappings given by (2.13) where p i ∈ S ν 1 (N ). Lemma 2.8. If P ∈ FDO ν 1 (N + 1) and Q ∈ FDO η 1 (N + 1), then the commutator

[P, Q] := P Q -QP ∈ FDO ν+η-1 1 (N ).
Proof. It suffices to prove the formula

B i,j := [S (i) p i (Λ), S (j) q j (Λ)] = S (i+j) (q j ∂ j p i -p i ∂ i q j )(Λ).
(2.14) Indeed, if p i ∈ S ν 1 (N + 1) and q j ∈ S µ 1 (N + 1), then b i,j := q j ∂ j p i -p i ∂ i q j ∈ S ν+µ-1 1 (N ), which ensures that the right hand side of (2.14) belongs to FDO ν+µ-1 1 (N ). In order to prove (2.14), we observe that (2.4) allows us to express

B i,j = S (i) p i (Λ)S (j) q j (Λ) -S (j) q j (Λ)S (i) p i (Λ) = S (i) S (j) (τ j p i )(Λ)q j (Λ) -S (j) S (i) (τ i q j )(Λ)p i (Λ).
Since b i,j = q j τ j p i -p i τ i q j , it remains to check the equalities

S (i) S (j) (τ j p i )(Λ)q j (Λ) = S (i+j) (τ j p i )(Λ)q j (Λ), (2.15) 
S (j) S (i) (τ i q j )(Λ)p i (Λ) = S (i+j) (τ i q j )(Λ)p i (Λ).
(2.16)

Case j ≥ 0. In this case S (i) S (j) = S (i+j) holds for any i ∈ Z. Case j < 0, i < 0. In this case S (i) S (j) = S (i+j) holds as well. Case j < 0, i ≥ 0. In this case S (i) S (j) e k = S (i+j) e k holds if k > -j. Assume now that k ≤ -j. Then S (i) S (j) e k = 0 and (τ j p i )(Λ)e k = τ j p i (k) = 0, hence (2.15) holds.

Similarly we check (2.16).

Main ingredients

3.1. Consequences of the min-max principle. In this section we prove Proposition 3.2 which is the first fundamental tool of our approach. Its purpose is to detect perturbations which give small errors for large eigenvalues. The importance of Proposition 3.2 lies in the fact that it is used as the ingredient of our approach replacing Lemma 2.1 of J. Janas, S. Naboko [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF]. We notice that Lemma 2.1 from [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF] is used in [START_REF] Boutet De Monvel | The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model[END_REF], [START_REF] Malejki | Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices[END_REF]- [START_REF] Malejki | Asymptotics of the discrete spectrum for complex Jacobi matrices[END_REF], [START_REF]Jaynes-Cummings model without rotating wave approximation[END_REF], but we prefer using Proposition 3.2 for several reasons. One of them is the fact that Lemma 2.1 from [START_REF] Janas | Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach[END_REF] needs the additional assumption µ ≥ 1 in the hypothesis (H1).

Notation 3.1. If L is a self-adjoint, bounded from below operator with compact resolvent in 2 , then λ 1 (L) ≤ • • • ≤ λ n (L) ≤ λ n+1 (L) ≤ .
. . are eigenvalues of L, enumerated in non-decreasing order, counting multiplicities. Proposition 3.2. We fix µ, ρ, η ∈ (0; ∞). Let D = d(Λ) be the diagonal operator with d satisfying (H1). Let A be a symmetric operator such that D(A) ⊃ 2,µ and

A = O(Λ µ-ρ ).
(3.1)

Let J be the operator defined by

J = D + A (3.2) and D(J) = 2,µ . Then J is self-adjoint, bounded from below and has compact resolvent in 2 . If R is a symmetric operator such that D(R) ⊃ 2,µ and R = O(Λ µ-η ), (3.3) 
then the operator J + R is self-adjoint in 2 on the domain D(J + R) = 2,µ . Moreover, J + R is a bounded from below operator with compact resolvent and one has is self-adjoint, bounded from below, has compact resolvent and

λ n (J + R) = λ n (J) + O(n µ-η ). ( 3 
(2C) -1 Λ µ ≤ J ≤ 2CΛ µ (3.6) holds if C is large enough. Since λ n ( J) = λ n (J)+ C and λ n ( J +R) = λ n (J +R)+ C, it remains to prove λ n ( J +R) = λ n ( J) + O(n µ-η ). (3.7) Step 1. We prove that (3.7) holds if η ≤ 2µ. Since λ n ((2C) ±1 Λ µ ) = (2C) ±1 n µ , the min-max principle used in (3.6) gives (2C) -1 n µ ≤ λ n ( J) ≤ 2Cn µ . (3.8)
The well known result concerning the powers of positive operators ensures that

(2C) -|s| Λ µs ≤ Js ≤ (2C) |s| Λ µs (3.9) follows from (3.6) if -1 ≤ s ≤ 1. Since 0 ≤ η ≤ 2µ, we can use (3.9) with s = 1 -η/µ ensuring existence of positive constants C 1 , C 2 such that ±R ≤ C 1 Λ µ-η ≤ C 2 J1-η/µ . (3.10) 
Let f ± : (0; ∞) → R be given by the formula f ± (t) := t ± C 2 t 1-η/µ . Then (3.10) ensures

f -( J) ≤ J + R ≤ f + ( J) (3.11)
and the min-max principle ensures

λ n (f -( J)) ≤ λ n ( J + R) ≤ λ n (f + ( J)). (3.12) Since f ± is increasing on (t 0 ; ∞) if t 0 is fixed large enough, there is n 0 ∈ N such that n ≥ n 0 =⇒ λ n (f ± ( J)) = f ± (λ n ( J)). (3.13) 
Combining (3.12) and (3.13), we find that for n ≥ n 0 one has

λ n ( J) -C 2 λ n ( J) 1-η/µ ≤ λ n ( J + R) ≤ λ n ( J) + C 2 λ n ( J) 1-η/µ . (3.14)
Using once more (3.9) with s = 1 -η/µ, we conclude that (3.14) ensures

|λ n ( J + R) -λ n ( J)| ≤ C 2 λ n ( J) 1-η/µ = O(n µ-η ). (3.15) 
Step 2. Let k ∈ N * . We claim that the assertion of Proposition 3.2 holds if η ≤ 2 k µ. Indeed, the case k = 1 was proved in Step 1 and using induction with respect to k ∈ N * , we fix k ∈ N * and assume that the assertion of Proposition 3.2 holds if η ≤ 2 k µ.

As before C > 0 is fixed large enough, D = d(Λ) + C I and d satisfies (H1) for a given µ > 0. Let J = D + A where A = O(Λ µ-ρ ) and ρ > 0. Then

J2 = D2 + A holds with A = DA + A D + A 2 = O(Λ 2µ-ρ ), (3.16) 
i.e. J := J2 satisfies the hypotheses of Proposition 3.2 with µ := 2µ instead of µ.

Assume now that R = O(Λ µ-η ) and 0 < η ≤ 2 k+1 µ = 2 k µ . Then

( J + R) 2 = J2 + R holds with R = JR + R J + R 2 = O(Λ 2µ-η ) (3.17)
and by using Proposition 3.2 with J := J2 , µ := 2µ instead of J, µ, we obtain

λ n (( J + R) 2 ) = λ n ( J2 ) + O(n 2µ-η ). (3.18) 
Let C be large enough to ensure J + R ≥ 0. Then (3.18) implies

λ n ( J + R) 2 = λ n ( J) 2 + O(n 2µ-η ) = λ n ( J) 2 1 + O(n -η ) , (3.19) 
where the last estimate follows from (3.8). Thus To complete the proof, we observe that λ n (d(Λ)) = d(n) for n ≥ n 0 .

λ n ( J + R) = λ n ( J) 1 + O(n -η ) 1/2 = λ n ( J) 1 + O(n -η ) (3.
3.2. Special self-adjoint operators.

Lemma 3.4. Let P be a symmetric operator on S -∞ given by the formula

P x = 1≤i≤i0 S i p i (Λ) + p i (Λ)S (-i) x for x ∈ S -∞ . (3.22)
If p i (k) = O(k) for i = 1, . . . , i 0 , then P is essentially self-adjoint on S -∞ .

Proof. Let θ ≥ 0. Then [iP, Λ 2θ ] is symmetric on S -∞ and we claim that

[iP, Λ 2θ ] = O(Λ 2θ ). (3.23) Indeed, if f θ (k) = k 2θ , then ∂ i f θ (k) = O(k 2θ-1 ), hence (2.4) ensures [P, Λ θ ] = 1≤i≤i0 S i (p i ∂ i f θ )(Λ) + hc with (p i ∂ i f θ )(k) = O(k 2θ ).
By (3.23) we can find a constant C θ > 0 such that

± y, Λ -θ [iP, Λ 2θ ]Λ -θ y ≤ C θ ||y|| 2 for y ∈ 2 .
Writing y = Λ θ x, we get

± x, [iP, Λ 2θ ]x ≤ C θ ||Λ θ x|| 2 for x ∈ 2,θ . (3.24) 
Using (3.24) with θ = 1/2 and the fact that

||P x|| ≤ C||Λx|| for x ∈ S -∞ , (3.25) 
we deduce the assertion by Nelson's Commutator Theorem. Indeed, the properties (3.25) and (3.24) with θ = 1 2 allow us to apply Corollary 1.1 in [START_REF] Faris | Commutators and self-adjointness of Hamiltonian operators[END_REF] (using P , Λ and S -∞ instead of H, N and C in [START_REF] Faris | Commutators and self-adjointness of Hamiltonian operators[END_REF]). Notation 3.5. If P ∈ FDO ν 1 (N ) is given by (2.13), then the adjoint matrix (P † (i, j)) ∞ i,j=1

= ( P (j, i) ) ∞ i,j=1 satisfies

P † x = -i0≤i≤i0 p i (Λ)S (-i) x = -i0≤i≤i0 S (-i) (τ -i p i )(Λ)x for x ∈ S -∞ (3.26)
and it is clear that P † ∈ FDO ν 1 (N ). We will use the notation P + hc := P + P † .

(3.27)

If moreover p i (k) = O(k) for i = 1, . . . , i 0 , then P = 1≤i≤i0 S i p i (Λ) + hc (3.28)
will always denote the self-adjoint operator satisfying (3.22).

Proposition 3.6. Assume that p i (k) = O(k) for i = 1, . . . , i 0 and P is the self-adjoint operator given by (3.28). If θ ≥ 0 then 2,θ is an invariant subspace of e itP for any t ∈ R. Moreover there is a constant C θ such that

||Λ θ e itP x|| ≤ e C θ |t| ||Λ θ x|| (3.29)
holds for all x ∈ S -∞ and t ∈ R.

Proof. Let D(P ) denote the domain of the self-adjoint operator P equipped with its graph norm. Let ε > 0 and denote Λ (θ) ε := Λ 2θ (εΛ 2θ + I) -1 = ε -1 I -ε -1 (εΛ 2θ + I) -1 and we define the quadratic form

q (θ) ε (x) = iP x, Λ (θ) ε x + Λ (θ) ε x, iP x for x ∈ D(P ). We claim that there is a constant C θ > 0 such that ± q (θ) ε (x) ≤ C θ ||Λ θ (εΛ 2θ + I) -1/2 x|| 2 = C θ x, Λ (θ) ε x (3.30)
holds for all x ∈ D(P ). Indeed, if x ∈ S -∞ then we compute

q (θ) ε (x) = x, [Λ (θ) ε , iP ]x = (εΛ 2θ + I) -1 x, [iP, Λ 2θ ](εΛ 2θ + I) -1 x (3.31)
and by using (εΛ 2θ + I) -1 x instead of x in (3.24), we find that (3.30) holds for x ∈ S -∞ . Since S -∞ is dense in D(P ), the estimate (3.30) holds for x ∈ D(P ) as well. Let x ∈ D(P ) and denote x t := e itP x for t ∈ R. By using d dt x t , Λ (θ)

ε x t = q (θ)
ε (x t ) and (3.30), we obtain

± d dt x t , Λ (θ) ε x t ≤ C θ x t , Λ (θ)
ε x t and the Gronwall's inequality ensures

x t , Λ (θ) ε x t ≤ e C θ |t| x, Λ (θ) ε x . (3.32) 
If x ∈ S -∞ , then the limit ε → 0 in (3.32) gives x t ∈ 2,θ and (3.29) holds. Since S -∞ is dense in 2,θ , we still have (3.29) for all x ∈ 2,θ and x t ∈ 2,θ if x ∈ 2,θ .

Corollary 3.7. Let P be as in Lemma 3.4. Then (i) S -∞ is an invariant subspace of e itP for any t ∈ R, (ii) t → e itP x is a smooth function R → 2,θ for any θ ≥ 0 if x ∈ S -∞ .

Proof. (ii) Let x ∈ S -∞ , ε ≥ 0 and denote x ε,θ t := Λ θ (εΛ θ + I) -1 e itP x. It is clear that t → x ε,θ t is smooth R → 2 if ε > 0. Let us fix N ∈ N * and t 0 > 0. Then the family (x ε,θ t ) 0<ε≤1 is bounded in C N ([-t 0 , t 0 ]; 2 ) due to (3.29), hence using the Ascoli Theorem we can find a sequence (ε n ) ∞ n=0 which converges to 0 and (x εn,θ t ) ∞ n=0 is convergent in C N -1 ([-t 0 , t 0 ]; 2 ). We conclude that the pointwise limit t → Λ θ e itP x is a function belonging to C N -1 ([-t 0 , t 0 ]; 2 ).

3.3.

Application of the Taylor formula. Let P be the operator satisfying the assumptions of Lemma 3.4 and assume Q = O(Λ µ ). We will denote

F tP (Q) := e -itP Qe itP for t ∈ R. Let x ∈ S -∞ and η ∈ R. Then the function t → Λ η F tP (Q)x is smooth R → 2 due to Corollary 3.7. Denoting ad 1 iP Q = ad iP Q := [Q, iP ] and ad m+1 iP Q = [ad m iP Q, iP ],
we can express the m-th derivative with respect to t ∈ R in the form

d m dt m F tP (Q)x = F tP (ad m iP Q)x for x ∈ S -∞
and by using the Taylor formula in t = 1, we obtain on S -∞ the equality

e -iP Qe iP = Q + N -1 m=1 1 m! ad m iP Q + R N (ad N iP Q), (3.33) 
where

R N (T ) := 1 (N -1)! 1 0 e -itP T e itP (1 -t) N -1 dt. (3.34)
It is clear that Proposition 3.6 ensures (1) for i = 1, . . . , i 0 , and define the operator

T = O(Λ ν ) =⇒ R N (T ) = O(Λ ν ). ( 3 
A = d(Λ) + 1≤i≤i0 S i a i (Λ) + hc (4.1)
on the domain D(A) = 2,µ . Then A is a self-adjoint and bounded from below operator with compact resolvent in 2 . Moreover (i) the eigenvalue sequence of A satisfies

λ n (A) = d(n) + O(n µ-2ρ ), (4.2) 
(ii) if d ∈ S µ 1 (3) and a i ∈ S µ-ρ 1 (2) for i = 1, . . . , i 0 , then λ n (A) = d(n) + r 1 (n) + O(n µ-3ρ ) (4.3)
holds with where k 0 ∈ N is fixed. Since any modification of {d(k) : k < k 0 } can be viewed as a perturbation R satisfying R = O(Λ -∞ ), the corresponding error of the n-th eigenvalue is O(n -∞ ) due to Proposition 3.2. Neglecting such errors we may assume that (H2) holds with k 0 = 1, i.e.

r 1 (n) := i0 i=1 |a i (n -i)| 2 d(n) -d(n -i) - |a i (n)| 2 d(n + i) -d(n) . ( 4 
∃ c > 0 ∀ k ∈ N * , d(k + 1) -d(k) ≥ ck µ-1 . (4.5)
Lemma 4.2. Let µ > 0, ρ > 0 and consider a symmetric operator on S -∞ given by

A 0 = 1≤i≤i0 S i a i (Λ) + hc . (4.6) Assume that a i (k) = O(k µ-ρ ) for i = 1, . . . , i 0 , (d(k)) ∞
k=1 satisfies (4.5) and denote 

p i (k) = i a i (k) d(k + i) -d(k) = i a i (k) ∂ i d(k) . ( 4 
(ii) If d ∈ S µ 1 (N + 1) and a i ∈ S µ-ρ 1 (N ), then p i ∈ S 1-ρ 1 (N ).
Proof. (i) By (2.4), we have

[D, iP ] = 1≤i≤i0 [d(Λ), S i p i (Λ)] + hc = 1≤i≤i0 S i ∂ i d(Λ)ip i (Λ) + hc (4.9)
and (4.8) holds if and only if

∂ i d(k) ip i (k) + a i (k) = 0 for all k ∈ N * .
(ii) It suffices to use Lemma 2.4.

Proof of Theorem 4.1(i).

Step 1. Let A be given by (4.1). Then

A = D + A 0 (4.10)
holds with D = d(Λ) and A 0 given by (4.6). Let P ∈ FDO 1-ρ 1

(1) be as in Section 4.2. According to Section 3.2 the operator P is self-adjoint and we claim that e -iP A 0 e iP = A 0 + O(Λ µ-2ρ ).

(4.11)

Indeed, A 0 ∈ FDO µ-ρ 1 (1) and P ∈ FDO 1-ρ 1 (1) ensure [A 0 , P ] ∈ FDO µ-2ρ 1 (0) due to Lemma 2.8, hence [A 0 , P ] = O(Λ µ-2ρ
) and the Taylor formula gives

e -iP A 0 e iP = A 0 + R 1 ([A 0 , iP ]), where R 1 ([A 0 , iP ]) = O(Λ µ-2ρ ) follows from [A 0 , iP ] = O(Λ µ-2ρ ) due to (3.35).
Step 2. We claim that

e -iP De iP = D -A 0 + O(Λ µ-2ρ ). (4.12) 
Indeed, by using [D, iP ] = -A 0 in the Taylor formula

e -iP De iP = D + [D, iP ] + R 2 ([[D, iP ], iP ]),
we obtain

e -iP De iP = D -A 0 -R 2 ([A 0 , iP ]) and R 2 ([A 0 , iP ]) = O(Λ µ-2ρ ) follows from [A 0 , iP ] = O(Λ µ-2ρ
) due to (3.35).

Step 3. Denote A := e -iP Ae iP . Summing up (4.11) and (4.12), we obtain

A = e -iP (D + A 0 )e iP = D + O(Λ µ-2ρ ). (4.13) 
Using (4.13) and Proposition 3.2, we obtain

λ n (A) = λ n ( A) = λ n (D) + O(n µ-2ρ ) = d(n) + O(n µ-2ρ ).

Proof of Theorem 4.1(ii).

Step 1. As before we write A = D + A 0 and P is defined as in Section 4.2. Then

A 0 ∈ FDO µ-ρ 1 (2), P ∈ FDO 1-ρ 1 (2) ⇒ [A 0 , P ] ∈ FDO µ-2ρ 1 (1) 
follows from Lemma 2.8 and we claim that the diagonal part of [A 0 , iP ] satisfies

[A 0 , iP ](k, k) = 2r 1 (k), (4.14) 
where r 1 (k) is given by (4.4). Indeed, for i = 1, . . . , i 0 , we have

[S i a i (Λ), ip i (Λ)(S i ) * ] = S i (ia i pi )(Λ)(S i ) * -(ia i pi )(Λ) = ∂ -i (ia i pi )(Λ) (4.15)
and the diagonal part of

[A 0 , iP ] equals 1≤i≤i0 [S i a i (Λ), ip i (Λ)(S i ) * ] + hc = 1≤i≤i0 q i (Λ), (4.16) 
where q i (Λ) = ∂ -i (ia i pi )(Λ) + hc, i.e.

q i = 2Re ∂ -i (ia i pi ) = -2∂ -i Im (a i pi ) (4.17) 
and

[A 0 , iP ](k, k) = 1≤i≤i0 q i (k) = 1≤i≤i0 2∂ -i |a i (k)| 2 ∂ i d(k) = 2r 1 (k).
Step 2. We claim that

e -iP A 0 e iP = A 0 + [A 0 , iP ] + O(Λ µ-3ρ ). (4.18) 
Indeed, Lemma 2.8 ensures

[A 0 , iP ] ∈ FDO µ-2ρ 1 (1), P ∈ FDO 1-ρ 1 (2) ⇒ ad 2 iP A 0 ∈ FDO µ-3ρ 1 (0), hence ad 2 iP A 0 = O(Λ µ-3ρ
) and the Taylor formula gives 

e -iP A 0 e iP = A 0 + [A 0 , iP ] + R 2 (ad 2 iP A 0 ), where R 2 (ad 2 iP A 0 ) = O(Λ µ-3ρ ) follows from ad 2 iP A 0 = O(Λ µ-3ρ ) and (3.35). Step 3. We claim that e -iP De iP = D -A 0 -1 2 [A 0 , iP ] + O(Λ µ-3ρ ). (4.19) 
A = e -iP (D + A 0 )e iP = D + 1 2 [A 0 , iP ] + O(Λ µ-3ρ ) (4.20) 
and Proposition 3.2 ensures

λ n (A) = λ n ( A) = λ n (A 1 ) + O(n µ-3ρ ), (4.21) 
where we denoted

A 1 := D + 1 2 [A 0 , iP ]. Let d 1 (k) := d(k) + 1 2 [A 0 , iP ](k, k) = d(k) + r 1 (k). Then D 1 = d 1 (Λ)
is the diagonal part of A 1 and we can write

A 1 = d 1 (Λ) + A 0 1 , (4.22) 
where

A 0 1 ∈ FDO µ-2ρ 1 (1) is off-diagonal. Thus Theorem 4.1(i) can be applied to A 1 with d 1 (k) = d(k) + r 1 (k) instead of d(k) and 2ρ instead of ρ. We obtain λ n (A 1 ) = d 1 (n) + O(n µ-4ρ ), (4.23) 
which completes the proof due to (4.21).

5.

A method of approximative diagonalization 5.1. Introduction. In this section J satisfies (H1)-(H3) and assuming (1.11)-(1.12), we describe a special sequence of operators (J

(l) N ) ∞ l=0 such that J (l) N is self-adjoint in 2 on the domain D(J (l) N ) = 2,µ for any l, N ∈ N. Moreover J (l)
N is a bounded from below operator with compact resolvent and the eigenvalue sequence (λ n (J

(l) N )) ∞ n=1 satisfies λ n (J) = λ n (J (l) N ) + O(n µ-ρN ). (5.1) 
Besides (5.1), the operators (J

N ) ∞ l=0 have a special structure of band matrices (see (5.4), (5.5)) and in Section 5.2 we describe its construction. Using (J

(l) N ) ∞
l=0 and suitable classes of operators defined in Section 5.3, we complete the proof of Theorem 1.1 in Section 5.4.

Notation 5.1. If ν ∈ R then FDO ν
1 denotes the set of all linear operators on S -∞ of the form P = -i0≤i≤i0

S (i) p i (Λ) with p i ∈ S ν 1 for i ∈ [-i 0 , i 0 ] ∩ Z. (5.2)
Clearly Lemma 2.4 holds with S ν 1 instead of S ν 1 (N ) and the proof of Lemma 2.8 ensures

P ∈ FDO ν 1 , Q ∈ FDO η 1 =⇒ [P, Q] ∈ FDO ν+η-1 1 . (5.3) 
The structure of (J

N ) ∞ l=0 is the following. We write ρ l := 2 l ρ and construct J

N such that J (0) N = J and J (l)

N = d (l) N (Λ) + A (l) N with A (l) N ∈ FDO µ-ρ l 1 , (5.4) 
where A

(l)

N is off-diagonal and d 

N (k) ≥ 1 2 ck µ for k ≥ k (l) N , (5.6) ∂d (l) 
N (k) ≥ 1 2 ck µ-1 for k ≥ k (l) N , (5.7) 
where k

(l)
N ∈ N * is fixed large enough. Remark 5.3. It is clear that (5.4) implies

J (l) N = d (l) N (Λ) + O(Λ µ-ρ l ).
(5.8)

Thus the operator J (l)

N has the domain 2,µ and is a bounded from below self-adjoint operator with compact resolvent in 2 due to (5.5)-(5.6).

Remark 5.4. The estimate (5.1) ensures

λ n (J) = d (l) N (n) + O(n µ-N ρ ) if l ≥ log 2 N.
(5.9) Indeed, using (5.8) and Proposition 3.2, we obtain

λ n (J (l) N ) = λ n (d (l) 
N (Λ)) + O(n µ-ρ l ).

(5.10)

Combining (5.10), (5.1) with ρ l = 2 l ρ ≥ N ρ, we obtain

λ n (J) = λ n (d (l) N (Λ)) + O(n µ-N ρ ) if l ≥ log 2 N.
(5.11)

To deduce (5.9) from (5.11), we observe that due to (5.6) and (5.7) we can find n (l)

N ∈ N * large enough to ensure λ n (d (l) N (Λ))) = d (l) N (n) for n ≥ n (l) N . 5.2. Construction of the sequence (J (l) N ) ∞ l=0 .
We fix N and skip this index writing J (l) instead of J (l) N . If l = 0, then J (0) = J and (5.4) takes the form

J (0) = d(Λ) + A (0) with A (0) = Sa(Λ) + hc, (5.12) 
i.e. A (0) ∈ FDO µ-ρ0 1 holds with ρ 0 = ρ. Next we fix l ∈ N and make the induction hypothesis that J (l) has the properties given in Section 5.1. Our purpose is to construct J (l+1) having analogical properties for l+1 instead of l. At the beginning we assume that A (l) ∈ FDO µ-ρ l 1 is off-diagonal, i.e.

A (l) = 1≤i≤i l S i a (l) i (Λ) + hc with a (l) i ∈ S µ-ρ l 1 .
(5.13)

Let k (l) ∈ N * be fixed large enough. Then ∂d (l) (k) ≥ 1 2 ck µ-1 holds for k ≥ k (l) (see (5.7)), hence we can define p

(l) i ∈ S 1-ρ l 1 by the formula p (l) i (k) = i a (l) i (k) d (l) (k + i) -d (l) (k) for k ≥ k (l) (5.14) and p (l) 
i (k) = 0 if k < k (l) . Similarly as in Section 4.2 we find that the operator

P (l) = 1≤i≤i l S i p (l) i (Λ) + hc (5.15) 
satisfies [d (l) (Λ), iP (l) ] + A (l) = O(Λ -∞ ).

(5.16) We observe that (5.3) ensures and it is easy to see that using induction, we obtain ad m-1 iP (l) A (l) ∈ FDO µ-mρ l 1 holds for m ≥ 2.

P (l) ∈ FDO 1-ρ l 1 , A (l) ∈ FDO µ-ρ l 1 =⇒ [P (l) , A (l) ] ∈ FDO µ-2ρ l 1 (5.
(5.18)

Next we choose m l ∈ N * large enough and write the Taylor formula

e -iP (l) D (l) e iP (l) = D (l) + m l -1 m=1 1 m! ad m iP (l) D (l) + R m l (ad m l iP (l) D (l) ), (5.19) 
where

D (l) := d (l) (Λ). Since ad m iP (l) D (l) = -ad m-1 iP (l) A (l) + O(Λ -∞
) holds due to (5.16), we can rewrite (5.19) in the form

e -iP (l) D (l) e iP (l) = D (l) -A (l) - m l -2 m=2 1 m! ad m-1 iP (l) A (l) + O(Λ µ-ρ l m l ), (5.20) 
where the estimate of last term follows from ad m l -1 iP (l) A (l) = O(Λ µ-ρ l m l ) and (3.35). Writing m -1 instead of m in the Taylor's formula (3.33), we get

e -iP (l) A (l) e iP (l) = A (l) + m l -2 m=2 1 (m -1)! ad m-1 iP (l) A (l) + O(Λ µ-ρ l m l ). ( 5 

.21)

If J is given by (1.3), then its eigenvalue sequence

(λ n (J)) ∞ n=1 satisfies λ n (J) = d(n) + r 1 (n) + r 2 (n) + O(n µ-6ρ ), (6.5) 
where r 1 is given by (6.4) and

r 2 = r 2,1 + r 2,2 + r 2,3 (6.6 
)

holds with r 2,1 := -1 2 ∂ -1 (|p| 2 ∂r 1
), (6.7)

r 2,2 := 1 4 ∂ -1 Im (p {{a, p}, τ -1 p} 2,-1 ), (6.8) 
r 2,3 := 1 4 ∂ -2 |{a, p}| 2 ∂ 2 d . ( 6 
.9) 6.2. Analysis of commutators. As in Section 4 we assume that (d(k)) ∞ k=1 is strictly increasing. We also assume that p is given by (6.3), r 1 is given by (6.4) and the operators

A (0) ∈ FDO µ-ρ 1 , P ∈ FDO 1-ρ 1 are defined by A (0) = Sa(Λ) + hc, (6.10) 
P = Sp(Λ) + hc. (6.11) Lemma 6.3. If A (0) and P are given by (6.10) and (6.11), then

ad iP A (0) = q 0 (Λ) + (S 2 q 2 (Λ) + hc), (6.12 
)

ad 2 iP A (0) = (Sq 1 (Λ) + S 3 q 3 (Λ)) + hc, (6.13) 
ad 3 iP A (0) = q 0 (Λ) + (S 2 q 2 (Λ) + hc) + (S 4 q 4 (Λ) + hc), (6.14) 
ad 4 iP A (0) = (Sq 1 (Λ) + S 3 q 3 (Λ) + S 5 q 5 (Λ)) + hc (6.15) hold with q 0 = 2r 1 , (6.16) q 2 = {a, ip}, (6.17) q 1 := 2ip∂r 1 -{{a, p}, τ -1 p} 2,-1 , (6.18) q 0 = -2∂ -1 Im (q 1 p) (6.19) and

q i ∈ S µ-2ρ 1 , q i ∈ S µ-3ρ 1 , q i ∈ S µ-4ρ 1 
, q i ∈ S µ-5ρ 1 (6.20) hold for any i.

Proof. In this proof we deal with operators of the form S (i) p i (Λ), which are written in the shortened way as S (i) p i . In particular, the formula (2.14) expressed in the shortened way, takes the form [S (i) p i , S (j) q j ] = S (i+j) {p i , q j } i,j . (6.21)

Step 1. Analysis of

Q := ad iP A (0) . The diagonal part of Q = [Sa + hc, iP ] is [Sa, ip S * ] + hc = ∂ -1 (iap) + hc = 2∂ -1 Re (iap) = -2∂ -1 Im (ap) = 2r 1 (6.22)
and the off-diagonal part of [Sa + hc, iP ] is [Sa, iSp] + hc = S 2 {a, ip} + hc. (6.23) Thus (6.12) holds with q 0 , q 2 given by (6.16) and (6.17).

Step 2. Analysis of Q := ad 2 iP A (0) . Combining (6.12) with Q

= [Q, iP ], we get Q = [q 0 , iP ] + [S 2 q 2 + hc, iS * τ -1 p] + [S 2 q 2 + hc, iSp] = Q 1 + Q 1 + Q 3 , where Q 1 = [q 0 , iP ] = [q 0 , iSp] + hc = S ip∂q 0 + hc, Q 1 = [S 2 q 2 , iS (-1) τ -1 p] + hc = S i{q 2 , τ -1 p} 2,-1 + hc, Q 3 = [S 2 q 2 ,
iSp] + hc = S 3 i{q 2 , p} 2,1 + hc = S 3 q 3 + hc. Thus (6.13) holds with q 1 = ip∂q 0 +i{q 2 ,τ -1 p} 2,-1 and we get (6.18) from (6.16)-(6.17).

Step 3. Analysis of Q := ad 3 iP A (0) . Using (6.13), (6.18), we find that the diagonal part of Q = [Q , iP ] can be obtained, similarly as in (6.22), by taking q 1 instead of a, i.e.

[Sq

1 , ipS * ] + hc = 2∂ -1 Re (iq 1 p) = -2∂ -1 Im (q 1 p) = q 0 . The off-diagonal part of Q is the sum of [Sq 1 , iSp] + hc = S 2 i{q 1 , p} + hc, [S 3 q 3 , iS (-1) τ -1 p] + hc = S 2 i{q 3 , τ -1 p} 3,-1 + hc, [S 3 q 3 , iSp] + hc = S 4 i{q 3 , p} 3,1 + hc.
Step 4. End of the proof. Denote Q := ad 4 iP A (0) . By using (6.14), we find easily that the commutator Q = [Q , iP ] has the form given in (6.15). To complete the proof, we observe that the properties (6.20) follow from (5.18). 6.3. End of the proof of Theorem 6.2. Writing J = J (0) = D (0) +A (0) = d(Λ) + (Sa(Λ) + hc) in (5.22)-(5.23) with l = 0, ρ 0 = ρ and m 0 = 6, we obtain e -iP Je iP = J + O(Λ µ-6ρ ), (

where J = d(Λ) + 1 2 ad iP A (0) + 1 3 ad 2 iP A (0) + 1 8 ad 3 iP A (0) + 1 30 ad 4 iP A (0) . (6.25)

Taking into account the assertion of Lemma 6.3, we find

J = d (Λ) + A , (6.26) 
where d = d + 1 2 q 0 + 1 8 q 0 (6.27) and A = 1≤i≤5 (S i a i (Λ) + hc) (6.28) holds with a 1 = 1 3 q 1 + 1 30 q 1 , (6.29) a 2 = 1 2 q 2 + 1 8 q 2 , (6.30)

a i ∈ S µ-3ρ 1 if i = 2. (6.31)
We observe that by using the expressions for q 0 , q 0 given by (6.16), (6.19), we can write (6.27) in the form d = d + r 1 + r 2,1 + r 2,2 , (6.32)

where r 1 , r 2,1 , r 2,2 are given by (6.4), (6.7), (6.8) respectively. We observe that A ∈ FDO µ-2ρ (6.34) Since (6.24) ensures λ n (J) = λ n (J ) + O(n µ-6ρ ), (6.35) the assertion of Theorem 6.2 will follow from (6.32)-(6.33), if we check that the quantity r 1 introduced in (6.34) satisfies the estimate

r 1 (n) = r 2,3 (n) + O(n µ-6ρ ), (6.36) 
where r 2,3 is given by (6.9). In order to check (6.36), we first observe that (6.31) ensures

r 1 (n) = ∂ -2 |a 2 (n)| 2 ∂ 2 d (n) + O(n µ-6ρ
). (6.37)

We observe that

∂ 2 d (n) = ∂ 2 d(n)(1 + O(n -2ρ )) ensures r 1 (n) = ∂ -2 |a 2 (n)| 2 ∂ 2 d + O(n µ-6ρ
). (6.38)

Using a 2 -1 2 q 2 ∈ S µ-4ρ 1 , it is easy to check that (6.38) still holds if a 2 is replaced by 1 2 q 2 = i 2 {a, p}, i.e. (6.36) holds with r 2,3 given by (6.9). 6.4. Expressions for coefficients c 0,0 , c 1,0 , c 2,0 in (1.15). Notation 6.4. We write p(k) = q(k) + S ν 1 if and only if p, q : N * → C satisfy p -q ∈ S ν 1 .

Step 1. Expansion of ∂d(k). Assume that (1. Step 3. Expansion of |a(k)| 2 /∂d(k). Since

|α 0 | 2 + β 1 k -1 + β 2 k -2 1 + δ 1 k -1 + δ 2 k -2 = |α 0 | 2 + γ 1 k -2 + γ 2 k -2 + S 2µ-2ρ-3 1 holds with γ 1 := β 1 -|α 0 | 2 δ 1 , γ 2 := β 2 -β 1 δ 1 + |α 0 | 2 (δ 1 2 -δ 2 ), we find |a(k)| 2 ∂d(k) = k µ-2ρ+1 µ |α 0 | 2 + γ 1 k -1 + γ 2 k -2 + S µ-2ρ-2 1 .
Step 4. Expansion of r 1 (k). We conclude that r 1 (k) = ∂ -1 |a| 2 ∂d (k) = k µ-2ρ (c 0,0 + c 1,0 k -1 + c 2,0 k -2 ) + S µ-2ρ-3 1 (6.41) 

. 4 )

 4 Proof. Let C > 0 and denote D := D + CI. Assume that C is fixed large enough. Then (H1) ensures C -1 Λ µ ≤ D ≤ CΛ µ with C > 0, hence D-1 is compact. Since A has zero relative bound with respect to D (due to (3.1)), the operaror J := J + CI = D + A (3.5)

20 )Corollary 3 . 3 .

 2033 and using(3.8) in the last estimate, we deduce (3.7). Let µ > 0 and ρ > 0. Assume that (H1) and (H3) hold and there existsk 0 such that d(k + 1) ≥ d(k) for k ≥ k 0 . If the operator J is given by (1.3), then λ n (J) = d(n) + O(n µ-ρ ). (3.21) Proof. Denote D = d(Λ) and R = Sa(Λ) + ā(Λ)S * . Since (H3) ensures R = O(Λ µ-ρ ), we can write (3.4) with D instead of J and find λ n (D + R) = λ n (D) + O(n µ-ρ ).

.35) 4 . 4 . 1 . 4 . 1 .

 44141 Asymptotic formula with one correction term for band matrices Statement of the result. In this section we will prove Theorem Let µ > 0 and ρ > 0 be fixed. Assume that d ∈ S µ 1 (2) satisfies (H1) and (H2). Assume that a i ∈ S µ-ρ 1

. 4 ) 4 . 2 .

 442 Solution of an auxiliary matrix equation. We observe that the assumptions (H1) and (H2) concern the sequence (d(k)) ∞ k=k0

. 7 )

 7 (i) If P is expressed by (3.22) with p i given by (4.7), then [D, iP ] + A 0 = 0. (4.8)

  Indeed, it suffices to use [D, iP ] = -A 0 in the Taylor formula e -iP De iP = D + [D, iP ] + 1 2 [[D, iP ], iP ] + R 3 (ad 3 iP D) and R 3 (ad 3 iP D) = O(Λ µ-3ρ ) follows from ad 3 iP D = -ad 2 iP A 0 = O(Λ µ-3ρ ). Step 4. Denote A := e -iP Ae iP . Summing up (4.18) and (4.19), we obtain

N 1 . ( 5 . 5 ) 5 . 2 . 1 ,

 155521 (k) = d(k) + 1≤m≤l r m,N (k) with r m,N ∈ S µ-ρm Remark Since (5.5) ensures d (l) N -d ∈ S µ-2ρ

17

 17 

  )

1 and applying Theorem 4 . 1

 141 to d , A , 2ρ instead of d, A 0 , ρ, we obtain λ n (J ) = d (n) + r 1 (n) + O(n µ-6ρ ),

1 ( 6 2 + 1 ( 6

 16216 4) holds. Then for any N ∈ N * one has∂d(k) = N -1 i=0 δ i k µ-i (1 + k -1 ) µ-i -1 + O(k µ-N ).Let us assume δ 0 = 1. Then∂d(k) = µk µ-1 (1 + δ 1 k -1 + δ 2 k -2 ) + S µ-4 (µ -1)δ 1 , δ 2 := 1 µ µ 3 + µ-1 2 δ 1 + (µ -2)δ 2 .Step 2. Expansion of |a(k)| 2 . We assume that (1.5) holds. Then|a(k)| 2 = k 2µ-2ρ (|α 0 | 2 + β 1 k -1 + β 2 k -2 ) + S 2µ-2ρ-3 .40) holds with β 1 := 2Re(α 0 α 1 ), β 2 := 2Re(α 0 α 2 ) + |α 1 | 2 .
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Combining (5.21) with (5.20), we obtain e -iP (l) (D (l) + A (l) )e iP (l) = D (l) + Ã(l) + O(Λ µ-ρ l m l ), (5.22) where

(5.23)

Let us denote J (l+1) := D (l) + Ã(l) .

(5.24)

Using (5.24) and J (l) = D (l) + A (l) , we find that (5.22) gives e -iP (l) J (l) e iP (l) = J (l+1) + O(Λ µ-m l ρ l ).

(5.25)

Applying Proposition 3.2, we find that (5.25) ensures λ n (J (l) ) = λ n (e -iP (l) J (l) e iP (l) ) = λ n (J (l+1) ) + O(n µ-m l ρ l ).

(5.26)

Let A (l+1) be the off-diagonal part of Ã(l) and let r l+1 (Λ) be its diagonal part. Then

where

due to (5.23) and ρ l+1 = 2ρ l . Thus setting

we find

i.e. (5.4), (5.5) hold with l + 1 instead of l. Finally (5.1) and (5.26) ensure

hence (5.1) holds with l + 1 instead of l if m l ρ l ≥ N ρ, i.e. if we choose m l ≥ 2 -l N . γ i,j k ν-2ρj-i (5.29) holds for a certain complex valued sequence (γ i,j ) ∞ i,j=0 . The formula (5.29) means that

holds for any N ∈ N * . One checks easily the following properties

(5.32)

(5.34) Notation 5.6. We denote by FDO ν [1,2ρ] the set of all linear operators on S -∞ of the form P = -i0≤i≤i0

Proof. It suffices to check that the right hand side of (2.14) belongs to FDO ν+µ-1 [1,2ρ] , i.e.

.

(5.36)

and

.

(5.37)

. We deduce the last inclusion using (5.31) with k = 1 2 (|i| + |j| -|i + j|), m = 0 and ν + η -1 instead of ν. Indeed, it is easy to see that 1 2 (|i| + |j| -|i + j|) ∈ N for every i, j ∈ Z. 5.4. Proof of Theorem 1.1. The assertion of Theorem 1.1 follows from Theorem 5.8. Let µ > 0, ρ > 0 and let J be given by (1.3) with entries satisfying

Proof. Let N ∈ N * and as in Section 5.2 denote J (l) instead of J

N . We claim that J (l) ∈ FDO µ . Assume now that (5.38) holds for a given l ∈ N. Then a

and [P (l) , A (l) ] ∈ FDO µ [1,2ρ] due to Lemma 5.7. We observe that ad m iP (l) A (l) ∈ FDO µ [1,2ρ] follows by induction with respect to m, hence Ã(l) ∈ FDO µ [1,2ρ] and (5.38) still holds with l + 1 instead of l. In order to deduce that n → λ n (J) belongs to S µ [1,2ρ] , it suffices to observe that for any N ∈ N * one has the estimate (5.9) and d 

, let d ∈ S µ 1 be such that (H1), (H2) hold for all k ∈ N * and define p := i a ∂d , (6.3)

(6.42)

We deduce (1.16) using r 1 expressed in (6.42) with γ 1 given in Step 3, β 1 given in Step 2 and δ 1 given in Step 1.

6.5. Expression of c 0,1 in (1.18). Due to (6.6), it suffices to show that

holds with r 2,1 , r 2,2 , r 2,3 given by (6.7)-(6.9) and c 1 , c 2 , c 3 given by (1.20).

Case i = 1. By using (6.41)-( 6.42), we obtain

Then we observe that (6.44) and p(k

In order to deduce (6.43) for i = 1, it remains to remark that (6.45) gives

).

Case i = 2. Denote q 2 := {a, ip}. By using

In order to deduce (6.43) for i = 2, it remains to remark that the last estimate gives in order to deduce (6.43) for i = 3, it remains to remark that (6.47) gives

).