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Abstract

A challenging problem in gamma-ray spectrum analysis is the rapid detection

of artificial radionuclides at low activity levels. Until now, traditional methods

focus on activity estimation based on single spectra, obtained by integrating

over time the measured disintegration events. However, accounting for the well-

constrained radionuclides decay should allow for a more accurate and sensitive

activity estimation. For that purpose, we investigate a novel approach to es-

timate radionuclides’ activity, which is i) first based on multi-temporal data,

obtained from several short measurements rather than a single one, and ii) built

upon a dedicated spectral unmixing, which allows processing multi-temporal

data. The proposed algorithm allows accounting for both the full spectrum of

each radionuclide (i.e. peaks and Compton continuum) and their activity de-

cay in time. To that purpose, different approaches are investigated to model

the temporal dependencies of the radionuclides’ activities, and specifically to

account for potentially out of equilibrium radionuclides’ decay chains. Experi-

mental results on both simulated spectra and real measurements are presented

and compared to standard methods, it is shown that the proposed approach

leads to more accurate estimations and faster detection of artificial radionu-

clides.
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statistics-based spectral unmixing, metrological analysis

1. Introduction

Gamma-ray spectrometry is one of the major techniques used to measure

the activity concentrations of radionuclides in environmental samples. One of

the main challenges raised by radioactivity measurement is the rapid analysis of

samples in case of an incident or an accident with releases. This task mandates5

fast measurements as well as rapid and reliable information to the population

Knoll (2010).

The main challenges of γ-ray spectra analysis lies in: i) the rapid detection and

identification of the radionuclides which can be detected from the sample and

ii) the accurate estimation of the radionuclides’ activities. This is a particu-10

larly tricky challenge when the statistics of the counting rate is low. This has

attracted a lot of attention in the field of rapid detection and rapid characteri-

zation of sources under emergency conditions.

1.1. Measurement of radioactivity in the air15

In the present study, and without loss of generality of the proposed method,

we will focus on the analysis of the aerosol samples measured at IRSN 1 for

validation purposes. More precisely, as part of its monitoring brief, IRSN carries

out regular measurements of radioactivity levels in the environment, employing

high-performance investigation means for the quantification of trace amounts.20

As part of the OPERA-Air network (permanent radioactivity observatory),

the data measured at IRSN also serves as a support to the numerous research

and expertise studies on the time and spatial variations of radionuclides in the

environment. This paper focuses on the 10 high flow air samplers (300-900

m3.h-1), whose filters are sampled and measured by gamma-ray spectrometry25

1https://www.irsn.fr/
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on a weekly basis. In this way detection of very low concentrations of abnormal

artificial radionuclides may indicate low-magnitude incident releases or accident

releases at remote places.

In case of emergency, rapid and reliable information to the population is

required while a low level measurement would help the source term assessment.30

During the passage of the contaminated air masses from the Fukushima ac-

cident over France (de Vismes Ott et al. (2013)) each sampled air filter was

measured twice to meet both purpose: a short measurement just after sam-

pling and a long measurement few days later. Indeed, the spectrum of the early

measurement is contaminated by the presence of the particulate radon progeny35

sampled by the filter, which gives rise to many peaks and a high background

as shown on Figure 1. The second spectrum on Figure 1 was obtained by the

long (4 days) measurement 4 days after sampling : all the short half-lived radon

progeny have vanished and the simpler spectrum containing only few radionu-

clides (7Be, 210Pb, 40K and 22Na in decreasing activity concentration order)40

make possible the detection of 137Cs and its quantification at trace level (0.1

µBq.m−3). The routine measurements of the aerosol filters being performed

one week after sampling and for 3 days, the determination of 137Cs, and conse-

quently the detection of other potential artificial radionuclide, takes two weeks

once the filter is sent to the metrology laboratories. The objective is therefore to45

improve the gamma-ray spectrum analysis and to particularly focus on artificial

radionuclides at low statistics.

1.2. State-of-art for gamma-ray spectra analysis

In a nutshell, a gamma-ray spectrum records the histogram of the number50

of detected events as a function of the energy deposited by the gamma-ray or

X-ray in the detector. The interactions between the photons and the material

of the detector for a mono-energetic source lead to a spectrum with two main

components: a peak at the photon energy, called total absorption peak or full

energy peak, and a Compton continuum (see Knoll (2010) and Gilmore (2001)55
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Figure 1: Examples of gamma-ray spectra of two measurements of an aerosol filter : half-an-

hour long measurement performed half an hour after sampling (left panel), and a 3 days and

17h long measurement performed 4 days after sampling (right panel).

for precision). Depending on its decay scheme, a radionuclide can emit photons

with different energies. This yields a characteristic spectrum for a radionuclide

with several peaks and associated continua. The total measured spectrum is

then the linear combination of the individual spectra of each radionuclide and

a background spectrum.60

Classical analysis methods identify and quantify the radionuclides from their

characteristic energy peaks. In these approaches, after identification of the ra-

dionuclides thanks to characteristic emissions, their activity is computed from

the peak area, via the detection efficiency (e.g. Genie2000 from Canberra65

Mirion-Canberra (2016)). This process is usually based on Region of Inter-

est (ROI) analysis, as described in Gilmore (2001). However, these methods

are rather limited: the calculation of the peak areas implicitly assumes that

the counting distribution is Gaussian. This is generally not a valid assumption,

especially at low statistics. In this regime, radioactive sources emit photons ran-70

domly according to a Poisson process. In complex samples, radionuclides may

overlap, leading to interferences between individual spectra. These samples are

very difficult to analyse with peak-based analysis since it requires accounting for

the photon peaks as well as Compton continua. Let us notice that peak-based

analysis has been generalized Kirkpatrick and Young (2009) to account for the75
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exact Poisson statistics of the data. It is interesting to point out that this study

demonstrated the need to account for the exact statistics of the measurement.

Nevertheless, these methods do not account for the whole information carried

by the full spectrum since they rely on region of interest at the vicinity of related

peaks.80

Further accounting for the full-spectrum information in gamma-ray spec-

trum analysis has been advocated in Hendriks et al. (2001). In this article,

the authors demonstrated that, compared to the standard peak-based analysis,

using the full spectrum improves the sensitivity and reduces the time of mea-85

surement. However, these investigations make use of a re-weighted least squares

method, which is not fully adapted to account for the Poisson statistics of the

data.

Activity estimation problem in gamma-ray spectrometry has been also studied

in Sepulcre et al. (2013), considering activity estimation as a sparse regression90

problem. In this article, the authors propose to estimate the number of in-

dividual electrical pulses and their arrival times. Other contributions of the

activity estimation in the field of machine learning algorithms were also applied

to gamma-ray spectrum analysis as presented in Yoshida et al. (2002), where

peak energy data are applied to neural networks. In Sharma et al. (2012),95

machine learning algorithm was applied for the detection of anomaly events in

gamma-ray spectra. Based on conventional neural networks, these approaches

do not however allow to account for the precise physical model underlying the

detection process.

In Xu et al. (2020), we introduced the first full spectrum analysis method which100

allows to account for the Poisson statistics. In this paper, we particularly showed

the advantage of making profit of all the information that full spectrum bears,

leading to a more accurate and sensitive activity estimation procedure. This

method has further been validated with real aerosol samples in section 5. In

this paper the model for a spectrum x = [x1, · · · , xM ] is composed of M energy105

channels and is described as follows:
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∀c = 1, · · · ,M ; xc =

N∑
n=1

ϕncan + bc, (1)

where ϕn = [ϕn1 · · · , ϕnc] stands for the spectral signature of the n-th ra-

dionuclide and bc for the background in channel c. The activities {an}n=1,··· ,N

are estimated from the analysis of a single spectrum of a long measurement.

We recently improved the method to better calibrate the simulated spectral110

signatures (Xu et al. (2022b)) which proves to be necessary because of the de-

tector’s variability that may cause slight shifts in the energy calibration of the

measured spectrum, this allows to precisely match the simulated signatures to

the observed spectrum so that the estimation is not biased by the detectors’

energy calibration. The characteristic limits of the unmixing algorithm are also115

explored, as the standard peak based techniques could not be used to determine

decision thresholds and detection limits via spectral unmixing. The results of

Xu et al. (2022a) allows us to compute them directly without having to rely

on Monte-Carlo simulation in order to estimate them. The aim of this paper

is to use the same unmixing idea but to apply it on multiple spectra to get120

earlier estimations of the activities. The joint estimation will be performed on

multiple consecutive measurements of the same sample, allowing us to use the

disintegration model of the radionuclide to get a quicker activity estimation.

1.3. Multi-temporal gamma-ray spectrometry

The traditional measurement process consists in acquiring a single spectrum125

which is obtained as an integrated spectrum during a certain amount of time.

For the sake of accuracy, the acquisition time is generally taken long (from two

days up to a week) and after a decay period to let the short-lived radionuclides

disappear before the measurement. This allows for the short-lived radionuclides

to vanish while providing more statistics to improve the detection of long-lived130

radionuclides present at low level, such as 137Cs or 22Na. The activity of the

radionuclides of interest in the environment survey are very low with respect to

the activities of short-lived radionuclides as 214Pb/Bi, 208Tl or 212Pb/Bi which

6



can interfere in the estimation. The activity of the radionuclides usually ob-

served in aerosol samples is presented in 2. This largely hampers the ability135

to rapidly detect artificial radionuclides which could trace for incidents or acci-

dents. The aim of this paper is to build a temporal model that cope with these

short-lived radionuclides and is able to detect the low-level radionuclides earlier

than the usual week of measurement.

140

In fact, making use of the time decay of the radionuclides should provide

extra information to better discriminate between the radionuclides to be iden-

tified. Therefore, we propose a different strategy where the measurements are

acquired on multiple, shorter time intervals. This leads to multiple snapshots

of the same sample taken in different consecutive time intervals. This further145

allows taking advantage of the time dependency between these multiple mea-

surements to perform a joint analysis on a sample measured multiple times.

More formally, the variation in time of each of the radionuclides can be

described by the following physical time decay model:150

An(t) = an(0)e
−λn.t, (2)

where An(t) is the number of nuclear disintegrations per second for the n-th

radionuclide at time t, an(0) its activity at the beginning of the measurement

and λn the decay constant of the radionuclide. Let’s define by An the total

activity of the n-th radionuclide during the s-th segment (s = 0, ..., S) between

time ts and ts+1 as follows :155

An =

∫ ts

ts−1

An(t)dt (3)

=

∫ ts

ts−1

an(0)e
−λntdt (4)

= an(0)ψsn, (5)

where the constant ψsn is defined as:
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ψsn =

∫ ts

ts−1

e−λntdt (6)

In the next, and for simplicity, the activity an(0) of each radionuclide will be

denoted by an, which will be the quantity of interest to be estimated from the

measurements.

A gamma-ray spectrum measured between time ts−1 and ts is then defined

as the linear combination of each of the N radionuclides spectral signatures ϕn

(i .e. the detector’s response in energy for a single radionuclide - see Xu et al.

(2020), a signature for a radionuclide is obtained by normalizing the spectrum by

the measurement time and the activity of the source), to which a background

term b is added (of dimension 1 × M , M being the number of channels of

the spectrum). The measurement background is the blank spectrum which is

obtained by leaving the detector empty during the acquisition process. The

spectrum for the s-th segment and energy channel i is then described as follows:

xsc =

N∑
n=1

anψsnϕnc + bsc (7)

where bsc = (ts − ts−1)bc160

Finally, the spectrum is subject to Poisson noise due to the counting process

of the detection. Defining ysc as the measured spectrums in the s-th time

segment and i-th energy channel, the final model is :

ysc ∼ Poisson
( N∑

n=1

anψsnϕnc + bsc

)
(8)

where the measured spectrum is a random realization following a Poisson dis-

tribution with mean xsc.165

1.4. Contribution

In this paper, we investigate a new approach for the estimation of the ac-

tivity of radionuclides from multiple gamma-ray spectra. Firstly, it builds upon

the joint analysis of gamma-ray spectra measured in consecutive time intervals.
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This allows to account for the radionuclides’ activity decay, which bears informa-170

tion to better distinguish between them. Secondly, we introduce a novel spectral

unmixing algorithm to tackle multi-temporal measurements and which is based

on a recently introduced method Xu et al. (2020). In contrast to standard meth-

ods that perform on single measurements, we propose to investigate two distinct

models for the time dependency of the radionuclides’ activity : i) the first one175

assumes that all the radionuclides are in equilibrium, and ii) the second one al-

lows accounting for the presence of radionuclides that are not in equilibrium. In

the latter, the method allows taking into consideration the correlation between

parent and daughter radionuclides activities, as described in Bateman (1910).

These models are detailed in Section 2. Section 3 details the proposed multi-180

measurements spectral unmixing method. In Section 4, the proposed method is

applied to simulated spectra, to assess the accuracy of the proposed models and

algorithms. Next, experimental results on real spectra are presented in Section

5. We particularly show that accounting for time-dependency in multiple γ-ray

spectra allows for a faster detection of the radionuclides present in the data185

while preserving a good accuracy of the estimation of their activities.

2. Modelling multi-measurements γ-ray spectrometry data

Accounting for temporal information in spectral unmixing first requires de-

signing dedicated models to describe multi-temporal gamma-ray spectra. To

that purpose, we hereafter focus on various models for multi-temporal γ-ray190

spectra, with increasing complexity.

Without loss of generality, these models will be illustrated with a sequence of

γ-ray spectra, for which both simulations and real measurements are available.

These data originate from an aerosol sample which has been measured with a

HPGe detector. They are composed of 11 measurements covering a total time195

of almost 8 days (670 800 s). As displayed in Figure 2, time intervals of various

lengths have been chosen. The starting point has been taken 30 minutes after

the end of the sampling process, this is due to the sample preparation process:
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the aerosol filter is pressed into pellets before being put on the detector. More

details about the detector setup is given in Appendix A.200

Figure 2: Temporal scheme of measurement used in this paper.

Accounting for the time correlations in γ-ray spectra builds upon a good

understanding of the activity of the radioactive series of radionuclides. More

precisely, when radionuclides are in the same radioactive sequence and the half-

life of the parent radionuclide is longer than the half-life of the daughter ra-

dionuclide, the parent’s activity affects the daughter’s. In fact, any radionuclide205

sequence is described by Bateman’s equation which relates the activity of a

daughter radionuclide in terms of its rate λd, its activity at t = 0, ad(0), and

its parent rate λp and abundance ap(0) (see Bateman (1910) for more details) :

ad(t) = ad(0)e
−λdt +

λp
λd − λp

ap(0)
(
e−λpt − e−λdt

)
(9)

As an illustration, let us consider the 214Pb - 214Bi chain :

214Pb(27min) −→214 Bi(20min)

10



Segment Start time Duration

1 30min 1 800s (30min)

2 1h 1 800s (30min)

3 1h30 1 800s (30min)

4 2h 3 600s (1h)

5 3h 3 600s (1h)

6 4h 5 400s (1h30)

7 5h30 10 800s (3h)

8 8h30 54 000s (15h)

9 23h30 28 000s (∼7h45)

10 ∼1 day 7h15 240 000s (∼2 days 19h)

11 ∼4 days 2h 320 000s (∼3 days 17h)

Table 1: The temporal scheme of the measurement used throughout this paper.

In this case, the half-life of the parent radionuclide is of the same order of mag-

nitude as the daughter’s half-life: tparent ≈ tdaughter. For this disintegration210

chain, the correlation between the activity of the parent and daughter radionu-

clide can be described with Bateman’s equation and the activity of 214Pb will

participate in the activity of 214Bi.

As a second example, let us consider the radioactive series composed of

212Pb, 212Bi and 208Tl, which can be described as follows:

212Pb(10.6h) −→212 Bi(61min) −→208 T l(3min)

In this chain, each radionuclide disintegrates in a descendant with a much

shorter period. Thus, Bateman’s equation is simpler as
λp

λd−λp
is close to 0215

in the equation 9. Moreover, the daughter radionuclides 212Bi and 208Tl are

considered at equilibrium with their parent and have the same decreasing rate

as 212Pb. All the daughter radionuclides that disintegrate derive directly from a

11



parent radionuclide which has previously disintegrated itself. Indeed, the daugh-

ter radionuclides cannot decay faster than they are produced and thus depend220

on the decay rate of 212Pb.

In the next sections, we describe different multi-temporal models for each of

these two families and with or without the Bateman’s equation simplification

for the 214Pb-214Bi decay series.225

Model for multi-temporal γ-ray spectra in equilibrium

The first model to be considered is dedicated to the decay series which are at

secular equilibrium. This model will be composed of different quantities, which

are summarized below :

• an : the activities an(0) for each of the N radionuclides (a vector of size230

N)

• ϕnc : the spectral signature of the n-th radionuclide in the c-th energy

channel.

• ψsn: the temporal signatures of the n-th radionuclide in the s-th time

segment, described in Equation 6.235

• bc is the background in the c-th energy channel. It originates from cos-

mological or telluric γ activity. It is assumed to be constant during the

acquisition time so that the background for a given time interval is defined

as (ts − ts−1)bi.

Throughout this article, the spectral signatures {ϕnc}n,c are assumed to be240

known as it represents the energy signature of the radionuclide. It can be de-

rived from measurements of a standard source containing a single radionuclide.

However, this can only apply to radionuclides, for which a standard source can

be made. This is not the case for some of the radionuclides that can be identified

in aerosol samples. For that purpose, we rather compute the spectral signatures245

from simulations (see Appendix A).
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The model for the radionuclides when we approximate the Bateman’s equa-

tion’s second term by 0 is described as follows:

∀s = 1, · · · , S; c = 1, · · · , c; xsc =

N∑
i=1

anψsnϕnc + bsc (10)

where the background is given by bsc = δsbc. The quantity δs stands for the

time duration of the s-th measured spectrum.

Model for multi-temporal γ-ray spectra with Bateman’s equation

In the previous section, the temporal signatures do not model for possible250

out of equilibrium radionuclides. The term ψ associated to the activities in a

disintegration family considers that the daughter radionuclides are decreasing

with the period of their parent. To further deal with the radionuclides whih are

not in equilibrium, it is necessary to introduce an extra term : ψB
s , modelling

the interaction between the daughter and its parent radionuclide, such as with255

the 214Pb/214Bi family. This extra factor takes into account the activity of the

parent radionuclide but will have an impact the daughter’s activity. This is

described by Bateman’s equation (Section 2) :

ad(t) = ad(0)e
−λdt +

λp
λd − λp

ap(0)
(
e−λpt − e−λdt

)
(11)

which models for the relationship between the parent and daughter radionu-

clides. The expression of the extra term ψB
s is then defined as follows :260

ψB
s =

1

ap(0)

∫ ts

ts−1

λp
λd − λp

ap(0)
(
e−λpt − e−λdt

)
dt

=
λp

λd − λp

(∫ ts

ts−1

e−λptdt−
∫ ts

ts−1

e−λdtdt
) (12)

Without loss of generality, the model in Eq.(10) for a disintegration family

of two radionuclides a parent and its daughter reads as:

∀s = 1, · · · , S; c = 1, · · · , c; xsc =

N∑
i=1

anψsnϕnc + amψ
(B)
s,j ϕ

(B)
j,c + bsc (13)

13



In the next section, we will investigate how these models can be used to

design spectral unmixing algorithms that are specifically tailored to analyse

multi-temporal measurements.265

3. Spectral unmixing algorithms for multi-temporal measurements

3.1. Statistical modeling

In this section, we introduce a new spectral unmixing algorithm to analyse

multi-temporal measurement in gamma-ray spectrometry. For that purpose, we

first need to define an estimator for the mixing weights of the mixture model270

that describes γ-ray spectra. Let us recall that, for each channel m = 1, ...,M

and time segment s = 1, ..., S, the general expression for the mixture model is

of the form :

∀s = 1, · · · , S; c = 1, · · · , c; xsc =

N∑
n=1

anψs,nϕnc + δsbc (14)

This expression gives the average number of counts per energy channel and

time interval. The actual measurement follows a Poisson distribution, which275

can be formalized as follows:

∀s = 1, · · · , S; c = 1, · · · , c; ysc ∼ Poisson(xsc)

∼ xysc
sc expxsc
ysc!

Since the channels and time segment are statistically independent, the like-

lihood with respect to the complete multi-temporal measurements is given by:

P({ysc}s,c|{xsc}s,c) =
S∏

s=1

M∏
m=1

xysc
sc exp(xsc)

ysc!
(15)

It is then customary to take the log to simplify the expression by defining

the negative log likelihood:280

L({ysc}s,c|{xsc}s,c) =
∑
s,c

xsc − ysc log(xsc) + log(ysc!) (16)

14



Since, the model only depends on the unknown activities {an}n, and fol-

lowing Xu et al. (2020), we take the negative log likelihood and add an extra

constraint to enforce the non-negativity of the mixing weights:

{ân}n = argmaxa≥0L({ysc}s,c|{an}n) (17)

= argmaxa≥0

∑
s,c

xsc − ysc log(xsc) (18)

where log(ysc!) is omitted since it is constant and each term xsc is a function of

the activities {an}n according to models (10) or (13).285

The problem in Equation 17 does not admit a closed-form expression and

must be evaluated using a minimisation algorithm. The main challenge is

that the presence of the non-negativity constraint makes this problem non-

differentiable. A traditional gradient descent algorithm cannot be adopted.

Fortunately, different types of algorithms can be used, such as primal-dual algo-290

rithms (see Chambolle and Pock (2011); Xu et al. (2020)) or the multiplicative

update algorithm (see Lee and Seung). Primal-dual algorithms offer a highly

flexible framework at the cost of the need for tuning extra hyperparameters (see

Xu et al. (2020) for more details). For its simplicity, we rather focus on extend-

ing the multiplicative update algorithms to multi-temporal measurements.295

3.2. The multiplicative update algorithm and its extension to multi-temporal

data

In this section, we introduce a spectral unmixing algorithm, based on the

multiplicative update algorithm, which is tailored to the three distinct models

we introduced in Section2:300

• Model ”without time” : Segment by segment analysis, no time correlation,

we analyse the whole spectrum and estimate the activity in each temporal

segment using the algorithm developed in Xu et al. (2020).

• Model ”equilibrium hypothesis” : we benefit from temporal information

with the joint analysis of the multi-temporal measurements. This amounts305
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to use the temporal signatures to model for the time dependencies. In this

model, every disintegration family is assumed to be at secular equilibrium.

• ”Bateman” model : This model makes use of Bateman’s equation to model

for the temporal dependencies that are not in secular equilibrium.

In each model the algorithm is based on the non-negative matrix factoriza-310

tion (Lee and Seung) the difference lies in the update of the activities. We will

now present the most complex case of ”Bateman” model as the others deduct

directly from this one.

The multiplicative update algorithm first builds upon a gradient-based min-

imisation scheme. The derivative of the negative log likelihood with respect to315

each mixing weight an is given by :

∂Xsc

∂an
= ψsnϕnc + ϕncψ

(B)
sn (19)

If the n-th radionuclide is not in a radioactive series, then ψ
(B)
sn = 0 and the

second term disappears. This then builds down to:

∂L({ysc}s,c|{xsc}s,c)
∂an

=
∑
s,c

(
ψsnϕnc −

ψsnϕncysc
xsc

)
(20)

Following Lee and Seung, the update rule of the multiplicative update algo-

rithm can be obtained by zeroing the derivative of the negative-log-likelihood320

with respect to each mixing weight. The main difference between all the mix-

ture models lies in the structure of the temporal signatures, which embeds the

temporal information and is dependent on the temporal scheme of the measure-

ments. The update rule for each model is defined as follows for each step k of

the algorithm:325

• Model ”without time” : each time segment is processed independently, the

activities of the sought-after radionuclides are then dependent on the time

segment s, which yields multiple estimations of the activities {asn}s,n.
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The resulting update rule then reads:

a(k+1)
sn = a(k)sn

∑M
c=1 ϕncysc/xsc∑M

c=1 ϕnc
, (21)

where xsc =
∑N

n=1 ϕnca
(k)
sn + bsc. This is similar to the update rule of the

algorithm proposed in André et al. (2020).

• Model ”equilibrium hypothesis” : does include the temporal signatures,

but approximates the Bateman’s term as 0:

a(k+1)
n = a(k)n

1∑S
s=1 ψsn

∑M
c=1 ϕnc

∑
s,c

ψsnϕncysc/xsc (22)

where xsc =
∑

n ψsnϕnca
(k)
n + bsc. The mixing weights are estimated

considering that every decay series are at secular equilibrium.

• ”Bateman” model : This model includes Bateman’s equation for decay

series which are not in equilibrium (i.e. for instance 214Pb/ 214Bi par-

ent/daughter chain). The multiplicative update rule is then defined as

follows:

a(k+1)
p = a(k)p

∑
s,c

(
ψs,pϕp,c + ψ

(B)
s,d ϕd,c

)
ysc/xsc∑S

s=1 ψs,p

∑M
c=1 ϕp,c +

∑S
s=1 ψ

(B)
s,d

∑M
c=1 ϕd,c

(23)

where ap (resp. ψp,c and ϕp,c) stands for the parent activity (resp. its330

temporal and spectral signatures), ψ
(B)
s,d stands for the corresponding Bate-

man temporal signature and ϕd,c is the associated daughter spectral sig-

nature. The current estimate of the mixture model is given by xsc =∑
n ψsnϕnca

(k)
n + bsc + a

(k)
p ψ

(B)
s,d ϕd,c + bsc. The mixing weights of the ra-

dionuclides that are in secular equilibrium are updated as in Model ”Equi-335

librium hypothesis”.

These update rules are performed sequentially until convergence is reached.

The stopping criteria we impose to our algorithm is to stop when the relative

variation of A(k), which is defined by:
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∑
n(a

(k+1)
n − a

(k)
n )2∑

n a
(k)
n

2 ≤ ϵ (24)

is smaller than value ϵ = 10−6. The maximum number of iterations is fixed340

to K = 2000 iterations.

4. Numerical experiments with simulated data

Radionuclide Half life Activity (Bq)

7Be 53, 22 days 420

22Na 2, 60 years 0.10

40K 1, 265.109 years 1.9

137Cs 30, 05 years 0.020

210Pb 22, 3 years 27

228Ac 14, 02.109 years (period of the 232Th) 0.075

208Tl 3, 06 minutes 219

212Bi 60, 54 minutes 635

212Pb 10, 64 hours 481

214Bi 19, 9 minutes 2164

214Pb 26, 8 minutes 861

Table 2: List of simulated radionuclides with their half-life and activity.

4.1. Description of the simulations

In order to simulate a spectrum similar to the one we obtain in the environ-

mental monitoring, we use the previous models and simulate the most common345

radionuclides in the samples we usually gather. The radionuclide dictionary will

then be : 7Be, 22Na, 40K, 137Cs, 210Pb, 228Ac, 212Pb, 212Bi, 208Tl, 214Pb and

214Bi. As previously seen, the 212Pb, 212Bi, 208Tl series is considered at secular
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equilibrium. Bateman’s equation is used to model the activities of 214Pb and

214Bi. Indeed, as the disintegration periods of these two radionuclides are very350

similar, the secular equilibrium approximation won’t hold in practice, as seen

in 2. These simulations will be used to illustrate the differences between the

unmixing algorithms and the importance of the theoretical knowledge carried

out by the choice of the temporal models.

In order to simulate gamma-ray spectra, we make use of the mathematical355

model described in 2, and precisely described as follows:

xsc =
∑
n

anψsnϕnc + ϕ214Bi,cψ
(B)
s a214Pb + bsc (25)

where,

• the term ϕnc stands for the spectral signatures of the n-th radionuclide

in the channel c, which are computed thanks to MCNP-CP simulations.

This software allows simulating the response of the HPGe detector used360

for measurements, as if standard sources were used for each radionuclide.

We refer the reader to Appendix A for more details about the simulations.

• The activities {an}n of the radionuclides are chosen to be close to a real

aerosol sample. The levels are presented in table 2.

• the temporal signatures {ψsn}s,n are computed according Equation 6. The365

duration of the time intervals are presented in table 1.

• The term ψ
(B)
s corresponds to the temporal signature of 214Pb as defined

in Equation 12.

• The background b is a real measurement, realized with the empty HPGe

detector used in the laboratory over a long time (typically one week). It is370

customary to take such a spectrum as background for the analysis that we

carry in the laboratory. The background spectrum is then reduced to the

background per second (by dividing by the counting time) and multiplied

by the counting time of the segments we are using.
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As can be seen in top-left panel of Figure 3, the simulated radionuclides375

have different behaviours through time. Three categories can be distinguished.

The first one corresponds to the long-lived radionuclides :7Be, 22Na, 40K, 137Cs,

210Pb, 228Ac. The activities of these radionuclides are mostly constant over

time since their periods are much greater than a week. The activities of these

long-lived radionuclides vary quite significantly from few mBq for 137Cs to 420380

Bq for 7Be allowing us to compare the performances of the models at low and

higher activities. The second category is composed of the 212Pb, 212Bi, 208Tl

decay chain which is considered at secular equilibrium. These radionuclides

have short half-lives (6 minutes up to an hour). Finally, the third one is related

to the 214Pb and 214Bi decay chain that decreases quickly. It is well described385

by Bateman’s equation. It is expected that the impact of the model will be

very important on the estimation of their activities. Monte-Carlo simulations

of gamma-ray spectra are then obtained by drawing Poisson realizations.

4.2. Comparisons between the different models

In this section, we aim at evaluating the impact of the temporal models390

on the estimation of the activities. Figure 3 shows the estimated activities in

Bq for each time segment and each model, which allows drawing the following

conclusions:

• The model ”without time” (b in Figure 3) provides accurate activity esti-

mations for the long-lived radionuclides within the last 3 intervals, where395

the short-lived radionuclides have vanished. In contrast, it is not able to

correctly retrieve the activities of the short-lived radionuclides after the

third or fourth intervals, when their activities have very low levels. It is

important to point out that the estimated activities may vary significantly

in time, since no information about the time dependencies of the activities400

is used in the unmixing procedure. For example, the activity 214Bi (light

green in Figure 3) is estimated correctly in the first 6 or 7 intervals but

is completely wrong in the last ones since the radionuclide have almost

completely disintegrated.
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(a) Simulated activities (b) Model ”without time”

(c) Model ”Equilibrium hypothesis” (d) ”Bateman” model

Figure 3: Simulated and estimated number of counts per second for the different models and

time intervals.

• The two models ”Equilibrium hypothesis” and ”Bateman”, which for time405

dependencies (c and d in figure 3), yield similar unmixing results. Both

give activities’ estimates which are close to the ground truth activities.

In order to precisely assess the differences between the unmixing algorithms

based on the two temporal models, we propose evaluating experimentally the

estimator bias and variance of each method. For that purpose, we applied the410

unmixing algorithms to 1000 Monte-Carlo simulations of the same mixture.

Figure 4 shows the distribution of the estimated activities for all the 1000

Monte-Carlo simulations, for both Model ”Equilibrium hypothesis” (in blue)

and ”Bateman” model (in orange). These distributions are displayed for 4
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(a) 7Be (b) 137Cs

(c) 214Bi (d) 214Pb

Figure 4: Estimated activities by both Model ”Equilibrium hypothesis” and ”Bateman” for

different radionuclides. These graphs are obtained after 103 Monte-Carlo simulation.

different radionuclides. For short-lived radionuclides (c and d in figure 4), Model415

”Equilibrium hypothesis” yields a clear bias, while ”Bateman” model provides

an unbiased solution. This is especially true for 214Bi. This discrepancy is

clearly related to the ability of the ”Bateman” model to take into account the

correlation in time of the activities of these two radionuclides, which are not

in secular equilibrium. More interestingly, for long-lived radionuclides, such as420

7Be and 137Cs (a and b in figure 4), the ”Bateman” model provides numerically

unbiased solutions while Model ”Equilibrium hypothesis” yields a slight but

statistically significant deviation from the ground truth values. Since these

radionuclides have longer half-lives, we would have expected no impact of the
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choice of a given time models on the estimated activities. This reveals that425

i) both models ”Equilibrium hypothesis” and ”Bateman” use information in

all time segments to estimate the activities, and ii) correctly modelling the

activity in time of short-lived radionuclides also impacts the activity estimation

for radionuclides with longer lives iii) we note that the estimation is not biased

if the correct model is taken.430

4.3. The role played by temporal information

In this section, we focus on the role played by the temporal information

and its impact on activity estimation. For that purpose, we specifically empha-

size on the ”Bateman” model, which provides a precise description of the time

dependencies of the radionuclides’ activities. In the following experiment, we435

propose evaluating the precision of the estimated activities when an increasing

number of time intervals are used in the unmixing process. To do so, we start

by using only the first interval (i.e. which is similar to take the Model ”without

time” only for this single interval), then the first two segments, up to all the

11 available time segments. This procedure is also meaningful in the context440

of crisis, as it allows evaluating how well the radionuclides’ activities can be

estimated from few and early measurements.

The results are obtained from 1000 Monte-Carlo simulation.

Figure 5 shows the estimated activities of the four radionuclides 7Be (a),

137Cs (b), 214Bi (c) and 214Pb (d). It is interesting to notice that the evolution445

of the estimated activity of the radionuclides is quite different depending on

whether it is a short or long-lived radionuclide.

In case of short-lived radionuclides, such as 214Bi and 214Pb, the relevant infor-

mation for spectral unmixing is mainly contained in the very first intervals. It

entails that the estimated activities of 214Bi and the 214Pb quickly reach a final450

state. This is also the case for 208Tl, 212Bi and 212Pb, the half lives of which do

not exceed 10 hours.

For long-lived radionuclides, the results are slightly different and depends on

the activity level. It also depends on how much the presence of short-lived ra-
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(a) 7Be (b) 137Cs, zoom on the last time segments

(c) 214Bi (d) 214Pb

Figure 5: Results of the ”Bateman” Model on 1000 Monte-Carlo simulations.For 137Cs the

decision threshold is presented in dotted blue line.

dionuclides impacts the precision of their activity estimation. For instance, 7Be455

has a rather high activity and seems less impacted by the presence of short-lived

radionuclides. Consequently, its activity is very well estimated already from in-

terval 1 only. In this case, the joint analysis of consecutive time intervals mainly

helps improving the uncertainty of the estimation: it naturally decreases as the

number of time segments used for the estimation increases.460

The case of 137Cs is different since its level is lower (i.e. 3 orders of magnitude

below the level of 7Be), which makes its activity estimation more sensitive to the

presence of short-lived radionuclides. As a consequence, its activity estimation

is significantly biased when few time intervals are used. The use of an increasing
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number of time intervals helps enhancing both the precision of the estimation465

and its uncertainty. The estimation of 137Cs is below the decision threshold

while the activity of the short-lived radionuclides are predominant but become

significant at t = 1 day 7h15. It is a significant improvement with respect to

previous work Xu et al. (2020), where detection can be claimed at t = 4 days 2h

as depicted in red on the zoomed plot of figure 5.470

In the cases of 7Be and 137Cs, it is important to note that the error decreases

with the number of intervals used. Indeed, for these long-lived radionuclides the

longer the time segment is and the later it begins, the easier it is to determine

their activities. As a result, the statistical error shown in figure 5 decreases

for 7Be and 137Cs. On the other hand, the error for short-lived radionuclide475

like 214Pb and 214Bi is stable from the first segments to the last ones, as their

contribution disappears from the spectra after 8 hours of measurement.

5. Application to experimental aerosol measurements

In this section, we analyse a real aerosol sample measurement. This sample

is composed of the exact same 11 time intervals we described in table 1 and il-480

lustrated in Fig. 1. To that purpose, we apply the proposed unmixing algorithm

with the ”Bateman” model, being the most realistic when out-of-equilibrium de-

cay series are likely to be present. The experimental protocol is exactly the same

as the one used in the simulations. The instrumentation and the radionuclides’

signatures are also the same as in the simulations, as described in Appendix485

A. The background used in the analysis has been measured with the same de-

tector a few weeks after the measurement of the sample, which is the standard

laboratory routine.

5.1. Multi-temporal spectral unmixing of an aerosol measurement

In this section, the analysis we performed is exactly the same as in the simu-490

lations. Consequently, Figure 6 depicts the evolution of the estimated activities

across the different time intervals for 7Be, 137Cs, 214Bi and 214Pb. In this figure,
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(a) 7Be (b) 137Cs

(c) 214Bi (d) 214Pb

Figure 6: The evolution of the estimation of 4 radionuclides’ activity. For 137Cs, the decision

threshold is indicated in dotted blue line.

the orange shaded area stands for the statistical error, which originates from the

Poisson statistics of the measurements (every errors and uncertainties are taken

at 2σ). It is similar to the uncertainty featured in 5. In the previous section495

(4) this error was computed thanks to Monte-Carlo simulations, this cannot be

done on real measurements as the true value of the activities are unknown. The

computation of the statistical variability of the estimator is done following the

work Xu et al. (2022a), which resorts to the inverse of the Fisher’s information

matrix of the estimator. If we focus on the estimation of 7Be and 137Cs, the500

statistical errors for simulations and the real data are similar (±10Bq for 7Be

and ±0.1Bq for 137Cs in the first segment and decreasing as more times seg-
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ments are added to the estimation) in both figures. For 214Pb and 214Bi the

statistical error small and stable from the first time segment to the last as the

activity of these short-lived radionuclides is estimated in the first segments and505

not affected by the last (the activity of 214Bi, for example, is divided by 512 af-

ter only 3 hours of measurement as its half life is 20 minutes). In conclusion we

can state that the statistical uncertainties behave similar to the ones measured

in the simulations.

510

Following Xu et al. (2022b), the other sources of uncertainty come from the

slight variation of the geometry of the sample, its placement on the endcap of

the detector, the calibration of the detector. It is represented by the blue shaded

area.

A first observation is that the estimated activities, in all time intervals, are com-515

patible with the last estimate within the total uncertainty budget. However, the

case of 137Cs is more peculiar as the estimated activity is about 0.6mBq in the

first time intervals, which is about 6 times higher than in the simulations. Fur-

thermore, in these time intervals the estimated activities are not compatible

with the final estimate, and also way beyond the detection threshold. This sug-520

gests that the estimated activity for 137Cs is significantly biased, at least for the

first day of measurements.

As this phenomenon is not observed in the simulations, it is very likely that

this originates from a deviation between the observed data and the model that

describes these data. This points to the accuracy of the simulated spectral525

signatures Φ and the background; both may deviate from the actual spectral

signatures and background. Indeed, in contrast to the other radionuclides dis-

played in Figure 6, 137Cs has a low level, and is likely to be me more impacted

by variabilities of the spectral signatures and the background signature.

5.2. Investigating the impact of the background level530

In this section, we propose a simple experiment to highlight the impact of

the background level on the estimated activities. For that purpose, rather than
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fixing the level of the background, it is estimated during the unmixing process.

The background is then described, as any radionuclide, with a spectral signature

that is added to the library of spectral signatures. A temporal signature is535

considered, based on the durations of the time intervals. The ”Bateman” model

now reads as:

∀s = 1, · · · , S; c = 1, · · · , c; xsc =
∑
n+1

anψsnϕnc + ϕ214Bi,cψ
(B)
s a214Pb (26)

Where ϕn+1 is the normalized background spectrum (i.e. corresponding

to a 1 second measurement), ψs,n+1 is equal to the duration of the s-th time

interval and an+1 is the level of the background. This model is called ”Free-540

background”. In the unmixing process, the update rules are similar to the ones

detailed in Section 3.

(a) 137Cs (b) Zoom on the last segments

Figure 7: The results for 137Cs with the background treated as a signature (and zoom on the

last 4 time segments). The error and decision threshold are depicted in light colour and dotted

line, respectively. The black dashed line is the last estimation by the ”Bateman” model.

Figure 7 shows the evolution in time of the estimated 137Cs activity for both

the standard ”Bateman” model and the ”Free-background”, where the back-

ground is estimated. This experiment shows that bias observed in the first time545

intervals is significantly reduced. The estimated activities during the three first
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hours of measurements are now consistent (with respect to the uncertainties)

with the final estimated activity. While being reduced, the discrepancy between

the final estimate and the ones between 3 hours and 1 day becomes prominent

as the statistical uncertainty decreases with time.550

The estimated activity of the background is largely superior to 1 on the first 4

segments (estimated to 30 on the 1st-segment-only estimation and decreasing

towards 1 between the 1st and the 8th segment).

This first highlights that letting free the background allows capturing some de-

viation between the data and the original, that could either come from some555

mis-modelling of the background or the radionuclides’spectral signatures. A

simple correction based on the background level is not enough, which suggests

that the shape of the spectral signatures should be estimated during the unmix-

ing process.

6. Conclusion560

In this article we introduced the full spectrum analysis on multiple spectra

which allows accounting for the temporal information of the activity decay in

time within the unmixing procedure. For that purpose, we introduce models

which are composed of a spectral dictionary and a temporal dictionary. The

former contains information about the detectors’ response in energy with re-565

spect to each radionuclide. The latter is composed of the time decay of each

of the radionuclide in the time intervals of the measurements. Two distinct

models have been considered: the first one assumes that all the radionuclides

are in equilibrium, while the second one allows taking care of parent/daughter

dependencies as described by Bateman’s equation. We further extended the570

multiplicative update algorithm to minimise the likelihood of the activities un-

der non-negativity constraints. The proposed algorithms and models have been

evaluated and validated on simulations of aerosol samples. These results show

that such a method should theoretically yield earlier results for the detection

of 137Cs, about one day and a half after sampling, while previous methods re-575
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quired about four days Xu et al. (2020). The proposed methods have been

applied to real measurements of multi-temporal aerosol samples. Though these

experiments show the applicability of multi-temporal unmixing for fast activity

estimation, the detection and quantification of low-level radionuclides requires

understanding the role played by the uncertainty with respect to the background580

and the radionuclides’ spectral signatures. Future investigations will focus on

modelling and correcting for these systematics.

Appendix A. Description of the experimental data

In the following, real aerosol filters are sampled in the environment with high

volume air samplers, and measured with a High Purity Germanium (HPGe) de-585

tector. The experimental set-up consists of a gamma-ray spectrometer with

a BEGe 5030 (Broad Energy Germanium, MIRION-Canberra) detector (crys-

tal dimensions: ∅ = 80mm, h = 30mm) and a DSA-1000 (MIRION-Canberra)

multi-channel analyzer based upon digital signal processing using 16384 chan-

nels for energies ranging from 20 keV to 1700 keV. The system has a relative590

efficiency of 61% and a resolution of 0.54 keV, 1.2 keV and 1.7 keV at 46 keV,

622 keV and 1460 keV, respectively. The detector is surrounded by a 5cm thick

lead shield, and equipped by an anti-cosmic set-up consisting in 5 scintillating

plastic plates (5 cm thick). Furthermore, the whole system is installed in a

shallow shielded room made of 10 cm lead bricks and internally lined by 5 mm595

oxygen-free copper, in the second basement of the laboratory, under 3 m bo-

rated concrete slab. Finally, the inner measurement chamber is flushed by the

gaseous nitrogen escaping from the liquid nitrogen dewar to reduce and stabilize

the radon induced background. The sampled aerosol filters are pressed into pel-

lets packaged in 10 mL cylindrical counting geometries (dimensions: ∅ = 52mm,600

h = 4.7mm) and measured directly on the detector endcap.

The modeling process of the measurement configuration (detector/counting

geometry) as well as the simulations performed to obtain the spectral signatures
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used by the spectra unmixing algorithms have been thoroughly described in Xu605

et al. (2022b). The background spectrum used in the unmixing is considered

as constant and perfectly known, and has been experimentally obtained by a

background measurement for 560 000 s.

.610
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