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The Riemann-Hilbert problem approach to the short pulse equation

We consider the adaptation of the inverse scattering transform method, in the form of a Riemann-Hilbert factorization problem, to the study of the Cauchy problem for the shortpulse equation

It is shown that the solution of this problem can be obtained, in a parametric form, for general initial data decaying at infinity. Soliton solutions are also presented in this framework, which can be described as multivalued functions in terms of the original space-time variables.

Introduction

It is well-known that for describing the slow modulation of the amplitude of a weakly nonlinear wave packet in a moving medium, the nonlinear Schrödinger (NLS) equation is one of the universal nonlinear integrable models. It has been used with great success in nonlinear optics to describe the propagation of sufficiently broad pulses, or slowly varying wave trains whose spectra are narrowly localized around the carrier frequency. However, high-speed fiber-optic communication demands ultra-short pulses. With this respect, certain technological progress for creating them has been achieved; but it is important that in these conditions, the description of the evolution of these pulses lies beyond the usual approximations leading to the NLS equation. Schäfer and Wayne [START_REF] Schäfer | Propagation of ultra-short optical pulse in nonlinear media[END_REF]6] proposed an alternative model to approximate the evolution of ultrashort intense infrared pulses in silica optics. After a scale transformation of variables, their short pulse (SP) equation can be written as

u xt = u + 1 6 (u 3 ) xx (1) 
with u = u(x, t) representing the magnitude of the electric field and subscripts x and t standing for partial differentiations. It was shown in [6] by numerical simulations that the SP equation is a success to describe pulses with broad spectrum. The SP equation is formally integrable: it is a compatibility condition for a pair of linear equations (the Lax pair). The attempts, known in the literature, of application to it of the inverse scattering transform method, relied on establishing end exploiting the relationship between the SP equation and other integrable equations (like the sine-Gordon equation, see [START_REF] Sakovich | Solitary wave solutions of the short pulse equation[END_REF]). But it turned out that such relations were rather complicated and implicit, which, in particular, makes it difficult to apply them for studying general initial value problems.

In the present paper we propose a direct approach to the problem of integration of the SP equation, which is based on applying the inverse scattering transform method, in the form of an associated Riemann-Hilbert (RH) problem, directly to the SP equation. This means that the construction of this RH problem is made in terms of dedicated solutions of the Lax pair equations associated directly to the SP equation.

1

Recall that in the inverse scattering method for solving initial value (Cauchy) problems for integrable nonlinear equations, which are compatibility conditions X t -T x + [X, T ] = 0 of a system of linear equations (the Lax pair)

Ψ x = XΨ, Ψ t = T Ψ,
where U and V rationally depend on a spectral parameter, is usually described as follows:

• given the initial data, solve the direct problem, i.e., determine the eigenfunctions as solutions of the x-equation in the Lax pair having well-controlled properties as functions of an auxiliary (spectral) parameter, as well as the associated spectral (scattering) functions;

• using the t-equation of the Lax pair, find the evolution (in t) of the spectral functions; usually, the evolution turns out to be quite simple and to have an explicit form;

• solve the inverse problem, i.e., the problem of determination of the coefficients in the x equation by the (time-dependent) spectral functions; these coefficients evolve in accordance with the nonlinear equation in question and thus give the solution of the Cauchy problem.

An efficient way to perform the last, the most difficult, step in this procedure is the formulation of the inverse problem as a Riemann-Hilbert factorization problem, where a vector-valued function of the spectral parameter (depending also on x and t as auxiliary parameters) varying in the whole complex plane is to be determined from a given jump of its values across a contour in this plane [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF]. In turn, the RH problem can be reduced to a system of linear singular integral and/or algebraic equations.

When applying the RH approach, a key point is the construction of the dedicated eigenfunctions with well-controlled behavior as functions of the spectral parameter. In order to achieve this goal, we begin with the transformation of the Lax pair equations to a form allowing us to control the behavior of their solutions at the singular points of the coefficients of these equations (section 2). In section 3, we construct the dedicated eigenfunctions, which are further used (section 4) for constructing the RH problem. In section 5 we show how to obtain the solution of a general Cauchy problem for the SP equation in terms of the solution of the associated RH problem. Finally, in section 6 we show how the pure soliton solutions can be obtained in terms of the solutions of systems of algebraic equations, to which the RH problem is reduced in this case.

Transformation of the Lax pair to a form allowing well-controlled behavior of eigenfunctions

The SP equation is known [START_REF] Sakovich | The short pulse equation is integrable[END_REF] to be a compatibility condition for the Lax equations

Φ x = XΦ Φ t = T Φ , (2) 
where X and T are 2 × 2 matrices dependent on the spectral parameter λ:

X = λ λu x λu x -λ , T =   λ 2 u 2 + 1 4λ λ 2 u 2 u x -1 2 u λ 2 u 2 u x + 1 2 u -λ 2 u 2 -1 4λ   . (3) 
In the present paper, our primary interest is to solve the Cauchy problem for equation [START_REF] Boutet De Monvel | Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line[END_REF], where u(x, 0) = u 0 (x),

x ∈ (-∞, ∞) is given. We assume that u 0 (x) is rapidly decaying as |x| → ∞, and we are looking for the solution u(x, t) of (1), which is also rapidly decaying as |x| → ∞, for any fixed t.

The coefficient matrices X and T in (3) have singularities at λ = ∞ and λ = 0. Therefore, the main problem in controlling the solutions as functions of λ is to control them as λ → ∞ and as λ → 0. Taking into account that u(x, t) → 0 as |x| → ∞, it is convenient to transform the Lax pair equations in such a way that:

• the main terms in the coefficients, as λ → ∞ and λ → 0, have a diagonal form;

• the other terms decay to 0 as |x| → ∞.

First, let us diagonalize X. The eigenvalues µ 1 (x, t; λ) and µ 2 (x, t; λ) of X are

µ 1,2 = ±λ 1 + u x 2 .
It is convenient to have P , which transforms X to the diagonal form,

P -1 XP = µ 1 0 0 µ 2 ,
such that P → E as |x| → ∞ (here E is the identity matrix). In this way we have

P = 1 1- √ 1+ux 2 ux √ 1+ux 2 -1 ux
1 and thus

P -1 = 1 + √ 1 + u x 2 2 √ 1 + u x 2 1 √ 1+ux 2 -1 ux 1- √ 1+ux 2 ux 1 .
Now introduce Φ: Φ = P Φ. Then the x-equation is transformed into: Φx = (P -1 XP -P -1 P x ) Φ, where

P -1 XP = λ 1 + u x 2 1 0 0 -1 ≡ λ 1 + u x 2 σ 3 , σ 3 is the Pauli matrix σ 3 = 1 0 0 -1 , and 
-P -1 P x = u xx 2(1 + u x 2 ) 1- √ 1+ux2 ux 1 -1 1- √ 1+ux 2 ux
.

The next transformation aims at making the λ-independent part of the coefficient to be off-diagonal, which is important when controlling the large-λ behavior of solutions. For this purpose, introduce Φ = P -1

1 Φ, where P 1 is some diagonal matrix to be specified below. Then the x equation takes the form Φx = (P -1 XP -P 1

-1 P -1 P x P 1 -P 1 -1 P 1x ) Φ. Denote U diag = -P 1 -1 (P -1 P x ) diag P 1 = = (P -1 P x ) diag = u xx (1 - √ 1 + u x 2 ) 2u x (1 + u x 2 ) E ≡ u 1 E,
where

u 1 = uxx(1- √ 1+ux 2 ) 2ux(1+ux 2 )
. Then we define P 1 = (P 1 ) 11 0 0 (P 1 ) 22 from the condition

-P 1 -1 P 1x + U diag = 0.
This gives

P 1 = p 1 E, p 1 = e x u 1 dy .
A direct calculation gives

x u 1 dy = x u yy (1 -1 + u y 2 ) 2u y (1 + u y 2 ) dy = - 1 2 ln |1 - √ 1 + u x 2 | 1 + √ 1 + u x 2 + 1 2 ln u x √ 1 + u x 2 + const
and thus

p 1 = ce ln 4 |1- √ 1+ux 2 | 1+ √ 1+ux 2 -ln ux √ 1+ux 2 = c 1 + 1 √ 1 + u x 2 .
It is conveniet to specify c in such way that P 1 → E as |x| → ∞. This gives c = 1 √ 2 and thus

P 1 = 1 + 1 √ 1+ux 2 2 E.
In this way, the x-equation takes the form

Φx = ( Û + Ũ ) Φ, (4) where 
Û = λ 1 + u x 2 1 0 0 -1 ; Ũ = u xx 2(1 + u x 2 ) 0 1 -1 0 .
Now let us see how the t-equation of the Lax pair will be transformed following the steps above. Direct calculations give the t-equation in the form

Φt = ( V + Ṽ ) Φ, where Ṽ = 1 √ 1 + u x 2 ( λ 2 u 2 + λu 3 x 6 u x ) 1 0 0 -1 + ( λu 3 x 6 + u 2 1 + u x 2 - - u xt 2 ) 0 -1 1 0 -( λ 2 u 2 + 1 4λ )u x 1 0 0 1 ; V = 1 4λ √ 1 + u x 2 1 0 0 -1 ≡ 1 4λ √ 1 + u x 2 σ 3 .
We emphasize that Ṽ → 0 as |x| → ∞. At this stage, the (transformed) Lax pair equations have the form

Φx = Û Φ + Ũ Φ Φt = V Φ + Ṽ Φ (5)
where Ũ , Ṽ → 0 as |x| → ∞. Now we notice that the leading, as λ → ∞, term in the x-equation in (5) depends on x and t through the function

q = 1 + u x 2 .
This fact has an important consequence that the large-λ asymptotics of a solution to this equation fixed by its large-x behavior (e.g., let Φ → e λxσ 3 as x → ∞) will differ from this, which complicates the problem of control of solutions as λ → ∞. Notice that a similar situation takes place, for instance, for the Camassa-Holm (CH) equation [START_REF] Boutet De Monvel | Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line[END_REF][START_REF] Boutet De Monvel | Long-time asymptotics of the Camassa-Holm equation on the line[END_REF] as well as for the short-wave limit of the CH equation [START_REF] Boutet De Monvel | The short-wave model for the Camassa-Holm equation: the Riemann-Hilbert approach[END_REF]. In order to cope with this problem, a new spatial variable is to be introduced, and the Lax pair ( 5) is to be rewritten in such a way that the non-decaying (as |x| → ∞) terms in the coefficients have the representation as

Φx = Q x + Ũ Φ Φt = Q t + Ṽ Φ ( 6 
)
where Q is a certain diagonal matrix, which is non-decaying as |x| → ∞, whereas Ũ and Ṽ both decay to 0 as |x| → ∞.

From the x-equation we have Û = Q x , which dictates the introduction of Q in the form

Q(λ; x, t) = λ x - ∞ x (q(y) -1)dy + C(t) σ 3 ,
where C(t) is to be determined. Then, taking into account the equality

q t = 1 2 (u 2 q) x ,
which is an equivalent form of the SP equation ( 1), the time derivative of Q can be written as

Q t =   -λ ∞ x 1 2 (u 2 q) y dy + C (t)   σ 3 = - 1 2 λu 2 q| ∞ x + C (t) σ 3 = = 1 2 λu 2 q + C (t) σ 3 .
Comparing this expression with V , we observe that V can be "corrected", by adding to it terms decaying to 0 as |x| → ∞ (and subsequently subtracting them from Ṽ ) in such a way that the resulting function will have the sought form

Q t provided C(t) is chosen appropriately. Setting C(t) := t 4λ and V := V + 1 4λ 1 - 1 q + 1 2 λu 2 q σ 3 ,
we arrive at the equation Φt = V Φ + Ṽ Φ, where

Ṽ = Ṽ - 1 4λ 1 - 1 q + 1 2 λu 2 q σ 3
and V has the required form: V = Q t . Thus we have arrived at the Lax pair equations in the form (6), where

Ũ = u xx 2(1 + u x 2 ) 0 1 -1 0 and Ṽ = 1 √ 1 + u x 2 [( λ 2 u 2 + λu 3 x 6 u x ) 1 0 0 -1 + ( λu 3 x 6 + u 2 1 + u x 2 - - u xt 2 ) 0 -1 1 0 -( λ 2 u 2 + 1 4λ )u x 1 0 0 1 + ( 1 4λ 1 q -1 - 1 2 λu 2 q) 1 0 0 -1 ]. Notice that Ũ , Ṽ → |x|→∞ 0,
and Q can be written as

Q = λx + t 4λ σ 3 ,
where a new spatial variable x has been introduced:

x := x - ∞ x ( 1 + u y 2 -1)dy. ( 7 
)
3 Dedicated eigenfunctions and spectral functions

Let us introduce the spectral parameter k: k = iλ; this will make the dependence on the spectral variable similar to that for the short-wave approximation of the Camassa-Holm equation [START_REF] Boutet De Monvel | The short-wave model for the Camassa-Holm equation: the Riemann-Hilbert approach[END_REF].

For the sake of simplicity, in what follows we will keep the same notations for all the functions of the spectral parameter, e.g.,

Q(x, t, k) = -ikx - t 4ik σ 3 .
Introducing ψ by Φ = ψe Q(x,t,k) , the Lax pair (6) reduces to

ψ x = [Q x , ψ] + Ũ ψ ψ t = [Q t , ψ] + Ṽ ψ (8) 
(here [•, •] denotes the matrix commutator). The Lax pair in the form ( 8) is convenient for determining dedicated solutions through the solutions of the associated Volterra integral equations, which are fixed by the appropriate choice of the initial point of integration:

ψ j (x, t, k) = E + (x,t) (x j ,t j ) e Q(x,t,k)-Q(y,t,k) ( Ũ (y, τ, k)ψ j (y, τ, k)+ + Ṽ (y, τ, k)ψ j (y, τ, k))e -Q(x,t,k)+Q(y,t,k) dydt. (9) 
Notice that the integration in the right-hand side does not depend on the integration path. Since Ṽ , Ũ → |x|→∞ 0, one can integrate from (-∞, t) and (+∞, t), taking the integration paths to be parallel to the x-axis; in this way, two solutions, ψ + and ψ -are determined:

ψ + (x, t, k) = E + x -∞ e Q(x,t,k)-Q(y,t,k) Ũ (y, τ, k)ψ + (y, τ, k)e -Q(x,t,k)+Q(y,t,k) dy (10) ψ -(x, t, k) = E - +∞ x e Q(x,t,k)-Q(y,t,k) Ũ (y, τ, k)ψ -(y, τ, k)e -Q(x,t,k)+Q(y,t,k) dy. (11) 
Notice that

Q(x, t, k) -Q(y, t, k) = -ikσ 3 x y 1 + u ξ 2 dξ
depends on t only through u(x, t).

Actually, the integral equations ( 10) and(11) determine the columns of ψ ± : -are analytic and bounded in the lower half-plane {k|Imk < 0}. Moreover, ψ

ψ 11 ψ 21 + ≡ ψ (1) + = 1 0 - ∞ x u yy 2 1 + u y 2 ψ 21 + -e -2µ ψ 11 + dy; ψ 12 ψ 22 + ≡ ψ (2) + = 0 1 - ∞ x u yy 2 1 + u y 2
-and ψ

(2) + are continuous in {k|Imk ≥ 0} and (ψ (1) -, ψ

(2) + ) → E) as k → ∞ in {k|Imk ≥ 0}. Similarly, ψ (1) 
+ and ψ

(2) -are continuous in {k|Imk ≤ 0} and (ψ

(1) + , ψ (2) 
-) → E) as k → ∞ in {k|Imk ≤ 0}.
Notice also that since tr Ũ = tr Ṽ = 0, we have det Φ± ≡ 1 for those k where the whole matrices are determined. In general, this holds for k ∈ R.

For k ∈ R, the matrix functions Φand Φ+ , being solutions of the both differential equations in [START_REF] Brunelli | Hamiltonian integrability of two-component short pulse equations[END_REF], has to be related by multiplication on a matrix independent of x and t. This suggests introducing the spectral (scattering) matrix S(k) as follows:

Φ+ (x, t, k) = Φ-(x, t, k)S(k), k ∈ R, (12) 
or, in terms of ψ,

ψ + (x, t, k) = ψ -(x, t, k)e Q(x,t,k) S(k)e -Q(x,t,k) , k ∈ R. ( 13 
)
Lemma 2 The spectral matrix S(k) can be written as:

S(k) = a(k) b(k) -b(k) a(k) , k ∈ R, (14) 
where a(k) = a(-k), b(k) = b(-k) (bar means the complex conjugation).

To show this, we notice, that the coefficient matrix

Û = Q x + Ũ = -ikq 1 0 0 -1 + u xx 2 √ 1 + u x 2 1 0 0 -1
satisfies the symmetry conditions:

Û (•, •, k) = Û (•, •, -k) = 0 -1 1 0 Û (•, •, k) 0 1 -1 0 .
Taking into account that the boundary conditions for Φ(x, t, k) satisfy these symmetries as well, we have that

Φ(k) = Φ(-k) = 0 -1 1 0 Φ 0 1 -1 0
and thus

S(k) = S(-k) = 0 -1 1 0 S(k) 0 1 -1 0 ,
from which (14) follows.

Notice that the spectral functions a(k) and b(k) can be written in terms of determinants of matrices constructed from the respective vector eigenfunctions:

a(k) = det(ψ (1) -, ψ (2) + ), (15) b 
(k) = e 2i(kx-t 4k ) det(ψ (2) 
-, ψ

+ ). ( 16)

From ( 13) it follows that a(k) and b(k) are determined by the initial data u(x, 0) through the associated solutions ψ ± for t = 0. The representations (15) and ( 16) imply that

• a(k) is analytic in {k|Imk > 0} and continuous in {k|Imk ≥ 0}; moreover, a(k

) → 1 as k → ∞; • b(k) is continuous on k ∈ R and b(k) → 0 as k → ∞; • det S(k) = 1 and thus |a(k)| 2 + |b(k)| 2 = 1 for k ∈ R.
• Let {k j } N j=1 be the set of zeros of a(k) : a(k j ) = 0, j = 1, . . . , N . Then ψ

-(x, t, k j ) and ψ

(2) + (x, t, k j ) are linearly dependent; moreover,

ψ (1) -(x, t, k j ) = e 2i(k j x-t 4k j ) ψ (2) + (x, t, k j )χ j
with some constants χ j .

Piecewise analytic matrix solutions and the Riemann-Hilbert problem

In order to formulate the Riemann-Hilbert problem involving the eigenfunctions discussed above, these eigenfuctions must be grouped in such a way that they constitute matrices analytic either in the upper or in the lower half-plane of the spectral parameter. Having this in mind, the scattering relation ( 12) is rewritten as

( Φ(1) -, Φ(2) + ) = ( Φ(1) + , Φ(2) -) Ŝ(k), k ∈ R, (17) 
where Ŝ(k) is expressed in terms of the spectral functions a(k) and b(k) as follows:

Ŝ(k) = 1 a b a b a 1 a = 1 a 1 b b 1 .
In terms of ψ, relation (17) takes the form:

(ψ (1) 
-, ψ

+ ) = (ψ

(1) + , ψ (2) 
-)e -i(kx-t 4k )σ 3 Ŝ(k)e i(kx-t 4k )σ 3 , k ∈ R. ( 18 
)
Now we notice that det Ŝ

(k) = 1 a 2 (1 -bb) = 1 a 2 (1 -|b| 2 ) = |a| 2 a 2 = a a .
On the other hand, det (ψ

(1) -, ψ (2) 
+ ) = a(k) and det(ψ

(1) + , ψ (2) 
-) = a( k). In order to have the relating spectral matrix unimodular, the scattering relation ( 18) is modified as follows.

Introduce a piecewise (respective to R) meromorphic, matrix-valued function M :

M (x, t, k) :=        ψ (1) -(x,t,k) a(k) , ψ (2) 
+ (x, t, k) , Imk > 0

ψ (1) + (x, t, k), ψ (2) 
-(x,t,k) a(k) , Imk < 0 . ( 19 
)
By construction, this function has the following properties:

• M → E as k → ∞ and det M ≡ 1;

• The limiting values M ± of M , when k approaches the real line, are related by the following jump condition:

M -(x, t, k) = M + (x, t, k)e i(kx-t 4k )σ 3 J(k)e -i(kx-t 4k )σ 3 , k ∈ R, (20) 
where the jump matrix J(k) can be expressed in terms of a(k) and b(k):

J(k) = 1 b(k) ā(k) b(k) a(k) 1 a(k)ā(k)
.

• M satisfies the symmetry conditions:

M (•, •, k) = M (•, •, -k) = 0 -1 1 0 M (•, •, k) 0 1 -1 0
• The poles of M are located at zeros k j , j = 1, N of the spectral function a(k) for Imk > 0 and at k j , j = 1, N for Imk < 0; assuming that the zeros are simple, the following residue conditions hold:

     Res k=k j M (1) (x, t, k) = ω j e j (x, t)M (2) (x, t, k j ) Res k=k j M (2) (x, t, k) = -ω j ẽj (x, t)M (1) (x, t, k j ) (21) 
where e j = e 2i(k j x-t 4k j

) , ẽj = e 2i( kj x-t 4 kj

)

, and ω j are some constants (actually, ω j = χ j a 1j , where a 1j = da dk (k j )). Notice that due to the symmetry conditions, if a(k * ) = 0 for some k * , then a(-k * ) = 0 as well.

Summarizing, we have arrived at the following Proposition 3 Let u(x, t) be the solution of Cauchy problem for the SP equation ( 1) with the initial conditions u(x, 0) = u 0 (x), where u 0 (x) decays to 0, sufficiently fast, as |x| → ∞. Construct the solutions ψ ± of the integral equations ( 10), (11) and determine the spectral functions a(k) and b(k) as well as the the discrete set {k j , ω j } from (15) and ( 16). Construct the matrix-valued function M by ( 19). Then M can be characterized as the unique solution of the following factorization problem of the Riemann-Hilbert type: given J(k), k ∈ R and {k j , ω j }, j = 1, . . . , N , construct a piecewise meromorphic function M , depending on x and t as parameters, which satisfies the jump condition (20), the residue conditions (21), and the normalization condition M (•, •, k) → E as k → ∞. The data for which are completely determined by u 0 (x) in terms of the associated spectral functions.

Solution of the SP equation in terms of the solution of the RH problem

In the previous section, we have shown that given the initial data for the Cauchy problem for the SP equation, one can characterize the eigenfunctions of the associated Lax pair operators through a solution of the associated Riemann-Hilbert problem. A specific feature of this characterization is that it is given in terms of the modified spatial variable x. Indeed, the jump matrix as well as the residue conditions for the RH problem have explicit dependence on x and t. A natural question arises: how to retrieve, from the solution of this RH problem, the sought solution of the SP equation in the original variables (x, t)? For this purpose, we propose to analyze the Lax pair and its solutions as k approach 0. This approach is suggested by the fact that the x-equation in the original Lax pair (2) becomes trivial for k = 0 (which corresponds to λ = 0). Let us rewrite the original Lax pair equations (2) in the following form:

           Φ x + ikσ 3 Φ = -iku x 0 1 1 0 Φ; Φ t + 1 4ik σ 3 Φ = -ik 2 u 2 σ 3 -ik 6 (u 3 ) x 0 1 1 0 + u 2 0 -1 1 0 Φ (22)
and notice that the right-hand sides in (22) decay to 0 as |x| → ∞. Introduce ψ 0 by Φ = ψ 0 e Q 0 , where

Q 0 = -ikx + t 4ik σ 3 .
Then we have (Q 0 ) x = -ikσ 3 and (Q 0 ) t = -1 4ik σ 3 and thus the x-equation can be written in the form involving the commutator:

(ψ 0 ) x = -ik[ψ 0 , σ 3 ] -iku x 0 1 1 0 ψ 0 .
Then, arguing in similar way as in the case of the analysis for large k, see section 2, we define two eigenfunctions, ψ ± 0 , fixed by its behavior as x → ±∞, through the solutions of the associated Volterra integral equations:

ψ + 0 (x, t, k) = E + ik ∞ x
e ik(y-x)σ 3 u y 0 1 1 0 ψ + 0 e -ik(y-x)σ 3 dy,

ψ - 0 (x, t, k) = E -ik x -∞
e ik(y-x)σ 3 u y 0 1 1 0 ψ - 0 e -ik(y-x)σ 3 dy.

Now we notice that the solutions of the systems ( 22) and ( 6) must be related to each other, because these systems are related through the transformations presented in section 2. Indeed, following these transformations (i.e., the multiplications by P and by P 1 ) and taking into account the behavior of the related functions as x → ±∞, we arrive at Lemma 4 The solutions ψ ± 0 and ψ ± of respectively ( 22) and ( 6) are related as follows: 1) 0 (x, t, k)e -ik(x-x(x,t))+ikα , ψ

(ψ -(1) (x, t, k), ψ +(2) (x, t, k)) = P -1 (x, t) ψ -(
+(2) 0 (x, t, k)e ik(x-x(x,t)) ,
where α = ∞ -∞ ( 1 + u 2 ξ -1)dξ and

P = 1 √ 2 1 + 1 1 + u 2 x   1 1- √ 1+u 2 x ux - 1- √ 1+u 2 x ux 1  
(notice that α is independent of t, and the equation for α is a conservation law for the SP equation).

Now we are going to take advantage of the fact that (22) becomes trivial for k = 0, which yields ψ ± 0 (x, t, 0) = E. Moreover, the Taylor expansions for ψ ± 0 for small k give the following:

• ψ + 0 (k) = E + ik ∞ x u y e ik(y-x) 0 0 e -ik(y-x) 0 1 1 0 e -ik(y-x) 0 0 e ik(y-x) dy + O(k 2 ) = = E + ik ∞ x u y 0 e 2ik(y-x) e -2ik(y-x) 0 dy + O(k 2 ) = = E -ik 0 1 1 0 u(x) + O(k 2 ). • similarly, ψ - 0 (k) = E -ik 0 1 1 0 u(x) + O(k 2 ).
6 Soliton solutions of the SP equation

In the general case, solving the Riemann-Hilbert problem reduces to solving a coupled system of integral equations (generated by the jump condition) and algebraic equations (generated by the residue conditions). In this framework, pure soliton solutions arise in the case where the jump condition is trivial (the jump matrix equals the identity matrix) and thus the solution of the RH problem, being a rational function of the spectral parameter, reduces to solving a system of algebraic equations only. The dimension of this system is determined by the number of poles. Consider the simplest case with N = 1, i.e., the case where a(k) has a single zero in the upper half-plane (which, due to the symmetry conditions, must lie on the imaginary axis). Denote this zero by iν; thus M has two simple poles: one at k = iν and the second one at k = -iν. Then from the normalization condition it follows that M has the form

M = k-B 11 k-iν B 12 k+iν B 21 k-iν k-B 22 k+iν
, where B ij are functions of x and t to be determined from the residue conditions.

Using the symmetry condition 

M (-k) = M (k) we conclude that B ij = -B ij , i, j ∈ {1, 2} whereas the symmetry M (-k) = 0 1 -1 0 M (k) 0 -1 1 
M = k-ib 1 k-iν ib 2 k+iν ib 2 k-iν k+ib 1 k+iν . (25) 
Denoting e := e -2(ν x+ t 4ν ) and ω = iγ, γ ∈ R, the residue conditions take the form    Res k=iν M (1) = iγeM (2) (iν)

Res

k=-iν M (2) = iγeM (1) (-iν) .

Taking into account (25), these conditions lead to the system of equations for b (26)

Thus we have solved the RH problem. In accordance with Theorem 6, we expand M (•, •, k) as k → 0, which gives

M (k) = b 1 ν + ik ν-b 1 ν 2 b 2 ν + ik b 2 ν 2 -b 2 ν + ik b 2 ν 2 b 1 ν + ik b 1 -ν ν 2 + O(k 2 ).
Particularly,

M (0) = b 1 ν b 2 ν -b 2 ν b 1 ν
and thus

M (0) -1 M (k) = E -ik 1 ν -b 1 b 2 1 +b 2 2 -b 2 b 2 1 +b 2 2 -b 2 b 2 1 +b 2 2 b 1 b 2 1 +b 2 2 -1 ν + O(k 2 ).
Taking into account (24), we arrive at Theorem 7 One-soliton solutions u(x, t) of the short-pulse equation ( 1) can be expressed, in a parametric form, as follows: u(x, t) = -4γe(x, t) 4ν 2 + γ 2 e 2 (x, t) ,

x(x, t) = x + 1 ν 4ν 2 -γ 2 e 2 (x, t) 4ν 2 + γ 2 e 2 (x, t) -1 , where e(x, t) = e -2(ν x+ t 4ν ) , and ν > 0 and γ ∈ R are the soliton parameters.

We notice that the one-soliton solution described above is a multivalued function having the form of a loop. In the variables (x, t), the soliton is a regular function, see Figure 1, but the fact that the change of variables x → x is not monotone (Figure 2) leads to the multivaluedness in the variables (x, t). For instance, if we take the parameters to be ν = 1 2 and γ = -1, then u(x, t) = 4e 1 + e 2 = 2 cosh(x + t) ,

x -x(x, t) = 2 1 -e -1 -e e -1 + e = 2(1 -tanh(x + t))

and thus we retrieve the formulas for the soliton solution presented in [START_REF] Sakovich | Solitary wave solutions of the short pulse equation[END_REF], where they were obtained using the connection between the short-pulse equation and the sine-Gordon equation; it is shown in Figure 3. 

e 2µ ψ 22 +u y 2 e 2µ ψ 22 - 1 + 1 +

 2222211 u ξ 2 dξ.The representation of the solutions of the equations above in terms of the convergent Neumann series implies that Lemma The colunms ψ are analytic and bounded in the upper half-plane {k|Imk > 0}. The colunms ψ

  0 implies that B 11 = -B 22 and B 12 = B 21 . Introducing the real-valued functions b 1 and b 2 so that B 11 = -B 22 = ib 1 and B 12 = B 21 = ib 2 , M can be written as

1 and b 2 :iν -ib 1 = iγe b 2 2νib 2 = iγe ν+b 1 2νfrom which b 1 and b 2 are determined: b 1 = ν(4ν 2 -γ 2 e 2 ) 4ν 2 + γ 2 e 2 , b 2 = 4ν 2 γe 4ν 2 +

 212211222222 γ 2 e 2 .

Figure 2 :2

 2 Figure 2: Dependence of x on x
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• a(k) = det(ψ

+ ) = det( P -1 ψ -( 1) 0 e -ik(x-x) e ikα , P -1 ψ

Therefore, for M + (x, t, k) = ( ψ - (1) a(k) , ψ +(2) ) we have:

Particularly, M (x, t, 0) = P -1 (x, t).

Thus we have proved the followng

Lemma 5 The solution M (x, t, k) of the Riemann-Hilbert problem from Proposition 3 has the following behavior as k → 0:

Taking into account the definition of the spatial variable x in terms of the original variables x and t, see [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF], Lemma 5 provides means for expressing the solution of the Cauchy problem for the SP equation in terms of the solution of the associated Riemann-Hilbert problem.

Theorem 6 The solution u(x, t) of the Cauchy problem for the SP equation ( 1) with the initial data u(x, 0) = u 0 (x), where u 0 (x) decays rapidly as |x| → ∞, can be expressed as follows:

• setting u = u 0 (x) in the coefficients of the integral equations ( 10) and (11), determine the solutions ψ ± (x, 0, k);

• from the scattering relation (13) taken at t = 0, determine the spectral functions a(k) and b(k) as well as the discrete set {k j , γ j };

• construct and solve, for M (x, t, k), the Riemann-Hilbert problem (20), (21).

• evaluating the solution M (x, t, k) for small k, determine the matrix-valued function

• then u(x, t) can be expressed in terms of the entries of F , in a parametric form: u(x, t) = û(x(x, t), t), where û(x, t) = f 12 (x, t),

x(x, t) = x + f 11 (x, t).

(24)