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ARTICLE OPEN

Connector theory for reusing model results to determine
materials properties
Marco Vanzini1,2,3, Ayoub Aouina1,3, Martin Panholzer 1,3,4,5, Matteo Gatti1,3,6 and Lucia Reining 1,3✉

The success of Density Functional Theory (DFT) is partly due to that of simple approximations, such as the Local Density
Approximation (LDA), which uses results of a model, the homogeneous electron gas, to simulate exchange-correlation effects in
real materials. We turn this intuitive approximation into a general and in principle exact theory by introducing the concept of a
connector: a prescription how to use results of a model system in order to simulate a given quantity in a real system. In this
framework, the LDA can be understood as one particular approximation for a connector that is designed to link the exchange-
correlation potentials in the real material to that of the model. Formulating the in principle exact connector equations allows us to
go beyond the LDA in a systematic way. Moreover, connector theory is not bound to DFT, and it suggests approximations also for
other functionals and other observables. We explain why this very general approach is indeed a convenient starting point for
approximations. We illustrate our purposes with simple but pertinent examples.

npj Computational Materials            (2022) 8:98 ; https://doi.org/10.1038/s41524-022-00762-2

INTRODUCTION
Computational materials design1–3 is complicated by the complex-
ity of materials and by interaction effects. This hampers both
calculations and understanding. The fundamental problem lies in
the fact that the effects of the Coulomb interaction and of the
specific material cannot be separated. Otherwise, one could
calculate the interaction contributions once and for all, store them
and add them every time a new material is calculated. This is an
unreachable dream, but it still indicates an intriguing direction of
thinking: in some model systems the effects of the Coulomb
interaction can be treated exactly, or at least to a much better
extent than in real systems, and attempts to use model results in
order to approximately simulate interaction effects in real
materials are widespread. The most prominent example is the
local density approximation (LDA) to the exchange-correlation (xc)
energy whose functional derivative is the Kohn–Sham (KS) xc
potential vxc(r; [n]) of density functional theory (DFT)4. The exact
potential is unknown in most real materials. The LDA replaces
vxc(r; [n]) at a point r by its value in a homogeneous electron gas
(HEG) that is calculated at the density n(r) of the real system in the
same point r. In this way, DFT profits from the existence of
tabulated and interpolated Quantum Monte Carlo (QMC) results5.
Similarly, dynamical mean field theory in the single site
approximation takes the effective local self-energy from the
Anderson impurity model, and although in this case results have
not been tabulated, the procedure has enabled a realistic
description of correlated materials6.
However, in spite of numerous studies and attempts4,7–44 it is

very difficult to go beyond these simple schemes. One reason is
that the very fact of using results of the models is considered as an
approximation from the start. This, however, is not inevitable. In
the present work, we pose the following questions: Can one
exactify the idea of re-using results from one system, for example
a model, to describe another system? If yes, under which

conditions? And does this suggest strategies for systematic
approximations? Our answer, termed connector theory (COT), is
an in principle exact connection between different systems, which
is used as starting point to find good approximations in practice.
As we will illustrate, it is a promising tool to design functionals, for
example within DFT. It is, however, much more general than just
density functionals and can be used to design other functionals,
and also to speed up calculations.

RESULTS
From the LDA to an exact xc potential
In order to face this challenge, let us first analyze the LDA from the
connector point of view. This seemingly simple approximation is
probably one of the main reasons for the early success of DFT.
Thanks to the LDA, many thousands of ground state calculations
could be performed in the KS scheme without ever recomputing
the exchange-correlation energy: indeed, the really involved
calculation was done once and forever using QMC, in the HEG.
In the LDA, these results are then used over and over again, for all
materials. This constitutes an invaluable gain. Of course, the idea
requires a prescription of how to use the HEG results.
The simple prescription given by the LDA reads vLDAxc ðr; ½n�Þ

¼ vhxcðnhr Þ, where nhr ¼ nðrÞ. In other words, one supposes that the
xc potential of a material in a point r takes the same value as vhxc in
a HEG with a density nhr . Note the subscript r, which indicates that
for every point in which the potential is to be determined, one
may choose a different homogeneous density nh. The LDA makes
the guess that a reasonable choice for the homogeneous density
that represents the material in r is n(r), its local density.
Probably, both the power and the limitation of the LDA stem from

the fact that it is based on Kohn’s ingenious intuition of
nearsightedness4,45,46, where the xc potential in a given point
doesn’t know about the density elsewhere. This hypothesis not only
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leads to a very simple prescription, it also justifies why results for the
HEG can be used at all for systems that are extremely inhomoge-
neous, such as atoms: differences away from the point of interest are
supposed to have no influence at all. The shortcoming, however, is
that the hypothesis of nearsightedness gives no a priori clue of how
to do better than the LDA, and straightforward attempts such as the
first gradient corrections were not conclusive. Successful sugges-
tions for better xc potentials were rather based on the fitting of
parameters to known results47,48, or, most importantly, on the use of
exact constraints18–22. One such attempt, which is may be the
closest to our work, is the Weighted Density Approximation (WDA),
where the sum rule on the xc hole was imposed in order to replace
the local density by a suitably averaged one11–15. Along the same
lines, one also finds the Average Density Approximation11,14 (ADA).
However, while capable to overcome the failure of the LDA to
describe image potential effects49, also the WDA and ADA did not
lead to more systematic developments and are rarely used today.
Still, these approaches based on averaged densities were

pioneering and suggest an interesting question: which homo-
geneous density nhr would represent the real system best in each
point r, and could one even find a prescription where vhxcðnhr Þ
exactly equals the xc potential of the real material? We know that
vhxcðnhÞ as a function of nh takes values spanning a range of all
negative real numbers. This means that as long as the xc potential
of the real system is negative in a given point, it equals the xc
potential of the HEG with a specific, though unknown, homo-
geneous density ncr :

vxcðr; ½n�Þ ¼ vhxcðncrÞ : (1)

In other words, the task to find vxc(r; [n]) can be reformulated as
the task to find ncr ½n�. This quantity, which is itself a functional of
the density, is the prescription of how to use the HEG in order to
represent the real system: we call it the connector. The exact
connector reads

ncr ½n� ¼ ðvhxcÞ
�1ðvxcðr; ½n�ÞÞ : (2)

Since vhxc is a monotonic function the inversion poses no problem.
There are, however, two issues with these equations: first, Eq. (1) has
no solution when the xc potential of the real system is positive. This
is not the usual case, but it can happen in certain points in some
systems; for example the xc potential of some linear molecules builds
up a positive bump upon dissociation, see, e.g.,50–55. We will discuss
in Sec. Generalization how to potentially face the problem. Second,
Eq. (2) is our exact starting point, but it cannot be used in practice,
because it expresses the connector in terms of the xc potential of the
real system, which is the unknown that we are looking for. However,
having an in principle exact relation is extremely precious, since it
allows one to make controlled approximations.
For this, let us formulate the problem differently: the function

vhxcðnhÞ is a more compact representation of vxcðr; ½n�Þjnð~rÞ¼nh , the
functional vxc restricted to the domain of homogeneous densities.
In other words, we could have equally expressed Eq. (1) as

vxcðr; ½~n�Þj~nð~rÞ¼nð~rÞ ¼ vxcðr; ½~n�Þj~nð~rÞ¼ncr
: (3)

the equation requires that the functional vxc takes in each point r
the same value for at least two different density distributions,
namely, for the nð~rÞ of interest and for some homogeneous
density of value ncr . The same functional appears on both sides of
the equation, we only restrict the domain of allowed densities on
the right side. Therefore, one can expect that by making the same
approximation on both sides, a similar error is made, which means
that we can benefit from massive error canceling if we determine
an approximate connector

nc;approxr ½n� ¼ ðvh;approxxc Þ�1ðvapproxxc ðr; ½n�ÞÞ : (4)

With the approximate connector being close to the exact one,
the connector approximation for the xc potential defined as

vcxcðr; ½n�Þ ¼ vhxc nh ¼ nc;approxr ð½n�Þ� �
(5)

can yield good results since vhxcðnhÞ is a smooth function. Note that
in Eq. (5) the HEG potential vhxc appears without approximation,
which is a crucial point, as it allows us to benefit from the
knowledge encoded in the model.
Of course, such an approximate xc potential is not, in general,

the functional derivative of an energy functional Exc. There are
various ways to reconstruct an energy functional starting from
some vapproxxc , leading to different results that may have problems
such as a lack of translational or rotational invariance, see, e.g.,
refs. 56–58. Using COT, one might think to explore Eapproxxc �R
dr nðrÞϵhxcðnc;approxr Þ with ϵhxc the energy density per particle of the

HEG. Again, vhxcðnc;approxr Þ will in general not be the functional
derivative of this Eapproxxc . Moreover, the exact connector for ϵxc is
not the same as the exact connector for vxc: the connector is in
general different for every object of interest (see also Eq. (11)
below). Hence, it is not obvious that a nc;approxr which yields a good
approximation for vxc also yields a good approximation for Exc.
Exploring total energies using COT is therefore a topic on its own,
which goes beyond the scope of the present work.
Let us now come back to vxc and formulate a concrete proposal

for a connector approximation. A potentially useful approximate
connector functional for vxc involves an approximation for which
both vhxc and vh;approxxc are known. Here we explore the choice of a
first-order expansion around a given homogeneous density4,59n0
as approximation in Eq. (4). The approximated potentials in the
real and in the homogeneous system read, respectively:

vapproxxc ðr; ½n�Þ ¼ vhxcðn0Þ þ
R
dr0ðnðr0Þ � n0Þf xcðjr� r0j; n0Þ

vh;approxxc ðnhÞ ¼ vhxcðn0Þ þ ðnh � n0Þf hxcðn0Þ ;
(6)

where f xcðjr� r0j; n0Þ ¼ δvxcðr; ½n�Þ=δnðr0Þjn¼n0 is the static non-
local xc kernel of the HEG with density n0, and f hxcðn0Þ ¼
dvhxcðnhÞ=dnh

��
nh¼n0

is its limit of zero wavevector, which corre-
sponds to the case where variations are restricted such that the
density remains homogeneous, i.e., we remain within the
parameter space given by the model. The approximate connector
of Eq. (4) is obtained by equating the two expressions, and solving
for nh. The solution is

nc;approxr ð½n�Þ ¼ 1

f hxcðn0Þ

Z
dr0 nðr0Þf xcðjr� r0j; n0Þ : (7)

This is then used to obtain vcxc according to the prescription of
Eq. (5). For a density of the real system that varies slowly on the
scale of spatial decay of f xcðjr� r0jÞ the connector tends to
nc;approxr ð½n�Þ ¼ nðrÞ, the LDA, which is exact in the limit of
slowly varying density4. This is therefore a systematic way to
derive the LDA. For a very quickly varying periodic density the
connector nc,approx tends to the mean density, as one would
expect. This limit is missed by the LDA. The approximate
connector interpolates between the two limits: ncr displays the
degree of nearsightedness of the xc potential.
For the fxc of the HEG, parametrized data are available60,61.

Equation (7) is one of our major results: vcxcðr; ½n�Þ ¼ vhxcðnc;approxr ½n�Þ
is a truly non-local density functional. It benefits from the
knowledge of both vxc and fxc in the HEG, i.e., from high-level
calculations that were performed once and for all in this model. It is
therefore perfectly in line with our goal to build functionals
containing pre-calculated complex ingredients, similarly to con-
structions using complex Lego pieces instead of simple bricks.
The linear approximation depends on the homogeneous

density n0 around which we expand. This density may be chosen
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to be a different one for every point r where we calculate the
potential. To focus on the improvement with respect to the LDA,
in the following we choose for n0 the local density n(r), i.e., the
direct approximation is a first-order expansion around the LDA. In
principle, n0 can be further optimized, but this simple choice suits
the purpose of the present paper.
We will now examine to which extent our functional can

correctly describe non-local effects. The exact xc potential is of
course not known, and the search for a simple but reliable KS
exchange-correlation potential vxc(r; [n]) beyond the LDA is still a
subject of intense research (see e.g.,11–22,62–66). This makes a direct
benchmarking of the improvement of our functional with respect
to the LDA difficult. We therefore take an established non-local
functional as target, and we will do all approximations and
calculations consistently with respect to this functional. It is
important to note that the aim is not to elucidate the quality of
the target functional, but to use it as benchmark for the connector
approach. In particular, we will show how the connector yields the
LDA in the simplest approximation, and how well it can capture
non-local effects beyond the LDA in a systematic way.
We choose as target functional an expression based on the

WDA of the xc hole nxc11–14, with the weight function proposed in
ref. 15. The xc energy reads

EWDA
xc ½n� ¼

Z
drdr0

nðrÞnðr0Þ
2jr� r0j Cð~nðr; r

0ÞÞ 1� e
�λð~nðr;r0 ÞÞ
jr�r0 j5

� �
; (8)

with ~nðr; r0Þ ¼ ½nðrÞ þ nðr0Þ�=2 as in ref. 49 and the Coulomb
interaction 1=jr� r0j appearing at two places, as factor in the
integral and in the exponent to the fifth power. The functions C
and λ are set by the sum rule

R
dr0nxcðr; r0 � rÞ ¼ �1, and by

making Exc exact in the HEG. The functional derivative of EWDA
xc

with respect to the density yields the exchange-correlation
potential vWDA

xc that is given in the Supplementary Note 1, together
with the functions C and λ. Our aim is to approximate this
potential for a given density.
We take as density of the ‘real system’ the periodic density

nðrÞ ¼ A cosða � rÞ þ B, with reciprocal lattice vector a and
parameters A and B. Here a and the maximum density correspond
to the case of solid argon. This yields the target potential vWDA

xc
shown in Fig. 1. It is negative for all systems examined in our work,
so it can in principle be reproduced by vhxc. We suppose now that
this target potential is unknown (as it is the case for the exact xc
potential), but that we are able to evaluate it in some
approximation.
Before we come to the approximation proposed in Eq. (7), let us

make a more drastic approximation, namely, we cut the Coulomb

potential 1=jr� r0j in Eq. (8) to zero beyond a distance rc. This
cutoff now appears as limit of the integral boundaries in Eq. (8)
and in the corresponding vWDA

xc . For rc→ 0 the integral vanishes.
For illustration we take rc= 0.1 a0, <2% of the unit cell length. This
rc yields an almost vanishing vapproxxc , which is of course very
different from the exact result. Now we follow instead the
connector scheme, using the same approximation for both vapproxxc
and vh;approxxc in Eq. (4). The resulting connector density nc;approxr is
very close to the local density and the connector result for the xc
potential, vcxc obtained from Eq. (5) and shown in Fig. 1, tends to
the LDA. This is a huge gain. The physical reason is that we do not
apply the approximation to the potential, but only to the way the
potential in a given point ‘sees’ the environment, limiting it, for
rc→ 0, to the environment close to the point r where the potential
is calculated. We therefore obtain a much more meaningful result.
The huge improvement of the final connector result with respect
to the approximation applied directly to vxc makes the LDA a
prototype illustration for the power of the connector approach.
Still, the LDA has significant errors especially in regions of low

density, because the approximation is too crude. In principle one
could remedy by increasing the range of the Coulomb interaction,
going systematically toward the exact result. However, this
approximation would be of limited practical interest. Instead, we
will now test our approximation Eq. (7). Although the numerically
exact static fxc is known in the HEG, in order to be consistent
within our benchmark framework, here we use the WDA fWDA

xc for
homogeneous densities67, which is derived from vWDA

xc and given
in the Supplementary Note 1.
Let us first look at the performance of the linear approximation

itself, used directly on the potential (first line of Eq. (6)). The
comparison in Fig. 1 shows that the WDA potential is well
described by the direct linear approximation vapproxxc in regions of
high density (large ∣vxc∣), but not where the density is low. We now
move on to the connector scheme, and first examine the
connector density ncr given by Eq. (7) and shown in Fig. 2 for
the same periodic system as above. The connector density that
yields the LDA is simply ncr ¼ nðrÞ, the density itself, which has its
minimum in the middle of the unit cell. The exact WDA connector
nc;WDA
r ¼ ðvh;WDA

xc Þ�1ðvWDA
xc ðr; ½n�ÞÞ spans a smaller range of values

than the local density, confirming that it represents an effective
density that is suitably averaged over a range around the local
density. It is far from trivial, even in this simple system: where the
density is very low, the exact connector WDA shows a bump,
which is a feature that would not be easy to guess. One may
explain it with the fact that in regions of low density the system is
more far-sighted, which, in the present system, mixes in more of
the higher densities, and with the non-monotonic distance
dependence of effective interactions, such as fWDA

xc . The approx-
imate connector density, evaluated according to Eq. (7) with WDA

Fig. 1 Target WDA xc potential, and approximations, for a system
with periodic density. Target vWDA

xc ðr; ½n�Þ (red line). Coulomb cutoff
at short-range (s.-r.): direct approximation (dotted green) and used
via the connector (dotted green with filled circles); linear expansion:
direct approximation (blue dashed) and used via the connector
(blue dashed with filled circles); LDA (yellow line). Minimum and
maximum densities are 0:0402 a�3

0 and 0:3776 a�3
0 , reciprocal lattice

vector a ¼ 0:93 a�1
0 .

Fig. 2 Comparison of connector densities. Exact WDA connector
nc;WDA
r (red line), connector based on a linear expansion in the

density as given by Eq. (7) (blue line), and the density itself,
corresponding to the local density approximation connector (yellow
line), for the periodic system of Fig. 1.
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ingredients, captures this effect very well, with a remaining
discrepancy that is much smaller than the one of the local density.
Finally, we use the approximate connector density in Eq. (5)

together with the exact WDA xc potential vh;WDA
xc of the HEG to

obtain the approximate connector xc potential vcxc. Figure 1 shows
that it gives by far the best result of all approximations, illustrating
the fact that the connector Eq. (7) takes into account a significant
amount of non-locality. It demonstrates that, by using the very
same linear expansion through the connector instead of applying it
directly, strong improvement is obtained, without additional cost.
This benchmark shows that the connector strategy is very

promising. Note that also in the case of the true many-body
problem, the connector defined in Eq. (7) can be used to construct
an approximate density functional for vxc. In this case, the xc
kernel, f xcðjr� r0j; n0Þ, should be the one of the HEG obtained
from a QMC calculation60,61. The implementation of this vxc will be
left to future work. Our aim in the present work is to elucidate to
which extent the approach can be formulated and applied as a
very general concept. In the following, we will propose the
corresponding formalism, which we term COT.

Generalization
The general idea can be summarized as follows: suppose one wishes
to calculate an observable or quantity O that is a functional of a
function Q, and that can depend on additional arguments x, so O=O
(x; [Q]). Above, O was the xc potential vxc(r; [n]), the argument x was
the spatial coordinate r and Q a function, the density nð~rÞ, but there
are many other possibilities. For clarity, Table 1 summarizes the
general approach in strict parallel to the specific realization of the KS
potential, as well as the additional examples given later.
In most cases O(x; [Q]) is difficult or impossible to calculate in a

real material without approximations, or even unknown. However,
it may be possible to calculate O(x; [Q]) for some Q in a restricted
domain: this restricted domain defines a model. Above, where Q
was the electron density, the restricted domain of homogeneous
densities defined the HEG as model. Connector theory (COT) aims
at using the model results in order to simulate systems where Q
lies outside the model domain. The goal is therefore to find, for a
given real system described by Q, at each point x another function
Qc
x that lies in the model domain, such that

Oðx; ½~Q�Þ~Qð~yÞ¼Qð~yÞ ¼ Oðx; ½~Q�Þ~Qð~yÞ¼Qc
xð~yÞ : (9)

This is the straightforward generalization of Eq. (3) above. Note
also here the subscript x of Qc

x , which indicates that Qc is allowed
to be different for every value of the argument x. For the sake of

generality, we have kept the explicit argument x on the right side,
but as we have seen above, in some cases Oðx;Qc

xÞ may depend
on x only through Qc

x .
To arrive at the generalization of Eq. (1), in the following we

suppose that, because the model is simple, it can be described by
only one effective parameter Q or, when there are more
parameters, we can choose one that will be used to fulfill
Eq. (9). This restriction can be dropped, but it is often useful and
we keep it here for clarity. In this case, in the model the functional
or multi-dimensional function can be represented by a simple
function, Oðx; ½Qc

x �Þ ! OxðQc
xÞ. For example, in the HEG the one

parameter Q is its number density nh, so vxcðr; ½~n�Þ~nð~rÞ¼
nh ! vhxcðnhÞ, where vhxc corresponds to O and nh to Q. The
equivalent of Eq. (1) reads then

Oðx; ½Q�Þ ¼ OxðQc
xÞ : (10)

Of course, even allowingQc
x to be different for every x it could be

impossible to fulfill Eq. (10) if one restricts the model domain too
severely. However, if the model is flexible enough such that the
equation can be satisfied in principle, one can try to find the one or
more Qc

x for which the equality holds. In other words, for the idea
to be applicable the following condition must be satisfied:

● [A] On its domain of definition, OxðQc
xÞ must yield all values

that O(x; [Q]) can take on its domain, i.e., the functions Q of
interest.

The Q which define the domain of interest depend on the range of
physical systems one wants to explore; this range does not
necessarily include all possible physical systems. The domain of O,
on the other hand, defines the model system. If for certain Q and/
or x Eq. (10) cannot be fulfilled, we have to change model by
changing its domain, i.e., the range of allowed Qc

x .
Equation (10) is then formally solved,

Qc
x ¼ O�1

x ðOðx; ½Q�ÞÞ : (11)

this is the exact connector for an observable O in a system
described by a function Q, the generalization of Eq. (2). This
operation requires inversion of Ox , which brings us to a second
condition. Indeed, [A] is the only necessary condition, but there is
also a question of uniqueness in Eq. (11): O�1 may require
boundary conditions in order to be well defined. This is not a
problem of principle, but may create difficulties for the design of
approximations. We therefore require:

● [B]When the inverseO�1 ofO is not unique, it should at least be
possible to specify a unique choice among the possible O�1

i .

Table 1. Summary of the general COT approach and its declinations.

Kohn–Sham General 1D potential Band structure

Object of interest vxc(r; [n]) O(x; [Q]) E(j;ω0, L) GKK(k,ω; [V])

Model HEG t.b. chosen 1D square well HEG

Object in model vhxcðnhÞ OxðQÞ E jðLÞ ¼ π2j2=ð2L2Þ GkωKðVÞ
Connector ncr ½n� Qc

x ½Q� Lcjω0L ¼ πjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eðj;ω0 ;LÞ

p Vc
kωK

Approximation 1st order in densitya t.b. chosen 1st order in curvature transferability

Appr. real vhxcðn0Þ þ
R
dr0ðnðr0Þ � n0Þf xcðjr� r0j; n0Þ Oapprox(x; [Q]) Eapprox(j;ω0, L) G(k) ≈ G(k0)

Appr. model vhxcðn0Þ þ ðnh � n0Þf hxcðn0Þ Oapprox
x ðQÞ Eapprox

j ð~LÞ Gk � Gk0

Appr. connector nc;approxr ½n� ¼ 1
f hxcðn0Þ

R
dr0 nðr0Þf xcðjr� r0j; n0Þ Qc;approx

x Lc;approxω0L Vc;approx
kωK ¼ Vc

k0ωK

Appr. result vhxcðnc;approxr ½n�Þ OxðQc;approx
x Þ E jðLc;approxω0L Þ GkωKðVc;approx

kωK Þ
The general COT approach (third column) is compared to its declination for the illustrations discussed in the present paper: the derivation of a particular
Kohn–Sham xc potential beyond the LDA (second column), the calculation of energy levels in a box (fourth column), and the calculation of band structures of
crystals (last column). Equation numbers refer to the text and are given when adding useful information.
aOr cutoff Coulomb.
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In turn, when Qc
x is known it can be used to get the observable

in the real system using the model, through Eq. (10). As in the
case of DFT and the LDA, the general scheme suggests to store
Ox as numerical data, interpolated analytic expression or, in
some cases, analytic result. Once a connector Qc

x is given, for any
real system one can then simply use these data instead of
calculating O(x; [Q]), which will make calculations extremely
efficient. This concept of re-using data has made the LDA a
breakthrough, since numerous calculations could be performed
without ever re-evaluating the interaction effects in the HEG, and
it would be highly desirable to extend it not only well beyond
the LDA, but also beyond DFT itself.
To make the idea useful in practice, we also have to generalize

the approximation scheme Eq. (2) and Eq. (5), which straightfor-
wardly yields

Qc;approx
x ¼ ðOapprox

x Þ�1ðOapproxðx; ½Q�ÞÞ: (12)

The final approximate connector result is obtained as

Oðx; ½Q�Þ � Oc
x � OxðQc;approx

x Þ: (13)

Note that the model observable O is supposed to be well
known, but it is important to approximate it in Eq. (12) in the same
way as O of the real system, whereas the exact model function O
is used in Eq. (13). This guarantees that by choosing a model that
approaches the real system, the connector potential approaches
the exact one, even when a quite rough approximation is used.
The exact result is also approached with an increasingly good
approximation, for any, even rough, model.
Away from these limits, using the equivalent approximation in

Oapprox(x; [Q]) and Oapprox
x ðQÞ still leads to error cancelling, and the

limiting behavior indicates that results can be improved in a
controllable way. How far the model system can be chosen from
the real system depends on the quality of the approximation, and
vice versa, how rough the approximation is that one can tolerate
depends on the closeness of the model and the real system. This
double dependence is a source of the power of the connector
approach. It implies that one can expect the approximate
connector result Eq. (13) to be superior to the direct approxima-
tion Oapprox(x; [Q]), for similar computational cost. This benefit will
be larger when the model contains important features of the real
system, like in the example of the xc potential, the Coulomb
interaction. Therefore, in COT the main effort and intuition will go
into the choice of a suitable model.

Illustration
For a simple illustration of COT outside DFT-LDA, we first look at
energy levels in a toy system: we take one electron in a one-
dimensional potential of shape VðzÞ ¼ 1

2mω2
0 zj j � L

2

� �2
θ zj j � L

2

� �
,

with ω0 and L real positive parameters68. For L→ 0 this is the
oscillator potential, and for ω0→∞, the infinite potential well
V1ðzÞ ¼ V0θ zj j � L

2

� �
, with V0→∞. These potentials and their

energy levels are schematized in panel a of Fig. 3 (see also the
Supplementary Note 2 and Supplementary Fig. 1 for further
details). The jth energy level E(j; ω0, L) is our observable of interest
corresponding to O(x; [Q]). The third column in Tab. 1 sum-
marizes this and the subsequent steps for this example. The
numerically exact E(j; ω0, L) are shown in panel b of Fig. 3 as
function of α= 1/(L2ω0). This parameter is a measure of the
difference between the real system and the infinite potential
well, which vanishes for α→ 0. Next, we choose an approxima-
tion. Here, we take a first-order perturbation expansion around
the infinite well, i.e., α= 0, with width L. The expansion
parameter is then α. Figure 3 shows the resulting approximate
energy levels Eapprox(j; ω0, L). As expected from perturbation
theory, they are close to the exact E(j; ω0, L) for small α and
deviate for larger values, becoming unphysically negative above

a critical threshold. To apply COT, we now define the model
domain to cover all possible infinite square wells, characterized by

a width ~L and yielding energies E jð~LÞ ¼ π2j2=ð2~L2Þ. It is intuitive to
suppose that the effect of α can be simulated by varying the width
~L of the model potential, i.e., to suppose that each level sees a
surrounding with some effective width. COT tells us to search for
the effective width that best represents the real system. Condition
[A] is fulfilled for any potential with positive eigenvalues if we
accept to have a different connector, i.e., a different effective
width, for every energy level, since the energy levels in an
infinite potential well can take any positive value. The exact
solution would be the connector width ~L ¼ Lc for which
E jðLcj ðω0; LÞÞ ¼ Eðj;ω0; LÞ. Here, we have chosen to connect the
energy levels one by one. This would be a reasonable choice also
to connect, for example, poles of Green’s functions.69 Since the

energies E jð~LÞ of an infinite potential well with width ~L go as 1=~L
2
,

there is no unique inverse E�1
j ðEÞ. However, one of the two

solutions of the resulting quadratic equation for Lcj is negative and
can be discarded by using positivity as exact constraint, so our
example also fulfills condition [B]. Our approximation strategy,
which avoids the calculation of Eðj;ω0; LÞ, is to expand also
the model around the infinite square well (α= 0) with width L.
Hence, Lc;approxj ¼ ðEapprox

j Þ�1ðEapproxðjÞÞ, and the final result is
Ecj ¼ E jðLc;approxj Þ. Note that in the last step the exact model
function E j is used, as prescribed by Eq. (13). While obtained with a
similar computational cost, the connector results Ecj in Fig. 3 are
much better than the direct approximation Eapprox(j), and they
remain physical over the whole parameter range, which reflects an
implicit approximate resummation of perturbation theory to
infinite order through the use of the exact model E j . The
connector Lcj formalizes the intuitive interpretation of an effective
width that determines the energy levels in the real system and
shows that this effective width is approximately independent of j

0 2/12/1-0 2/12/1- 0 2/12/1-
0

50

100

150

α = 0.001 α = 0.02 α = 0.04

E
E
(j
)

α

-30

0

30

60

90

120

0.001 0.01 0.02 0.040.0285592
square well

(α = 0)

a

b
Fig. 3 Energy levels in a one-dimensional potential. a In gray,
sketch of the potential V(z) (see text), as a function of z for L= 1, and
different values of α= 1/(L2ω0). In red, the lowest energy levels E(j).
The first six of these are shown in the bottom (b), as a function of α:
the continuous red line is the exact result. Blue dashed, Eapproxj of
first-order perturbation theory. Blue dashed line with symbols,
connector results E jðLc;approxj Þ. On the left side, the levels E jðLÞ of an
infinite potential well of width L= 1, which is the α→ 0 result.
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(see Supplementary Note 2). This result indicates a promising
route to obtain quick estimates for energy levels.
Finally, we will look at a more realistic system and, most

importantly, at a completely different approximation, since
besides the Coulomb cutoff, the above examples used perturba-
tion theory as approximation. The observable will be a band
structure obtained from the poles of the KS Green’s function G, the
real material is solid cubic helium70 with given KS potential V(r),
and as model system we choose the HEG, as summarized in the
last column of Table 1. The KS band structure of cubic He is shown
in panel c of Fig. 4: the occupied state is very flat, whereas the
empty bands strongly disperse with k in the BZ. Our approxima-
tion is to calculate the exact energy levels at Γ but to neglect
dispersion, which, if applied directly to the observable, would yield
the flat bands in panel a of the figure, obviously far from reality.
In order to apply COT, we connect G to the Green’s function of

the HEG

GKKðk;ω; ½V �Þ ¼ GkωKðVc
kωKÞ; (14)

where K are reciprocal lattice vectors. The Green’s function of the
HEG is diagonal in K, so we can represent it by GkωK , which is a
function of k+ K and of the homogeneous potential Vc ,

GkωKðVcÞ ¼ 1

ω� jk þ Kj2=2� Vc
; (15)

where the frequency ω includes an infinitesimal imaginary part.
Equation (14) is the equivalent of Eq. (10), and the potential Vc

plays the role of the connector. To determine the approximate
connector we apply the approximation G(k) ≈ G(k0) to both sides
of Eq. (14), which is equivalent to supposing Vc;approx

kωK ¼ Vc
k0ωK , i.e.,

transferability of the connector itself. It is interesting to note that
this corresponds to a diagonal approximation of the in principle
exact Dyson equation that relates Gk and Gk0. The effort required is
the calculation of GKK(k0,ω; [V]) in only one point k0. Here, we take
k0 to be the Γ-point. Following Eq. (13), this yields the band
structure at all k-points as

Gc;approx
KK ðk;ω; ½V �Þ ¼ 1

� jkþKj2
2 þ jk0þKj2

2 þ 1
GKKðk0;ω;½V �Þ

: (16)

The result of this COT approximation, shown in panel b of Fig. 4,
is clearly much improved with respect to the panel a, thanks to the
information imported from the HEG. At the same time it is also
better than a simple alignment of the HEG bands at k0 (which
would also require the full calculation at k0), which can be seen

most clearly, but not only, for the occupied state (HEG bands are
white lines in panel c).
In principle, the poles of GKK should not depend on K. Our

approximation violates this exact constraint. Therefore, when the
spectral function of G is summed over all K the band structure
comes out slightly blurred, as one can see in panel b, and even
spurious energy levels appear. We can, however, impose the exact
constraint by choosing in each group of poles the one with the
largest oscillator strength: since in the HEG only one of these poles
would have non-zero weight, this reflects the situation where the
real system and the HEG are most similar, which means, where
COT should work best. Details of how this choice is implemented
in practice are given in the Supplementary Note 3. This constraint
yields the result in panel c of Fig. 4: the constrained connector
makes the bands sharp and eliminates spurious non-dispersing
structures. COT therefore leads to a simple approach to get a first,
very quick, idea of the band structure of materials.

DISCUSSION
In conclusion, inspired by a historical strategy to approximate
density functionals using the HEG, we propose an in principle
exact and very general approach. Its aim is to calculate once and
for all, and store, a given observable or other object in a model
system with high precision. These results are then used to
determine the same object in real systems, via a procedure
termed connector. The connector is different for every target
object, and must be approximated. We suggest a strategy for a
systematic connector approach, which, for a given model, makes
use of an approximation in a way that leads to strong error
cancelling. Indeed, we show that, and why, a given approximation
is often much more powerful when used within COT than when
directly applied to the object of interest. In the present work we
have used three different kinds of approximations, namely, a
modification of the Coulomb interaction, perturbation theory,
and the hypothesis of transferability, and in all cases obtained
significant improvement compared to simply applying the
approximation to the observable of interest. Of course, the choice
of the model and of the approximation still determine the quality
of the results and require care and physical insight. The approach
opens the way for fast computational methods, which we have
illustrated with a quick estimate of energy levels and bands. It can
also be used to design functionals. As example, we have derived
an exchange-correlation potential for DFT, using as model system
the HEG. By using the WDA as benchmark functional we have

COT
Real

HEG

a b c
Fig. 4 Band structure of cubic helium. The energies are aligned to the Fermi energy. a White lines are the bands resulting from the direct
approximation, where the energies results at all k-points equal those at k0. b Connector result, plain (intensity plot) and constrained (blue
dots), following the prescription in the text. c Comparison of first principles results (red line) with constrained connector (blue dots). In white,
HEG folded into the Brillouin zone of helium and attached to the second band at Γ. For comparison of the lowest band, which corresponds to
a localized state, the lowest HEG band is used.

M. Vanzini et al.

6

npj Computational Materials (2022)    98 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



demonstrated that our connector functional is able to capture
non-local effects in a very efficient way. Beyond the WDA, the
connector approximation to the exact functional only requires
data from the HEG that are already available in the literature as
interpolated expressions. More complex models may require new
calculations to be done, with results that can be either
interpolated with modern machine learning algorithms or stored
thanks to today’s storage capacities. Such more flexible models
could potentially further improve the results71 and are envisaged
for future applications. The present work sets the framework,
elucidates the fundamentals and suggests directions for practical
application, with a potentially huge impact on computational
materials design.

METHODS
The reference band structure of cubic He with experimental lattice
parameters70 has been obtained from the diagonalization of the KS-LDA
Hamiltonian of size 5.1 Ha in reciprocal space. The Hamiltonian has been
calculated using local Troullier-Martins72 pseudopotentials in the Abinit
code73 with a Γ-centered 5 × 5 × 5 k-point grid.

DATA AVAILABILITY
All data are included in the paper or in the Supplementary Information.
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