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We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.

Introduction

Since the papers of J. Chazarain [START_REF] Chazarain | Spectre d'un hamiltonien quantique et mécanique classique[END_REF] and B. Helffer, D. Robert [START_REF] Helffer | Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques[END_REF], the semiclassical spectral asymptotics have been investigated in numerous works and we refer to the monographs [START_REF] Dimassi | Spectral asymptotics in the semiclassical limit[END_REF], [START_REF] Ivrii | Microlocal analysis and precise spectral asymptotics[END_REF], [START_REF] Levendorskii | Asymptotic distribution of eigenvalues of differential operators[END_REF] and [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]. The main results have been obtained by using the tools of the microlocal analysis based on the approach of L. Hörmander [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF]. However this approach works only for smooth problems and the semiclassical framework is usually considered for a non-critical energy value. Our aim is to present a method of obtaining semiclassical estimates for more general classes of differential operators. (A) Formulation of the results Let r ∈]0; 1] and denote by B r the set of bounded, Hölder continuous functions of exponent r on IR d , i.e. a ∈ B r means that a ∈ L ∞ (IR d ) and 1 there is C > 0 such that (1.1) |a(x) -a(y)| ≤ C|x -y| r (x, y ∈ IR d ).

Let m ∈ IN * and for ν, ν ∈ IN d , |ν|, |ν| ≤ m we consider real-valued a ν,ν ∈ B r such that a ν,ν = a ν,ν and

(1.2)

|ν|=|ν|=m a ν,ν (x)ξ ν+ν ≥ c|ξ| 2m (x, ξ ∈ IR d ),
holds for a certain constant c > 0.

For h > 0 let A h be the quadratic form defined for ϕ, ψ ∈ C m 0 (IR d ) by

(1.3) A h [ϕ, ψ] = |ν|,|ν|≤m
(a ν,ν (hD) ν ϕ, (hD) ν ψ),

where (•, •) is the scalar product of L 2 (IR d ) and (hD) ν = (-ih) |ν| ∂ ν /∂x ν . The ellipticity hypothesis (1.2) ensures the fact that A h is bounded from below and its closure defines a self-adjoint operator A h . We introduce

(1.4) a(x, ξ) = |ν|,|ν|≤m a ν,ν (x)ξ ν+ν ,
and for E ∈ IR we denote (1.5) Γ E = a -1 (] -∞; E[) = {(x, ξ) ∈ IR 2d : a(x, ξ) < E}.

We have Proposition 1.1 Let E, E 0 ∈ IR be such that E < E 0 and Γ E 0 is bounded. Then one can find h 0 > 0 such that for h ∈]0; h 0 ], the spectrum of A h is discrete in ] -∞; E].

Further on E 0 , E, h 0 are as in Proposition 1.1 and |Γ E | = a(x,ξ)<E dxdξ is the Lebesgue measure of Γ E . For h ∈]0; h 0 ] we define the counting function N (A h , E) as the number of eigenvalues (counted with their multiplicities) smaller than E. Our principal result is: Theorem 1.2 Let A h be as above with a ν,ν ∈ B r for a certain r ∈]0; 1]. If µ ∈]0; 2r 2+r [, then we have

(1.6) N (A h , E) = |Γ E |(2πh) -d + (|Γ E+h µ | -|Γ E-h µ |)O(h -d ).
Similarly as in [START_REF] Buzano | Weyl formula for hypoelliptic operators of Schrödinger type[END_REF] one can observe that some additional conditions on a are needed to obtain a good estimate of |Γ E+h µ | -|Γ E-h µ | as h → 0. In this paper we are interested in the following condition (1.7) a(x, ξ) = E ⇒ ∇ ξ a(x, ξ) = 0.

If (1.7) holds then E will be called a non-critical energy value and it is easy to see that this condition ensures

|Γ E+h µ | -|Γ E-h µ | = O(h µ ).
Moreover it is possible to obtain the following stronger estimates:

Theorem 1.3 We assume moreover (1.7). If µ ∈]0; r[, then we have (1.8) N (A h , E) = |Γ E |(2πh) -d + O(h µ-d ).

(B) Comments

The proof of Theorem 1.3 is presented below and a suitable development, which allows us to prove Theorem 1.2, will be described in [START_REF] Zielinski | Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, Part II: critical case[END_REF]. The basic idea is to replace irregular coefficents by smooth ones and to investigate the corresponding smooth problem following some ideas of our earlier papers [START_REF] Zielinski | Asymptotic behaviour of eigenvalues of differential operators with irregular coefficients on a compact manifold[END_REF][START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF]. In the case of a non-critical energy value it is also possible to investigate the smooth problems adopting the theory developed in the book of V. Ivrii [START_REF] Ivrii | Microlocal analysis and precise spectral asymptotics[END_REF], deducing Theorem 1.3 according to [START_REF] Ivrii | Sharp spectral asymptotics for operators with irregular coefficients[END_REF] (and we have also (1.8) with the optimal value µ = 1 if the first order derivates of the coefficients are Hölder continuous, cf. [START_REF] Ivrii | Sharp spectral asymptotics for operators with irregular coefficients[END_REF] or [START_REF] Zielinski | Semiclassical Weyl formula for elliptic operators with non-smooth coefficients[END_REF]).

However the approach we present here is quite different from [START_REF] Ivrii | Sharp spectral asymptotics for operators with irregular coefficients[END_REF] or [START_REF] Zielinski | Semiclassical Weyl formula for elliptic operators with non-smooth coefficients[END_REF]. It seems to us that the most interesting feature of this approach is the possibility of investigating non-critical and critical energy values in a quite similar way and the fact that the analysis of the smooth problem is working for suitable classes of pseudodifferential operators as well.

A general plan is the following. In Section 2 we define the regularized operators P h and the Fourier transform allows us to express suitable functions fh (P h ) by means of the evolution group U t = e itP h /h µ . In Section 3 we describe an approximation of U t giving a pseudodifferential approximation of fh (P h ) with correct asymptotic properties. The correct asymptotic behaviour of the approximation is proved at the end of Section 3 by means of simple integrations by parts. In Section 4 we explain how to implement a similar idea to estimate the difference between fh (P h ) and the approximation. The final computations justifying this idea are presented in Section 5 and some standard supplementary details are given in Section 6.

(C) Developments 1. Let Ãh = A h + hA h,1
, where A h is like above and (1.9) 

∃ C 0 > 0 ∀ϕ ∈ C m 0 (IR d ), |A h,1 [ϕ, ϕ]| ≤ A h [ϕ, ϕ] + C 0 ||ϕ|| 2 . Then ( Ãh [ϕ, ϕ]+C 0 ||ϕ|| 2 ) 1/2 and (A h [ϕ, ϕ]+C 0 ||ϕ|| 2 )
(M ) × C m (M ) satisfying supp φ ∩ supp ψ = ∅ ⇒ A M,h [ φ, ψ] = 0.
Assume that in local coordinates on U ⊂ IR d the form A M,h is acting on ϕ, ψ ∈ C m 0 (U) according to the formula (1.3) with all the hypotheses of Theorem 1.2 (or 1.3) satisfied. Then a standard reasoning can be applied to obtain analogical estimates for the counting function of A M,h , the associated self-adjoint operator in L 2 (M, dx). 3. For an operator A M,1 considered in the point 2, we can deduce the classical Weyl formula considering a semiclassical problem ÃM,h with h = λ -1/(2m) . We need to assume the Hölder continuity of top order coefficients (|ν| = |ν| = m) and we can consider the lower order coefficients belonging to L ∞ . Indeed, reasoning as in the point 1 we can modify lower order coefficients and since the principal symbol is ξ-homogeneous, the energy value 1 is not critical, allowing us to adapt the proof of Theorem 1.3 and to obtain (1.10)

N (A M,1 , λ) = N ( ÃM,λ -1/(2m) , 1) = cλ d 2m + O(λ d-µ 2m )
for every µ ∈ [0; r[. This result was described in [START_REF] Zielinski | Asymptotic behaviour of eigenvalues of differential operators with irregular coefficients on a compact manifold[END_REF][START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] and we refer to [START_REF] Ivrii | Microlocal analysis and precise spectral asymptotics[END_REF][START_REF] Ivrii | Sharp spectral asymptotics for operators with irregular coefficients[END_REF][START_REF] Levendorskii | Asymptotic distribution of eigenvalues of differential operators[END_REF] and [START_REF] Zielinski | Asymptotic distribution of eigenvalues for elliptic boundary value problems[END_REF] for results concerning boundary value problems. [START_REF] Helffer | Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques[END_REF]. The regularity hypothesis made on the coefficients a ν,ν are really essential only for x such that (x, ξ) ∈ Γ E 0 with a certain E 0 > E and the behaviour of coefficients for other values of x can be more general: the main requirement is the possibility of reducing the problem by adding an auxiliary cut-off supported in Γ E 0 as in Lemma 6.1. In particular we have assumed a ν,ν ∈ L ∞ (IR d ) for sake of simplicity, but it is possible to consider unbounded coefficients in a framework of tempered variation models on T * IR d (cf. e.g. [START_REF] Helffer | Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles[END_REF]).

2 Regularized problem

(A) Definition of smooth operators Let γ ∈ C ∞ 0 (IR d ) satisfy γ(x) dx = 1 and let γ ε (x) = ε -d γ(x/ε) for ε > 0. We fix δ ∈]0; 1[ and define (2.1) a ν,ν,h (x) = (a ν,ν * γ h δ )(x) = a ν,ν (y)γ(h -δ (x -y)) h -δd dy.
As explained in Section 6, the hypothesis a ν,ν ∈ B r ensures the estimates 

(2.2) |a ν,ν (x) -a ν,ν,h (x)| ≤ Ch δr , (2.3) |∂ α x a ν,ν,h (x)| ≤ C α (1 + h δ(r-|α|) ) (for every α ∈ IN d ). We define (2.4) p h (x, ξ) = |ν|,
P • h = |ν|,|ν|≤m (hD) ν a ν,ν,h (x)(hD) ν satisfies |((A h -P • h )ϕ, ϕ)| ≤ Ch µ ((I -h 2 ∆) m ϕ, ϕ
) and defining (2.7)

P ± h = P • h ± Ch µ (I -h 2 ∆) m (with C large enough) we ensure P - h ≤ A h ≤ P + h (in the sens of quadratic forms). If h ∈]0; h 0 ]
with h 0 as in Proposition 1.1, then the min-max principle (cf. [START_REF] Reed | Methods of modern mathematical physics[END_REF]) ensures

N (P + h , E) ≤ N (A h , E) ≤ N (P - h , E) and it is clear that it suffices to prove Theorem 2.1 The formula (1.8) holds with P ± h instead of A h . (B) Microlocal trace formula For E , E ∈ IR let 1 I [E ; E] : IR → {0, 1} be the characteristic function of [E ; E] and let 1 I [E ; E] (P ± h ) denote the spectral projector of P ± h on [E ; E]. If b h is a polynomially bounded smooth function of (x, ξ) ∈ IR 2d , then B h = b h (x, hD) denotes the pseudodifferential operator acting on ϕ ∈ S(IR d ) according to the formula (B h ϕ)(x) = dξ (2πh) d e ixξ/h b h (x, ξ) dy e -iyξ/h ϕ(y). Let s ∈ IR. We write b ∈ S s 0,δ if b = (b h ) h∈]0; 1] is a family of smooth functions satisfying the estimates (2.8) |∂ α ξ ∂ β x b h (x, ξ)| ≤ C α,β h -s-|β|δ
for every α, β ∈ IN d . In Section 6 we explain that Theorem 2.1 follows from

Theorem 2.2 Let Γ be a closed subset of Γ E 0 such that (2.9) (x, ξ) ∈ Γ ⇒ |∇ ξ p h (x, ξ)| ≥ c
holds for a certain constant c > 0. Let l = (l h ) h∈]0; 1] ∈ S 0 0,δ be such that l h is real-valued and supp l h ⊂ Γ for every h ∈]0

; 1]. If L h = l h (x, hD) and L * h denotes its adjoint in L 2 (IR d ), then (2.10) tr L h 1 I [E ; E] (P ± h )L * h = E <p h (x,ξ)<E dxdξ (2πh) d l h (x, ξ) 2 + O(h µ-d ).
(C) Plan of the proof of Theorem 2.2 Further on we drop the index h. In particular we write simply L, l, p instead of L h , l h , p h and we abbreviate

P ± h = P . Let γ ∈ C ∞ 0 (] -1 2 ; 1 2 [) be such that γ = 1 and γ ≥ 0. Then the convolution with γh µ (λ) = h -µ γ(λ/h µ ) allows us to replace 1 I [E ; E] by the approximations (2.11) f - h = 1 I [E +h µ /2; E-h µ /2] * γh µ , f + h = 1 I [E -h µ /2; E+h µ /2] * γh µ , satisfying 1 I [E +h µ ; E-h µ ] ≤ f - h ≤ 1 I [E ; E] ≤ f + h ≤ 1 I [E -h µ ; E+h µ ] , hence (2.12) tr L f - h (P )L * ≤ tr L1 I [E ; E] L * ≤ tr L f + h (P )L * .
Clearly it suffices to prove (2.10) with f ± h (P ) instead of 1 I [E ;E] . Further on we abbreviate f ± h = fh and observe the estimates of derivatives

(2.13) | f (k) h (λ)| ≤ C k h -kµ (k ∈ IN).
Next we introduce the h µ -Fourier transform of fh ,

(2.14) f h (t) = (F h µ fh )(t) = ∞ -∞ dλ e -iλt/h µ fh (λ)
and remark that for any k ∈ IN we have

(2.15) t k f h (t) = (-i) k h kµ (F h µ f (k) h )(t) = O(1). Since fh (λ) = (F -1 h µ f h )(λ) = ∞ -∞ dt 2πh µ f h (t) e itλ/h µ , we can write (2.16) tr L fh (P )L * = ∞ -∞ dt 2πh µ f h (t) tr LU t L *
where we have denoted U t = e itP/h µ . Then our principal task is to construct a sequence of operators (Q N ,t ) N ∈IN being a suitable approximation of LU t . More precisely: assuming Q N ,t|t=0 = L and defining (2.17)

Q N ,t = d dt Q N ,t -iQ N ,t P/h µ .
we can write formally

(2.18) LU t -Q N ,t = t 0 dτ d dτ Q N ,t-τ U τ = - t 0 dτ Q N ,t-τ U τ
and observe that due to (2.15-16) and (2.18), Theorem 2.2 follows from

Proposition 2.3 Let N ∈ IN. Then there is Q N ,t ∈ B(L 2 (IR d )) satisfying (2.19) ∞ -∞ dt 2πh µ f h (t) tr Q N ,t L * = E <p<E dxdξ (2πh) d l 2 + O(h µ-d ) and (2.20) tr Q N ,t-τ U τ L * ≤ h (1-δ) N -5d (2 + |t|) C N where Q N ,t is given by (2.17), C N > 0 is a constant large enough, (t, τ ) ∈ IR * × IR and τ /t ∈ [0; 1].
In Section 3 we describe the construction of (2.21)

Q N ,t = e itp/h µ 0≤n≤ N t n q • N ,n (x, hD),
as suitable pseudodifferential operators. At the end on Section 3 we check that (2.19) follows via integrations by parts and in Section 4 we describe a similar strategy to obtain (2.20), completing the proof in Section 5.

Description of the approximation

The operators (2.7) can be written in a standard form (3.1)

P ± h = |ν|≤2m p ± ν,h (x)(hD) ν = p ± h (x, hD)
and it easy to check that (2.3) still holds with p ± ν,h instead of a ν,ν,h and

(3.2) p ± h (x, ξ) = |ν|≤2m p ± ν,h (x)ξ ν = a(x, ξ) + O(h µ )(1 + |ξ|) 2m .
For a smooth function (x, ξ) → b t (x, ξ) ∈ C we denote

(3.3) PN b t = e -itp/h µ ∂ t (b t e itp/h µ ) - |α|≤ N h |α|-µ α! i |α|+1 ∂ α ξ (b t e itp/h µ ∂ α x p ± ) .
Further on l ∈ S 0 0,δ is as in Theorem 2.2. Proof. First of all we recall that b ∈ S s 0,δ , b ∈ S s 0,δ ⇒ b b ∈ S s+s 0,δ and it is easy to see that bp, bp ± belong to S s 0,δ . Since (2.5) still holds with p ± h instead of p h

Lemma 3.1 Let ρ = µ -1 + δ. Let b ∈ S s 0,
and |α| ≥ 1 ⇒ h |α| ∂ α x a ν,ν,h = O(h δr+(1-δ)|α| ), we obtain b(p-p ± ) ∈ S s-δr-(1-δ) 0,δ and h |α| b∂ α x p ± ∈ S s-δr-(1-δ)|α| 0,δ if |α| ≥ 1.
Using moreover δr ≥ µ, we obtain

(3.5) b 0 = ih -µ (p -p ± )b + 1≤|α|≤ N h |α|-µ α! i |α|+1 ∂ α ξ (b ∂ α x p ± ) ∈ S s 0,δ .
Next for n ∈ {1, ..., N } we obtain

b n = α=α 0 +...+αn |α|≤ N , α k =0 if k =0 c α 0 ,...,αn h |α|-(n+1)µ ∂ α 0 ξ (b ∂ α x p ± ) ∂ α 1 ξ p . . . ∂ αn ξ p ∈ S s+nρ 0,δ observing that 1 ≤ n ≤ |α| ⇒ (n + 1)µ -(1 -δ)|α| -δr ≤ nρ. Proposition 3.2 Assume that N ∈ {0, 1, ..., N } and ρ = µ -1 + δ ≥ 0.
Then we can find

(3.6(N )) q N ,N,t = 0≤n≤N t n q • N ,n , such that q N ,N,t|t=0 = q • N ,0 = l and (3.7(N )) P N q N ,N,t = N ≤n≤N + N t n q • N ,N,n with (3.8(N )) q • N ,n ∈ S (n-1)ρ 0,δ , supp q • N ,n ⊂ supp l (n ∈ {1, ..., N }), (3.9 
(N )) q • N ,N,n ∈ S nρ 0,δ , supp q • N ,N,n ⊂ supp l (n ∈ {N, ..., N + N }).
Proof. If N = 0 then we take q N ,0,t = q • N ,0 = l ∈ S 0 0,δ and Lemma 3.1 with b = l gives the statement of Proposition 3.2 for N = 0. Next we assume that the statement holds for a given N ≤ N -1 and we prove that it still holds for N + 1 instead of N . Using the induction hypothesis (3.7(N )) to express P N q N ,N,t we find

P N q N ,N +1,t = P N (t N +1 q • N ,N +1 ) + P N q N ,N,t = t N (N + 1)q • N ,N +1 + q • N ,N,N + t N +1 P N q • N ,N +1 + N +1≤n≤N + N t n q • N ,N,n .
In order to obtain (3.7(N + 1)) it suffices to cancel the term with t N taking q • N ,N +1 = -q • N ,N,N /(N + 1).

Since q • N ,N,N ∈ S N ρ 0,δ and supp q • N ,N,N ⊂ supp l by the induction hypothesis, we obtain (3.8(N + 1)) and using Lemma 3.

1 with b = q • N ,N +1 we observe that ρ ≥ 0 ⇒ S (N +n)ρ 0,δ ⊂ S (N +1+n)ρ 0,δ
and (3.9(N + 1)) holds.

Lemma 3.3 If b ∈ C ∞ 0 (IR 2d
) then we denote

(3.10) J t (b) = dxdξ (2πh) d e itp(x,ξ)/h µ b(x, ξ). If b ∈ S s 0,δ satisfies supp b ⊂ supp l, then for every k ∈ IN one can find b k ∈ S s 0,δ such that supp b k ⊂ supp l and (3.11) h -kµ t k J t (b) = J t (b k ).
Proof. The hypothesis (2.9) ensures the existence of bj ∈ S s 0,δ such that b = d j=1 bj ∂ ξ j p and integrating by parts we find (3.12) h -µ tJ t ( bj ∂ ξ j p) = J t (i∂ ξ j bj ).

Thus the statement of Lemma 3.3 holds for k = 1 and we complete the proof reasoning by induction with respect to k ∈ IN.

Proof of the estimate (2.19). Taking Q N ,t given by (2.21) with q N , N ,t defined in Proposition 3.2, we observe that Q N ,t L * has the integral kernel

K N ,t (x, y) = dξ (2πh) d e i(x-y)ξ/h+itp(x,ξ)/h µ q N , N ,t (x, ξ)l(y, ξ), hence (3.13) tr Q N ,t L * = dx K N ,t (x, x) = dxdξ (2πh) d e itp/h µ lq N , N ,t .
Therefore using Lemma 3.3 with k = n -1 and b = h (n-1)µ q • N ,n l ∈ S 0 0,δ for n = 2, ..., N we can find q N ∈ S 0 0,δ such that supp q N ⊂ supp l and

tr Q N ,t L * = 0≤n≤ N t n J t (q • N ,n l) = J t (l 2 ) + tJ t (q N ).
Changing the order of integrals we find

(3.14) ∞ -∞ dt 2πh µ f h (t)J t (l 2 ) = dxdξ (2πh) d l(x, ξ) 2 fh (p(x, ξ))
and supp ( fh

-1 I ]E ; E[ ) ⊂ [E -h µ ; E + h µ ] ∪ [E -h µ ; E + h µ ] allows us to write (3.14) as E <p(x,ξ)<E dxdξ (2πh) d l(x, ξ) 2 + R(l, p -E, h µ ) + R(l, p -E , h µ ),
where

(3.15) R(l, p -E, h µ ) := h -d E-h µ ≤p(x,ξ)≤E+h µ dxdξ l(x, ξ) 2
can be estimated by O(h µ-d ) due to the hypohesis (2.9) and the same is true with E instead of E. Next we use tf

h (t) = -ih µ (F h µ f h )(t) to write (3.16) ∞ -∞ dt 2πh µ f h (t)tJ t (q N ) = dxdξ (2πh) d q N (x, ξ)(-i)h µ f h (p(x, ξ))
and we complete the proof of (2.19) observing that q

N = O(1), supp q N ⊂ supp l, h µ f h = O(1) and supp f h ⊂ [E -h µ ; E + h µ ] ∪ [E -h µ ; E + h µ ] allow us to estimate (3.16) as before by R(q N , p -E, h µ ) + R(q N , p -E , h µ ) = O(h µ-d ).
4 Auxiliary notations and properties 

(A) Expression of Q N ,t-τ Further on we denote V = {(t, τ ) ∈ IR * × IR : τ /t ∈ [0; 1]}.
(4.2) (Op t,τ (b)ϕ)(x) = dydξ (2πh) d e i(x-y)ξ/h+i(t-τ )p(x,ξ)/h µ b h,t,τ (x, ξ, y)ϕ(y) defines Op t,τ (b) ∈ B(L 2 (IR d )) satisfying (4.3) ||Op t,τ (b)|| ≤ Ch -s (2 + |t|) C 0 (1 + |t|/h µ ) 2d
for a certain constant C > 0 due to Calderón-Vaillancourt theorem (cf. e.g. [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Section 18.6). As explained at the end of Section 6, b ∈ Ss ensures also

(4.4) ||Op t,τ (b)|| tr ≤ h -s-5d (2 + |t|) C .
Using (2.21), (3.6( N )) and P = P * = p ± (x, hD) * , we find Q N ,t P = Op t,0 ( q N , N ,t (x, ξ)p ± (y, ξ) ), hence writing the Taylor's development of y → p ± (y, ξ) in x and using (y -x) α e i(x-y)ξ/h = (ih) |α| ∂ α ξ j (e i(x-y)ξ/h ) to perform standard integrations by parts in (4.2), we find

(4.5) Q N ,t = Op t,0 ( ( P N q N , N ,t )(x, ξ) + r N ,t ),
with the remainder term of the Taylor's development of order N , (4.6) r N ,t (x, ξ, y) = e -itp(x,ξ)/h µ ( N + 1)

1 0 dσ (1 -σ) N r N ,σ,t (x, ξ, y)
where r N ,σ,t (x, ξ, y) = (4.7)

|α|= N +1 h N +1-µ i N +2 α! ∂ α ξ (q N , N ,t e itp/h µ )(x, ξ) ∂ α x p ± (x + σ(y -x), ξ) .
Let q • N , N ,n be as in Proposition 3.2 and define

(4.8) q • N ,n,t,τ (x, ξ, y) = (1 -τ /t) n q • N , N ,n (x, ξ).
Then q • N ,n ∈ Snρ ⊂ Snµ-N (1-δ) and we can write (4.9)

P N q N , N ,t-τ (x, ξ) = N ≤n≤2 N t n q • N ,n,t,τ (x, ξ, y).
Using the form of q N , N ,t in (4.6-7), similarly as in the proof of Lemma 3.1 we find r

• N ,n ∈ Snµ-N (1-δ) such that (4.10) r N ,t-τ = 0≤n≤2 N t n r • N ,n,t,τ
and conclude Corollary 4.1 There exist q N ,n ∈ Snµ-N (1-δ) such that

(4.11) Q N ,t-τ = 0≤n≤2 N t n Op t,τ (q N ,n ).
(B) Auxiliary operator algebra Y It is easy to see that U t : S(IR d ) → S(IR d ) and for any B :

S(IR d ) → S(IR d ) we can define Y τ (B) := U * τ BU τ . We write Y ∈ Y 0 if there is N ∈ IN such that Y = (Y τ ) τ ∈IR has the form (4.12) Y τ = 1≤k≤N [0; 1] N dw s w,k,τ Y τ s w,k,1 (B k,1 ) • • • Y τ s w,k,N (B k,N ),
where

B k,k = b k,k (x, hD) with      b k,k ∈ S 0 0,δ for (k, k ) ∈ {1, ..., N } 2 , s w,k,k ∈ [-1; 1] for (w, k, k ) ∈ [0; 1] N ×{1, ..., N } 2 , s w,k,τ ∈ C and |s w,k,τ | ≤ (2 + |τ |) N for (w, k, τ ) ∈ [0; 1] N ×{1, ..., N }×IR We observe that taking s w,k,k = s w,k,τ = 1 we obtain Y τ (B k,1 ) • • • Y τ (B k,N ) ∈ Y 0
and it is not difficult to see that Y 0 is an algebra with the property Using this notation and (4.11) we can write

(4.15) tr Q N ,t-τ U τ L * = 0≤n≤2 N t n J t,τ (q N ,n , L * ).
In Section 5 we will prove 

(4.16) h -nµ t n J t,τ (b 0 , Y ) = 1≤k≤Kn J t,τ (b n,k , Y n,k ).
It is easy to see that Proposition 4.2 implies the estimates (2.20). Indeed, Proposition 4.2 allows us to replace each term of (4.15) by

J t,τ (b N ,n,k , Y N ,n,k ) with b N ,n,k ∈ S-N (1-δ)
, hence (2.20) follows from (4.13) and (4.4).

(C) Commutators with x j /h

We denote by x j the operator of multiplication by the j-th coordinate.

Lemma 4.3 If Y ∈ Y and ρ = µ -1 + δ, then there exist Ỹ + , Ỹ -∈ Y such that (4.17) [Y τ , x j /h] = Ỹ + τ + h -ρ τ Ỹ - τ .
Proof. Let B = b(x, hD) with b ∈ Ŝ0 0,δ . We will show that (4.18) [Y τ (B k,k ),

x j /h] = Y + τ + h -ρ τ Y - τ holds with some Y + , Y -∈ Y. To start we write (4.19) [Y τ (B), x j /h] = U * τ [B, Y -τ (x j /h)]U τ and introduce (4.20) P j := [iP, x j /h] = ∂ ξ j p ± (x, hD).
Then we can write the Taylor formula

Y -τ (x j /h) = x j /h -τ (∂ τ Y τ )| τ =0 (x j /h) + τ 2 1 0 dσ (1 -σ)∂ 2 τ Y -στ (x j /h) (4.21) = x j /h + h -µ τ P j + h -2µ τ U τ Y τ ([P j , iP ])U * τ , where Y τ ( B) := τ 1 0 dσ (1 -σ)Y (1-σ)τ ( B)
for any B : S(IR d ) → S(IR d ). Using (4.21) we can express the commutator (4.19) in the form

(4.22) Y τ ([B, x j /h])+h -ρ τ Y τ (h δ-1 [B, P j ])+h -ρ τ [Y τ (B), Y τ (h δ-1-µ [P j , P ])]
and since [B, x j /h] = -i∂ ξ j b(x, hD), the first term of (4.22) belongs to Y. Then using Lemma 6.3 we find that h δ-1 [B, P j ] = b j (x, hD) with b j ∈ Ŝ0 0,δ and h δ-1-µ [P, P j ] = p j (x, hD) with (1 + |ξ| 2 ) -2m p j (x, ξ) belonging to S 0 0,δ . Thus choosing E 0 ∈ IR large enough we have P = P + E 0 I ≥ I and we can write Y τ (h δ-1-µ [P j , P ])] = Y τ (BP 2 )Y τ (h δ-1-µ P -2 [P j , P ])]. Then BP 2 = b(x, hD) with b ∈ Ŝ0 0,δ and the standard parametrix construction (cf. e.g. [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Theorem 8.1.9) gives P -2 h δ-1-µ [P, P j ] = pj (x, hD) with pj ∈ S 0 0,δ , completing the proof of (4.18). If we assume only B = b(x, hD) with b ∈ S 0 0,δ , then reasoning as above we can find

Y + , Y -∈ Y 0 such that (4.18 ) [Y τ (B k,k ), x j /h] = Y + τ + h -ρ τ Y - τ P 2 .
It is clear that to obtain the general statement of Lemma 4.3 it remains to commute succesively

x j /h with Y τ s w,k,k (B k,k ), k ∈ {1, ..., N }. If b k,k ∈ S 0 0,δ , then we have still P 2 B k,k P -2 = bk,k (x, hD) with b k,k ∈ S 0 0,δ , hence P 2 from the last term of (4.18 ) can be put near b k,k (x, hD) with k such that b k,k ∈ Ŝ0 0,δ , i.e. Y ∈ Y ⇒ Y P 2 ∈ Y. Lemma 4.4 Let Y ∈ Y and P j = [iP, x j /h]. Then one can find Y + , Y -∈ Y such that (4.23) h -µ τ P j U τ Y τ = [U τ Y τ , x j /h] + U τ (Y + τ + h -ρ τ Y - τ ).
Proof. Using (4.21) to express [U τ , x j /h] = (Y -τ (x j /h) -x j /h)U τ and applying Lemma 4.3, we find

[U τ Y τ , x j /h] = [U τ , x j /h]Y τ + U τ [Y τ , x j /h] = h -µ τ P j U τ Y τ + h -ρ τ U τ Y τ (h δ-1-µ [P j , iP ])Y τ + U τ ( Ỹ + τ + h -ρ τ Ỹ - τ ), i.e. (4.23) holds with Y - τ = -Y τ (h δ-1-µ [P j , iP ])Y τ -Ỹ - τ , Y + τ = -Ỹ + τ .
5 End of the proof of Theorem 2.2

It remains to prove Proposition 4.2. We start by Lemma 5.1 Let b ∈ Ss . We consider b∂ ξ j p ∈ Ss defined by

(5.1) (b∂ ξ j p)(x, ξ, y) = b(x, ξ, y)∂ ξ j p(x, ξ). Then (5.2) [Op t,τ (b), x j /h] = h -µ (t -τ )Op t,τ (b∂ ξ j p) -Op t,τ (i∂ ξ j b).
Proof. Since the integral kernel of [Op t,τ (b), x j /h] is (5.3) (x, y) → dξ (2πh) d y j -x j h e i(x-y)ξ/h+i(t-τ )p(x,ξ)/h µ b(x, ξ, y), using y j -x j h e i(x-y)ξ/h = i∂ ξ j e i(x-y)ξ/h to integrate by parts, we can rewrite it as dξ (2πh) d e i(x-y)ξ/h+i(t-τ )p(x,ξ)/h µ (h -µ (t -τ )∂ ξ j pb -i∂ ξ j b)(x, ξ, y). 

p (j),t,τ (x, ξ, y) = 1 - τ t ∂ ξ j p(x, ξ) + τ t ∂ ξ j p ± (y, ξ).
Then there exist b k ∈ Ss , Y k ∈ Y such that

(5.5) h -µ t J t,τ (p (j) b, Y ) = 1≤k≤2 J t,τ (b k , Y k ) + h -ρ tJ t,τ (b -k , Y -k ) .
Proof. Since P j = P * j = ∂ ξ j p ± (x, hD) * is a differential operator of order 2m -1, the standard composition formula gives (5.6) Op t,τ (b)P j = Op t,τ (b∂

ξ j p + h 1-δ b),
where (b∂ ξ j p )(x, ξ, y) = b(x, ξ, y)∂ ξ j p ± (y, ξ) and b ∈ Ss has the form b(x, ξ, y) = 1≤|α|≤2m-1

h |α|-1+δ i |α| α! ∂ α y b(x, ξ, y)∂ α ξ ∂ ξ j p ± (y, ξ).
By definition h -µ t J t,τ (p (j) b, Y ) can be expressed as (5.7) h -µ (t -τ ) tr Op t,τ (b∂ ξ j p)U τ Y τ + h -µ τ tr Op t,τ (b∂ ξ j p )U τ Y τ .

Due to (5.2) the first term of (5.7) can be written as (5.8) tr [Op t,τ (b), x j /h]U τ Y τ + J t,τ (i∂ ξ j b, Y ) and (5.6) allows us to write the second term of (5.7) in the form (5.9)

h -µ tr Op t,τ (b)τ P j U τ Y τ + h -ρ τ J t,τ ( b, Y ).
Then due to (4.23), the first term of (5.9) can be written as Proof. Let ε = min{1-δ, 1-µ}. We are going to show that for every n ∈ IN one can find b n ∈ Ss-nε such that Op t,τ (b-b χ ) = Op t,τ (b n ) and b n (x, ξ, y) = 0 for x -y belonging to a small neighbourhood of 0. Reasoning by induction we assume the existence of such b n for a given n ∈ IN. Then we can find b n,j ∈ Ss-nε such that b n = 1≤j≤d (x j -y j )b n,j and b n,j (x, ξ, y) = 0 for y -x belonging to a neighbourhood of 0. Next we observe that decomposing Op t,τ ((x j -y j )b n,j ) as a sum (5.11) Op t,τ ((x j -

(5.10) tr Op t,τ (b)[U τ Y τ , x j /h] + J t,τ (b, Y + ) + h -ρ τ J t,τ (b, Y -). Taking b 1 = i∂ ξ j b, Y 1 = Y , b 2 = b, Y 2 = Y + , b -1 = τ t b, Y -1 = Y , b -2 = τ t b, Y -2 = Y -we obtain (5.5) observing that tr [Op t,τ (b), x j /h]U τ Y τ + tr Op t,τ (b)[U τ Y τ , x j /h] = tr [Op t,τ (b)U τ Y τ , x j /h] = 0.
y j + h 1-µ (t -τ )∂ ξ j p)b n,j ) -h 1-µ (t -τ )Op t,τ (∂ ξ j pb n,j ),
we can write the first term of (5.11) as Op t,τ (ih∂ x j b n,j ). Thus (5.11) can be written as Op t,τ (b n+1,j ) with b n+1,j = ih∂ x j b n,j -(t-τ )h 1-µ ∂ ξ j pb n,j ∈ Ss-(n+1)ε and b n+1,j (x, ξ, y) = 0 for x -y belonging to a small neighbourhood of 0, i.e. the statement holds for n + 1. Proof of Proposition 4.2. Choosing h 0 > 0 small enough we ensure 

h -µ t J t,τ (b 0 , Y ) = 1≤k≤K (J t,τ (b k , Y k ) + h 1-δ-µ tJ t,τ (b -k , Y -k )).
with some b k ∈ Ss , Y k ∈ Y. Applying the analogical reasoning to express h -µ t J t,τ (b -k , Y -k ), k = 1, ..., K, we can write a formula similar to (5.12) with h 1-δ-µ replaced by h 2(1-δ)-µ and after N iterations we can replace h 

a h (x) -a(x) = (a(y) -a(x))γ h δ (x -y) dy, i.e. |a h (x) -a(x)| ≤ C |y -x| r |γ h δ (x -y)| dy = C r h rδ .
(B) We describe how to deduce Theorem 2.1 from Theorem 2.2. Let E ∈ IR be fixed such that p(x, ξ) ≥ E and the spectrum σ

(P ) ⊂ [E ; ∞[. Next we fix E 1 < E 0 and consider g ∈ C ∞ 0 (] -∞; E 1 [).
We observe that (2.5) allows us to find h g > 0 such that supp (g • p) ⊂ Γ E 1 ⊂ Γ E 0 for h ∈]0; h g] and we recall our hypothesis that Γ E 0 is bounded. Then reasoning as in the proof of Lemma 3.1 of [START_REF] Zielinski | Semiclassical Weyl formula for elliptic operators with non-smooth coefficients[END_REF] we obtain Proposition 6.1 Let g be as above. We fix l ∈ C ∞ 0 (IR 2d ) such that l = 1 on a neighbourhood of Γ E 1 and denote L = l(x, hD). and using (6.3) with g 1 , g 0 instead of g we find that (6.6) can be written as 

  δ be independent of t and such that supp b ⊂ supp l. Then we can find b n ∈ S s+nρ 0,δ for n ∈ {0, ..., N } such that supp b n ⊂ supp l and (3.4) P N b = 0≤n≤ N t n b n .

For s ∈

 ∈ IR we will writeb ∈ Ss if b = (b h,t,τ ) h∈]0; 1[, (t,τ )∈V satisfies (4.1) |∂ α ξ ∂ β x,y b h,t,τ (x, ξ, y)| ≤ C α,β h -s-|β|δ (1 + |t|) C 0 for every (α, β) ∈ IN d × IN 2dand supp b h,t,τ ⊂ (supp l) × IR d . Further on || • || is the norm of bounded operators B(L 2 (IR d )) and ||B|| tr := tr (B * B) 1/2 is the trace class norm. If b ∈ Ss then the formula

(4. 13 )

 13 Y ∈ Y 0 ⇒ ∃ C > 0, ||Y τ || ≤ (2 + |τ |) C . We define Ŝs 0,δ as the class of symbols b such that b n (x, ξ) = b(x, ξ)(1 + |ξ| 2n ) belongs to b ∈ S s 0,δ for any n ∈ IN. Finally we define Y as the set of operators Y ∈ Y 0 of the form (4.12), where b k,k , s w,k,k , s w,k,τ are as before and for every k ∈ {1, ..., N } there is k ∈ {1, ..., N } such that b k,k ∈ Ŝ0,δ . For b ∈ Ss , Y ∈ Y we denote (4.14) J t,τ (b, Y ) := tr Op t,τ (b)U τ Y τ .

Proposition 4 . 2

 42 Let Y ∈ Y and b 0 ∈ Ss . Then for every n ∈ IN one can find K n ∈ IN * and b n,k ∈ Ss , Y n,k ∈ Y for k = 1, ..., K n such that

Proposition 5 . 2

 52 Let b ∈ Ss , Y ∈ Y, j ∈ {1, ..., d} and set(5.4) 

Lemma 5 . 3

 53 Let χ ∈ C ∞ 0 (IR d ) be such that χ = 1 on a neighbourhood of 0. Let b ∈ Ss and b χ (x, ξ, y) = b(x, ξ, y)χ(x -y). Then one can find b ∈ Ss-1 such that Op t,τ (b) = Op t,τ (b χ + b ).

d

  j=1 |p (j) (x, ξ, x)| ≥ c/2 for (x, ξ) ∈ supp l and h < h 0 . Then using Lemma 5.3 we can modify b 0 to ensure d j=1 |p (j) (x, ξ, y)| ≥ c/3 for (x, ξ, y) ∈ supp b 0 . Therefore we can find b (j) ∈ Ss such that b 0 = d j=1 b (j) p (j) and applying Proposition 4.2 we can write(5.12) 

(6. 4 )

 4 E 1 ≤ a(x, ξ) ≤ E 1 ⇒ ∇ ξ a(x, ξ) = 0and due to (2.5) we can find c > 0 and h 0 > 0 such that (6.5)E 1 ≤ p(x, ξ) ≤ E 1 ⇒ |∇ ξ p(x, ξ)| ≥ c for h ∈]0; h 0 ]. Let g 0 ∈ C ∞ 0 (]E 1 ; E 1 [), g 1 ∈ C ∞ 0 (] -∞; E[) be real-valued, g 0 =1 in a neighbourhood of E and g 1 + g 2 0 = 1 on [E ; E]. Then (6.6) N (P, E) = tr 1 I [E ; E] (P ) = tr g 1 (P ) + tr (g 2 0 1 I [E ; E] )(P )

(6. 7 ) 6 . 3

 763 tr (g 1 • p)(x, hD) + tr L1 I [E ; E] (P )L * + O(h µ-d ),where L = l(x, hD) with l = g 0 • p. Since (x, ξ) ∈ supp l ⇒ E 1 ≤ p(x, ξ) ≤ E 1 , (6.5) ensures (2.9) and we can use Theorem 2.2 to express (6.7) as(6.8) dxdξ (2πh) d g 1 (p(x, ξ)) + dxdξ (2πh) d (g 2 0 1 I [E ; E] )(p(x, ξ)) + O(h µ-d ).Sinceg 1 + g 2 0 1 I [E ; E] = 1 I [E ; E], the sum of two integrals from (6.8) gives 20 (2πh) -d p<E dxdξ. Finally (2.5) and (1.7) ensureΓ E -C h µ ≤ Γ E-Ch µ ≤ p<E dxdξ ≤ Γ E+Ch µ ≤ Γ E + C h µ .(C) Proof of Proposition 1.1 follows as described in Appendix of[START_REF] Zielinski | Semiclassical Weyl formula for elliptic operators with non-smooth coefficients[END_REF].(D) Some properties of pseudodifferential operators. Following well known composition formulas (cf. e.g.[START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Theorem 18.5.4 and 18.5.10) we haveLemma Let b ∈ S s 0,δ , b ∈ S s 0,δ . Then there is b b ∈ S s+s 0,δ such that b(x, hD) b(x, hD) = (b b)(x, hD).Let s , s , s , s ∈ IR be such that the conditions∂ x k b ∈ S s 0,δ , ∂ ξ k b ∈ S s 0,δ , ∂ x k b ∈ S s 0,δ , ∂ ξ k b ∈ S s 0,δ hold for k ∈ {1, . . . , d} and let s = max{s + s , s + s } -1. Then [b(x, hD), b(x, hD)] = b (x, hD) with b ∈ S s 0,δ . Proof of (4.4). Let l d (x, ξ) = (1 + |x| 2 ) d (1 + |ξ| 2 ) d . Then l d (x, hD) -1 is of trace class and ||Op t,τ (b)|| tr ≤ ||(l d (x, hD) * ) -1 || tr ||l d (x, hD) * Op t,τ (b)||, where l d (x, hD) * Op t,τ (b) = Op t,τ (b d ) with b d ∈ Ss+2d , i.e. (4.4) follows from (4.3).

  1/2 are equivalent norms if h < h 0 with h 0 small enough and we can define Ãh , the associated selfadjoint operator in L 2 (IR d ). Moreover the assertions of Proposition 1.1, Theorem 1.2 and 1.3 still hold with Ãh instead of A h .

2. Let M be a compact (boundaryless) manifold with a density dx of class C m and let A M,h be a quadratic form on C m

  -y)|h -δ|α| dy = Ch (r-|α|)δ |y| r |γ (α) (y)| dy completes the proof of (2.3). To obtain (2.2) we write

	Further on we assume |α| ≥ 1, hence γ h δ (x -y)dy = 0 and (6.1) still holds (α)
	if a(y) is replaced by a(y) -a(x). Therefore
		|∂ α x a h (x)| ≤ |a(y) -a(x)||γ h δ (x -y)|h -δ|α| dy ≤ (α)
		C |y -x| r |γ h δ (x (α)
	6 Appendix
	(A) Proof of (2.2) and (2.3). Dropping the indices ν, ν we can write
	(6.1)	∂ α x a h (x) = a(y)γ h δ (x -y)h -δ|α| dy. (α)

1-δ-µ 

by h N (1-δ)-µ . Thus for N ≥ µ/(1 -δ) we obtain (4.16) with n = 1 and the general statement of Proposition 4.2 clearly follows by induction with respect to n ∈ IN.

  ) -(g • p)(x, hD)|| tr = O(h µ-d ).Proof. Let l be as in Proposition 6.1 andQ • t = (e itp l)(x, hD). Then it is easy to see that computing Q• t = d dt Q • t -iP Q • t we can apply (4.3) with s = -δr, µ = 0 and obtain || tr ≤ || Q• t || || L * || tr ≤ h δr-d (2 + |t|) C .Reasoning as in (2.18) we find||( Le itP -Q • t )L * || tr ≤ h δr-d (2 + |t|) C+1and introducing the Fourier transform F g = g ∈ S(IR) to write( Lg(P ) -(g • p)(x, hD)) L * = ( Le itP -Q • t ) L *, we obtain ||( Lg(P ) -(g • p)(x, hD)) L * || tr = O(h µ-d ), which implies (6.3) due to (6.2). . Due to (1.7) we have E ∈]E 1 ; E 1 [ with some E 1 , E 1 ∈ IR satisfying

	Proposition 6.2 If g is as above, then (6.3) ||g(P || Q•	∞ -∞	dt 2π	g(t)

Then for every N ∈ IN, (6.2) ||g(P )(I -L)|| tr = O(h N ). If E < E 1 < E 0 then we can find g as above satisfying g ≥ 1 I [E ; E] and ||1 I [E ; E] (P )|| tr ≤ ||g(P )|| tr ≤ ||g(P )|| || L|| tr + O(h N ) = O(h -d ) follows from (6.2) and from the well-known estimate || l(x, hD)|| tr = O(h -d ). t L *