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We consider the Weyl formula for the asymptotic number of eigenvalues of self-adjoint elliptic differential operators with coefficients which have Hölder continuous first order derivatives. Our aim is to prove that the Weyl formula holds with a remainder usually considered in the case of operators with smooth coefficients.

Introduction

This paper presents a generalization of our earlier results described in [START_REF] Zielinski | Asymptotic behaviour of eigenvalues of differential operators with irregular coefficients on a compact manifold[END_REF], [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF], [START_REF] Zielinski | Sharp spectral asymptotics and Weyl formula for elliptic operators with non-smooth coefficients[END_REF] and motivated by the well-known result of L. Hörmander [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF] on spectral asymptotics of a self-adjoint elliptic operator A with smooth coefficients on a smooth (boundaryless) manifold M . If M is a compact manifold of dimension d and 2m is the order of A, then the associated counting function N (A, λ), defined as the number of eigenvalues (counted with their multiplicities) smaller than λ, satisfies the Weyl formula

N (A, λ) = cλ d 2m + O(λ d-µ 2m ), (1.1) 
1 where c = c A,M is a constant and µ = 1.

It is natural to ask if (1.1) still holds for the operators with non-smooth coefficients. In [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] we proved that for coefficients which are Hölder continuous of exponent r ∈]0; 1], the formula (1.1) holds if µ < r. In [START_REF] Zielinski | Sharp spectral asymptotics and Weyl formula for elliptic operators with non-smooth coefficients[END_REF] we proved (1.1) with µ = 1 assuming that the first order derivatives of coefficients are Lipschitz continuous and in this paper we show a way of replacing the hypothesis of Lipschitz continuity by Hölder continuity. Moreover we use the semiclassical framework, which allows us to obtain the classical Weyl formula (1.1) as a corollary.

Let B r denote the set of bounded, Hölder continuous functions on IR d , i.e. a ∈ B r means that a ∈ L ∞ (IR d ) and there is C > 0 such that |a(x)a(y)| ≤ C|x -y| r (x, y ∈ IR d ).

Further on m ∈ IN \ {0} and we fix r ∈]0; 1]. For ν, ν ∈ IN d , |ν|, |ν| ≤ m, let a ν,ν be real valued coefficients satisfying a ν,ν = a ν,ν and ∂ x j a ν,ν ∈ B r (j = 1, ..., d).

(

We assume moreover the existence of a constant c > 0 such that |ν|=|ν|=m a ν,ν (x)ξ ν+ν ≥ c|ξ| 2m (x, ξ ∈ IR d ) (

and for h > 0 we introduce the quadratic form A h defined for ϕ, ψ ∈ C m 0 (IR d ) by the formula

A h [ϕ, ψ] = |ν|,|ν|≤m
(a ν,ν (hD) ν ϕ, (hD) ν ψ), (1.4) where (•, •) is the scalar product of L 2 (IR d ) and (hD) ν = (-ih) |ν| ∂ ν /∂x ν . The ellipticity hypothesis (1.3) ensures the fact that A h is bounded from below and its closure defines a self-adjoint operator A h . We introduce a(x, ξ) = |ν|,|ν|≤m a ν,ν (x)ξ ν+ν (1.5) and for E ∈ IR we denote

Γ E = a -1 (] -∞; E[) = {(x, ξ) ∈ IR 2d : a(x, ξ) < E}. (1.6)
We will present a proof of Theorem 1.1 Let E 0 , E ∈ IR be such that E 0 < E and Γ E is bounded. Then the operators A h described above have discrete spectrum in ] -∞; E 0 ] for h ∈]0; h 0 ], if h 0 > 0 is fixed small enough. We assume moreover a(x, ξ) = E 0 ⇒ ∇ ξ a(x, ξ) = 0.

(1.7)

Then, for h ∈]0; h 0 ], the counting function N (A h , E 0 ) satisfies the asymptotic formula

N (A h , E 0 ) = |Γ E 0 |(2πh) -d + O(h 1-d ), (1.8) 
where |Γ E 0 | denotes the Lebesgue measure of Γ E 0 .

Regularization of coefficients

Let γ 1 ∈ C ∞ 0 (IR d ) be such that γ 1 (-x) = γ 1 (x), γ 1 (x) dx = 1 and for ε > 0 set γ ε (x) = ε -d γ 1 (x/ε). We fix δ ∈]0; 1[ and introduce a ν,ν,h (x) = (a ν,ν * γ h δ )(x) = a ν,ν (y)γ 1 (h -δ (xy)) h -δd dy.

(

It is easy to see (cf. Section 7(A) ) that (1.2) ensures

|a ν,ν (x) -a ν,ν,h (x)| ≤ Ch δ(1+r) , (2.2) 
|∂ α x a ν,ν,h (x)| ≤ C α h -δ(|α|-1-r) + , (2.3) 
where s + = (s + |s|)/2 is the positive part of s ∈ IR. We define

p h (x, ξ) = |ν|,|ν|≤m a ν,ν,h (x)ξ ν+ν (2.4)
and assume further on

(1 + r)δ ≥ 1, hence (2.2) ensures |∂ α ξ (a -p h )(x, ξ)| ≤ C α h ξ 2m-|α| , (2.5) 
where ξ = (1 + |ξ| 2 ) 1/2 . Moreover the operator

P h = |ν|,|ν|≤m (hD) ν a ν,ν,h (x)(hD) ν (2.6)
is an approximation of A h satisfying

±(A h -P h ) ≤ Ch hD 2m = Ch(I -h 2 ∆) m
and P - h ≤ A h ≤ P + h holds (in the sens of quadratic forms) with

P ± h = P h ± Ch hD 2m . (2.7)
Our principal aim is to show Theorem 2.1 The assertion of Theorem 1.1 holds if A h is replaced by P ± h . First of all we remark that the discreteness of the spectrum of P ± h is a standard result and analogical reasoning can be applied to A h (cf. Section 7(B) for details). Then the asymptotic formula (1.8) follows from the estimates of the counting functions for P ± h due to the min-max principle (cf. [START_REF] Reed | Methods of modern mathematical physics[END_REF]), which ensures

P - h ≤ A h ≤ P + h ⇒ N (P + h , E) ≤ N (A h , E) ≤ N (P - h , E). (2.8)
In the remaining part of this section we describe a version of Theorem 2.1 formulated suitably for the proof that will follow.

Let 1 I Z : IR → {0, 1} be the characteristic function of Z ⊂ IR and set

N h (p h , E) = p h (x,ξ)≤E dxdξ (2πh) d = dxdξ (2πh) d 1 I ]-∞; E] • p h . (2.9) 
Further on we also write 1 I Z (P ± h ) to denote the spectral projector of P ± h on a Borel set Z ⊂ IR and due to (2.8) and (2.11), to obtain the asymptotic formula (1.8) it suffices to show

tr 1 I ]-∞; E 0 ] (P ± h ) = N (P ± h , E 0 ) = N h (p h , E 0 ) + O(h 1-d ). (2.15)
To show (2.15) we introduce

g ∈ C ∞ 0 (]E 0 -2c 0 ; E 0 + 2c 0 [), g = 1 on [E 0 -c 0 ; E 0 + c 0 ], g ∈ C ∞ 0 (] -∞; E 0 -c 0 [) (2.16) 
and assume g +

g 2 = 1 on [-E ′ 0 ; E 0 + c 0 ] where E ′ 0 > 0 is chosen sufficiently large to ensure -E ′ 0 ≤ inf p ± h and -E ′ 0 ≤ inf σ(P ± h ) for h ∈]0; h 0 ]. Then for E ∈ [E 0 -c 0 ; E 0 + c 0 ] we can write the decompositions N h (p h , E) = dxdξ (2πh) d (g + g 2 1 I Z )(p h (x, ξ)), 1 I ]-∞; E] (P ± h ) = (g + g 2 1 I Z )(P ± h ), where Z = [E 0 -2c 0 ; E]. Now it is clear that (2.15) is a consequence of Theorem 2.2 One has tr g(P ± h ) = dxdξ (2πh) d g • p h + O(h 1-d ), (2.17) tr (g 2 1 I Z )(P ± h ) = dxdξ (2πh) d (g 2 1 I Z ) • p h + O(h 1-d ).
(2.18)

Further on c > 0 is small enough and f 0 ∈ C ∞ 0 (]c/2; c/2[). Then we define

f 1 = f 0 * f 0 ∈ C ∞ 0 (]c; c[) and fh (λ) = F -1 h f 1 (λ) = ∞ -∞ e iλt/h f 1 (t) dt 2πh . (2.19)
We note that fh (λ) = f1 (λ/h)/h, f1 is rapidly decreasing and f1 > 0.

Moreover we can choose

f 0 such that ∞ -∞ fh = f 1 (0) = 1. Then we use f Z h (λ) = (1 I Z * fh )(λ) = Z dλ ′ fh (λ -λ ′ ) (2.20)
as an approximation of 1 I Z . In Section 7(C) we recall a proof of

Proposition 2.3 The estimate (2.18) follows if tr (g 2 f Z h )(P ± h ) = dxdξ (2πh) d (g 2 f Z h ) • p h + O(h 1-d ) (2.21)
holds uniformly with respect to Z = [E ′ ; E].

Pseudodifferential approximation

In this section we show the estimate (2.17). We use pseudodifferential operators in a reasoning which will be developed in Section 4 to treat (2.18). We denote by || • || the norm of bounded operators B(L 2 (IR d )) and ||B|| tr = tr (B * B) 1/2 is the trace class norm. If b h ∈ C ∞ 0 (IR 2d ) then we denote by b h (x, hD) the pseudodifferential operator acting on ϕ ∈ S(IR d ) according to the formula

(b h (x, hD)ϕ)(x) = dydξ (2πh) d e i(x-y)ξ/h b h (x, ξ)ϕ(y). (3.1) If b h , l h ∈ C ∞ 0 (IR 2d ), then b h (x, hD)l h (x, hD) * has the integral kernel K h (x, y) = dξ (2πh) d e i(x-y)ξ/h b h (x, ξ)l h (y, ξ), hence tr b h (x, hD)l h (x, hD) * = dx K h (x, x) = dxdξ (2πh) d b h l h . (3.2) 
In this section we consider g ∈ C ∞ 0 (] -∞; E 1 [) with E 1 such that Γ E 1 +2c 1 is bounded for a certain c 1 > 0. Then using (2.5) we can find h 0 > 0 small enough to ensure

0 < h < h 0 ⇒ supp (g • p h ) ⊂ Γ E 1 +c 1 . (3.3) 
Next we fix an auxiliary h-independent cut-off function l ∈ C ∞ 0 (IR 2d ) such that l = 1 on a neigbourhood of Γ E 1 +c 1 and l ≥ 0. We denote L h = l(x, hD) and recall standard estimates of pseudodifferential operators:

||L h || = O(1), ||L h || tr = O(h -d ).
(3.4)

Moreover (3.2) allows us to write dydξ (2πh) d g • p h = dydξ (2πh) d l(g • p h ) = tr (g • p h )(x, hD)L * h (3.5)
and since |tr B| ≤ ||B|| tr , it is clear that (2.17) follows from

||g(P ± h ) -L * h (g • p h )(x, hD)|| tr = O(h 1-d ). (3.6) 
Our proof of (3.6) is based on an auxiliary lemma (cf. Section 7(D)): 

Lemma 3.
(P ± h ) -L * h g(P ± h )L h || tr = O(h N )
and we can conclude that instead of (3.6) it suffices to show

||L * h g(P ± h )L h -L * h (g • p h )(x, hD)|| tr = O(h 1-d ). (3.6 ′ )
Further on g 1 ∈ S(IR) denotes the Fourier transform of g, i.e. we have g

(λ) = ∞ -∞ dt 2π g 1 (t) e itλ and (g • p h )(x, ξ) = g(p h (x, ξ))l(x, ξ) = ∞ -∞ dt 2π g 1 (t) (e itp h l)(x, ξ), (3.8) 
g(P ± h ) = ∞ -∞ dt 2π g 1 (t) e itP ± h . (3.9) 
Therefore we can write Before starting the proof of Lemma 3.2 it is useful to introduce some notations. We write the differential operators P ± h in the standard form

g(P ± h )L h -(g • p h )(x, hD) = ∞ -∞ dt 2π g 1 (t) R h,t with R h,t = e itP ± h L h -(e itp h l)(x,
P ± h = |α|≤2m a ± ν,ν,h (x)(hD) α = p ± h (x, hD), (3.12 
)

p ± h (x, ξ) = |α|≤2m a ± ν,ν,h (x)ξ α (3.13)
and it is easy to check that (2.5) still holds with p ± h instead of p h . Let m ∈ IR and δ 1 ≥ δ 0 ≥ 0 be such that

δ 0 + δ 1 < 1. If b = {b h } 0<h≤h 0 is a family of smooth functions satisfying the estimates |∂ α ξ ∂ β x b h (x, ξ)| ≤ C n,α,β h -m-|α|δ 0 -|β|δ 1 ξ -n (3.14) (for every α, β ∈ IN d and n ∈ IN), then we write b ∈ S m δ 0 ,δ 1 . If l ∈ C ∞ 0 (IR 2d ) is h-independent, then the families lp h , l p± h , le itp h belong to S 0 0,δ and well-known L 2 -estimates of pseudodifferential operators (cf. [2],[6]) give b ∈ S m 0,δ ⇒ ∃C > 0, ||(e itp h lb h )(x, hD)|| ≤ Ch -m t C . (3.15) If s ∈ IR then we write B h = L h + O(h s ) if and only if there is a constant C > 0 such that ||B h -L h || ≤ Ch s holds for all h ∈]0; h 0 ].
Moreover further on we adopt the convention to drop the index h whenever there is no confusion. Instead of P ± h , L h , R h,t , p h , p ± h , we are going to write simply P , L, R t , p, p ± .

Proof of Lemma 3.2 We are going to obtain suitable estimates of Rt = (i∂ t + P )(e itp l)(x, hD)

(3.16)
and the assertion of Lemma 3.2 will follow from

R t = -[e i(t-τ )P (e iτ p l)(x, hD)] τ =t τ =0 = i t 0 dτ e i(t-τ )P Rτ . (3.17)
The standard formula of the composition with a differential operator gives

p ± (x, hD)(e itp l)(x, hD) = qt (x, hD), (3.18) with qt = |α|≤2m (-ih) |α| α! ∂ α x (e itp l)∂ α ξ p ± = e itp 2m k=0 t k q k , (3.19) 
q k = k≤|α|≤2m α 0 +...+α k =α α j =0 if j =0 c α 0 ,...,α k ∂ α 0 x l ∂ α 1 x p ... ∂ α k x p ∂ α ξ p ± (3.20) and q k ∈ S -k 0,δ follows from -|α| + k j=1 δ(|α j | -1) ≤ -k -(1 -δ)(|α| -k). However (3.15) ensures q k ∈ S -k 0,δ ⇒ (e itp q k )(x, hD) = O(h k t C k ), hence P (e itp l)(x, hD) = (e itp q 0 )(x, hD) + O(h t C ).
To complete the proof we note that l(p ±p) ∈ S -1 0,δ and

q 0 -lp ± = 1≤|α|≤2m (-ih) |α| α! ∂ α x l ∂ α ξ p ± ∈ S -1 0,δ (3.21) ensure q 0 -lp ∈ S -1 0,δ , hence i∂ t (e itp l)(x, hD) + (e itp q 0 )(x, hD) = (e itp (q 0 -lp))(x, hD) = O(h t C ).

Refinement

Due to Proposition 2.3, to complete the proof of Theorem 2.2 it suffices to show (2.21). We will use a reasoning of Section 3 in a refined form. We keep notations introduced before and in particular we drop the index h.

To begin we remark that replacing g by

g ∈ C ∞ 0 (]E 0 -c 0 ; E 0 + c 0 [) in (3.6), we can introduce l 0 = g • p, L 0 = l 0 (x, hD) and write tr (g 2 f Z h )(P ) = tr L * 0 f Z h (P )L 0 + O(h 1-d ). ( 4.1) 
As before Z = [E ′ ; ] and we use the Fourier transform

f Z h (t) := F h f Z h (t) = ∞ -∞ dλ e -itλ/h f Z h (λ) = f 1 (t) E E ′ dλ e -itλ/h = f 1 (t) e -it(E+E ′ )/(2h) t/(2h)
sin

(E ′ -E)t 2h to write tr L * 0 f Z h (P )L 0 = ∞ -∞ dt 2πh f Z h (t) tr L * 0 e itP/h L 0 , (4.2) 
dxdξ (2πh) d l 2 0 ( f Z h • p) = dxdξ (2πh) d ∞ -∞ dt 2πh f Z h (t) l 2 0 e itp/h . (4.3) 
However (3.2) allows us to express (4.3) as ∞ -∞ dt 2πh f Z h (t) tr L * 0 (l 0 e itp/h )(x, hD) (4.3 ′ )
and introducing

R 0 t/h = e itP/h L 0 -(e itp/h l 0 )(x, hD) (4.4) 
we find that (2.21) is equivalent to the estimate

∞ -∞ dt 2πh f Z h (t) tr L * 0 R 0 t/h = O(h 1-d ). (4.5) 
Next we observe that (2.5) and (2.10) ensure Proof. Using (4.6) in a standard reasoning we obtain

E 0 -2c 0 ≤ p(x, ξ) ≤ E 0 + 2c 0 ⇒ |∇ ξ p(x, ξ)| ≥ c 0 (4.6) for h ∈]0; h 0 ] if h 0 > 0 is
∀ b ∈ S 0 0,δ ∃ bj ∈ S 0 0,δ , b = d j=1 bj ∂ ξ j p. (4.8)
Therefore performing the integration by parts

t dξ d j=1 b j ∂ ξ j p e itp/h = ih dξ d j=1 ∂ ξ j bj e itp/h
we obtain the assertion of Lemma 4.1 for n = 1 with b 1 = d j=1 i∂ ξ j bj . Obviously the general case follows by induction with respect to n. △.

We will use Lemma 4.1 to replace R 0 t/h in (4.5) by

R t/h = e itP/h L 0 -(e itp/h l t )(x, hD), (4.4 ′ ) 
where

l t = l 0 + tl ′ 0 + 1 2 t 2 l ′′ 0 with certain l ′ 0 ∈ S 0 0,δ and l ′′ 0 ∈ S 1 0,δ . In fact tr L * 0 (R t/h -R 0 t/h
) can be expressed as dxdξ (2πh) d l 0 (l tl 0 )e itp/h = h 1-d dxdξ l e itp/h , with a ceratin l ∈ S 0 0,δ (due to Lemma 4.1 with n = 1 and 2). Thus

∞ -∞ dt 2πh f Z h (t) tr L * 0 (R t/h -R 0 t/h ) = h 1-d dxdξ l( f Z h • p) is clearly O(h 1-d ), hence (4.5) is equivalent to ∞ -∞ dt 2πh f Z h (t) tr L * 0 R t/h = O(h 1-d ). (4.5 ′ ) obtain (4.5 ′ ) it suffices to show that sup |t|≤c |tr L * 0 R t/h | ≤ Ch 1-d+ε (4.9)
holds if c, ε > 0 are small enough. The main result of this section is 5 Construction of the approximation

[Op t (b), x j /h] = t/overhµOp t (∂ ξ j p b) + Op t (i∂ ξ j b), [Op t (b), D j ] = t/overhµOp t (∂ x j p b) + Op t (i(∂ x j + ∂ y j )b),
In this section N ∈ N is fixed and we describe the construction of

Q N ,n (t) = e -itp q N,n (t) (x, D) (4.1)
such that (3.15) holds. The proof of (3.14) will be given in Sections 5-7.

For N = 0, ..., N we are going to consider

q N,n (t)(x, ξ) = 0≤k≤N t k q 0 k,n (x, ξ) (4.2(N ))
where q N,n (0) = q 0 0,n = l n and for k ≥ 1 we have

q 0 k,n ∈ S(hp(h σ/2 p) k-1 , g), supp q 0 k,n ⊂ B n (c/2). (4.3(k))
We construct q N,n (t) by induction with respect to N and its final step corresponding to N = N gives q N ,n (t) to be used in (4.1). For a smooth function (t, x, ξ) → b(t, x, ξ) ∈ C we denote

P N b(t) = |α|≤ N (-i) |α| ∂ a ξ b(t)∂ α x p 0 /α!,
where p 0 is given by (3.24).

Proposition 5.1 Let N = 0, ..., N . Then we can find q N,n (t) satisfying (4.2(N )) with q N,n (0) = l n , q 0 k,n satisfying (4.3(k)) for k = 1, ..., N and

(∂ t + iP N ) e -itp q N,n (t) = e -itp q 0 N,n (t) (4.4(N )) holds with q 0 N,n (t)(x, ξ) = N ≤k≤N + N t k q 0 N,k,n (x, ξ), (4.5(N )) q 0 N,k,n ∈ S(hp(h σ/2 p) k , g) for k = N, ..., N + N (4.6(N ))
and supp q 0 N,k,n ⊂ B n (c/2).

Proof. We introduce the notation P N q(t) = e itp (∂ t + iP N ) e -itp q(t) .

If q(t, x, ξ) = q 0 (x, ξ) is independent of t, then

P N q(t) = 0≤k≤ N t k q 0 k (4.7) with q 0 0 = i(p 0 -p)q 0 - 1≤|α|≤ N(-i) |α|+1 ∂ α ξ (q 0 ∂ α x p 0 )/α!, q 0 k = |α 0 +...+α k |≤ N α j =0 if j =0 c α 0 ,...,α k ∂ α 0 ξ (q 0 ∂ α 0 +...+α k x p 0 ) ∂ α 1 ξ p...∂ α k ξ p (k = 1, ..., N ).
Using the fact that the estimates (2.8) still hold with p 0 instead of p we find

q 0 ∈ S(m, g) =⇒ ∂ α 0 ξ (q 0 ∂ α x p0 ) ∈ S(mph 1+σ|α| ξ |α|-|α 0 | , g) (4.8) 
if α = 0. Moreover the estimates (2.10 ′ ) imply

∂ α 1 ξ p...∂ α k ξ p ∈ S(p k ξ -|α 1 |-...-|α k | , g) (4.9) 
if α 1 , ..., α k = 0. Combining (4.8), (4.9) with α = α 0 + ... + α k =⇒ |α| ≥ max{k, 1} in the expression of q 0 k we find q 0 ∈ S(m, g) =⇒ q 0 k ∈ S(mph 1+σ max{k, 1} pk , g) (4.10)

(where in the case k = 0 we use moreover (3.24)). Therefore in the case N = 0 when we take q(t) = l n ∈ S(1, g) in (4.7), we obtain (4.4(0)) with q 0 0,n of the form (4.5(0)) and (4.10) with m = 1 imply (4.6(0)), i.e. Proposition 4.1 holds for N = 0.

Further on we assume that the statement of Proposition 4.1 holds for a given N ≤ N -1 and we prove that it still holds for N + 1 instead of N .

Using the induction hypothesis to express P N q N,n (t) we find

P N q N +1,n (t) = P N (t N +1 q 0 N +1,n ) + P N q N,n (t) = t N (N + 1)q 0 N +1,n + q 0 N,N,n +t N +1 P N q 0 N,n+1 + N +1≤k≤N + N t k q 0 N,k,n .
In order to obtain (4.5(N + 1)) it suffices to cancel the term with t N taking q 0 N +1,n = -q 0 N,N,n /(N + 1) (4.11)

and we have q 0 N,N,n ∈ S(hp(h σ/2 p) N , g) by the induction hypothesis. Let us introduce the following notation :

a n (t) ∈ k∈K t k S(m(k), g) ⇐⇒ a n (t) = k∈K t k a 0 k,n with a 0 k,n ∈ S(m(k), g).
Then using ph ≤ p and max{k, 1} ≥ (k + 1)/2 we can write (4.7), (4.10) in the following form

q(t) = q 0 ∈ S(m, g) =⇒ P N q(t) ∈ 0≤k≤ N t k S(m(h σ/2 p) k+1 , g).
(4.12)

Since (4.11) gives (4.3(N + 1)), applying (4.12) with m = ph(h σ/2 p) N we find

t N +1 P N q 0 N,n+1 ∈ 0≤k≤ N t N +1+k S(ph(h σ/2 p) N +k+1 , g)
and (4.6(N + 1)) follows. △ Proposition 5.2 Let Q N ,n (t) be defined by (4.1) with q N,n given by (4.2( N )) where q 0 n,0 = l n and q 0 k,n satisfy (4.3(k)) for k = 1, ..., N . Then (3.15) holds.

Proof. For k ∈ N, n ∈ N * , q ∈ C ∞ 0 (R d × R d ) and λ ∈ R we denote N k,n (q, λ) = ∞ -∞ dt f ± n,λ (t) t k J t (q), (4.13) 
where J t (q) = (2π) -d e -itp(x,ξ) q(x, ξ) dxdξ.

(4.14) Since t k f ± n,λ (t) is the Fourier inverse of i k (f ± n,λ ) (k)
, changing the order of integrals (4.13) and (4.14) we find

N k,n (q, λ) = (2π) -d i k (f ± n,λ ) (k) p(x, ξ) q(x, ξ) dxdξ. (4.15) 
Since e -itp q (x, D)L * n has the integral kernel (x, y) → (2π) -d e -itp(x,ξ) q(x, ξ)l n (y, ξ) dξ,

we have tr L * n e -itp q (x, D) = J t (ql n ) and ∞ -∞ dt f ± n,λ (t) tr Q N ,n (t)L * n = 0≤k≤ N N k,n (q 0 k,n l n , λ). (4.16) 
For k = 0 we have q 0 0,n = l n , hence (4.15) and (3.8) give

N 0,n (q 0 0,n l n , λ) -(2π) -d p<λ l n (x, ξ) 2 dxdξ = (2π) -d f ± n,λ -1 ]-∞,λ[ p(x, ξ) l n (x, ξ) 2 dxdξ ≤ λ-hnpn<p<λ+hnpn 1 Bn(c) (x, ξ) dxdξ.
It remains to show that the estimate

|N k,n (q n , λ)| ≤ C λ-hnpn<p<λ+hnpn 1 Bn(c) (x, ξ) dxdξ (4.17(k))
holds with q n = q 0 k,n l n , k = 1, ..., N . The expression (4.15) allows to write the obvious inequality

|N k,n (q n , λ)| ≤ (f ± n,λ ) (k) p(x, ξ) |q n (x, ξ)| dxdξ. (4.18(k))
In the case k = 1 the above inequality leads to the following :

Corollary 5.3 If q n ∈ S(ph, g) are such that supp q n ⊂ B n (c), then |q n | ≤ Ch n p n and using (3.9(1)) in (4.18(1)) we obtain (4.17(1)).

In particular (4.17(1)) holds with q n = q 0 1,n l n . In order to prove (4.17(k)) for q n = q 0 k,n l n , k ≥ 2, let χ ∈ C ∞ 0 (] -2; 2[) be such that χ = 1 on [-1; 1] and for s > 0 let

χ s (x, ξ) = χ(m(x, ξ)/s 2 ) with m = ξ 2 |∇ ξ p| 2 h -2 p -2 . (4.19)
We consider also χs := 1χ s and remark that using 1 + m ∈ S(1 + m, g) it is easy to check that χ s , χs ∈ S(1, g). Moreover

(x, ξ) ∈ supp χ s =⇒ p(x, ξ) = ((1 + m 1/2 )hp)(x, ξ) ≤ (1 + 2s)(hp)(x, ξ). (4.20) Therefore |q 0 k,n l n χ s | ≤ C k h k n p k
n and using (3.9(k)) in ( 4.18(k)) we find that (4.17(k)) holds with q n = q 0 k,n l n χ s , k ≥ 2. Thus it remains to show that (4.17(k)) holds with q n = q 0 k,n l n χs , k ≥ 2. To obtain this result it suffices to show Lemma 5.4 If q n ∈ S(m, g) then we can find qn ∈ S(m/p, g) such that supp qn ⊂ supp q n and t J t (q n χs ) = J t (q n χs/2 ).

(4.21) Indeed, iterating the assertion of Lemma 4.4 we can write

t k J t (q 0 k,n l n χs ) = t k-1 J t (q 1,k,n χs/2 ) = ... = t k-kJ t (qk ,k,n χs/2 k ). (4.22)
for some qk ,k,n ∈ S(php k-1-k, g) with supp qk ,k,n ⊂ B n (c/2). Thus using (4.22) with k = k -1 we obtain

N k,n (q 0 k,n l n χs , λ) = N 1,n (q n , λ)
with q n ∈ S(hp, g), supp q n ⊂ B n (c/2), and (4.17 Proof of Lemma 4.4. Using ξ 2 |∇ ξ p| 2 ∈ S(p 2 , g) and

s 2 p(x, ξ) 2 ≤ 2s 2 (hp)(x, ξ) 2 + 2 ξ 2 |∇ ξ p(x, ξ)| 2 ≤ 2(s 2 + 1) ξ 2 |∇ ξ p(x, ξ)| 2
for (x, ξ) ∈supp χs , we obtain χs ξ -2 |∇ ξ p| -2 ∈ S(p -2 , g) due to (3.20) and combining with ξ 2 ∂ ξ j p ∈ S( ξ p, g) we can define χj,s := χs ∂ ξ j p|∇ ξ p| -2 ∈ S( ξ /p, g). (4.23)

Writing q n χs = d j=1 q n χj,s ∂ ξ j p and integrating by parts we find t J t (q n χj,s ∂ ξ j p) = (2π) -d i∂ ξ j e -itp(x,ξ) (q n χj,s )(x, ξ) dxdξ = -iJ t (∂ ξ j (q n χj,s )), which completes the proof due to ∂ ξ j (q n χj,s ) ∈ S(m/p, g) and supp χj,s ∩ supp χ s/2 = ∅. △

Preliminary remarks about the approximation error

In this section we begin a study of tr Q N ,n (tτ )e -iτ P L * n with the purpose to establish (3.18), which implies (3.14). To abbreviate notations we denote the elements of V by the letter ν, adopting the following convention : if the index ν appears in a formula simultaneously with a letter n, t or τ , then ν = (n, t, τ ). Moreover the notation s ν = sν + O(m n,t ) means that |s n,t,τsn,t,τ | ≤ Cm n,t holds with a constant C > 0 independent of ν = (n, t, τ ) ∈ V.

Assume that Q ν = e -itp q ν (x, D) with q ν ∈ S(m, g), supp q ν ⊂ B n (c) and Y ν ∈ B(L 2 (R d )) for ν ∈ V. Then Lemma 9.1 allows to estimate

|t k tr Q ν e -iτ P Y ν | ≤ |t| k ||Q ν || tr ||Y ν || ≤ ≤ Cm n h -C 0 n h n p n t k+C 0 ||Y ν ||, (5.1) 
where m n are as in (3.6).

The family {Y ν } ν∈V ⊂ B(L 2 (R d )) will be called negligible if for every N ∈ N we can find C(N ) > 0 such that Before giving the proof of this result we describe its consequences. We assume c > c > c ′ > c/2 and note that the method of ch. 18.4 [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] (cf. the beginning of Section 3) allows to find θ-

||Y ν || = O h N n h n p n t C(N ) . (5.2) If N ′ , k ∈ N and {Y ν } ν∈V is negligible, then (5.1) allows to find C(k, N ′ ) > 0 such that t k tr Q ν e -iτ P Y ν = O h N ′ n h n p n t C(k,N ′ ) . ( 5 
k ∈ C ∞ 0 (B - x(k) (c)) such that θ- k = 1 on B - x(k) (c ′ ) and |∂ α θ- n (x)| ≤ C α v(x) -ρ|α| .
If Θk denotes the operator of multiplication by θk , then Proposition 5.1 ensures that (I -Θ-

k - n )e -iτ P L * n and P (I -Θ- k - n )e -iτ P L * n are negligible, hence for every N ∈ N we can find C(N ) > 0 such that tr Q N ,n (t -τ )e -iτ P L * n = tr Q N ,n (t -τ ) Θ- k - n e -iτ P L * n + O h N n h n p n t C(N ) .
(5.5)

Further on we prefer using the operators Q N ,n (t-τ ) Θ-

k - n instead of Q N ,n (t- τ )
and for this purpose we introduce new notations.

Symbols depending on

(x, ξ, y) ∈ R d × R d × R d . If q ν ∈ C ∞ 0 (R d × R d × R d ), then
Op(e i(t-τ )p q ν ) will denote the integral operator with the kernel (x, y) → K ν (q, x, y) = (2π) -d e i(x-y)ξ-i(t-τ )p(x,ξ) q ν (x, ξ, y) dξ.

(5.6)

For c > 0 and n ∈ N * we will denote

Bn (c) := B - x(k - n ) (c) × B + ξ(k + n ) × B - x(k - n ) (c)
and for m ∈ M c(g) we will write q ν ∈ S(m) if and only if there is c < c such that q ν ∈ C ∞ 0 ( Bn (c)) and

|∂ β x,y ∂ α ξ q ν (x, ξ, y)| ≤ C α,β m n h σ|β| n ξ |β|-|α| holds for every α ∈ N d , β ∈ N 2d
, where m n are as in (3.6).

These notations will be used below to express the approximation error in a particular form, similar to (4.13), (4.14), (4.16).

Expressions of tr Q N ,n (t -τ ) Θ- k - n e -iτ P L * n .
We have p W (x, D) = p 0 (x, D) = p 0 (x, D) * and Q N ,n (t)p 0 (x, D) * = Op e -itp q N ,n,t with q N,n,t (x, ξ, y) = q N,n (t)(x, ξ)p 0 (y, ξ).

Writing the Taylor's development of q N ,n,t (x, ξ, •) in x and applying standard integrations by parts in the integrals of the form (5.6) based on the equality (xy) α e i(x-y)ξ = i |α| ∂ α ξ j (e i(x-y)ξ ), we find

Q N ,n (t) = Op e -itp (q 0 N ,n + q 1 N ,n )(t) ,
where q 0 N ,n (t) are as in Proposition 4.1 and the remainder term of the Taylor's development of order N gives q 1 N,n (t)(x, ξ, y) = e itp(x,ξ) ( N + 1)

1 0 ds (1 -s) N q N,n (t, s)(x, ξ, y) (5.7) with q N,n (t, s)(x, ξ, y) = |α|= N +1 (-i) |α| ∂ α ξ q N,n (t)e -itp (x, ξ) ∂ α x p 0 (x + s(y -x), ξ) /α!.
We can write

q 0 N ,n (t -τ )(x, ξ) θ- k - n (y) = N ≤k≤2 N(t -τ ) k q 0 N,k,n (x, ξ) θ- k - n (y) = N ≤k≤2 N t k q 0 N ,k,ν (x, ξ, y),
where ν = (n, t, τ ) according to our convention and

q 0 N,k,ν (x, ξ, y) = 1 - τ t k q 0 N ,k,n (x, ξ) θ- k - n (y).
It is clear that q 0 N ,k,ν ∈ S(ph N σ/2 pk ) and using the form of q 0 N,n (t) in (5.7) we find a similar expression

q 1 N ,n (t -τ )( x, ξ, y) θ- k - n (y) 
= 0≤k≤2 N t k q 1 N ,k,ν (x, ξ, y) 
with q 1 N ,k,ν ∈ S(ph N σ/2 pk ). If Y ν ∈ B(L 2 (R d )) and q ν ∈ S(m) then the quantity J ν (q, Y ) := tr Op(e i(τ -t)p q ν )e -iτ P Y ν , (

is well defined due to Lemma 9.1 and analogically to (5.1) we have

|t k J ν (q, Y )| ≤ Cm n h -C 0 n h n p n t k+C 0 ||Y ν ||, (5.9) 
where m n are as in (3.6).

Using the above notation we can state the following conclusion Corollary 6.2 There exist q N,k,ν ∈ S(ph N σ/2 pk ) such that

tr Q N ,n (t -τ ) Θ- k - n e -iτ P L * n = 0≤k≤2 N t k J ν (q N ,k , Y ) (5.10) 
holds with Y ν = L * n .

Auxiliary commutator formulas

Notations. We will write b ν ∈ S n (m, g) if and only if there exist c 0 < c, l 0 n ∈ S(1, g) satisfying supp l 0 n ⊂ B n (c 0 ) and (1l 0 n )b ν ∈ S(h N , g) for every N ∈ N. Then Theorem 18.5.4 [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] 

ensures b b, b⊙ b ∈ S n (m m, g) if b ν ∈ S n (m, g), bν ∈ S( m, g) and (3.23) still holds with b, b, S(m ′ , g) replaced by b ν , bν , S n (m ′ , g). Moreover b ν ∈ S n (m, g) implies |∂ β x ∂ α ξ b ν (x, ξ)| ≤ C α,β m n h σ|β| n ξ |β|-|α| (6.1) 
where m n are as in (3.6) and Theorem 8.6.3 [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] ensures

||b W ν (x, D)|| ≤ Cm n , ||(I -l 0 W n (x, D))b W ν (x, D)|| = O(h N n ) (6.2)
for every N ∈ N.

We introduce the following formal notation Y (τ, B) := e -iτ P Be iτ P . (

Let {Y ν } ν∈V be a family of bounded operators and let m ∈ M c(g). We write

Y ν ∈ Y(m) if and only if there exist N ∈ N, C 0 > 0, the weights m(k, k ′ ) ∈ M c(g), the symbols b k,k ′ ,ν ∈ S n (m(k, k ′ ), g) and functions s k,k ′ : [0; 1] N → R, s k,ν : [0; 1] N → C, satisfying N k ′ =1 m(k, k ′ ) ≤ m, |s k,k ′ (w)| ≤ C 0 , |s k,ν (w)| ≤ C 0 h n p n t C 0 , for k, k ′ = 1, ..., N and 
Y ν = N k=1 [0; 1] N dw s k,ν (w)Y (s k,1 (w)τ, B k,1,ν )...Y (s k,N (w)τ, B k,N,ν ) + R ν (6.4) where B k,k ′ ,ν = b W k,k ′ ,ν (x, D) and the family {R ν } ν∈V is negligible. Taking s k,ν (w) = s k,k ′ (w) = 1 we can forget the integration with respect to w, hence Y (τ, B k,1,ν )...Y (τ, B k,N,ν ) ∈ Y(m) and more generally Y ν ∈ Y(m), Ỹν ∈ Y( m) =⇒ Y ν Ỹν ∈ Y(m m), (6.5) 
Y ν ∈ Y(m) =⇒ ||Y ν || ≤ Cm n h n p n t C . (6.6) 
Reformulation of Proposition 5.3. In Section 7 we will prove Proposition 7.1 Assume q 0,ν ∈ S(m), Y 0,ν ∈ Y(1) and N 0 ∈ N. Then one can find k 0 ∈ N * and C(N 0 ) > 0 such that

t J ν (q 0 , Y 0 ) = 1≤ k≤k 0 (J ν (qk, Yk) + tJ ν (q -k, Y -k)) + O h N 0 n h n p n t C(N 0 )
(6.7) holds with certain symbols q ± k,ν and operators Y ± k,ν satisfying

qk ,ν ∈ S(m/p), q -k,ν ∈ S(mh σ ), Y ± k,ν ∈ Y(1) (6.8 
)

for k = 1, ..., k 0 .
It is easy to see that Proposition 6.1 implies Proposition 5.3. Indeed, first of all we note that the assertion of Proposition 6.1 can be applied to express tJ ν (q -k, Y -k), k = 1, ..., k 0 and iterating this procedure N times we find the expression of tJ ν (q 0 , Y 0 ) in the form (6.7) with new symbols q -k,ν ∈ S(mh N σ ), k = 1, ..., k N . Thus for N = N (N 0 ) large enough all terms tJ ν (q -k, Y -k), k = 1, ..., k N , become O h N 0 n h n p n t C(N 0 ) , i.e. the assertion of Proposition 6.1 holds with q -k = 0 for k ≥ 1. This proves Proposition 5.3 in the case k = 1 and it is clear that the general case follows after k iterations.

In the remaining part of this section we describe the properties of Y ν ∈ Y(m) needed in the proof of Proposition 6.1. More precisely we consider the commutator of Y ν with the operator of multiplication by the j-th coordinate, denoted by x j . Lemma 7.2 Assume Y ν ∈ Y(m). Then there exist

Y + ν ∈ Y( ξ -1 m), Y - ν ∈ Y( ξ -1 ph σ m) (6.9) such that [Y ν , x j ] = Y + ν + τ Y - ν . Proof. Let B k,k ′ ,ν = b W k,k ′ ,ν (x, D) with b k,k ′ ,ν ∈ S n (m(k, k ′ ), g). If we know that [Y (τ, B k,k ′ ,ν ), x j ] = Y + k,k ′ ,ν + τ Y - k,k ′ ,ν (6.10) 
holds with

Y + k,k ′ ,ν ∈ Y( ξ -1 m(k, k ′ )), Y - k,k ′ ,ν ∈ Y( ξ -1 ph σ m(k, k ′ )),
then commuting succesively x j with Y (s k,k ′ (w)τ, B k,k ′ ,ν ), k ′ = 1, ..., N , we obtain easily the general statement of Lemma 6.2.

To begin we write [Y (τ, B k,k ′ ,ν ), x j ] = e -iτ P [B k,k ′ ,ν , Y (-τ, x j )]e iτ P (6.11)

and denote

P j := [iP, x j ] = ∂ ξ j p W (x, D) = ∂ ξ j p 0 (x, D). (6.12) 
Then we can write the Taylor formula

Y (-τ, x j ) = x j -τ ∂ τ Y (0, x j ) + τ 2 1 0 ds (1 -s)∂ 2 τ Y (-sτ, x j )
= x j + τ P j + τ e -iτ P Y (τ, [iτ P, P j ])e iτ P , (

where

Y (τ, B) = τ 1 0 ds (1 -s)Y ((-s -1)τ, B).
Using (6.13) we can express the commutator (6.11) in the form

Y (τ, [B k,k ′ ,ν , x j ]) + τ Y (τ, [B k,k ′ ,ν , P j ]) + τ [Y (τ, B k,k ′ ,ν ), Y (τ, [iτ P, P j ]) (6.14) and since [B k,k ′ ,ν , x j ] = ∂ ξ j b W k,k ′ ,ν (x, D)
, it is clear that the first term of (6.13) is in Y( ξ -1 m(k, k ′ )). Next we check that

∂ x j ′ b k,k ′ ,ν ∂ ξ j ′ ∂ ξ j p ∈ S n ( ξ -1 ph σ m(k, k ′ ), g) ∂ ξ j ′ b k,k ′ ,ν ∂ x j ′ ∂ ξ j pS n ( ξ -1 ph 1+σ m(k, k ′ ), g) ⊂ S n ( ξ -1 ph σ m(k, k ′ ), g) due to hp ≤ p, hence (3.23) implies b k,k ′ ,ν ⊙ ∂ ξ j p -∂ ξ j p ⊙ b k,k ′ ,ν ∈ S n ( ξ -1 ph σ m(k, k ′ ), g),
and consequently Y (τ, [B k,k ′ ,ν , P j ]) ∈ Y( ξ -1 ph σ m(k, k ′ )). Moreover we have ∂ x j ′ p∂ ξ j ′ ∂ ξ j p, ∂ ξ j ′ p∂ x j ′ ∂ ξ j p ∈ S( ξ -1 ph 1+σ p, g), hence (3.23) ensures p ⊙ ∂ ξ j p -∂ ξ j p ⊙ p ∈ S( ξ -1 ph 1+σ p, g). (6.15) Introducing l 0 n ∈ S(1, g) such that (I -L 0 n )B k,k ′ ,ν is negligible with L 0 n = l 0 n (x, D) and supp l 0 n ⊂ B n (c 0 ) with c 0 < c, we can write Y (τ, B k,k ′ ,ν )Y (τ, [P j , iτ P ]) = Y (τ, B k,k ′ ,ν )Y (τ, L 0 n [P j , iτ P ]) + R k,k ′ ,ν (6.16) with {R k,k ′ ,ν } ν∈V negligible. However using h n p n τ -1 |τ |l 0 n ∈ S n (h -1 p -1
, g) and (6.15) we find p j,ν ∈ S n ( ξ -1 ph σ , g) such that

h n p n τ -1 τ L 0 n [P j , iP ] = p W j,ν (x, D), hence Y (τ, L 0 n [P j , iτ P ]) ∈ Y( ξ -1 ph σ ).
Therefore the right hand side of (6.16) belongs to Y( ξ -1 ph σ m(k, k ′ )) and Y (τ, [P j , iτ P ])Y (τ, B k,k ′ ,ν ) belongs to the same class, i.e. (6.14) gives the desired decomposition (6.10). △

Corollary 7.3 Let Y 0,ν ∈ Y(1). If P j = [iP, x j ], then one has τ P j e -iτ P Y 0,ν = [e -iτ P Y 0,ν , x j ] + e -iτ P (Y + 0,ν + τ Y - 0,ν ) (6.17) 
with some

Y + 0,ν ∈ Y( ξ -1 ) and Y - 0,ν ∈ Y( ξ -1 ph σ ).
Indeed, using (6.13) to express [e -iτ P , x j ] and applying Lemma 6. Throughout this section we use the following notation Q ν = Op(e i(τ -t)p q ν ) with q ν ∈ S( ξ m/p).

(7.1)

We adopt the convention that the symbol (x, ξ) → p(x, ξ) can be considered as (x, ξ, y) → p(x, ξ), allowing to define q ν ∂ ξ j p ∈ S(m) by the formula (q ν ∂ ξ j p)(x, ξ, y) = q ν (x, ξ, y)∂ ξ j p(x, ξ). (7.2) Lemma 8.1 If Q ν and q ν ∂ ξ j p are as in (7.1), (7.2), then

[Q ν , x j ] = (t -τ )
Op(e i(τ -t)p q ν ∂ ξ j p) + Op(e i(τ -t)p i∂ ξ j q ν ). (7.3)

Proof. Since the integral kernel of [Q ν , x j ] is (x, y) → (2π) -d (y jx j )e i(x-y)ξ+i(τ -t)p(x,ξ) q ν (x, ξ, y) dξ (7.4) and (y j -x j )e i(x-y)ξ = -i∂ ξ j e i(x-y)ξ , the integration by parts allows to write (7.4) in the form (x, y) → (2π) -d e i(x-y)ξ+i(τ -t)p(x,ξ) ((tτ )∂ ξ j pq ν + i∂ ξ j q ν )(x, ξ, y) dξ, which gives (7.3). △

The computation of the composition kernel gives

Op(e i(τ -t)p q ν )b ν (x, D) * = Op(e i(τ -t)p (q ν • b ν )) (7.5) with (q ν • b ν )(x, ξ, y) = (2π) -d e i(ỹ-y)(ξ-ξ) q ν (x, ξ, ỹ)b ν (y, ξ)
and the usual Taylor development with integrations by parts give

q ν • b ν = q ν • N ′ b ν + r N ′ ,ν , (7.6) 
with

(q ν • N ′ b ν )(x, ξ, y) = |α|<N ′ (-i) |α| ∂ α y q ν (x, ξ, y)∂ α ξ b ν (y, ξ)/α!, (7.7) 
r N ′ ,ν = |α|=N ′ (q α,ν (z) • ∂ α ξ b ν )| z=y , q α,ν (z)(x, ξ, y) = 1 0 ∂ α y q ν (x, ξ, z + s(y -z)) i N ′ N ′ ds α! .
Then for an arbitrary N ∈ N we can find N ′ = N ′ (N ) such that the family of operators R N ′ ,ν = Op(e i(τ -t)p r N ′ ,ν ) satisfies

||R N ′ ,ν || ≤ C N h N n h n p n t C(N ) . (7.8) 
Denoting (q ν b♯ ν )(x, ξ, y) = q ν (x, ξ, y)b ν (y, ξ) we can write q ν ∈ S( m), b ν ∈ S(m ′ , g) ⇒ q ν • N ′ b ν ∈ S( mm ′ ), q ν • N ′ b νq ν b♯ ν ∈ S( mm ′ h σ ).

If in particular q ν ∈ S( ξ m/p), ∂ ξ j p 0 ∈ S( ξ -1 p, g), then

Q ν P j = Op(e i(τ -t)p (q ν • ∂ ξ j p 0 )), q ν • N ′ ∂ ξ j p 0 ∈ S(m),

q ν • N ′ ∂ ξ j p 0 -q ν ∂ ξ j p 0 ♯ ∈ S(h σ m).
Since (3.20) ensures ∂ ξ j p -∂ ξ j p 0 ∈ S( ξ -1 h 1+σ p, g) ⊂ S( ξ -1 h σ p, g), q - N ′ ,ν := q ν • N ′ ∂ ξ j p 0q ν ∂ ξ j p ♯ ∈ S(h σ m). (7.9)

For j = 1, ..., d we introduce p (j),ν (x, ξ, y) := 1 -τ t ∂ ξ j p(x, ξ) + τ t ∂ ξ j p(y, ξ). (7.10) Proposition 8.2 Let q ν ∈ S( ξ m/p), Y 0,ν ∈ Y(1) and N 0 ∈ N. Then we can find C(N 0 ) > 0 such that t J ν (qp (j) , Y 0 ) = 1≤k≤2 (J ν (q k , Y k ) + tJ ν (q -k , Y -k )) + O h N 0 n h n p n t C(N 0 ) (7.11) where for k = 1 and 2 we have q k,ν ∈ S(m/p), q -k,ν ∈ S(mh σ ), Y k,ν ∈ Y(1), Y -k,ν ∈ Y(1). (7.12)

Proof. By definition of p (j),ν we have t Op(e i(τ -t)p q ν p (j),ν ) = (tτ )Op(e i(τ -t)p q ν ∂ ξ j p) + τ Op(e i(τ -t)p q ν ∂ ξ j p ♯ ) (7.13) and applying (7.3), (7.9), we can write the above expression as [Q ν , x j ] + Q ν τ P j + Op(e i(τ -t)p (τ q - N ′ ,ν -i∂ ξ j q ν )) + τ R N ′ ,ν with R N ′ ,ν satisfying (7.8). Thus t J ν (qp (j) , Y 0 ) can be written as tr [Q ν , x j ]e -iτ P Y 0,ν + tr Q ν τ P j e -iτ P Y 0,ν + J ν (-i∂ ξ j q, Y 0 ) + τ J ν (q - N ′ , Y 0 ) + O(h N 0 n h n p n t C(N 0 ) ). (7.14) Due to Corollary 6.3, the sum of two first terms in (7.14) equals to tr [Q ν , x j ]e -iτ P Y 0,ν + tr Q ν [e -iτ P Y 0,ν , x j ] + J ν (q, Y + 0 ) + τ J ν (q, Y - 0 )

= tr [Q ν e -iτ P Y 0,ν , x j ] + J ν (q, Y + 0 ) + τ J ν (q, Y - 0 ) = J ν (q, Y + 0 ) + τ J ν (q, Y - 0 ). (7.15)

Thus we obtain (7.11) with

q 1,ν = i∂ ξ j q ν , q -1,ν = τ t q - N ′ ,ν , Y 1,ν = Y -1,ν = Y 0,ν , q 2,ν = ξ(k + n ) -1 q ν , Y 2,ν = ξ(k + n ) Y + 0,ν , q -2,ν = ξ(k + n ) -1 pn h σ n q ν , Y -2,ν = ξ(k + n ) p-1 n h -σ n Y - 0,ν
, where according to our convention pn = pn (x(k - n ), ξ(k + n )). △. Proof of Proposition 6.1. Let χ s , χs be as in the proof of Proposition 4.2. Then q 0,ν ∈ S(m, g) =⇒ qν := q 0,ν χ s h -1 n p -1 n ∈ S(m/p, g) and tJ ν (q 0 χ s , Y 0 ) = J ν (q, Ỹ ) with Ỹν = h n p n tY 0,ν ∈ Y(1).

Therefore it sufficesto prove the statement of Proposition 6.1 with q 0,ν χs instead of q 0,ν . Further on we assume s = 1 and note that for (x, ξ) ∈supp χ1 we have Using (7.16), (7.17), we can write q 0,ν χ1 = d j=1 q (j),ν p (j),ν with q (j),ν = q 0,ν χ1 p (j),ν ∈ S( ξ m/p, g) and we complete the proof applying Proposition 7.2 with q ν = q (j),ν .

  fixed small enough. The condition (4.6) ensures Lemma 4.1 Assume that b ∈ S 0 0,δ . Then for every n ∈ IN one can find b n ∈ S 0 0,δ such that t n dξ b e itp/h = h n dξ b n e itp/h . (4.7(n))

  [START_REF] Chazarain | Spectre d'un hamiltonien quantique et mécanique classique[END_REF]) holds due to Corollary 4.3.

. 3 ) 6 . 1 ( 5 . 4 )

 36154 Proposition Let c > c/2 and consider b ν ∈ S(m, g) satisfying the condition supp b ν ∩ B n (c) = ∅. Then the family R ν = b W ν (x, D)e -iτ P L * n is negligible.

  2 with Y ν = Y 0,ν we can write [e -iτ P Y 0,ν , x j ] = [e -iτ P , x j ]Y 0,ν + e -iτ P [Y 0,ν , x j ] = -τ P j e -iτ P Y 0,ντ e -iτ P Y (τ, [P j , iτ P ])Y 0,ν + e -iτ P (Y + ν + τ Y - ν ). It remains to remark that the reasoning of the proof of Lemma 6.2 ensures the fact that Y + 0,ν = Y + ν and Y - 0,ν = -Y (τ, [P j , iτ P ])Y 0,ν + Y - ν belong to the indicated classes. △ 8 End of the proof of Theorem 2.1

ξ - 1 2 ≤ 2 ≥

 122 p(x, ξ)/2 ≤ |∇ ξ p(x, ξ)| ≤ 2 ξ -1 p(x, ξ)(7.16) and due to (2.10), for (x, ξ, y) ∈supp q 0,ν χ1 we have|∇ ξ p(x, ξ)| -|∇ ξ p(x, ξ) -∇ ξ p(y, ξ)| ≤ ξ -1 p(x, ξ)/4 ≤ |∇ ξ p(x, ξ)|/2, |∇ ξ p(x, ξ)|/2 ≥ ξ -1 p(x, ξ)/4.(7.17)
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  If g and L h are as above, then for every N ∈ IN one has

	||g(P ± h )(I -L h )|| tr = O(h N ).	(3.7)
	Since ||g(P ± h )L h || tr ≤ ||g(P ± h )|| ||L h || tr = O(h -d ) due to (3.4), Lemma 3.1 ensures ||g(P ± h )|| tr = O(h -d ). Another immediate corollary of (3.7) is
	||g	

  || tr ≤ ||L * h || tr ||R h,t || ≤ Ch -d ||R h,t || and g 1 is rapidly decaying, hence in order to estimate the quantity (3.11) by O(h 1-d ) it suffices to show Lemma 3.2 There is C > 0 such that ||R h,t || ≤ Ch t C .

			hD)	(3.10)
	and the left hand side of (3.6 ′ ) can be estimated by	
	∞ -∞	dt 2π	|g 1 (t)| ||L * h R h,t || tr .	(3.11)
	However ||L * h R h,t			

We will complete the proof of Theorem 2.1 by showing Proposition 6.3 Assume N 0 , k ∈ N * , Y ν = L * n and q ν ∈ S(m). Then one can find k 0 ∈ N * and C(N 0 ) > 0 such that

holds for certain families of symbols {qk ,ν } ν∈V and operators {Yk ,ν

(5.12)

Indeed, using (5.10) and Proposition 5.3 with q ν = q N,k,ν , m = ph N σ/2 pk , we can write

hence choosing N = N (N 0 ) large enough we can ensure

due to (5.9). This proves (3.18) completing the proof of Theorem 3.2 and 2.1.

Proof of Proposition 5.1. The method of ch. 18.4 [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF] allows to find symbols l

Theorem 18.5.4 and 18.6.3 [START_REF] Zielinski | Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates[END_REF]). Therefore it suffices to show that

holds for every k ∈ N if l 0 n satisfies (5.13). Obviously (5.14(k)) holds for k = 0 and we will prove the general statement by induction with respect to k ∈ N.

Further on we assume that σ > 0 is small enough to ensure ρ ′ (1 + σ) ≤ ρ and r ′ (1 + σ) ≤ 1. This assumption implies v(x) -ρ ξ -1 ≤ h(x, ξ) 1+σ and ∂ x j l 0 n ∂ ξ j p, ∂ x j p∂ ξ j l 0 n ∈ S(ph 1+σ , g) if l 0 n satisfies (5. (5.15)

Moreover we can find

(5.17)

it remains to estimate the norm of

ds τ e i(s-1)τ P [I -L 0 n , P ]e -isτ P L * n .

(