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1 Introduction

This paper presents a generalization of our earlier results described in [14],
[16], [17] and motivated by the well-known result of L. Hörmander [5] on
spectral asymptotics of a self-adjoint elliptic operator A with smooth coeffi-
cients on a smooth (boundaryless) manifold M . If M is a compact manifold
of dimension d and 2m is the order of A, then the associated counting
function N (A,λ), defined as the number of eigenvalues (counted with their
multiplicities) smaller than λ, satisfies the Weyl formula

N (A,λ) = cλ
d

2m +O(λ
d−µ
2m ), (1.1)
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where c = cA,M is a constant and µ = 1.
It is natural to ask if (1.1) still holds for the operators with non-smooth

coefficients. In [16] we proved that for coefficients which are Hölder continu-
ous of exponent r ∈]0; 1], the formula (1.1) holds if µ < r. In [17] we proved
(1.1) with µ = 1 assuming that the first order derivatives of coefficients
are Lipschitz continuous and in this paper we show a way of replacing the
hypothesis of Lipschitz continuity by Hölder continuity. Moreover we use
the semiclassical framework, which allows us to obtain the classical Weyl
formula (1.1) as a corollary.

Let Br denote the set of bounded, Hölder continuous functions on IRd, i.e.
a ∈ Br means that a ∈ L∞(IRd) and there is C > 0 such that

|a(x)− a(y)| ≤ C|x− y|r (x, y ∈ IRd).

Further on m ∈ IN \ {0} and we fix r ∈]0; 1]. For ν, ν̄ ∈ INd, |ν|, |ν̄| ≤ m, let
aν,ν̄ be real valued coefficients satisfying aν,ν̄ = aν̄,ν and

∂xjaν,ν̄ ∈ Br (j = 1, ..., d). (1.2)

We assume moreover the existence of a constant c > 0 such that

∑

|ν|=|ν̄|=m

aν,ν̄(x)ξ
ν+ν̄ ≥ c|ξ|2m (x, ξ ∈ IRd) (1.3)

and for h > 0 we introduce the quadratic formAh defined for ϕ,ψ ∈ Cm
0 (IRd)

by the formula

Ah[ϕ,ψ] =
∑

|ν|,|ν̄|≤m

(aν,ν̄(hD)νϕ, (hD)ν̄ψ), (1.4)

where (·, ·) is the scalar product of L2(IRd) and (hD)ν = (−ih)|ν|∂ν/∂xν .
The ellipticity hypothesis (1.3) ensures the fact that Ah is bounded from

below and its closure defines a self-adjoint operator Ah. We introduce

a(x, ξ) =
∑

|ν|,|ν̄|≤m

aν,ν̄(x)ξ
ν+ν̄ (1.5)

and for E ∈ IR we denote

ΓE = a−1(]−∞; E[) = {(x, ξ) ∈ IR2d : a(x, ξ) < E}. (1.6)

We will present a proof of
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Theorem 1.1 Let E0, E ∈ IR be such that E0 < E and ΓE is bounded.

Then the operators Ah described above have discrete spectrum in ]−∞; E0]
for h ∈]0; h0], if h0 > 0 is fixed small enough. We assume moreover

a(x, ξ) = E0 ⇒ ∇ξa(x, ξ) 6= 0. (1.7)

Then, for h ∈]0; h0], the counting function N (Ah, E0) satisfies the asymp-

totic formula

N (Ah, E0) = |ΓE0 |(2πh)
−d +O(h1−d), (1.8)

where |ΓE0 | denotes the Lebesgue measure of ΓE0.

2 Regularization of coefficients

Let γ1 ∈ C∞
0 (IRd) be such that γ1(−x) = γ1(x),

∫

γ1(x) dx = 1 and for ε > 0
set γε(x) = ε−dγ1(x/ε). We fix δ ∈]0; 1[ and introduce

aν,ν̄,h(x) = (aν,ν̄ ∗ γhδ)(x) =

∫

aν,ν̄(y)γ1(h
−δ(x− y))h−δd dy. (2.1)

It is easy to see (cf. Section 7(A) ) that (1.2) ensures

|aν,ν̄(x)− aν,ν̄,h(x)| ≤ Chδ(1+r), (2.2)

|∂αx aν,ν̄,h(x)| ≤ Cαh
−δ(|α|−1−r)+ , (2.3)

where s+ = (s+ |s|)/2 is the positive part of s ∈ IR. We define

ph(x, ξ) =
∑

|ν|,|ν̄|≤m

aν,ν̄,h(x)ξ
ν+ν̄ (2.4)

and assume further on (1 + r)δ ≥ 1, hence (2.2) ensures

|∂αξ (a− ph)(x, ξ)| ≤ Cαh〈ξ〉
2m−|α|, (2.5)

where 〈ξ〉 = (1 + |ξ|2)1/2. Moreover the operator

Ph =
∑

|ν|,|ν̄|≤m

(hD)νaν,ν̄,h(x)(hD)ν̄ (2.6)
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is an approximation of Ah satisfying

±(Ah − Ph) ≤ Ch〈hD〉2m = Ch(I − h2∆)m

and P−
h ≤ Ah ≤ P+

h holds (in the sens of quadratic forms) with

P±
h = Ph ± Ch〈hD〉2m. (2.7)

Our principal aim is to show

Theorem 2.1 The assertion of Theorem 1.1 holds if Ah is replaced by P±
h .

First of all we remark that the discreteness of the spectrum of P±
h is a stan-

dard result and analogical reasoning can be applied to Ah (cf. Section 7(B)
for details). Then the asymptotic formula (1.8) follows from the estimates
of the counting functions for P±

h due to the min-max principle (cf. [12]),
which ensures

P−
h ≤ Ah ≤ P+

h ⇒ N (P+
h , E) ≤ N (Ah, E) ≤ N (P−

h , E). (2.8)

In the remaining part of this section we describe a version of Theorem 2.1
formulated suitably for the proof that will follow.
Let 1IZ : IR → {0, 1} be the characteristic function of Z ⊂ IR and set

Nh(ph, E) =

∫

ph(x,ξ)≤E

dxdξ

(2πh)d
=

∫

dxdξ

(2πh)d
1I]−∞; E] ◦ ph. (2.9)

Further on we also write 1IZ(P
±
h ) to denote the spectral projector of P±

h on
a Borel set Z ⊂ IR and due to (2.8) and (2.11), to obtain the asymptotic
formula (1.8) it suffices to show

tr 1I]−∞; E0](P
±
h ) = N (P±

h , E0) = Nh(ph, E0) +O(h1−d). (2.15)

To show (2.15) we introduce
{

g ∈ C∞
0 (]E0 − 2c0; E0 + 2c0[), g = 1 on [E0 − c0; E0 + c0],

g̃ ∈ C∞
0 (]−∞; E0 − c0[)

(2.16)

and assume g̃+ g2 = 1 on [−E′
0; E0+ c0] where E

′
0 > 0 is chosen sufficiently

large to ensure −E′
0 ≤ inf p±h and −E′

0 ≤ inf σ(P±
h ) for h ∈]0; h0].

Then for E ∈ [E0 − c0; E0 + c0] we can write the decompositions

Nh(ph, E) =

∫

dxdξ

(2πh)d
(g̃ + g21IZ)(ph(x, ξ)),

1I]−∞; E](P
±
h ) = (g̃ + g21IZ)(P

±
h ),

where Z = [E0 − 2c0; E]. Now it is clear that (2.15) is a consequence of
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Theorem 2.2 One has

tr g̃(P±
h ) =

∫

dxdξ

(2πh)d
g̃ ◦ ph + O(h1−d), (2.17)

tr (g21IZ)(P
±
h ) =

∫

dxdξ

(2πh)d
(g21IZ) ◦ ph + O(h1−d). (2.18)

Further on c̄ > 0 is small enough and f0 ∈ C∞
0 (]c̄/2; c̄/2[). Then we define

f1 = f0 ∗ f0 ∈ C∞
0 (]c̄; c̄[) and

f̃h(λ) = F−1
h f1(λ) =

∫ ∞

−∞
eiλt/hf1(t)

dt

2πh
. (2.19)

We note that f̃h(λ) = f̃1(λ/h)/h, f̃1 is rapidly decreasing and f̃1 > 0.
Moreover we can choose f0 such that

∫∞
−∞ f̃h = f1(0) = 1. Then we use

f̃Zh (λ) = (1IZ ∗ f̃h)(λ) =
∫

Z
dλ′ f̃h(λ− λ′) (2.20)

as an approximation of 1IZ . In Section 7(C) we recall a proof of

Proposition 2.3 The estimate (2.18) follows if

tr (g2f̃Zh )(P
±
h ) =

∫

dxdξ

(2πh)d
(g2f̃Zh ) ◦ ph + O(h1−d) (2.21)

holds uniformly with respect to Z = [E′; E].

3 Pseudodifferential approximation

In this section we show the estimate (2.17). We use pseudodifferential
operators in a reasoning which will be developed in Section 4 to treat (2.18).
We denote by || · || the norm of bounded operators B(L2(IRd)) and ||B||tr =
tr (B∗B)1/2 is the trace class norm. If bh ∈ C∞

0 (IR2d) then we denote by
bh(x, hD) the pseudodifferential operator acting on ϕ ∈ S(IRd) according to
the formula

(bh(x, hD)ϕ)(x) =

∫

dydξ

(2πh)d
ei(x−y)ξ/hbh(x, ξ)ϕ(y). (3.1)

If bh, lh ∈ C∞
0 (IR2d), then bh(x, hD)lh(x, hD)∗ has the integral kernel

Kh(x, y) =

∫

dξ

(2πh)d
ei(x−y)ξ/hbh(x, ξ)lh(y, ξ),
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hence

tr bh(x, hD)lh(x, hD)∗ =

∫

dxKh(x, x) =

∫

dxdξ

(2πh)d
bhlh. (3.2)

In this section we consider g̃ ∈ C∞
0 (]−∞; E1[) with E1 such that ΓE1+2c1

is bounded for a certain c1 > 0. Then using (2.5) we can find h0 > 0 small
enough to ensure

0 < h < h0 ⇒ supp (g̃ ◦ ph) ⊂ ΓE1+c1 . (3.3)

Next we fix an auxiliary h-independent cut-off function l ∈ C∞
0 (IR2d) such

that l = 1 on a neigbourhood of ΓE1+c1 and l ≥ 0. We denote Lh = l(x, hD)
and recall standard estimates of pseudodifferential operators:

||Lh|| = O(1), ||Lh||tr = O(h−d). (3.4)

Moreover (3.2) allows us to write

∫

dydξ

(2πh)d
g̃ ◦ ph =

∫

dydξ

(2πh)d
l(g̃ ◦ ph) = tr (g̃ ◦ ph)(x, hD)L∗

h (3.5)

and since |trB| ≤ ||B||tr, it is clear that (2.17) follows from

||g̃(P±
h )− L∗

h(g̃ ◦ ph)(x, hD)||tr = O(h1−d). (3.6)

Our proof of (3.6) is based on an auxiliary lemma (cf. Section 7(D)):

Lemma 3.1 If g̃ and Lh are as above, then for every N ∈ IN one has

||g̃(P±
h )(I − Lh)||tr = O(hN ). (3.7)

Since ||g̃(P±
h )Lh||tr ≤ ||g̃(P±

h )|| ||Lh||tr = O(h−d) due to (3.4), Lemma 3.1
ensures ||g̃(P±

h )||tr = O(h−d). Another immediate corollary of (3.7) is

||g̃(P±
h )− L∗

h g̃(P
±
h )Lh||tr = O(hN )

and we can conclude that instead of (3.6) it suffices to show

||L∗
hg̃(P

±
h )Lh − L∗

h(g̃ ◦ ph)(x, hD)||tr = O(h1−d). (3.6′)

Further on g1 ∈ S(IR) denotes the Fourier transform of g̃, i.e. we have
g̃(λ) =

∫∞
−∞

dt
2π g1(t) e

itλ and

(g̃ ◦ ph)(x, ξ) = g̃(ph(x, ξ))l(x, ξ) =

∫ ∞

−∞

dt

2π
g1(t) (e

itph l)(x, ξ), (3.8)
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g̃(P±
h ) =

∫ ∞

−∞

dt

2π
g1(t) e

itP±
h . (3.9)

Therefore we can write

g̃(P±
h )Lh − (g̃ ◦ ph)(x, hD) =

∫ ∞

−∞

dt

2π
g1(t)Rh,t

with
Rh,t = eitP

±
h Lh − (eitph l)(x, hD) (3.10)

and the left hand side of (3.6′) can be estimated by

∫ ∞

−∞

dt

2π
|g1(t)| ||L

∗
hRh,t||tr. (3.11)

However ||L∗
hRh,t||tr ≤ ||L∗

h||tr ||Rh,t|| ≤ Ch−d||Rh,t|| and g1 is rapidly de-
caying, hence in order to estimate the quantity (3.11) by O(h1−d) it suffices
to show

Lemma 3.2 There is C > 0 such that ||Rh,t|| ≤ Ch〈t〉C .

Before starting the proof of Lemma 3.2 it is useful to introduce some no-
tations. We write the differential operators P±

h in the standard form

P±
h =

∑

|α|≤2m

a±
ν,ν̄,h(x)(hD)α = p±h (x, hD), (3.12)

p±h (x, ξ) =
∑

|α|≤2m

a±
ν,ν̄,h(x)ξ

α (3.13)

and it is easy to check that (2.5) still holds with p±h instead of ph.
Let m̃ ∈ IR and δ1 ≥ δ0 ≥ 0 be such that δ0 + δ1 < 1. If b = {bh}0<h≤h0

is a
family of smooth functions satisfying the estimates

|∂αξ ∂
β
x bh(x, ξ)| ≤ Cn,α,βh

−m̃−|α|δ0−|β|δ1〈ξ〉−n (3.14)

(for every α, β ∈ INd and n ∈ IN), then we write b ∈ Sm̃
δ0,δ1

.

If l ∈ C∞
0 (IR2d) is h-independent, then the families lph, lp̃

±
h , le

itph belong to
S0
0,δ and well-known L2-estimates of pseudodifferential operators (cf. [2],[6])

give

b ∈ Sm̃
0,δ ⇒ ∃C > 0, ||(eitph lbh)(x, hD)|| ≤ Ch−m̃〈t〉C . (3.15)
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If s ∈ IR then we write Bh = Lh + O(hs) if and only if there is a constant
C > 0 such that ||Bh − Lh|| ≤ Chs holds for all h ∈]0; h0]. Moreover
further on we adopt the convention to drop the index h whenever there is
no confusion. Instead of P±

h , Lh, Rh,t, ph, p
±
h , we are going to write simply

P , L, Rt, p, p
±.

Proof of Lemma 3.2 We are going to obtain suitable estimates of

R̃t = (i∂t + P )(eitpl)(x, hD) (3.16)

and the assertion of Lemma 3.2 will follow from

Rt = −[ei(t−τ)P (eiτpl)(x, hD)]τ=t
τ=0 = i

∫ t

0
dτ ei(t−τ)P R̃τ . (3.17)

The standard formula of the composition with a differential operator gives

p±(x, hD)(eitpl)(x, hD) = q̃t(x, hD), (3.18)

with

q̃t =
∑

|α|≤2m

(−ih)|α|

α!
∂αx(e

itpl)∂αξ p
± = eitp

2m
∑

k=0

tkqk, (3.19)

qk =
∑

k≤|α|≤2m

∑

α0+...+αk=α

αj 6=0 if j 6=0

cα0,...,αk
∂α0
x l ∂α1

x p ... ∂αk
x p ∂αξ p

± (3.20)

and qk ∈ S−k
0,δ follows from −|α|+

∑k
j=1 δ(|αj | − 1) ≤ −k − (1− δ)(|α| − k).

However (3.15) ensures

qk ∈ S−k
0,δ ⇒ (eitpqk)(x, hD) = O(hk〈t〉Ck),

hence
P (eitpl)(x, hD) = (eitpq0)(x, hD) +O(h〈t〉C).

To complete the proof we note that l(p± − p) ∈ S−1
0,δ and

q0 − lp± =
∑

1≤|α|≤2m

(−ih)|α|

α!
∂αx l ∂

α
ξ p

± ∈ S−1
0,δ (3.21)

ensure q0 − lp ∈ S−1
0,δ , hence

i∂t(e
itpl)(x, hD) + (eitpq0)(x, hD) = (eitp(q0 − lp))(x, hD) = O(h〈t〉C).
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4 Refinement

Due to Proposition 2.3, to complete the proof of Theorem 2.2 it suffices to
show (2.21). We will use a reasoning of Section 3 in a refined form. We keep
notations introduced before and in particular we drop the index h.
To begin we remark that replacing g̃ by g ∈ C∞

0 (]E0 − c0; E0 + c0[) in
(3.6), we can introduce l0 = g ◦ p, L0 = l0(x, hD) and write

tr (g2f̃Zh )(P ) = trL∗
0f̃

Z
h (P )L0 +O(h1−d). (4.1)

As before Z = [E′; ] and we use the Fourier transform

fZh (t) := Fhf̃
Z
h (t) =

∫∞
−∞ dλ e−itλ/hf̃Zh (λ)

= f1(t)
∫ E
E′ dλ e−itλ/h = f1(t)

e−it(E+E′)/(2h)

t/(2h) sin (E′−E)t
2h

to write

trL∗
0f̃

Z
h (P )L0 =

∫ ∞

−∞

dt

2πh
fZh (t) trL∗

0e
itP/hL0, (4.2)

∫

dxdξ

(2πh)d
l20(f̃

Z
h ◦ p) =

∫

dxdξ

(2πh)d

∫ ∞

−∞

dt

2πh
fZh (t) l20e

itp/h. (4.3)

However (3.2) allows us to express (4.3) as

∫ ∞

−∞

dt

2πh
fZh (t) trL∗

0(l0e
itp/h)(x, hD) (4.3′)

and introducing

R0
t/h = eitP/hL0 − (eitp/hl0)(x, hD) (4.4)

we find that (2.21) is equivalent to the estimate

∫ ∞

−∞

dt

2πh
fZh (t) trL∗

0R
0
t/h = O(h1−d). (4.5)

Next we observe that (2.5) and (2.10) ensure

E0 − 2c0 ≤ p(x, ξ) ≤ E0 + 2c0 ⇒ |∇ξp(x, ξ)| ≥ c0 (4.6)

for h ∈]0; h0] if h0 > 0 is fixed small enough. The condition (4.6) ensures
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Lemma 4.1 Assume that b ∈ S0
0,δ. Then for every n ∈ IN one can find

bn ∈ S0
0,δ such that

tn
∫

dξ b eitp/h = hn
∫

dξ bn e
itp/h. (4.7(n))

Proof. Using (4.6) in a standard reasoning we obtain

∀ b ∈ S0
0,δ ∃b̃j ∈ S0

0,δ, b =
∑d

j=1
b̃j∂ξjp. (4.8)

Therefore performing the integration by parts

t

∫

dξ
∑d

j=1
bj∂ξjp e

itp/h = ih

∫

dξ
∑d

j=1
∂ξj b̃j e

itp/h

we obtain the assertion of Lemma 4.1 for n = 1 with b1 =
∑d

j=1i∂ξj b̃j .
Obviously the general case follows by induction with respect to n. △.

We will use Lemma 4.1 to replace R0
t/h in (4.5) by

Rt/h = eitP/hL0 − (eitp/hlt)(x, hD), (4.4′)

where lt = l0 + tl′0 +
1
2 t

2l′′0 with certain l′0 ∈ S
0
0,δ and l′′0 ∈ S1

0,δ.

In fact trL∗
0(Rt/h −R0

t/h) can be expressed as

∫

dxdξ

(2πh)d
l0(lt − l0)e

itp/h = h1−d
∫

dxdξ l̃ eitp/h,

with a ceratin l̃ ∈ S0
0,δ (due to Lemma 4.1 with n = 1 and 2). Thus

∫ ∞

−∞

dt

2πh
fZh (t) trL∗

0(Rt/h −R0
t/h) = h1−d

∫

dxdξ l̃(f̃Zh ◦ p)

is clearly O(h1−d), hence (4.5) is equivalent to

∫ ∞

−∞

dt

2πh
fZh (t) trL∗

0Rt/h = O(h1−d). (4.5′)

obtain (4.5′) it suffices to show that

sup
|t|≤c̄

|trL∗
0Rt/h| ≤ Ch1−d+ε (4.9)

holds if c̄, ε > 0 are small enough. The main result of this section is
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5 Construction of the approximation

[Opt(b), xj/h] = t/overhµOpt(∂ξjp b) + Opt(i∂ξjb),

[Opt(b), Dj] = t/overhµOpt(∂xjp b) + Opt(i(∂xj + ∂yj )b),

In this section N̄ ∈ N is fixed and we describe the construction of

QN̄,n(t) =
(

e−itpqN̄,n(t)
)

(x,D) (4.1)

such that (3.15) holds. The proof of (3.14) will be given in Sections 5-7.
For N = 0, ..., N̄ we are going to consider

qN,n(t)(x, ξ) =
∑

0≤k≤N

tkq 0k,n(x, ξ) (4.2(N))

where qN,n(0) = q 00,n = ln and for k ≥ 1 we have

q 0k,n ∈ S(hp(hσ/2p̃)k−1, g), supp q 0k,n ⊂ Bn(c̄/2). (4.3(k))

We construct qN,n(t) by induction with respect to N and its final step cor-
responding to N = N̄ gives qN̄,n(t) to be used in (4.1).
For a smooth function (t, x, ξ) → b(t, x, ξ) ∈ C we denote

PN̄b(t) =
∑

|α|≤N̄

(−i)|α|∂aξ
(

b(t)∂αx p0
)

/α!,

where p0 is given by (3.24).

Proposition 5.1 Let N = 0, ..., N̄ . Then we can find qN,n(t) satisfying

(4.2(N)) with qN,n(0) = ln, q
0
k,n satisfying (4.3(k)) for k = 1, ..., N and

(∂t + iPN̄ )
(

e−itpqN,n(t)
)

= e−itpq̃ 0N,n(t) (4.4(N))

holds with

q̃ 0N,n(t)(x, ξ) =
∑

N≤k≤N+N̄

tk q̃ 0N,k,n(x, ξ), (4.5(N))

q̃ 0N,k,n ∈ S(hp(hσ/2p̃)k, g) for k = N, ...,N + N̄ (4.6(N))

and supp q̃ 0N,k,n ⊂ Bn(c̄/2).

11



Proof. We introduce the notation

P̃N̄q(t) = eitp(∂t + iPN̄ )
(

e−itpq(t)
)

.

If q(t, x, ξ) = q0(x, ξ) is independent of t, then

P̃N̄q(t) =
∑

0≤k≤N̄

tkq̃ 0k (4.7)

with
q̃ 00 = i(p̄0 − p)q0 −

∑

1≤|α|≤N̄

(−i)|α|+1∂αξ (q0 ∂
α
x p0)/α!,

q̃ 0k =
∑

|α0+...+αk|≤N̄

αj 6=0 if j 6=0

cα0,...,αk
∂α0
ξ (q0 ∂

α0+...+αk
x p0) ∂

α1
ξ p...∂αk

ξ p (k = 1, ..., N̄ ).

Using the fact that the estimates (2.8) still hold with p0 instead of p we find

q0 ∈ S(m, g) =⇒ ∂α0
ξ (q0 ∂

α
x p̄0) ∈ S(mph1+σ|α|〈ξ〉|α|−|α0|, g) (4.8)

if α 6= 0. Moreover the estimates (2.10′) imply

∂α1
ξ p...∂αk

ξ p ∈ S(p̃k〈ξ〉−|α1|−...−|αk|, g) (4.9)

if α1, ..., αk 6= 0. Combining (4.8), (4.9) with α = α0 + ... + αk =⇒ |α| ≥
max{k, 1} in the expression of q̃ 0k we find

q0 ∈ S(m, g) =⇒ q̃ 0k ∈ S(mph1+σmax{k, 1}p̃k, g) (4.10)

(where in the case k = 0 we use moreover (3.24)).
Therefore in the case N = 0 when we take q(t) = ln ∈ S(1, g) in (4.7), we
obtain (4.4(0)) with q̃ 00,n of the form (4.5(0)) and (4.10) with m = 1 imply
(4.6(0)), i.e. Proposition 4.1 holds for N = 0.
Further on we assume that the statement of Proposition 4.1 holds for a

given N ≤ N̄ − 1 and we prove that it still holds for N + 1 instead of N .
Using the induction hypothesis to express P̃N̄qN,n(t) we find

P̃N̄qN+1,n(t) = P̃N̄ (tN+1q 0N+1,n) + P̃N̄qN,n(t) =

tN
(

(N + 1)q 0N+1,n + q̃ 0N,N,n

)

+tN+1P̃N̄q
0
N,n+1 +

∑

N+1≤k≤N+N̄

tk q̃ 0N,k,n.

12



In order to obtain (4.5(N +1)) it suffices to cancel the term with tN taking

q 0N+1,n = −q̃ 0N,N,n/(N + 1) (4.11)

and we have q̃ 0N,N,n ∈ S(hp(hσ/2p̃)N , g) by the induction hypothesis.
Let us introduce the following notation :

an(t) ∈
∑

k∈K

tkS(m(k), g) ⇐⇒ an(t) =
∑

k∈K

tka 0
k,n with a 0

k,n ∈ S(m(k), g).

Then using ph ≤ p̃ and max{k, 1} ≥ (k + 1)/2 we can write (4.7), (4.10) in
the following form

q(t) = q0 ∈ S(m, g) =⇒ P̃N̄q(t) ∈
∑

0≤k≤N̄

tk S(m(hσ/2p̃)k+1, g). (4.12)

Since (4.11) gives (4.3(N + 1)), applying (4.12) with m = ph(hσ/2p̃)N we
find

tN+1P̃N̄q
0
N,n+1 ∈

∑

0≤k≤N̄

tN+1+k S(ph(hσ/2p̃)N+k+1, g)

and (4.6(N + 1)) follows. △

Proposition 5.2 Let QN̄,n(t) be defined by (4.1) with qN̄,n given by (4.2(N̄ ))
where q 0n,0 = ln and q 0k,n satisfy (4.3(k)) for k = 1, ..., N̄ . Then (3.15) holds.

Proof. For k ∈ N, n ∈ N∗, q ∈ C∞
0 (Rd ×Rd) and λ ∈ R we denote

Nk,n(q, λ) =

∫ ∞

−∞
dt f̌±n,λ(t) t

k Jt(q), (4.13)

where

Jt(q) = (2π)−d
∫

e−itp(x,ξ)q(x, ξ) dxdξ. (4.14)

Since tk f̌±n,λ(t) is the Fourier inverse of ik(f±n,λ)
(k), changing the order of

integrals (4.13) and (4.14) we find

Nk,n(q, λ) = (2π)−d
∫

ik(f±n,λ)
(k)

(

p(x, ξ)
)

q(x, ξ) dxdξ. (4.15)

Since
(

e−itpq
)

(x,D)L∗
n has the integral kernel

(x, y) → (2π)−d
∫

e−itp(x,ξ)q(x, ξ)ln(y, ξ) dξ,
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we have trL∗
n

(

e−itpq
)

(x,D) = Jt(qln) and

∫ ∞

−∞
dt f̌±n,λ(t) trQN̄,n(t)L

∗
n =

∑

0≤k≤N̄

Nk,n(q
0
k,nln, λ). (4.16)

For k = 0 we have q 00,n = ln, hence (4.15) and (3.8) give
∣

∣

∣

∣

N0,n(q
0
0,nln, λ)− (2π)−d

∫

p<λ
ln(x, ξ)

2 dxdξ

∣

∣

∣

∣

=

∣

∣

∣

∣

(2π)−d
∫

(

f±n,λ − 1]−∞,λ[

)(

p(x, ξ)
)

ln(x, ξ)
2 dxdξ

∣

∣

∣

∣

≤
∫

λ−hnpn<p<λ+hnpn
1Bn(c̄)(x, ξ) dxdξ.

It remains to show that the estimate

|Nk,n(qn, λ)| ≤ C̄

∫

λ−hnpn<p<λ+hnpn
1Bn(c̄)(x, ξ) dxdξ (4.17(k))

holds with qn = q 0k,nln, k = 1, ..., N̄ .
The expression (4.15) allows to write the obvious inequality

|Nk,n(qn, λ)| ≤
∫

∣

∣

∣(f±n,λ)
(k)

(

p(x, ξ)
)∣

∣

∣|qn(x, ξ)| dxdξ. (4.18(k))

In the case k = 1 the above inequality leads to the following :

Corollary 5.3 If qn ∈ S(ph, g) are such that supp qn ⊂ Bn(c̄), then
|qn| ≤ Chnpn and using (3.9(1)) in (4.18(1)) we obtain (4.17(1)).
In particular (4.17(1)) holds with qn = q 01,nln.

In order to prove (4.17(k)) for qn = q 0k,nln, k ≥ 2, let χ ∈ C∞
0 (]− 2; 2[) be

such that χ = 1 on [−1; 1] and for s > 0 let

χs(x, ξ) = χ(m(x, ξ)/s2) with m = 〈ξ〉2|∇ξp|
2h−2p−2. (4.19)

We consider also χ̃s := 1−χs and remark that using 1+m ∈ S(1+m, g) it
is easy to check that χs, χ̃s ∈ S(1, g). Moreover

(x, ξ) ∈ suppχs =⇒ p̃(x, ξ) = ((1 +m1/2)hp)(x, ξ) ≤ (1 + 2s)(hp)(x, ξ).
(4.20)

Therefore |q 0k,nlnχs| ≤ Ckh
k
np

k
n and using (3.9(k)) in (4.18(k)) we find that

(4.17(k)) holds with qn = q 0k,nlnχs, k ≥ 2.

Thus it remains to show that (4.17(k)) holds with qn = q 0k,nlnχ̃s, k ≥ 2.
To obtain this result it suffices to show

14



Lemma 5.4 If qn ∈ S(m, g) then we can find q̃n ∈ S(m/p̃, g) such that

supp q̃n ⊂ supp qn and

t Jt(qnχ̃s) = Jt(q̃nχ̃s/2). (4.21)

Indeed, iterating the assertion of Lemma 4.4 we can write

tkJt(q
0
k,nlnχ̃s) = tk−1Jt(q1,k,nχ̃s/2) = ... = tk−k̄Jt(qk̄,k,nχ̃s/2k̄). (4.22)

for some qk̄,k,n ∈ S(php̃k−1−k̄, g) with supp qk̄,k,n ⊂ Bn(c̄/2).
Thus using (4.22) with k̄ = k − 1 we obtain

Nk,n(q
0
k,nlnχ̃s, λ) = N1,n(qn, λ)

with qn ∈ S(hp, g), supp qn ⊂ Bn(c̄/2), and (4.17(1)) holds due to Corollary
4.3.

Proof of Lemma 4.4. Using 〈ξ〉2|∇ξp|
2 ∈ S(p̃2, g) and

s2p̃(x, ξ)2 ≤ 2s2(hp)(x, ξ)2 + 2〈ξ〉2|∇ξp(x, ξ)|
2 ≤ 2(s2 + 1)〈ξ〉2|∇ξp(x, ξ)|

2

for (x, ξ) ∈supp χ̃s, we obtain χ̃s〈ξ〉
−2|∇ξp|

−2 ∈ S(p̃−2, g) due to (3.20) and
combining with 〈ξ〉2∂ξjp ∈ S(〈ξ〉p̃, g) we can define

χ̃j,s := χ̃s ∂ξjp|∇ξp|
−2 ∈ S(〈ξ〉/p̃, g). (4.23)

Writing qnχ̃s =
∑d

j=1 qnχ̃j,s∂ξjp and integrating by parts we find

t Jt(qnχ̃j,s∂ξjp) = (2π)−d
∫

i∂ξj

(

e−itp(x,ξ)
)

(qnχ̃j,s)(x, ξ) dxdξ

= −iJt(∂ξj (qnχ̃j,s)),

which completes the proof due to ∂ξj (qnχ̃j,s) ∈ S(m/p̃, g) and
supp χ̃j,s∩ suppχs/2 = ∅. △

6 Preliminary remarks about the approximation

error

In this section we begin a study of tr Q̃N̄,n(t− τ)e
−iτPL∗

n with the purpose
to establish (3.18), which implies (3.14).
To abbreviate notations we denote the elements of V by the letter ν, adopting
the following convention : if the index ν appears in a formula simultaneously
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with a letter n, t or τ , then ν = (n, t, τ). Moreover the notation sν =
s̃ν + O(mn,t) means that |sn,t,τ − s̃n,t,τ | ≤ Cmn,t holds with a constant
C > 0 independent of ν = (n, t, τ) ∈ V.

Assume that Qν =
(

e−itpqν
)

(x,D) with qν ∈ S(m, g), supp qν ⊂ Bn(c̄) and
Yν ∈ B(L2(Rd)) for ν ∈ V. Then Lemma 9.1 allows to estimate

|tk trQνe
−iτPYν | ≤ |t|k ||Qν ||tr ||Yν || ≤

≤ Cmnh
−C0
n 〈hnpnt〉

k+C0 ||Yν ||, (5.1)

where mn are as in (3.6).
The family {Yν}ν∈V ⊂ B(L2(Rd)) will be called negligible if for every N ∈ N
we can find C(N) > 0 such that

||Yν || = O
(

hNn 〈hnpnt〉
C(N)

)

. (5.2)

If N ′, k ∈ N and {Yν}ν∈V is negligible, then (5.1) allows to find C(k,N ′) > 0
such that

tk trQνe
−iτPYν = O

(

hN
′

n 〈hnpnt〉
C(k,N ′)

)

. (5.3)

Proposition 6.1 Let c > c̄/2 and consider bν ∈ S(m, g) satisfying the

condition supp bν ∩ Bn(c) = ∅. Then the family

Rν = bWν (x,D)e−iτPL∗
n (5.4)

is negligible.

Before giving the proof of this result we describe its consequences.

We assume c̄ > c > c′ > c̄/2 and note that the method of ch. 18.4 [16]
(cf. the beginning of Section 3) allows to find θ̃−k ∈ C∞

0 (B−
x̄(k)(c)) such that

θ̃−k = 1 on B−
x̄(k)(c

′) and

|∂αθ̃−n (x)| ≤ Cαv(x)
−ρ|α|.

If Θ̃−
k denotes the operator of multiplication by θ̃−k , then Proposition 5.1

ensures that (I−Θ̃−
k−n

)e−iτPL∗
n and P (I−Θ̃−

k−n
)e−iτPL∗

n are negligible, hence

for every N ∈ N we can find C(N) > 0 such that

tr Q̃N̄,n(t− τ)e−iτPL∗
n =

tr Q̃N̄,n(t− τ)Θ̃−
k−n

e−iτPL∗
n +O

(

hNn 〈hnpnt〉
C(N)

)

. (5.5)
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Further on we prefer using the operators Q̃N̄,n(t−τ)Θ̃
−
k−n

instead of Q̃N̄,n(t−

τ) and for this purpose we introduce new notations.

Symbols depending on (x, ξ, y) ∈ Rd ×Rd ×Rd.

If qν ∈ C∞
0 (Rd × Rd × Rd), then Op(ei(t−τ)pqν) will denote the integral

operator with the kernel

(x, y) → Kν(q, x, y) = (2π)−d
∫

ei(x−y)ξ−i(t−τ)p(x,ξ)qν(x, ξ, y) dξ. (5.6)

For c > 0 and n ∈ N∗ we will denote

B̃n(c) := B−
x̄(k−n )

(c) × B+
ξ̄(k+n )

× B−
x̄(k−n )

(c)

and for m ∈ Mc̄(g̃) we will write qν ∈ S̃(m) if and only if there is c < c̄ such
that qν ∈ C∞

0 (B̃n(c)) and

|∂βx,y∂
α
ξ qν(x, ξ, y)| ≤ Cα,βmnh

σ|β|
n 〈ξ〉|β|−|α|

holds for every α ∈ Nd, β ∈ N2d, where mn are as in (3.6).

These notations will be used below to express the approximation error in a
particular form, similar to (4.13), (4.14), (4.16).

Expressions of tr Q̃N̄,n(t− τ)Θ̃−
k−n

e−iτPL∗
n.

We have pW(x,D) = p0(x,D) = p0(x,D)∗ and

QN̄,n(t)p0(x,D)∗ = Op
(

e−itpq̃N̄,n,t

)

with
q̃N̄,n,t(x, ξ, y) = qN̄,n(t)(x, ξ)p0(y, ξ).

Writing the Taylor’s development of q̃N̄,n,t(x, ξ, ·) in x and applying standard
integrations by parts in the integrals of the form (5.6) based on the equality
(x− y)αei(x−y)ξ = i|α|∂αξj (e

i(x−y)ξ), we find

Q̃N̄,n(t) = Op
(

e−itp(q̃ 0N̄,n + q̃ 1N̄,n)(t)
)

,

where q̃ 0
N̄,n

(t) are as in Proposition 4.1 and the remainder term of the Tay-

lor’s development of order N̄ gives

q̃ 1N̄,n(t)(x, ξ, y) = eitp(x,ξ)(N̄ + 1)

∫ 1

0
ds (1− s)N̄ q̃N̄,n(t, s)(x, ξ, y) (5.7)
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with
q̃N̄,n(t, s)(x, ξ, y) =

∑

|α|=N̄+1

(−i)|α|
(

∂αξ

(

qN̄,n(t)e
−itp

)

(x, ξ) ∂αx p0(x+ s(y − x), ξ)
)

/α!.

We can write

q̃ 0N̄,n(t− τ)(x, ξ)θ̃−
k−n

(y) =
∑

N̄≤k≤2N̄

(t− τ)k q̃ 0N̄,k,n(x, ξ)θ̃
−
k−n

(y)

=
∑

N̄≤k≤2N̄

tk q̃ 0N̄,k,ν(x, ξ, y),

where ν = (n, t, τ) according to our convention and

q̃ 0N̄,k,ν(x, ξ, y) =

(

1−
τ

t

)k

q̃ 0N̄,k,n(x, ξ)θ̃
−
k−n

(y).

It is clear that q̃ 0
N̄,k,ν

∈ S̃(phN̄σ/2p̃k) and using the form of q 0
N̄,n

(t) in (5.7)
we find a similar expression

q̃ 1N̄,n(t− τ)(x, ξ, y)θ̃−
k−n

(y) =
∑

0≤k≤2N̄

tk q̃ 1N̄,k,ν(x, ξ, y)

with q̃ 1
N̄,k,ν

∈ S̃(phN̄σ/2p̃k).

If Yν ∈ B(L2(Rd)) and qν ∈ S̃(m) then the quantity

Jν(q, Y ) := tr
(

Op(ei(τ−t)pqν)e
−iτPYν

)

, (5.8)

is well defined due to Lemma 9.1 and analogically to (5.1) we have

|tk Jν(q, Y )| ≤ Cmnh
−C0
n 〈hnpnt〉

k+C0 ||Yν ||, (5.9)

where mn are as in (3.6).
Using the above notation we can state the following conclusion

Corollary 6.2 There exist q̃N̄,k,ν ∈ S̃(phN̄σ/2p̃k) such that

tr Q̃N̄,n(t− τ)Θ̃−
k−n

e−iτPL∗
n =

∑

0≤k≤2N̄

tk Jν(q̃N̄,k, Y ) (5.10)

holds with Yν = L∗
n.
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We will complete the proof of Theorem 2.1 by showing

Proposition 6.3 Assume N0, k ∈ N∗, Yν = L∗
n and qν ∈ S̃(m). Then one

can find k0 ∈ N∗ and C(N0) > 0 such that

tkJν(q, Y ) =
∑

1≤k̄≤k0

Jν(qk̄, Yk̄) +O
(

hN0
n 〈hnpnt〉

C(N0)
)

. (5.11)

holds for certain families of symbols {qk̄,ν}ν∈V and operators {Yk̄,ν}ν∈V sat-

isfying

qk̄,ν ∈ S̃(mp̃−k), ||Yk̄,ν || = O
(

〈hnpnt〉
C(N0)

)

(5.12)

for k̄ = 1, ..., k0.

Indeed, using (5.10) and Proposition 5.3 with qν = q̃N̄,k,ν, m = phN̄σ/2p̃k,
we can write

tr Q̃N̄,n(t−τ)Θ̃
−
k−n

e−iτPL∗
n =

∑

1≤k̄≤k(N̄)

Jν(qN̄,k̄, YN̄,k̄)+O
(

hN0
n 〈hnpnt〉

C(N̄,N0)
)

,

with

qN̄,k̄,ν ∈ S̃(phN̄σ/2), ||YN̄,k̄,ν || = O
(

〈hnpnt〉
C(N̄,N0)

)

,

hence choosing N̄ = N̄(N0) large enough we can ensure

Jν(qN̄,k̄, YN̄ ,k̄) = O
(

hN0
n 〈hnpnt〉

C̄(N̄,N0)
)

due to (5.9). This proves (3.18) completing the proof of Theorem 3.2 and
2.1.

Proof of Proposition 5.1. The method of ch. 18.4 [16] allows to find
symbols l0n(x, ξ) = θ0−

k−n
(x)θ0+

k+n
(ξ) satisfying

l0n ∈ S(1, g), ∂xj l
0
n ∈ S(v(x)−ρ, g), supp l0n ⊂ Bn(c),

l0n = 1 on Bn(c
′) with c > c′ > c̄/2.

(5.13)

We set L0
n = l0n(x,D) and note that ||bWν (x,D)L0

n|| = O(hNn ) for every
N ∈ N holds due to supp bν ∩ supp l0n = ∅ (cf. Theorem 18.5.4 and 18.6.3
[16]). Therefore it suffices to show that

||(I − L0
n)e

−iτPL∗
n|| = O

(

hkσn 〈hnpnτ〉
k
)

(5.14(k))
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holds for every k ∈ N if l0n satisfies (5.13). Obviously (5.14(k)) holds for
k = 0 and we will prove the general statement by induction with respect to
k ∈ N.
Further on we assume that σ > 0 is small enough to ensure ρ′(1 + σ) ≤ ρ

and r′(1 + σ) ≤ 1. This assumption implies v(x)−ρ〈ξ〉−1 ≤ h(x, ξ)1+σ and
∂xj l

0
n∂ξjp, ∂xjp∂ξj l

0
n ∈ S(ph1+σ, g) if l0n satisfies (5.13). Thus (3.23) ensures

[I − L0
n, P ] = −[L0

n, P ] = l̃Wn (x,D) with l̃n ∈ S(ph1+σ, g). (5.15)

Moreover we can find

l1n ∈ S(1, g), ∂xj l
1
n ∈ S(v(x)−ρ, g), supp l1n ⊂ Bn(c

′),
l1n = 1 on Bn(c

′′) with c′ > c′′ > c̄/2
(5.16)

and setting L1
n = l1n(x,D) we have supp l̃n ∩ supp l1n = ∅, hence

||l̃Wn (x,D)L1
n|| = O(hNn ) for every N ∈ N. (5.17)

Since ||(I − L0
n)L

∗
n|| = O(hNn ) for every N ∈ N and

(I − L0
n)e

−iτPL∗
n = e−iτP (I − L0

n)L
∗
n +

[

I − L0
n, e

−iτP
]

L∗
n, (5.18)

it remains to estimate the norm of

[

I − L0
n, e

−iτP
]

L∗
n =

∫ 1

0
ds τei(s−1)τP [I − L0

n, P ]e
−isτPL∗

n. (5.19)

and due to (5.17) it suffices to estimate

|τ |||l̃Wn (x,D)(I − L1
n)e

−isτPL∗
n||. (5.20)

However we have ||l̃Wn (x,D)|| ≤ Cpnh
1+σ
n (cf. Theorem 18.6.3 [16]) and

using the induction hypothesis we can assume that (5.14(k)) holds with L1
n

instead of L0
n and c′′ instead of c′. Thus the quantity (5.20) can be estimated

by
C|τ |pnh

1+σ
n hkσn 〈hnpnτ〉

k ≤ Ch(k+1)σ
n 〈hnpnτ〉

k+1,

completing the proof of (5.14(k + 1)). △.
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7 Auxiliary commutator formulas

Notations. We will write bν ∈ Sn(m, g) if and only if there exist c0 < c̄,
l0n ∈ S(1, g) satisfying supp l0n ⊂ Bn(c0) and (1− l0n)bν ∈ S(hN , g) for every
N ∈ N.
Then Theorem 18.5.4 [16] ensures bb̃, b⊙b̃ ∈ Sn(mm̃, g) if bν ∈ Sn(m, g), b̃ν ∈
S(m̃, g) and (3.23) still holds with b, b̃, S(m′, g) replaced by bν , b̃ν , Sn(m

′, g).
Moreover bν ∈ Sn(m, g) implies

|∂βx∂
α
ξ bν(x, ξ)| ≤ Cα,β mnh

σ|β|
n 〈ξ〉|β|−|α| (6.1)

where mn are as in (3.6) and Theorem 8.6.3 [16] ensures

||bWν (x,D)|| ≤ Cmn, ||(I − l0Wn (x,D))bWν (x,D)|| = O(hNn ) (6.2)

for every N ∈ N.
We introduce the following formal notation

Y (τ,B) := e−iτPBeiτP . (6.3)

Let {Yν}ν∈V be a family of bounded operators and let m ∈ Mc̄(g̃). We
write Yν ∈ Y(m) if and only if there exist N ∈ N, C0 > 0, the weights
m(k, k′) ∈ Mc̄(g̃), the symbols bk,k′,ν ∈ Sn(m(k, k′), g) and functions sk,k′ :
[0; 1]N → R, sk,ν : [0; 1]N → C, satisfying

N
∏

k′=1

m(k, k′) ≤ m, |sk,k′(w)| ≤ C0, |sk,ν(w)| ≤ C0〈hnpnt〉
C0 ,

for k, k′ = 1, ..., N and

Yν =
N
∑

k=1

∫

[0; 1]N
dw sk,ν(w)Y (sk,1(w)τ,Bk,1,ν)...Y (sk,N(w)τ,Bk,N,ν) +Rν

(6.4)
where Bk,k′,ν = bWk,k′,ν(x,D) and the family {Rν}ν∈V is negligible.

Taking sk,ν(w) = sk,k′(w) = 1 we can forget the integration with respect
to w, hence Y (τ,Bk,1,ν)...Y (τ,Bk,N,ν) ∈ Y(m) and more generally

Yν ∈ Y(m), Ỹν ∈ Y(m̃) =⇒ Yν Ỹν ∈ Y(mm̃), (6.5)

Yν ∈ Y(m) =⇒ ||Yν || ≤ Cmn〈hnpnt〉
C . (6.6)

Reformulation of Proposition 5.3. In Section 7 we will prove
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Proposition 7.1 Assume q0,ν ∈ S̃(m), Y0,ν ∈ Y(1) and N0 ∈ N. Then one

can find k0 ∈ N∗ and C(N0) > 0 such that

t Jν(q0, Y0) =
∑

1≤k̄≤k0

(Jν(qk̄, Yk̄) + tJν(q−k̄, Y−k̄)) +O
(

hN0
n 〈hnpnt〉

C(N0)
)

(6.7)
holds with certain symbols q±k̄,ν and operators Y±k̄,ν satisfying

qk̄,ν ∈ S̃(m/p̃), q−k̄,ν ∈ S̃(mhσ), Y±k̄,ν ∈ Y(1) (6.8)

for k̄ = 1, ..., k0.

It is easy to see that Proposition 6.1 implies Proposition 5.3. Indeed,
first of all we note that the assertion of Proposition 6.1 can be applied to
express tJν(q−k̄, Y−k̄), k̄ = 1, ..., k0 and iterating this procedure N times
we find the expression of tJν(q0, Y0) in the form (6.7) with new symbols
q−k̄,ν ∈ S̃(mhNσ), k̄ = 1, ..., kN . Thus for N = N(N0) large enough all

terms tJν(q−k̄, Y−k̄), k̄ = 1, ..., kN , become O
(

hN0
n 〈hnpnt〉

C(N0)
)

, i.e. the

assertion of Proposition 6.1 holds with q−k̄ = 0 for k̄ ≥ 1. This proves
Proposition 5.3 in the case k = 1 and it is clear that the general case follows
after k iterations.

In the remaining part of this section we describe the properties of Yν ∈
Y(m) needed in the proof of Proposition 6.1. More precisely we consider the
commutator of Yν with the operator of multiplication by the j-th coordinate,
denoted by xj.

Lemma 7.2 Assume Yν ∈ Y(m). Then there exist

Y +
ν ∈ Y(〈ξ〉−1m), Y −

ν ∈ Y(〈ξ〉−1p̃hσm) (6.9)

such that [Yν , xj] = Y +
ν + τY −

ν .

Proof. Let Bk,k′,ν = bWk,k′,ν(x,D) with bk,k′,ν ∈ Sn(m(k, k′), g).
If we know that

[Y (τ,Bk,k′,ν), xj ] = Y +
k,k′,ν + τY −

k,k′,ν (6.10)

holds with

Y +
k,k′,ν ∈ Y(〈ξ〉−1m(k, k′)), Y −

k,k′,ν ∈ Y(〈ξ〉−1p̃hσm(k, k′)),
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then commuting succesively xj with Y (sk,k′(w)τ,Bk,k′,ν), k
′ = 1, ..., N , we

obtain easily the general statement of Lemma 6.2.
To begin we write

[Y (τ,Bk,k′,ν), xj ] = e−iτP [Bk,k′,ν, Y (−τ, xj)]e
iτP (6.11)

and denote
Pj := [iP, xj ] = ∂ξjp

W(x,D) = ∂ξjp0(x,D). (6.12)

Then we can write the Taylor formula

Y (−τ, xj) = xj − τ∂τY (0, xj) + τ2
∫ 1

0
ds (1− s)∂2τY (−sτ, xj)

= xj + τPj + τe−iτPY (τ, [iτP, Pj ])e
iτP , (6.13)

where

Y (τ,B) = τ

∫ 1

0
ds (1− s)Y ((−s− 1)τ,B).

Using (6.13) we can express the commutator (6.11) in the form

Y (τ, [Bk,k′,ν , xj ]) + τY (τ, [Bk,k′,ν, Pj ]) + τ [Y (τ,Bk,k′,ν), Y (τ, [iτP, Pj ])
(6.14)

and since [Bk,k′,ν , xj] = ∂ξjb
W
k,k′,ν(x,D), it is clear that the first term of

(6.13) is in Y(〈ξ〉−1m(k, k′)). Next we check that

∂xj′
bk,k′,ν∂ξj′∂ξjp ∈ Sn(〈ξ〉

−1p̃hσm(k, k′), g)

∂ξj′ bk,k′,ν∂xj′
∂ξjpSn(〈ξ〉

−1ph1+σm(k, k′), g) ⊂ Sn(〈ξ〉
−1p̃hσm(k, k′), g)

due to hp ≤ p̃, hence (3.23) implies

bk,k′,ν ⊙ ∂ξjp− ∂ξjp⊙ bk,k′,ν ∈ Sn(〈ξ〉
−1p̃hσm(k, k′), g),

and consequently Y (τ, [Bk,k′,ν , Pj ]) ∈ Y(〈ξ〉−1p̃hσm(k, k′)).
Moreover we have

∂xj′
p∂ξj′∂ξjp, ∂ξj′p∂xj′

∂ξjp ∈ S(〈ξ〉−1p̃h1+σp, g),

hence (3.23) ensures

p⊙ ∂ξjp− ∂ξjp⊙ p ∈ S(〈ξ〉−1p̃h1+σp, g). (6.15)
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Introducing l0n ∈ S(1, g) such that (I − L0
n)Bk,k′,ν is negligible with L0

n =
l0n(x,D) and supp l0n ⊂ Bn(c0) with c0 < c̄, we can write

Y (τ,Bk,k′,ν)Y (τ, [Pj , iτP ]) = Y (τ,Bk,k′,ν)Y (τ, L0
n[Pj , iτP ])+Rk,k′,ν (6.16)

with {Rk,k′,ν}ν∈V negligible. However using

〈hnpnτ〉
−1|τ |l0n ∈ Sn(h

−1p−1, g)

and (6.15) we find pj,ν ∈ Sn(〈ξ〉
−1p̃hσ, g) such that

〈hnpnτ〉
−1τL0

n[Pj , iP ] = pWj,ν(x,D),

hence Y (τ, L0
n[Pj , iτP ]) ∈ Y(〈ξ〉−1p̃hσ). Therefore the right hand side of

(6.16) belongs to Y(〈ξ〉−1p̃hσm(k, k′)) and Y (τ, [Pj , iτP ])Y (τ,Bk,k′,ν) be-
longs to the same class, i.e. (6.14) gives the desired decomposition (6.10).
△

Corollary 7.3 Let Y0,ν ∈ Y(1). If Pj = [iP, xj ], then one has

τPje
−iτPY0,ν = [e−iτPY0,ν , xj ] + e−iτP (Y +

0,ν + τY −
0,ν) (6.17)

with some Y +
0,ν ∈ Y(〈ξ〉−1) and Y −

0,ν ∈ Y(〈ξ〉−1p̃hσ).

Indeed, using (6.13) to express [e−iτP , xj ] and applying Lemma 6.2 with
Yν = Y0,ν we can write

[e−iτPY0,ν , xj] = [e−iτP , xj ]Y0,ν + e−iτP [Y0,ν , xj]

= −τPje
−iτPY0,ν − τe−iτPY (τ, [Pj , iτP ])Y0,ν + e−iτP (Y +

ν + τY −
ν ).

It remains to remark that the reasoning of the proof of Lemma 6.2 ensures
the fact that Y +

0,ν = Y +
ν and Y −

0,ν = −Y (τ, [Pj , iτP ])Y0,ν + Y −
ν belong to the

indicated classes. △

8 End of the proof of Theorem 2.1

Throughout this section we use the following notation

Qν = Op(ei(τ−t)pqν) with qν ∈ S̃(〈ξ〉m/p̃). (7.1)

We adopt the convention that the symbol (x, ξ) → p(x, ξ) can be considered
as (x, ξ, y) → p(x, ξ), allowing to define qν∂ξjp ∈ S̃(m) by the formula

(qν∂ξjp)(x, ξ, y) = qν(x, ξ, y)∂ξjp(x, ξ). (7.2)
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Lemma 8.1 If Qν and qν∂ξjp are as in (7.1), (7.2), then

[Qν , xj] = (t− τ)Op(ei(τ−t)pqν∂ξjp) + Op(ei(τ−t)pi∂ξjqν). (7.3)

Proof. Since the integral kernel of [Qν , xj] is

(x, y) → (2π)−d
∫

(yj − xj)e
i(x−y)ξ+i(τ−t)p(x,ξ)qν(x, ξ, y) dξ (7.4)

and (yj−xj)e
i(x−y)ξ = −i∂ξje

i(x−y)ξ , the integration by parts allows to write
(7.4) in the form

(x, y) → (2π)−d
∫

ei(x−y)ξ+i(τ−t)p(x,ξ)((t− τ)∂ξjpqν + i∂ξjqν)(x, ξ, y) dξ,

which gives (7.3). △

The computation of the composition kernel gives

Op(ei(τ−t)pqν)bν(x,D)∗ = Op(ei(τ−t)p(qν • bν)) (7.5)

with

(qν • bν)(x, ξ, y) = (2π)−d
∫

ei(ỹ−y)(ξ−ξ̃)qν(x, ξ, ỹ)bν(y, ξ̃)

and the usual Taylor development with integrations by parts give

qν • bν = qν•N ′bν + rN ′,ν, (7.6)

with

(qν•N ′bν)(x, ξ, y) =
∑

|α|<N ′

(−i)|α|∂αy qν(x, ξ, y)∂
α
ξ bν(y, ξ)/α!, (7.7)

rN ′,ν =
∑

|α|=N ′

(qα,ν(z) • ∂
α
ξ bν)|z=y,

qα,ν(z)(x, ξ, y) =

∫ 1

0
∂αy qν(x, ξ, z + s(y − z))

iN
′
N ′ds

α!
.

Then for an arbitrary N ∈ N we can find N ′ = N ′(N) such that the family
of operators RN ′,ν = Op(ei(τ−t)prN ′,ν) satisfies

||RN ′,ν || ≤ CNh
N
n 〈hnpnt〉

C(N). (7.8)
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Denoting (qν b̄
♯
ν)(x, ξ, y) = qν(x, ξ, y)bν(y, ξ) we can write

qν ∈ S̃(m̃), bν ∈ S(m′, g) ⇒ qν•N ′bν ∈ S̃(m̃m′), qν•N ′bν − qν b̄
♯
ν ∈ S̃(m̃m′hσ).

If in particular qν ∈ S̃(〈ξ〉m/p̃), ∂ξjp0 ∈ S(〈ξ〉−1p̃, g), then

QνPj = Op(ei(τ−t)p(qν • ∂ξjp0)), qν•N ′∂ξjp0 ∈ S̃(m),

qν•N ′∂ξjp0 − qν∂ξjp0
♯
∈ S̃(hσm).

Since (3.20) ensures ∂ξjp− ∂ξjp0 ∈ S(〈ξ〉−1h1+σp, g) ⊂ S(〈ξ〉−1hσp̃, g),

q−N ′,ν := qν•N ′∂ξjp0 − qν∂ξjp
♯ ∈ S̃(hσm). (7.9)

For j = 1, ..., d we introduce

p(j),ν(x, ξ, y) :=

(

1−
τ

t

)

∂ξjp(x, ξ) +
τ

t
∂ξjp(y, ξ). (7.10)

Proposition 8.2 Let qν ∈ S̃(〈ξ〉m/p̃), Y0,ν ∈ Y(1) and N0 ∈ N. Then we

can find C(N0) > 0 such that

t Jν(qp(j), Y0) =
∑

1≤k≤2

(Jν(qk, Yk) + tJν(q−k, Y−k)) +O
(

hN0
n 〈hnpnt〉

C(N0)
)

(7.11)
where for k = 1 and 2 we have

qk,ν ∈ S̃(m/p̃), q−k,ν ∈ S̃(mhσ), Yk,ν ∈ Y(1), Y−k,ν ∈ Y(1). (7.12)

Proof. By definition of p(j),ν we have

tOp(ei(τ−t)pqνp(j),ν) = (t− τ)Op(ei(τ−t)pqν∂ξjp) + τOp(ei(τ−t)pqν∂ξjp
♯)

(7.13)
and applying (7.3), (7.9), we can write the above expression as

[Qν , xj ] +QντPj +Op(ei(τ−t)p(τq−N ′,ν − i∂ξjqν)) + τRN ′,ν

with RN ′,ν satisfying (7.8). Thus t Jν(qp(j), Y0) can be written as

tr [Qν , xj ]e
−iτPY0,ν + trQντPje

−iτPY0,ν +

Jν(−i∂ξjq, Y0) + τJν(q
−
N ′ , Y0) +O(hN0

n 〈hnpnt〉
C(N0)). (7.14)
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Due to Corollary 6.3, the sum of two first terms in (7.14) equals to

tr [Qν , xj ]e
−iτPY0,ν + trQν [e

−iτPY0,ν, xj] + Jν(q, Y
+
0 ) + τJν(q, Y

−
0 )

= tr [Qνe
−iτPY0,ν , xj ] + Jν(q, Y

+
0 ) + τJν(q, Y

−
0 )

= Jν(q, Y
+
0 ) + τJν(q, Y

−
0 ). (7.15)

Thus we obtain (7.11) with

q1,ν = i∂ξjqν , q−1,ν =
τ

t
q−N ′,ν, Y1,ν = Y−1,ν = Y0,ν ,

q2,ν = 〈ξ̄(k+n )〉
−1
qν, Y2,ν = 〈ξ̄(k+n )〉Y

+
0,ν,

q−2,ν = 〈ξ̄(k+n )〉
−1
p̃nh

σ
nqν , Y−2,ν = 〈ξ̄(k+n )〉p̃

−1
n h−σ

n Y −
0,ν,

where according to our convention p̃n = p̃n(x̄(k
−
n ), ξ̄(k

+
n )). △.

Proof of Proposition 6.1. Let χs, χ̃s be as in the proof of Proposition
4.2. Then q0,ν ∈ S̃(m, g) =⇒ q̃ν := q0,νχsh

−1
n p−1

n ∈ S̃(m/p̃, g) and

tJν(q0χs, Y0) = Jν(q̃, Ỹ ) with Ỹν = hnpntY0,ν ∈ Y(1).

Therefore it sufficesto prove the statement of Proposition 6.1 with q0,νχ̃s

instead of q0,ν .
Further on we assume s = 1 and note that for (x, ξ) ∈supp χ̃1 we have

〈ξ〉−1p̃(x, ξ)/2 ≤ |∇ξp(x, ξ)| ≤ 2〈ξ〉−1p̃(x, ξ) (7.16)

and due to (2.10), for (x, ξ, y) ∈supp q0,νχ̃1 we have

|∇ξp(x, ξ)| −

(

∑d

j=1
p2(j),ν

)1/2

≤ |∇ξp(x, ξ)−∇ξp(y, ξ)|

≤ 〈ξ〉−1p̃(x, ξ)/4 ≤ |∇ξp(x, ξ)|/2,

which implies

(

∑d

j=1
p2(j),ν

)1/2

≥ |∇ξp(x, ξ)|/2 ≥ 〈ξ〉−1p̃(x, ξ)/4. (7.17)

Using (7.16), (7.17), we can write q0,νχ̃1 =
∑d

j=1 q(j),νp(j),ν with

q(j),ν = q0,νχ̃1p(j),ν

(

∑d

j=1
p2(j),ν

)−1

∈ S̃(〈ξ〉m/p̃, g)

and we complete the proof applying Proposition 7.2 with qν = q(j),ν .
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Boston 1987.

[14] Zielinski, L.: Asymptotic behaviour of eigenvalues of differential oper-
ators with irregular coefficients on a compact manifold, C. R. Acad.

Sci. Paris Sér. I Math. 310, (1990), 563–568.

[15] Zielinski, L.: Asymptotic distribution of eigenvalues for elliptic bound-
ary value problems, Asymptot. Anal. 16 (1998), 181–201.

[16] Zielinski, L.: Asymptotic distribution of eigenvalues of some elliptic
operators with intermediate remainder estimates, Asymptot. Anal. 17
(1998), 93–120.

[17] Zielinski, L.: Sharp spectral asymptotics and Weyl formula for elliptic
operators with non-smooth coefficients, Math. Phys. Anal. Geom. 2
(1999), 291–321; Part 2: Colloq. Math. 92 (2002), 1–18.

29


