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Abstract. We consider the Weyl formula for the asymptotic number of
eigenvalues of self-adjoint elliptic differential operators with coefficients which
have Holder continuous first order derivatives. Our aim is to prove that the
Weyl formula holds with a remainder usually considered in the case of op-
erators with smooth coeflicients.
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1 Introduction

This paper presents a generalization of our earlier results described in [14],
[16], [17] and motivated by the well-known result of L. Hérmander [5] on
spectral asymptotics of a self-adjoint elliptic operator A with smooth coeffi-
cients on a smooth (boundaryless) manifold M. If M is a compact manifold
of dimension d and 2m is the order of A, then the associated counting
function N (A, ), defined as the number of eigenvalues (counted with their
multiplicities) smaller than A, satisfies the Weyl formula

N(A,\) = eAZn + O(A5), (1.1)



where ¢ = ¢4, is a constant and p = 1.

It is natural to ask if (1.1) still holds for the operators with non-smooth
coefficients. In [16] we proved that for coefficients which are Holder continu-
ous of exponent  €]0; 1], the formula (1.1) holds if 4 < r. In [17] we proved
(1.1) with g = 1 assuming that the first order derivatives of coefficients
are Lipschitz continuous and in this paper we show a way of replacing the
hypothesis of Lipschitz continuity by Holder continuity. Moreover we use
the semiclassical framework, which allows us to obtain the classical Weyl
formula (1.1) as a corollary.

Let B” denote the set of bounded, Holder continuous functions on IR?, i.e.
a € B" means that a € L>®(IR?) and there is C' > 0 such that

la(z) —a(y)| < Clz —y["  (z,y € RY).

Further on m € IN\ {0} and we fix r €]0; 1]. For v, € IN?, |v|,|7| < m, let
a,p be real valued coefficients satisfying a, ; = a5, and

6xjay,,; eB” (j=1,..,4d). (1.2)
We assume moreover the existence of a constant ¢ > 0 such that

S (@) 2 e (a6 € RY) (13)

v|=[r|=m

and for h > 0 we introduce the quadratic form A, defined for ¢, € C(’]"“(]Rd)
by the formula

Anle ¥l = > (avp(hD)" g, (RD)"9), (1.4)

], |7[<m

where (-, ) is the scalar product of L?(IR?) and (hD)" = (—ih)"0¥ /0" .
The ellipticity hypothesis (1.3) ensures the fact that A; is bounded from
below and its closure defines a self-adjoint operator A,. We introduce

a(z,§) = Z a,,,,;(ﬂ:)gl'J”7 (1.5)

[v],|7|<m
and for F € IR we denote
p=a (oo B) = {(#,6 € R : a(z,) < E}.  (L6)

We will present a proof of



Theorem 1.1 Let Ey, E € IR be such that Ey < E and I'g is bounded.
Then the operators Ay, described above have discrete spectrum in | — oo; Ey]
for h €]0; hol, if hg > 0 is fized small enough. We assume moreover

a(z,§) = Ey = Vea(x,§) #0. (1.7)

Then, for h €]0; hg|, the counting function N (A, Eg) satisfies the asymp-
totic formula
N (Ap, Eg) = [Tl (20h) 4 + O(h' ™), (1.8)

where |T'g,| denotes the Lebesque measure of I'f, .

2 Regularization of coefficients

Let 11 € C§°(IRY) be such that v (—z) = 1 (x), [ 71 (z) dz = 1 and for £ > 0
set y=(x) = e %y (x/e). We fix § €]0; 1] and introduce

(@) = (s # 346)(@) = [aalgln (b= =) hHdy.  (21)

It is easy to see (cf. Section 7(A) ) that (1.2) ensures
w5 (2) = aypp(@)] < CHOUHT), (2.2)
105 avpn(@)] < Coh~0UoI=17m (2:3)

where s = (s 4+ |s|)/2 is the positive part of s € IR. We define

pr(@,6) = Y aypn(@)€t? (2.4)

lv||7[<m

and assume further on (1 +7)d > 1, hence (2.2) ensures

08 (a = pr)(x,€)| < Cah(§)™™ 1, (2.5)
where (&) = (1 + |£]?)'/2. Moreover the operator

Py= Y (kD) aypn(x)(hD)” (2.6)

[, |7[<m



is an approximation of A;, satisfying
+(Ap — B,) < Ch(hD)*™ = Ch(I — h2A)™
and P~ < Ay < P}f holds (in the sens of quadratic forms) with
PE = P, + Ch{(hD)*™. (2.7)
Our principal aim is to show
Theorem 2.1 The assertion of Theorem 1.1 holds if Ay, is replaced by Phi.

First of all we remark that the discreteness of the spectrum of P,f is a stan-
dard result and analogical reasoning can be applied to Ay, (cf. Section 7(B)
for details). Then the asymptotic formula (1.8) follows from the estimates
of the counting functions for P due to the min-max principle (cf. [12]),
which ensures

Py < A, < PF = N(P! E)<N(A, E) <N(P, ,E). (2.8)

In the remaining part of this section we describe a version of Theorem 2.1
formulated suitably for the proof that will follow.
Let 1z : IR — {0, 1} be the characteristic function of Z C IR and set

dxdg dxd€
Nalp, E :/ :/71700- . 2.9
on £) pn(@6)<E (2mh)d (27h) ]—o0; E] © Ph (2.9)

Further on we also write 1z (Pﬁt) to denote the spectral projector of Phi on
a Borel set Z C IR and due to (2.8) and (2.11), to obtain the asymptotic
formula (1.8) it suffices to show

tr I}—oo; Eo](Pf:Lt) = N(Pf:::,EO) = Nh(pha EO) + O(hl_d)' (215)
To show (2.15) we introduce

{9 € C§°(|Eo — 2co; Eo + 2co[), g =1 on [Ey — co; Ep + col,

g € C§(] — o0; Eg — cof) (2.16)

and assume §+ g2 = 1 on [~ E)); Ep+ co] where E}), > 0 is chosen sufficiently
large to ensure —F}y < inf pi and —E}) < inf o(P;) for h €]0; ho).
Then for F € [Ey — ¢p; Eo + ¢o] we can write the decompositions

dwdé¢

Niu(pn, E) :/W(QJFQQIZ)(M(%Q),

I}—oo; E](szlt) = (g + QQIZ)(PIit)a
where Z = [Ey — 2cp; E]. Now it is clear that (2.15) is a consequence of



Theorem 2.2 One has

wilPE) = [ o dom + O (2.17)
2 + dadg 2 1-d
(L) = [ o @lz)em + OB, 21y

Further on ¢ > 0 is small enough and fy € C§°(]¢/2; ¢/2[). Then we define
fi=fox fo € C§°(J¢; ¢]) and

AV =Ftno = [T e (219)

We note that fr(\) = fi(A\/h)/h, fi is rapidly decreasing and fi > 0.
Moreover we can choose fy such that [ f5 = f1(0) = 1. Then we use

FZ00 = (T % f) (A / AN fu(A = \) (2.20)

as an approximation of Iz. In Section 7(C) we recall a proof of
Proposition 2.3 The estimate (2.18) follows if

w @ FOPE) = [ s @) om + 00 2)

holds uniformly with respect to Z = [E'; E).

3 Pseudodifferential approximation

In this section we show the estimate (2.17). We use pseudodifferential
operators in a reasoning which will be developed in Section 4 to treat (2.18).
We denote by || - || the norm of bounded operators B(L*(IR%)) and ||B||i; =
tr (B*B)'Y/? is the trace class norm. If b, € C§°(IR?*?) then we denote by
b, (2, hD) the pseudodifferential operator acting on ¢ € S(IRY) according to
the formula

e D)) = [ IS e @, Opl). ()

If by, I, € C§°(IR?4), then by, (z, hD)ly, (2, hD)* has the integral kernel

Klos) = [ s o0 0, ),



hence

tr by (x, hD)lp(z, hD)* /dx Kn(z,7) = /((21952§ buly. (3.2)

In this section we consider g € C§°(] — oo; Ei[) with E; such that I'g, 12,
is bounded for a certain ¢; > 0. Then using (2.5) we can find hg > 0 small
enough to ensure

0<h<hy = supp(gopn) CTE +e- (3.3)

Next we fix an auxiliary h-independent cut-off function I € C§°(IR??) such
that [ = 1 on a neigbourhood of I'g, 4., and [ > 0. We denote Ly = l(x, hD)
and recall standard estimates of pseudodifferential operators:

ILull = O(1),  ||Lnlle = O(R™9). (3.4)

Moreover (3.2) allows us to write

/(gyd£ /dydg (Gopn) =tr(gopn)(x,hD)L;,  (3.5)

and since [tr B| < || Bllr, it is clear that (2.17) follows from
16(P5%) = Li(§ © pn) (2, hD) | = O(h'™). (3.6)
Our proof of (3.6) is based on an auxiliary lemma (cf. Section 7(D)):
Lemma 3.1 If g and Ly are as above, then for every N € IN one has
19(P) (I = Li)lle = O(™). (3.7)

Since ||§(Pi)Lh||tr < 1g(PHN | Laller = O(h~?) due to (3.4), Lemma 3.1

ensures ||§(PF)||e = O(h™%). Another immediate corollary of (3.7) is
19(P5) = Li 9(P) Ll = O(A™)
and we can conclude that instead of (3.6) it suffices to show
IL4G(Pi) Li = Li(3 © pn) (2, hD) | = O(h'). (3.6')

Further on gy € S(IR) denotes the Fourier transform of g, i.e. we have
50 = [, & g1(1) ™ and

—00 27

Gom)@.) =G w6 = [ Lo, ()

6



35 = [ gra0e (39

Therefore we can write

§(PF)Ly, — (§ o pr)(z, hD) = Lw or

with . '
Ry = &P Ly, — (ePr])(x, hD) (3.10)

and the left hand side of (3.6") can be estimated by

© dt
— Ly, I A1
| 5 lon 1112 Rul (3.11)

However ||L} Rpillee < |Li|ler [|Risll < Ch™9||Rp4|| and gy is rapidly de-
caying, hence in order to estimate the quantity (3.11) by O(h'~%) it suffices
to show

Lemma 3.2 There is C > 0 such that ||Rp .|| < Ch(t)°.

Before starting the proof of Lemma 3.2 it is useful to introduce some no-
tations. We write the differential operators P,;t in the standard form

Pi= Y a),,(@)(hD)* =pj («,hD), (3.12)
ol <2m
pr@) =Y aF (@) (3.13)
ol <2m

and it is easy to check that (2.5) still holds with pf instead of py,.
Let m € IR and 61 > &g > 0 be such that g + 61 < 1. If b = {bh}0<h§ho is a
family of smooth functions satisfying the estimates

08061 (2,6)| < Ciy 0 gh™ ™00 13151 ()= (3.14)

(for every a, 3 € IN? and n € IN), then we write b € Sg?ﬁl'

Ifl € Cg"(]RQd) is h-independent, then the families Ipy, lﬁf, le'*Pr belong to
58, s and well-known L?-estimates of pseudodifferential operators (cf. [2],[6])
give

be Sys = 3C >0, |[("Priby)(z, hD)|| < Ch™™(1)¢. (3.15)

7



If s € IR then we write By, = Lj, + O(h®) if and only if there is a constant
C' > 0 such that ||B, — L|| < Ch® holds for all h €]0; hy]. Moreover
further on we adopt the convention to drop the index h whenever there is
no confusion. Instead of Phi, Ly, Ry, ph, pf, we are going to write simply
P, L, R, p, p*.

Proof of Lemma 3.2 We are going to obtain suitable estimates of
Ry = (i0; + P)(e""1)(z, hD) (3.16)

and the assertion of Lemma 3.2 will follow from

) ) t ;
R, = _[ez(t—T)P(errpl)(x, hD)]:if) — Z/ dr ez(t_T)PRT. (3.17)
0

The standard formula of the composition with a differential operator gives

p*(z, hD)(e"1) (2, hD) = Gy(w, hD), (3.18)
with
q (_Zh’)‘o{| af itp o, *+ itp o k
G= ) GRS > tra, (3.19)
jaj<2m k=0
w= ) ST Cagpay 0201091 p .. 02k p O2p* (3.20)
hslalsam o0k

and gy € S&f; follows from —|a| + Zle (lajl —1) < =k —=(1—=06)(la| = E).
However (3.15) ensures

ar € S5 = (qi)(@,hD) = O (1)),

hence

P(e''?l)(x,hD) = (e"Pqo)(x, hD) + O(h{t)°).
To complete the proof we note that I(p™ — p) € S&; and

—ih)l _
qo — IpT = Z %aglagpi € Soj (3.21)
1<|al<2m '

ensure qg — Ip € Sag, hence

i0,(e""1)(w, hD) + (¢" o) (w, AD) = (" (qo — Ip))(x,hD) = O(h(t)°).



4 Refinement

Due to Proposition 2.3, to complete the proof of Theorem 2.2 it suffices to
show (2.21). We will use a reasoning of Section 3 in a refined form. We keep
notations introduced before and in particular we drop the index h.

To begin we remark that replacing g by g € C§°(]Ey — co; Ep + co) in
(3.6), we can introduce lyp = g o p, Ly = lp(z, hD) and write

tr(¢°f)(P) = L fif (P)Lo + O(A'™). (4.1)
As before Z = [E'; ] and we use the Fourier transform

Fif(@) = Faff(t) = [ dxe ™R FE ()

» o it(ELEN/(2R) . (E'—
— fult) JE AN = () LD oy (2

to write

* [ oo dt )
tr Ly fZ(P)Lg = L o fEZ () tr Liet/h L, (4.2)

/ (Qih)gd (fi op) = / ﬁ _mﬁfhz(t)l%e”p/h. (4.3)

However (3.2) allows us to express (4.3) as

| 5 70 5 Lyt (@, hD) (43)
and introducing
Ry, = e™/M Ly — (/M) (z, hD) (4.4)

we find that (2.21) is equivalent to the estimate

o dt . ~
| g 0w LiRY, = O (4.5)

Next we observe that (2.5) and (2.10) ensure
Ey —2c < p(x,8) < Eo +2c0 = |Vep(a,§)| = co (4.6)

for h €]0; hg] if hg > 0 is fixed small enough. The condition (4.6) ensures



Lemma 4.1 Assume that b € 58,5. Then for every n € IN one can find
b, € 5875 such that

tn / d¢ be'?/h = pr / d¢ by, /R, (4.7(n))
Proof. Using (4.6) in a standard reasoning we obtain
Whe Sy b€ S5 b= ijléjagjp. (4.8)
Therefore performing the integration by parts
t / de Y7 bidepe" = ih / de " Oe byt

we obtain the assertion of Lemma 4.1 for n = 1 with by = Z?le’@@ b;.
Obviously the general case follows by induction with respect to n. A.

We will use Lemma 4.1 to replace R?/h in (4.5) by
Rt/h - eitP/hLO - (eitp/hlt)(x7 hD)7 (44/)

where I; = lo + tly + 3t*Ij with certain Ij € 5§ 5 and Ij € S 5.
In fact tr Li(Ry/p — R?/h) can be expressed as

dzd§ . itp/h __ 31— d/ ztp/h
/(2 i lolle = o)™/ = dadele

with a ceratin [ € 58,5 (due to Lemma 4.1 with n = 1 and 2). Thus
o dt " 0 1-d 17
| o O LB = R =0 [ dadsi(f o p)
is clearly O(h'~%), hence (4.5) is equivalent to
| s w LRy, = 00, (45)

obtain (4.5") it suffices to show that

sup [tr Lo Ry /| < Chl-dte (4.9)
[t|<e

holds if ¢,e > 0 are small enough. The main result of this section is

10



5 Construction of the approximation
[Op,(b), x;/h] = t/overhuOp,(J¢;pb) + Op,(i0¢,b),
[Op;(b), Dj] = t/overhqut(ijp b) + Opt(i((?xj + Byj)b),
In this section N € N is fixed and we describe the construction of
Qunt) = (75 (1)) (, D) (4.1)

such that (3.15) holds. The proof of (3.14) will be given in Sections 5-7.

For N =0,..., N we are going to consider

aNa(t)(@,6) = Y g, (a,€) (4.2(N))

0<k<N

where gn,(0) = qoom =1, and for k > 1 we have

aRn € S(p(h7?p)* 1 g),  suppay, C Ba(e/2). (4.3(F))

We construct gy, (t) by induction with respect to N and its final step cor-

responding to N = NV gives gy ,(t) to be used in (4.1).
For a smooth function (¢, z,&) — b(t,z,&) € C we denote

Prbt) = Y (=i)log (b)dgpo) /o,

<N

where pq is given by (3.24).

Proposition 5.1 Let N = 0,...,N. Then we can find qnn(t) satisfying
(4.2(N)) with qnn(0) = 1y, g, satisfying (4.3(k)) for k=1,..,N and

(0 +iPg) (e Pann(t)) = PGk, (1) (4.4(N))
holds with
Q@)= > G4 (2,9), (4.5(N))
N<k<N+N
Q8 pm € S(hp(h7*p)*, g) for k=N,..,N+ N (4.6(N))

and suppcj}\)ﬂkm C B,(¢/2).

11



Proof. We introduce the notation
Pya(t) = (0, + iPy) (cq(t)).

If q(t, z,€) = qo(x,&) is independent of ¢, then

Pra(t) = D> "G (4.7)
0<k<N
with
@ =ipo—p)ao— Y, (=) (q00gpo)/al,
1<la|<N
T Z Cag,—ar 95 (0 DOt p0) o' p..OgFp (k=1,.., N).

\a0+4.4+ak\§1§7
a;#0 if j#0

Using the fact that the estimates (2.8) still hold with pg instead of p we find
g0 € S(m,g) = (g0 3p0) € S(mph'Hlel(g)lemlel gy (48)

if & # 0. Moreover the estimates (2.10") imply

Ot p...0f*p € S(pF(g) Il g) (4.9)

if aq,...,ap # 0. Combining (4.8), (4.9) with a = o + ... + ap = || >
max{k, 1} in the expression of ¢ we find

Qo € S(m, g) => 2 € S(mph'tomaxik gk g) (4.10)

(where in the case k = 0 we use moreover (3.24)).
Therefore in the case N = 0 when we take ¢(t) = I, € S(1,g) in (4.7), we
obtain (4.4(0)) with (joom of the form (4.5(0)) and (4.10) with m = 1 imply
(4.6(0)), i.e. Proposition 4.1 holds for N = 0.
Further on we assume that the statement of Proposition 4.1 holds for a
given N < N — 1 and we prove that it still holds for N + 1 instead of N.
Using the induction hypothesis to express 75NqN7n(t) we find

Pyan+1n(t) = Py (tN+1q](\)f+1,n) + Pyann(t) =

N 0 ~0 N+15_ .0 k ~0
t ((N + Danin + QN,N,n)—H TPRAN 1 F > E N -
N+1<k<N+N

12



In order to obtain (4.5(N + 1)) it suffices to cancel the term with ¢V taking
q]%—i—l,n - _(j](\)f,N,n/(N + 1) (411)

and we have ('j&Nm € S(hp(h?/?p)N, g) by the induction hypothesis.
Let us introduce the following notation :

€ > t"S(m(k),g) < an(t)= Y t"aQ, with ag, € S(m(k),g).
kel kel

Then using ph < p and max{k, 1} > (k+ 1)/2 we can write (4.7), (4.10) in
the following form

q(t) = qo € S(m,g) = Pya(t) € Y tFS(m(h7?p)Ft g).  (4.12)
0<k<N

Since (4.11) gives (4.3(N + 1)), applying (4.12) with m = ph(h?/?p)N we
find
tN+175]\7QJ977n+1 e Z tN+1+E S(ph(ha/Qﬁ)N—HH—l,g)
0<k<N

and (4.6(N + 1)) follows. A

PropOSItlon 5.2 Let QN (t) be defined by (4.1) with qg ,, given by (4.2(N))
where g 0 =1In and qp n satzsfy (4.3(k)) fork =1,....,N. Then (3.15) holds.

Proof. For k € N, n € N*, ¢ € C°(R? x R?) and A € R we denote

NinlaN) = [ dt 5,0 ¢ Tta), (4.13)

where

Tq) = (27) ¢ / =P8 gz, €) drde. (4.14)

Since t* fjE (t) is the Fourier inverse of i¥( fjE )#), changing the order of
integrals (4 13) and (4.14) we find

Niala:X) = @)~ [#(72)® (plw.©))a(a € dods. (415)
Since (e_itp q) (z, D)L} has the integral kernel
(@.9) = (20 [ PO a, €)1y, de.

13



we have tr L}, (e_itpq) (z, D) = Ji(qly) and

L T O Qya B = S Nenglu N (416)

0<k<N

For k = 0 we have qoom = lp, hence (4.15) and (3.8) give

NonlaSlas V)~ 2 [

p<A

- ‘(%)_d/( erE,A - 1}—oo,>\[) (p(x,§))ln(x,§)2 dxd§’

In(z,€)? d:cd@“

<

/ 15, (o) (2, €) dad.
A—hnprn<p<At+hnpn

It remains to show that the estimate

WNin(gn, M| < C 15, (¢ (2, §) dwdg (4.17(k))
A—hppn <p<At+hnpn

holds with ¢, = qlgnln, k=1,..,N.
The expression (4.15) allows to write the obvious inequality

Nl NI < [ (£ (.)€ o (4.18(k))
In the case k = 1 the above inequality leads to the following :

Corollary 5.3 If g, € S(ph,g) are such that supp ¢, C B,(¢), then
lgn| < Chypn and using (3.9(1)) in (4.18(1)) we obtain (4.17(1)).
In particular (4.17(1)) holds with g, = q7,ln.

In order to prove (4.17(k)) for ¢, = q,?,nln, k>2, let x € C§°(] —2; 2[) be
such that xy = 1 on [—1; 1] and for s > 0 let

Xs(2,€) = x(m(z,€)/s%)  with m = (€)*|Vep*h*p~%. (4.19)

We consider also ys := 1 — x5 and remark that using 1 +m € S(1+m,g) it
is easy to check that xs, xs € S(1,g). Moreover

(¢,€) € suppxs = B(x,€) = ((L+m'?)hp)(,€) < (1+25)(hp)(x, ).
(4.20)

Therefore |q,87nlnxs| < CrxhkEpk and using (3.9(k)) in (4.18(k)) we find that

(4.17(k)) holds with ¢, = qlgnlnxs, k> 2.

Thus it remains to show that (4.17(k)) holds with ¢, = q,gnln)zs, k> 2.

To obtain this result it suffices to show

14



Lemma 5.4 If q, € S(m,g) then we can find ¢, € S(m/p,g) such that
supp ¢n C suppgn and

tJt(Qn)Zs) = Jt(ény(s/Q)' (4'21)

Indeed, iterating the assertion of Lemma 4.4 we can write

(G plnXs) = 1 T (qLnXsp2) = o = tk_th(QI},km)zs/QTC)' (4.22)

for some gy . ,, € S(phﬁkjl_]},g) with supp gz . ,, C Bn(¢/2).
Thus using (4.22) with k = k — 1 we obtain

Nk,n(qg,nlnf(m A) = Nin(gn, A)

with ¢, € S(hp, g), supp ¢, C B,(¢/2), and (4.17(1)) holds due to Corollary
4.3.

Proof of Lemma 4.4. Using (£)*|V¢p|? € S(5°, g) and

s2p(x, €)% < 257 (hp)(, €)% + 2(€)*|Vep(x, ) < 2(5* + 1)(€)*|Vep(z, €|

for (x,€) esupp xs, we obtain )25(§>_2\V5p]*2 € S(p~2,9) due to (3.20) and
combining with <§>28§jp € S((&)p, g) we can define

Xj.s = Xs 0, p|Vep| ™ € S((€) /B, 9)- (4.23)

Writing ¢n,Xs = Z;lzl qnX;,s0¢;p and integrating by parts we find

3 Jt(an(j,Safjp) = (277)761/1'851' (eiitp(m@) (Qny(j,S)(xa 5) dxd§

= —iJy(0¢, (anX;.s)):
which completes the proof due to 9, (¢nX;.s) € S(m/p,g) and
SUPD Xj,s (1SUPP X2 = 0. A

6 Preliminary remarks about the approximation
error
In this section we begin a study of tr Qan(t —71)e” P L* with the purpose
to establish (3.18), which implies (3.14).

To abbreviate notations we denote the elements of V by the letter v, adopting
the following convention : if the index v appears in a formula simultaneously
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with a letter m, ¢ or 7, then v = (n,t,7). Moreover the notation s, =
5, + O(my+) means that |sp¢r — Sptr| < Cmy, holds with a constant
C > 0 independent of v = (n,t,7) € V.

Assume that Q, = (e""gq,) (z, D) with ¢, € S(m, g), supp ¢, C B,(¢) and
Y, € B(L?>(R%)) for v € V. Then Lemma 9.1 allows to estimate
|7 00 Que™ Y, | < [tM|Qu [ 1Yo ]| <

< Cmnhr_zco <hnpnt>k+COHYuHa (5.1)

where m,, are as in (3.6).
The family {Y; },cy € B(L?(RY)) will be called negligible if for every N € N
we can find C'(N) > 0 such that

1Yol = O (A thapat) ™) . (5.2)

If N’k € N and {Y, },ey is negligible, then (5.1) allows to find C'(k, N') > 0
such that ' /
t*tr Qe Y, = O (hﬁ (hnppt)C®N >) . (5.3)

Proposition 6.1 Let ¢ > ¢/2 and consider b, € S(m,g) satisfying the
condition suppb, N By(c) = 0. Then the family

R, =bY(z,D)e P L* (5.4)
1s negligible.

Before giving the proof of this result we describe its consequences.

We assume ¢ > ¢ > ¢ > ¢/2 and note that the method of ch. 18.4 [16]
(cf. the beginning of Section 3) allows to find 6, € C§° (B;(k)(c)) such that

6, =1on B;(k)(c’) and

0% ()| < Cov(z) =Pl

If (:)l; denotes the operator of multiplication by ékf, then Proposition 5.1
ensures that (I — @;;)e*”P L} and P(I— @;;)e*”P L} are negligible, hence
for every N € N we can find C'(N) > 0 such that

tr an(t — T)e_iTPL;‘L =

tr Q. (t = 1O LY 4+ O (B (huput)“ ™) (5.5)
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Further on we prefer using the operators QNJL(t —7')(:);; instead of Qan(t -
7) and for this purpose we introduce new notations.

Symbols depending on (z,¢,7) € R? x R x R,

If ¢, € CPR? x R4 x R?Y), then Op(e'*"7Pg,) will denote the integral
operator with the kernel

(2,) = Kolg,,y) = (2m) ™" [ 0DE00e0g, 06y de. (5.6)
For ¢ > 0 and n € N* we will denote

By (c) == B;(k;)(c) X Bg(k;) X B;(k;)(c)

and for m € Mg(g) we will write g, € S(m) if and only if there is ¢ < & such
that ¢, € C§°(Byn(c)) and

102,080, (2, €, y)| < CapmuhdlP (€)= 1e

holds for every o € N¢, 8 € N2, where m,, are as in (3.6).

These notations will be used below to express the approximation error in a
particular form, similar to (4.13), (4.14), (4.16).

Expressions of tr QN,n(t - T)(:)I:; e iTPLx.

We have p"V(z, D) = po(x, D) = po(z, D)* and

Q. (t)po(z, D)* = Op (e "Gy,

with

QNN,n,t (1’, &, y) = QN,n(t) (1’, 5)]70 (y7 5)

Writing the Taylor’s development of ¢ N,m(x, €,-) in x and applying standard
integrations by parts in the integrals of the form (5.6) based on the equality
(z — y)*etz—v)E = i‘O"@g‘_ (e'==9)8) we find

J

Qua(t) = Op (¢7(g§ , + % ,)(1))

where (]]% n(t) are as in Proposition 4.1 and the remainder term of the Tay-

lor’s development of order N gives
, ~ 1 _
0 (@ 6w) = PEIN 1) [Lds (1= 9V Gg, (0 9) @ 69) 6)
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with
(jN,n(t7 S)(xa 3 y) =
S (=)0 (ayahe ™) (2,€) pola + sty — 2),6)) /.

la|=N+1

We can write

W=D @O )= Y (=1 4, @00, ()
N<k<2N

= Z tk q~]%7k’y(x7§7y)7

N<k<2N

where v = (n,t,7) according to our convention and

k ~
B @ &0) = (1-7) 28,000, ()

It is clear that GJ ey € S(phNo/25%) and using the form of q]%n(t) in (5.7)
we find a similar expression ’

Iyt =@ EI_ () = D 1"y, (0.6

0<k<2N
with g\, € S(phNo/2pky.
If Y, € B(L*(R%)) and ¢, € S(m) then the quantity
Ju(q,Y) :=tr (Op(ei(Tft)pq,,)efiTPYl,) , (5.8)
is well defined due to Lemma 9.1 and analogically to (5.1) we have
[t J(4,Y)] < Omnhyy @ (hapat) ||V, (5.9)

where m,, are as in (3.6).
Using the above notation we can state the following conclusion

Corollary 6.2 There exist Gy ., € g(th"/Qﬁk) such that

trQMn(t—T)é;;e*”PL;: > PGy eY) (5.10)
0<k<2N

holds with Y,, = L},
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We will complete the proof of Theorem 2.1 by showing

Proposition 6.3 Assume Ny, k € N*, Y, = L¥ and q, € S(m). Then one
can find kg € N* and C(Ny) > 0 such that

FI (@ Y) = > Julag Vi) + O (B0 (hupat) ). (5.11)

1<k<ko

holds for certain families of symbols {qy, , }vey and operators {Yz , }oey sat-
isfying
Gi € Smp70), |Vl = O ((hapat) ™)) (5.12)

fork=1,..,ko.

Indeed, using (5.10) and Proposition 5.3 with ¢, = ¢y ,, m = th"/2 P,
we can write

rQua(t—7)0, "Ly = > Julay g Yy p)+O (hfzv”(hnpan(N’NO))?
1<k<k(N)

with
an i € SERNT), |Vl = O ((hupat)“ M)
hence choosing N = N(Ny) large enough we can ensure
Jolay i Yu i) = O (hflv”(hnpnwé(ﬁ’%))

due to (5.9). This proves (3.18) completing the proof of Theorem 3.2 and
2.1.

Proof of Proposition 5.1. The method of ch. 18.4 [16] allows to find
symbols 19 (x, &) = Hgf(m)egf(f) satisfying
€S9, 0,10 €Su() ", g),  suppld C Ba(c),

Tji'n

I9=1 on B,(c) with ¢> ¢ > ¢/2. (5.13)

We set L2 = 9(z,D) and note that |[bY(z, D)L2|| = O(RY) for every
N € N holds due to supp b, Nsuppl? = @ (cf. Theorem 18.5.4 and 18.6.3
[16]). Therefore it suffices to show that

11 = LY)e™ ™ Li || = O (b {hypat)*) (5.14(k))
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holds for every k € N if ¥ satisfies (5.13). Obviously (5.14(k)) holds for
k = 0 and we will prove the general statement by induction with respect to
k e N.

Further on we assume that o > 0 is small enough to ensure p'(1+ o) < p
and 7“/( +0) < 1. This assumption implies v(z)~?(¢)™* < h(x, &) and
0, (%Jp, am]pﬁgjlo € S(ph'*?, g) if 19 satisfies (5.13). Thus (3.23) ensures

Tji'n
[I - L% P)=—[L%, P] =1Y(x,D) with I, € S(ph'*?,g). (5.15)

Moreover we can find

IheS(lg), 0l eSw(x)?g), supply C By(d),

IL=1 gcC)JnnB (") with ¢ > ' > ¢/2 (5.16)
and setting L. = I} (x, D) we have supp I, N supp IL =0, hence
||V (x, D)LL|| = O(hY) for every N € N. (5.17)
Since ||(I — LY) L% || = O(hY) for every N € N and
(1= LQ)e " Ly = e (I = L)Ly + [T = LY, e P Ly, (5.18)
it remains to estimate the norm of
1= L), 77 / dsTe!=DTP[[ — [0 ple=isTPLx  (5.19)
and due to (5.17) it suffices to estimate
[l[10 (@, D)(I = Ly)e ™" Ly |l. (5.20)

However we have |[IV(z, D)|| < Cpphlt? (cf. Theorem 18.6.3 [16]) and
using the induction hypothesis we can assume that (5.14(k)) holds with L.
instead of LY and ¢” instead of ¢’. Thus the quantity (5.20) can be estimated
by

Clrlpahythi (hupar)™ < CHEFD (hypyr) ™,

completing the proof of (5.14(k +1)). A.
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7 Auxiliary commutator formulas

Notations. We will write b, € S,,(m,g) if and only if there exist ¢y < ¢,
19 € S(1,g) satisfying supp 10 C B,(co) and (1 —19)b, € S(hY,g) for every
N eN.

Then Theorem 18.5.4 [16] ensures bb, bOb € S, (min, g) if b, € Sn ( .9), b, €
S(1m,g) and (3.23) still holds with b, b, S(m’, g) replaced by by, b, Sn(m/, g)
Moreover b, € Sy, (m,g) implies

m.,qg).

0708 by (@, )] < Cog mah ()71 (6.1)
where m,, are as in (3.6) and Theorem 8.6.3 [16] ensures
1Y (2, D)I| < Cm,  ||(1 = 1Y (2, D)WY (2, D)|| = O(hy')  (6.2)

for every N € N.
We introduce the following formal notation

Y (r,B) := e 7P BT, (6.3)

Let {Y,},ey be a family of bounded operators and let m € Mgz(g). We
write Y, € Y(m) if and only if there exist N € N, Cy > 0, the weights
m(k, k') € Mz(g), the symbols by, € Sp(m(k, k'), g) and functions sy s :
0; ]V = R, sk, : [0; 1]V — C, satisfying

N
I m(k. &) <m, |sk,1 (w)] < Co, |81, (w)| < Co(hypnt),

k'=1

for k,k' =1,..., N and

Y, = Z/ dw sg (W)Y (8.1 (W)T, B1,y)-.Y (sg. N (w)T, Be.ny) + Ry

(6.4)
where By, v, = b, (x, D) and the family {R,},cy is negligible.
vy k,k SV

Taking sj,(w) = sp(w) = 1 we can forget the integration with respect
to w, hence Y (7, B 1,,)...Y (7, By, nv) € Y(m) and more generally

Y, € Y(m), Y, € Y(m) = Y,Y, € Y(mm), (6.5)
Y, € Y(m) = |[Yu|| < Crmn(hnpnt)©. (6.6)

Reformulation of Proposition 5.3. In Section 7 we will prove
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Proposition 7.1 Assume qo,, € S(m), Yo, € V(1) and Ng € N. Then one
can find kg € N* and C(Ny) > 0 such that

Ehao Yo) = Y (Julap, Ye) + t(a_g, Yop)) + O (N0 (hapt) O

1<k<kq
(6.7)
holds with certain symbols q,y,, and operators Y,y ,, satisfying
Uy € S(M/P),  4_f, € S(mh?), Yy, € V(1) (6.8)

fork=1,... ko.

It is easy to see that Proposition 6.1 implies Proposition 5.3. Indeed,
first of all we note that the assertion of Proposition 6.1 can be applied to
express tJ,(q 1, Y ), k = 1,....ko and iterating this procedure N times
we find the expression of tJ, (qO,YO) in the form (6.7) with new symbols
q_fy € S(mhN7), k = 1,....ky. Thus for N = N(Np) large enough all

terms t.J,(q_5,Y i), k = 1,...,kn, become O (hévo(hnpan(No)), i.e. the

assertion of Proposition 6.1 holds with ¢ ; = 0 for k¥ > 1. This proves
Proposition 5.3 in the case k = 1 and it is clear that the general case follows
after k iterations.

In the remaining part of this section we describe the properties of Y, €
Y(m) needed in the proof of Proposition 6.1. More precisely we consider the
commutator of Y,, with the operator of multiplication by the j-th coordinate,
denoted by ;.

Lemma 7.2 Assume Y, € Y(m). Then there exist
Y eY((e) T im), Y, € V(&) phTm) (6.9)
such that [Y,, z;] =Y,  +7Y, .

Proof. Let By gy = bZVk’ V(x, D) with bk7k17y € Sp(m(k, k"),g).
If we know that

[Y(Ta Bk,k’,l/)y w]] = Y];Lk/’y + Tijk’,u (610)
holds with

Vi, € V(&) m(k, k), Yoo € YU Bhm(k, k),
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then commuting succesively x; with Y (sg i (w)7, Bpi ), K =1,...,N, we
obtain easily the general statement of Lemma 6.2.
To begin we write

[Y(T, Bk7k/7y), xj] = efiTP[BkJﬁ/,V, Y(—T, xj)]eiTP (6.11)

and denote
Pj = [iP, z;] = 9¢,p" (2, D) = 9, po(x, D). (6.12)

Then we can write the Taylor formula
1
Y(—7,2;) =2; —10:Y(0,2;) + 7'2/ ds (1 — 8)02Y (—sT,2;)
0

=a; +7P; +1e Y (1, [iTP, P;])e” (6.13)
where

_ 1
Y(r,B) = T/ ds(1—s)Y((-s—1)7,B).
0
Using (6.13) we can express the commutator (6.11) in the form

Y(Ta [Bk,k’,w x]]) + TY(Ta [Bk,k’,m P]]) + T[Y(T’ Bk,k’,u)’ Y(Ta [iTP’ PJ])
(6.14)
and since By, ©;] = agjb}yk,w(x,D), it is clear that the first term of
(6.13) is in Y((&) 'm(k, k). Next we check that

D b0, O, € Su((€) ™ PR m(k, k'), 9)

Oc bkt 0, O, pSn ((€) DR T 7m(k, '), 9) C Sn((€) ™' phm(k, k), 9)
due to hp < p, hence (3.23) implies

bieor v @ 0,0 — O, p © b € Su((€) ' PR (K, K'), 9),

and consequently Y (7, [By ., Pj]) € V(&) phom(k, K')).
Moreover we have

Or,pe,, gD, O, pOa, 0c;p € S((€) ' PR p, g),

hence (3.23) ensures

p© de;p— De;p ©p € S((€) ™ ph' 7, g). (6.15)
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Introducing I3 € S(1,g) such that (I — L2)By ks, is negligible with L9 =
19(z, D) and supp 19 C Bn(cp) with ¢y < &, we can write

Y (T, B/ﬁk/,l,)?(T, [P;,iTP]) =Y (T, Bk7k/7y)7(7, Lg[Pj,iTP])—Fth/,V (6.16)
with {Ry 1, }ey negligible. However using
(hnpn7) Tl € Su(h'p7" 9)
and (6.15) we find p;, € S,((€)"'ph?, g) such that
<hnpn7'>717—L2[PjaiP] :p}/,\l}/(x?D)a

hence Y (7, LY[P;,i7P]) € Y((£)"'ph). Therefore the right hand side of
(6.16) belongs to Y((&) ' phom(k, k) and Y (r,[P;,itP))Y (T, By ) be-
longs to the same class, i.e. (6.14) gives the desired decomposition (6.10).
A

Corollary 7.3 LetYy, € Y(1). If P; = [iP, xj], then one has
TP Y0, = [T Yo, ]+ e TR (Y, 4+ 7YG) (6.17)

with some Y, € YVUE™) and Yo, € V&) pho).

Indeed, using (6.13) to express [e="F| z;] and applying Lemma 6.2 with
Y, =Yy, we can write
[efiTPY—OW’ xj] _ [efiTP7 xj]YO7V _i_efiTP[YOW7 -%'j]

= —7Pje Yy, — e TPY (1, [P}, it P)) Yo, + e TE (YT 4 1Y),

It remains to remark that the reasoning of the proof of Lemma 6.2 ensures

the fact that YOJ’FV =Y,f and Yy, = =Y (7, [P}, iTP])Yy, + Y, belong to the
indicated classes. A

8 End of the proof of Theorem 2.1

Throughout this section we use the following notation

Q, = Op(c'" g, with g, € S((&)m/p). (7.1)

We adopt the convention that the symbol (z,§) — p(z,£) can be considered
as (z,&,y) = p(z,§), allowing to define ¢, 0¢;p € S(m) by the formula

(quafjp)(x?g’y) = qy(x’g’y)afjp x’g) (72)
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Lemma 8.1 If Q, and q,0¢;p are as in (7.1), (7.2), then
[Qu, 5] = (t — 7)Op(e' "7, 0 p) + Op(e'""Pid, ). (7.3)
Proof. Since the integral kernel of [Q,, ;] is

(r.9) = @)~ [y = )l (w6 gy (1)

and (y; —uvj)ei(m*y)5 = —i0, ¢@=v)¢ the integration by parts allows to write
(7.4) in the form

(z,y) = (2m) / QM TVEHTOPE) (¢ — 7)Dg, gy + i, 40 ) (. €, y) dE,
which gives (7.3). A
The computation of the composition kernel gives
Op(e'™ P g, )b, (x, D)* = Op(e' ™" (q, o b,)) (7.5)

with

(g o by)(z,&,y) = (27T)_d/ei@_y)@_é)qu(fﬂ,é,ﬂ)bu(y,O

and the usual Taylor development with integrations by parts give

gy eb, = qenb, + 1Ny, (7.6)
with
(gvonb)(@,&y) = > (=)0 g, (2, & y)0gb.(y,€) /o, (7.7)
|| <N’
N, = | |ZN,(qa,u(z) ® by | 2=y,

iV N'ds
al

1
Qo () (2, €, ) = /0 (2,6, 2 + 5(y — 2))

Then for an arbitrary N € N we can find N’ = N'(N) such that the family
of operators Ry, = Op(ei(T_t)prNW) satisfies

RN || < O (hppat) O, (7.8)
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Denoting (q,b%) (. &,y) = qu(x, &, y)by(y,€) we can write
g, € S(m),b, € S(m', g) = q enb, € S(am'), g en+b, — q,bf, € S(mm'h).
If in particular ¢, € S((£)m/p), O¢;po € S((€)"'p, g), then

QuP; = Op(e'" "7 (q, o O¢, po)), Qo nO¢,po € S(m),
qveN'Og;po — C]uagjpoﬁ € S(h7m).
Since (3.20) ensures J¢;p — J¢;po € SUE) TR op, g) € S((&)Thp, g),
ANy = QN Og;po — q,,(?gjpti e S(h®m). (7.9)

For j =1, ...,d we introduce
T T
PG w(T,65y) = (1 - ;) Og;p(, €) + - 0;p(y, €). (7.10)

Proposition 8.2 Let q, € S((¢)m/p), Yo, € V(1) and Ny € N. Then we
can find C'(Ng) > 0 such that

EJu(ap(), Y0) = D (Jular Vi) + tu(gk, Yoi)) + O (AR (hpt) )
1<k<2

(7.11)
where for k=1 and 2 we have

Gy € S(M/P), g pp € S(MA?), Vi, €V(), Y,€YV(). (7.12)

Proof. By definition of p(;), we have

tOp(e " P q,p(;).) = (t = 7)Op ("7 P, 8¢, p) + TOP(e' P g, ¢ p*)

and applying (7.3), (7.9), we can write the above expression as 1
[Qu, i) + Qu Py + Op(’'""P(7qy, , — i0,q.)) + TRv
with Ry, satisfying (7.8). Thus tJ,(qp(;), Yo) can be written as
tr[Qy, zjle Yy, + trQ,TPe Y, +
Ty (=0, 0, Yo) + 7y (ars, Yo) + O(hN (hypyt) €M) (7.14)
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Due to Corollary 6.3, the sum of two first terms in (7.14) equals to
tr [Qua xj]eiiTPYvO,u + tr Qu[eiiTPYvO,ua xj] + JI/(Qa YE)+) + TJIJ(q7 Yvoi)
= tI‘ [Ql/e_iTPYb,l/’ CC]] + Jl/(q, }/b+) + T‘]l/(q, Yvoi)
= J,(¢. V") +7J(q, Yy ). (7.15)
Thus we obtain (7.11) with

. T _
q1v = Za&jQW qd—1,v = ;qN/,w Yl,u - Y—l,u = }/b,ua
— 71 —
o0 = (€K a0, Yo, = (E(k)) Y,
G2, = (EK) T Puhlan, Yoo, = (E(k))Br hi Yoo,

where according to our convention p, = p,(Z(k;, ), E(k})). A.

Proof of Proposition 6.1. Let xs, Xs be as in the proof of Proposition
4.2. Then qo,v € S(m,g) = g, = (Jo,quhﬁlpr_zl € S(m/ﬁ, g) and

tJu(QOXSa Yb) = JI/((ja ?) with ?1/ = hnpntyb,l/ € y(l)

Therefore it sufficesto prove the statement of Proposition 6.1 with g, Xs
instead of qo .
Further on we assume s = 1 and note that for (z,£) €supp x1 we have

() B(2,6)/2 < [Vep(z, €)| < 2(6)"p(x,€) (7.16)
and due to (2.10), for (z,&,y) €supp qo,,X1 we have

d

1/2
[Vep(z,8)| - ( jzlp?j),y) < |Vep(z, &) — Vep(y, §)|

< (&) 'B(2,€)/4 < |Vep(a,9)]/2,

which implies

P 1/2 .
(S0 st) =2 IVep@Ol22 (O ' e)/a. (1)

j=1
Using (7.16), (7.17), we can write go X1 = Z?:l () wP ),y With

—1
- d .
4G)w = G0rX1P() (Zjlp?ﬂ,y) € S((&)m/p.g)

and we complete the proof applying Proposition 7.2 with g, = q) .-
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