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Abstract

The theoretical advances on the properties of scoring rules over the past decades
have broadened the use of scoring rules in probabilistic forecasting. In meteoro-
logical forecasting, statistical postprocessing techniques are essential to improve
the forecasts made by deterministic physical models. Numerous state-of-the-
art statistical postprocessing techniques are based on distributional regression
evaluated with the Continuous Ranked Probability Score (CRPS). However,
theoretical properties of such evaluation with the CRPS have solely considered
the unconditional framework (i.e. without covariates) and infinite sample sizes.
We extend these results and study the rate of convergence in terms of CRPS
of distributional regression methods. We find the optimal minimax rate of con-
vergence for a given class of distributions and show that the k-nearest neighbor
method and the kernel method reach this optimal minimax rate.

Keywords: Probabilistic Forecasting, Distributional Regression, CRPS,
Minimax Rate of Convergence, Nearest Neighbor Method, Kernel Method.

1. Introduction

In meteorology, ensemble forecasts are based on a given number of deter-
ministic models whose parameters vary slightly in order to consider observation
errors and incomplete physical representation of the atmosphere. This leads to
an ensemble of different forecasts that overall also assess the uncertainty of the
forecast. Ensemble forecasts suffer from bias and underdispersion (Hamill &
Colucci, 1997; Baran & Lerch, 2018) and need to be statistically postprocessed
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in order to be improved. Different postprocessing methods have been proposed,
such as Ensemble Model Output Statistics (Gneiting et al., 2005), Quantile Re-
gression Forests (Taillardat et al., 2016) or Neural Networks (Schulz & Lerch,
2022). These references, among other, also discuss the stakes of weather forecast
statistical postprocessing.

Postprocessing methods rely on distributional regression (Gneiting & Katz-
fuss, 2014) where the aim is to predict the conditional distribution of the quan-
tity of interest (e.g. temperatures, wind-speed, or precipitation) given a set of
covariates (e.g. raw outputs of a physical ensemble model). Algorithms are
often based on the minimization of a proper scoring rule that compares actual
observations with the predictive distribution. Scoring rules can be seen as an
equivalent of loss functions in classical regression. A detailed review of scoring
rules is given by Gneiting & Raftery (2007). The Continuous Ranked Prob-
ability Score (CRPS; Matheson & Winkler, 1976), defined in Equation (2), is
one of the most popular scores in meteorological forecasting. The CRPS is also
minimized to infer parameters of statistical models used in postprocessing (e.g.
Gneiting et al., 2005; Naveau et al., 2016; Rasp & Lerch, 2018; Taillardat et al.,
2019). Recently, under monotonicity assumptions, the isotonic distributional
regression (Henzi et al., 2021) was shown to minimize the in-sample CRPS and
to satisfy consistency in the sense of Kolmogorov distance.

To the best of our knowledge, most convergence statements in distributional
regression (e.g. Thorey et al., 2017 and Mösching & Dümbgen, 2020) are not
only derived within an unconditional framework, i.e. without taking into ac-
count the covariates, but also these limiting results assume arbitrarily large
sample sizes. In this work, our goal is to bypass these two limitations.

This paper is organized as follows. Section 2 introduces preliminary notions
that are needed to state our main results in Section 3. Section 2.1 introduces
our framework and notation for distributional regression. Section 2.2 provides
the theoretical background on distributional regression and its evaluation using
the CRPS and Section 2.3 provides some elements on minimax risk theory.
Section 2.4 briefly introduces the two models that are studied in this article:
the k-nearest neighbor and kernel estimators. The main result on minimax
rate of convergence for distributional regression is stated in Section 3.1 where
suitable classes of distributions D(h,C,M) are defined. In Section 3.2, we study
the k-NN estimators and derive a non-asymptotic upper bound for the excess
risk of the CRPS uniformly on the class D(h,C,M). Section 3.3 provides similar
results for the kernel method. In Section 3.4, we find a lower minimax rate
of convergence by reducing the problem to standard point regression solved by
Györfi et al. (2002). We can deduce that the k-NN method for the distributional
regression reaches the optimal rate of convergence in dimension d ≥ 2, while the
kernel method reaches the optimal rate of convergence in any dimension. All
the proofs are postponed to and detailed in the Appendix. A short conclusion
and discussion is provided in Section 4.
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2. Preliminaries

2.1. Distributional regression framework
In this article, we consider the regression framework (X,Y ) ∈ Rd × R with

distribution P . The goal of distributional regression is to estimate the condi-
tional distribution of Y given X = x, noted

F ∗
x (y) : = P (Y ≤ y|X = x), x ∈ Rd.

In forecast assessment, we make the distinction between the construction of
the estimator relying on the training sample Dn = {(Xi, Yi), 1 ≤ i ≤ n} and its
evaluation with respect to new data (X,Y ). Given the training sample Dn, the
forecaster constructs a predictor F̂n : x 7→ F̂n,x that estimates the conditional
distribution F ∗

x . In this context, it is crucial to assess if F̂n,x is close to F ∗
x over

the entire range of possible values of X = x. To this aim, we consider

EX∼PX ,Dn∼Pn

[∫
R
|F̂n,X(z)− F ∗

X(z)|2dz
]

(1)

where PX denotes the marginal distribution of X, EX∼PX ,Dn∼Pn denotes the
expectation with respect to X and Dn following PX and Pn respectively. The
squared L2-norm within the expectation is usually referred to as the squared
second-order Cramér’s distance. We focus on this specific distance because it
corresponds to the excess risk associated with the CRPS, also called divergence
of the CRPS, as explained in the next section.

2.2. CRPS and evaluation of distributional regression
The Continuous Ranked Probability Score (CRPS; Matheson & Winkler,

1976) compares a predictive distribution F and a real-valued observation y by
computing the following integral

CRPS(F, y) =

∫
R
(F (z)− 1y≤z)

2dz. (2)

The expected CRPS of a predictive distribution F when the observations Y are
distributed according to G is defined as

CRPS(F,G) =

∫
R
CRPS(F, y)G(dy), F,G ∈ M(R), (3)

where M(R) denotes the set of all distribution functions on R. This quantity
is finite when both F and G have a finite first moment. Then, the difference
between the expected CRPS of the forecast F and the expected CRPS of the
ideal forecast G can be written as

CRPS(F,G)− CRPS(G,G) =

∫
R
|F (z)−G(z)|2dz ≥ 0. (4)
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This implies that the only optimal prediction, in the sense that it minimizes the
expected CRPS, is the true distribution G. A score with this property is said
to be strictly proper. This property is essential for distributional regression as it
justifies the minimization of the expected score in order to construct or evaluate
a prediction.

In distributional regression, the quality of a predictor F̂ : x 7→ F̂x is assessed
by its risk

RP (F̂ ) = E(X,Y )∼P

[
CRPS(F̂X , Y )

]
= EX∼PX

[
CRPS(F̂X , F ∗

X)
]
.

This quantity is important as many distributional regression methods try to
minimize it in order to improve predictions. When Y is integrable, Equation (4)
implies

RP (F̂ )−RP (F
∗) = E(X,Y )∼P

[
CRPS(F̂X , Y )− CRPS(F ∗

X , Y )
]

= EX∼PX

[∫
R

∣∣∣F̂X(z)− F ∗
X(z)

∣∣∣2 dz] ≥ 0. (5)

We recall that the Bayes risk is the minimal theoretical risk over all possible
predictors and that a Bayes predictor is a predictor achieving the Bayes risk.
Thus, Equation (5) implies that RP (F

∗) is the Bayes risk and that F ∗ is a
Bayes predictor if and only if F̂x = F ∗

x PX -a.e. An introduction to the notions
of theoretical risk, Bayes risk and excess risk can be found in Section 2.4 of
Hastie et al. (2009).

Finally, we consider the case of a predictor F̂n built on a training sample
Dn = {(Xi, Yi), 1 ≤ i ≤ n}, as presented in Section 2.1, to estimate the con-
ditional distribution of Y given X. Then, (X,Y ) denotes a new independent
observation used to evaluate the performances of F̂n. The predictor has the
expected CRPS

EDn∼Pn [RP (F̂n)] = EDn∼Pn,(X,Y )∼P [CRPS(F̂n,X , Y )],

with expectation taken both with respect to the training sample Dn and test
observation (X,Y ). Once again, when Y is integrable, the theoretical risk has
a unique minimum given by RP (F

∗). The excess risk becomes

EDn∼Pn

[
RP (F̂n)

]
−RP (F

∗)

= EDn∼Pn,X∼PX

[∫
R

∣∣∣F̂n,X(z)− F ∗
X(z)

∣∣∣2 dz] ≥ 0. (6)

This justifies the choice of the squared Cramér’s distance in Equation (1).
For large sample sizes, one expects that the predictor correctly estimates the

conditional distribution and that the excess risk (6) tends to zero. A genuine
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question is to investigate the rate of convergence of the excess risk to zero as
the sample size n → ∞. The risk depends on the distribution of observations
and we want the model to perform well on large classes of distributions. Hence,
we consider the standard minimax approach, as described in the next section.

2.3. Optimal minimax rates of convergence
In order to study the rate of convergence, as n → ∞, of the excess risk (6)

to zero, we introduce the notion of optimal minimax rate of convergence. The
minimax risk corresponds to the best achievable risk in the worst-case scenario
(whence the name minimax). More precisely, given a class of distributions D,
the optimal minimax rate of convergence quantifies the minimal error that an
estimator F̂n can achieve uniformly on a given class of distributions D, when
the size of the training set Dn gets large.

Stone (1982) provided minimax rates of convergence within a point regres-
sion framework and the minimax theory for nonparametric regression is well-
developed, see e.g. Györfi et al. (2002) or Tsybakov (2009). To the extent of
our knowledge, this paper states the first results for distributional regression.

The formal definition of minimax rate of convergence for distributional re-
gression is as follows.

Definition 1. A sequence of positive numbers (an) is called an optimal minimax
rate of convergence on the class D if

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)]−RP (F
∗)

an
> 0 (7)

and

lim sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)]−RP (F
∗)

an
< ∞, (8)

where the infimum is taken over all distributional regression models F̂n trained
on Dn. If the sequence (an) satisfies only the lower bound (7), it is called a
lower minimax rate of convergence.

2.4. k-NN and kernel predictors in distributional regression
Many predictors F̂n can be studied and possibly achieve the optimal minimax

rate of convergence. In this paper, we focus on two simple cases: k-nearest
neighbor and kernel estimators.

The k-nearest neighbor (k-NN) method is well-known in the classical frame-
work of regression and classification (see, e.g. Biau & Devroye, 2015). In distri-
butional regression, the k-NN method can be suitably adapted to estimate the
conditional distribution F ∗

x and the estimator is written as

F̂n,x(z) =
1

kn

kn∑
i=1

1Yi:n(x)≤z, (9)
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where 1 ≤ kn ≤ n and Yi:n(x) denotes the observation at the i-th nearest
neighbor of x. As usual, possible ties are broken at random to define nearest
neighbors. Note that, in weather forecast statistical postprocessing, the k-NN
method corresponds to a type of analog ensemble method (see Delle Monache
et al., 2013).

The kernel estimate in distributional regression (see, e.g. Chapter 5 of Györfi
et al., 2002) can be expressed as

F̂n,x(z) =

∑n
i=1 K(x−Xi

hn
)1Yi≤z∑n

i=1 K(x−Xi

hn
)

, (10)

where the function K : Rd → [0,∞) is a density function, called kernel, and
hn > 0 is the so-called bandwidth, that depends on the sample size n. If the
denominator in (10) vanishes, we use the convention F̂n,x(z) =

1
n

∑n
i=1 1Yi≤z.

Minimax rates of convergence of the k-NN and kernel models in point re-
gression are well-studied and it is known that, for suitable choices of number
of neighbors kn and bandwidth hn respectively, the methods are minimax rate
optimal on classes of distributions with Lipschitz or more generally Hölder con-
tinuous regression functions (see e.g. Theorem 14.5 in Biau & Devroye, 2015 and
Theorem 5.2 in Györfi et al., 2002). For suitable classes of distributions defined
hereafter, we are able to extend these results to distributional regression. More-
over, we obtain non-asymptotic bounds for the minimax rate of convergence for
both the k-NN and kernel models (see Sections 3.2 and 3.3).

3. Main results

3.1. Optimal minimax rate of convergence
We consider the following classes of distributions.

Definition 2. For h ∈ (0, 1], C > 0 and M > 0, let D(h,C,M) be the class of
distributions P such that F ∗

x (y) = P (Y ≤ y|X = x) satisfies:

i) X ∈ [0, 1]d PX-a.s.;
ii) For all x ∈ [0, 1]d,

∫
R F ∗

x (z)(1− F ∗
x (z))dz ≤ M ;

iii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.

Conditions i)− iii) in Definition 2 are very similar to the conditions considered
in the point regression framework, see Theorem 5.2 in Györfi et al. (2002). In
condition i), [0, 1]d could be replaced by any compact set of Rd. Condition
ii) requires that CRPS(F ∗

x , F
∗
x ) remains uniformly bounded by M , which is

a condition on the dispersion of the distribution F ∗
X since it implies that the

absolute mean error (MAE) remains uniformly bounded. Condition iii) is a
regularity statement of the conditional distribution in the space L2(R). As an
illustration, the different conditions are expressed for the Generalized Pareto
distribution model in Section 3.5 below.

Our main result is the following optimal minimax rate of convergence.
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Theorem 1. The sequence an = n− 2h
2h+d is the optimal minimax rate of con-

vergence on the class D(h,C,M).

It should be stressed that the rate of convergence n− 2h
2h+d is the same as in

point regression with square error, see Theorems 3.2 and 5.2 in Györfi et al.
(2002) for the lower bound and upper bound, respectively.

Remark 1. As pointed out by a referee, conditions i) and iii) together with the
integrability of Y imply condition ii) for some M > 0. However, the dispersion,
as measured by M , plays an important role throughout the proofs and, for this
reason, we keep condition ii) in order to obtain bounds as tight as possible.

The proof of Theorem 1 is divided into three steps:

1. We provide in Section 3.2 an explicit and non-asymptotic upper bound
for the excess risk of the k-nearest neighbor model uniformly on the class
D(h,C,M); the upper bound is then optimized with a suitable choice of
k = kn.

2. In Section 3.3, we obtain similar results for the kernel model.
3. We show in Section 3.4 that an = n− 2h

2h+d is a lower minimax rate of
convergence; the main argument is that it is enough to consider a binary
model when both the observation Y and prediction F̂X take values in
{0, L}; we deduce that in this case, the CRPS coincides with the mean
squared error so that we can appeal to standard results on lower minimax
rate of convergence for regression.

Combining these three steps, we finally obtain Theorem 1 providing the optimal
minimax rate of convergence of the excess risk on the class D(h,C,M). All the
proofs are postponed to the Appendix.

3.2. Upper bound for the k-nearest neighbor model
The k-NN method for distributional regression is defined in Equation (9).

Here we do not use only the mean of the nearest neighbor sample (Yi:n(x))1≤i≤kn

but its entire empirical distribution. Interestingly, the tools developed to ana-
lyze the k-NN in point regression can be used in our distributional regression
framework.

Proposition 1. Assume P ∈ D(h,C,M) and let F̂n be the k-nearest neighbor
model defined by Equation (9). Then,

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤


8hC2

(
kn

n

)h

+
M

kn
if d = 1,

cd
hC2

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

where cd = 23+
2
d (1+

√
d)2

V
2/d
d

and Vd is the volume of the unit ball in Rd.
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Let us stress that the upper bound is non-asymptotic and holds for all fixed
n and kn. Optimizing the upper bound in kn yields the following corollary.

Corollary 1. Assume P ∈ D(h,C,M) and consider the k-NN model (9).

• For d = 1, the optimal choice kn =

(
M

hC28h

) 1
h+1

n
h

h+1 yields

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ Bn− h

h+1

with constant B = C
2

h+1M
h

h+1 8
h

h+1

(
h− h

h+1 + h
1

h+1

)
.

• For d ≥ 2, the optimal choice kn =

(
Md

2hC2chd

) d
2h+d

n
2h

2h+d yields

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ Bn− 2h

2h+d

with constant B = (C2chd)
d

2h+dM
2h

2h+d

((
d
2h

) 2h
2h+d +

(
2h
d

) d
2h+d

)
.

3.3. Upper bound for the kernel model
Kernel methods adapted to distributional regression are defined in Equa-

tion (10). For convenience and simplicity, we develop our result for the simple
uniform kernel K(x) = 1{∥x∥≤1}. However, it should be stressed that all the
results can be extended to boxed kernels (Györfi et al., 2002, Figure 5.7 p73)
to the price of some extra multiplicative constants. For the uniform kernel, the
estimator writes

F̂n,x(z) =

∑n
i=1 1{∥Xi−x∥≤hn}1{Yi≤z}∑n

i=1 1{∥Xi−x∥≤hn}
, (11)

when the denominator is non-zero and F̂n(x) =
1
n

∑n
i=1 1{Yi≤z} otherwise.

Proposition 2. Assume P ∈ D(h,C,M) and let F̂n be the kernel model defined
by Equation (11). Then,

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ c̃d

2M + C2dh + M
n

nhd
n

+ C2h2h
n

where c̃d only depends on d.

Once again, the upper bound is non-asymptotic and holds for all fixed n and
hn. Optimizing the upper bound in hn yields the following corollary.
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Corollary 2. Assume P ∈ D(h,C,M) and consider the kernel model (11). For
any d, the optimal choice

hn =

(
c̃dd(2M + C2dh + M

n )

2hC2

) 1
2h+d

n− 1
2h+d

yields
EDn∼Pn [RP (F̂n)]−RP (F

∗) ≤ Bn− 2h
2h+d

with

B = C
2d

2h+d

(
c̃d(2M + C2dh +

M

n
)

) 2h
2h+d

((
d

2h

)− d
2h+d

+

(
d

2h

) 2h
2h+d

)
.

3.4. Lower minimax rate of convergence
We finally compare the rates of convergence obtained in Corollaries 1 and 2

with a lower minimax rate of convergence in order to see whether the optimal
rate of convergence is achieved.

To prove a lower bound on a class D, it is always possible to consider a
smaller class B. Indeed, if B ⊂ D, we clearly have

inf
F̂n

sup
P∈B

{
EDn∼Pn [RP (F̂n)]−RP (F

∗)
}
≤ inf

F̂n

sup
P∈D

{
EDn∼Pn [RP (F̂n)]−RP (F

∗)
}

so that any lower minimax rate of convergence on B is also a lower minimax
rate of convergence on D.

To establish the lower minimax rate of convergence, we focus on the following
classes of binary responses.

Definition 3.
Let B(h,C,L) be the class of distributions of (X,Y ) such that:

i) Y ∈ {0, L} and X is uniformly distributed on [0, 1]d;
ii) ∥F ∗

x′ − F ∗
x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.

Since a binary outcome Y ∈ {0, L} satisfies
∫
R F ∗

x (z)(1 − F ∗
x (z))dz ≤ L/4,

condition ii) in Definition 2 holds with M ≥ L/4. Then B(h,C,L) ⊂ D(h,C,M)

and the following lower bound established on the smaller class also holds on the
larger class.

Proposition 3. The sequence an = n− 2h
2h+d is a lower minimax rate of conver-

gence on the class B(h,C,L). More precisely,

lim inf
n→∞

inf
F̂n

sup
P∈B(h,C,L)

EDn∼Pn [RP (F̂n)]−RP (F
∗)

C
2d

2h+dn− 2h
2h+d

≥ C1 (12)

for some constant C1 > 0 independent of C.

Combining Corollaries 1 and 2 and Proposition 3, we can deduce that for
d ≥ 2, the k-NN model reaches the minimax lower rate of convergence an =

n− 2h
2h+d for the class D(h,C,M) and that the kernel model reaches the minimax

lower rate of convergence an in any dimension d. This shows that this lower rate
of convergence is in fact the optimal rate of convergence and proves Theorem 1.
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3.5. Generalized Pareto distributions
Explicit parametric formulas of the CRPS exist for most classical distribution

families: e.g. Gaussian, logistic, censored logistic, Generalized Extreme Value,
Generalized Pareto (see Gneiting et al., 2005; Taillardat et al., 2016; Friederichs
& Thorarinsdottir, 2012). We focus here on the Generalized Pareto Distribution
(GPD) family and we denote by Hξ,σ the GP distribution with shape parameter
ξ ∈ R and scale parameter σ > 0. Recall that it is defined, when ξ ̸= 0, by

Hξ,σ(z) = 1−
(
1 +

ξz

σ

)−1/ξ

+

, z > 0,

with the notation (·)+ = max(0, ·). When ξ = 0, the standard limit by conti-
nuity is used. For ξ < 1, the GPD has a finite first moment and the associated
CRPS is given by (Friederichs & Thorarinsdottir, 2012)

CRPS (Hξ,σ, y) (13)

=

(
y +

σ

ξ

)
(2Hξ,σ(y)− 1)−

2σ

ξ(ξ − 1)

(
1

ξ − 2
+ (1−Hξ,σ(y))

(
1 + ξ

y

σ

))
.

When Y ∼ Hξ∗,σ∗ , the expected CRPS is (Taillardat et al., 2022)

CRPS (Hξ,σ, Hξ∗,σ∗) (14)

=
σ∗

1− ξ∗
+

2σ

1− ξ
m0 +

2ξ

1− ξ
m1 + 2σ

(
1

1− ξ
−

1

2(2− ξ)

)
with

m0 = EY∼Hξ∗,σ∗

(1 + ξ

σ
Y

)−1/ξ
 , m1 = EY∼Hξ∗,σ∗

Y (1 + ξ

σ
Y

)−1/ξ
 .

In particular,

CRPS (Hξ∗,σ∗ , Hξ∗,σ∗) =
σ∗

(2− ξ∗)(1− ξ∗)
.

We now consider the distributional regression framework and we illustrate
the statement of the Section 2.2 on Bayes risk in the case of a Generalized Pareto
regression model where Y given X = x follows a GPD with shape parameter
ξ∗(x) and scale parameter σ∗(x). Then, it is possible to show that Bayes risk is
equal to

RP (F
∗) =

∫
Rd

σ∗(x)

(2− ξ∗(x))(1− ξ∗(x))
PX(dx)

when 0 < ξ∗(x) < 1 for all x ∈ Rd. For a forecast in the GPD class, i.e. Fx is a
GPD with shape parameter ξ(x) and scale parameter σ(x), then the risk RP (F )
is equal to Bayes risk if and only if ξ(x) = ξ∗(x) and σ(x) = σ∗(x) PX -a.e.
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In the GPD regression framework, the conditions of the classes of distribu-
tions D(h,C,M) can be interpreted as conditions on the parameters ξ∗(x) and
σ∗(x). Condition ii) is equivalent to σ∗(x) ≤ M(2 − ξ∗(x))(1 − ξ∗(x)) when
0 < ξ∗(x) < 1, for all x ∈ [0, 1]d. The regularity condition iii) holds with con-
stants C and h as soon as x 7→ ξ∗(x) and x 7→ σ∗(x) are both h-Hölder.

For example, the popular case were the shape parameter ξ∗(x) and the scale
parameter σ∗(x) are assumed to be linearly dependent on x (i.e. ξ∗(x) = ξ0+ξ1·x
and σ∗(x) = σ0+σ1 ·x with ξ1, σ1 ∈ Rd) is in a class of distributions of Definition
2.

4. Conclusion and Discussion

We found that the optimal rate of convergence for distributional regression
on D(h,C,M) is of the same order as the optimal rate of convergence for point
regression. Thus, with regard to the sample size n, distributional regression
evaluated with the CRPS converges at the same rate as point regression even
though the distributional estimate carries more information on the prediction
of the underlying process.

We have also shown that the k-NN method and the kernel method reach
this optimal rate of convergence, respectively in dimension d ≥ 2 and in any
dimension. However, these methods are not widely used in practice because of
the limitations of their predictive power in moderate or high dimension d ≥ 3 due
to the curse of dimension. An extension of this work could be to study if state-of-
the-art techniques reach the optimal rate of convergence obtained in this article.
Random Forests (Breiman, 2001) methods, such as Quantile Regression Forests
(Meinshausen, 2006) and Distributional Random Forests (Ćevid et al., 2020),
appear to be natural candidates as they are based on a generalized notion of
neighborhood and have been subject to recent development in weather forecast
statistical postprocessing (see, e.g., Taillardat et al., 2016).

The results of this article were obtained for the CRPS, which is widely used
in practice, but can easily be extended to the weighted CRPS in its standard
uses. The weighted CRPS is defined as

wCRPS(F, y) =

∫
R
(F (z)− 1y≤z)

2w(z)dz

with w the weight chosen. The weighted CRPS is used to put the focus of the
score in specific regions of the outcome space (Gneiting & Ranjan, 2011). It
is used in the study of extreme events by giving more weight to the extreme
behavior of the distribution.

Moreover, an interesting development would be to obtain similar results for
rate of convergence with respect to different strictly proper scoring rules or met-
rics, for instance energy scores or Wasserstein distances.
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Appendix A. Proof of Proposition 1

For the simplicity of notation, we write simply E for the expectation with
respect to (X,Y ) ∼ P and Dn ∼ Pn. The context makes it clear enough so as
to avoid confusion.

Proof. Recall that for the CRPS, the excess risk is equal to

E[RP (F̂n)]−RP (F
∗) = E

[∫
R
|F̂n,X(z)− F ∗

X(z)|2dz
]
. (A.1)

We first estimate E[|F̂n,x(z)−F ∗
x (z)|2] for fixed x ∈ [0, 1]d and z ∈ R. Denote by

X1:n(x), · · · , Xkn:n(x) the nearest neighbors of x and by Y1:n(x), . . . , Ykn:n(x)
the associated values of the response variable. Conditionally on Xi:n(x) = xi,
1 ≤ i ≤ kn, the random variables Yi:n(x), 1 ≤ i ≤ kn, are independent and
with distribution F ∗

xi
, 1 ≤ i ≤ kn. This implies that, conditionally, F̂n,x(z) is

the average of the kn independent random variables 1{Yi:n(x)≤z} that have a
Bernoulli distribution with parameter F ∗

xi
(z). Therefore, the conditional bias

and variance are given by

E[F̂n,x(z)− F ∗
x (z) | Xi(x) = xi, 1 ≤ i ≤ kn] =

1

kn

kn∑
i=1

(
F ∗
xi
(z)− F ∗

x (z)
)

Var[F̂n,x(z) | Xi(x) = xi, 1 ≤ i ≤ kn] =
1

k2n

kn∑
i=1

F ∗
xi
(z)(1− F ∗

xi
(z)).

Adding up the squared conditional bias and variance and integrating with re-
spect to Xi:n(x), 1 ≤ i ≤ kn, we obtain the mean squared error

E
[
|F̂n,x(z)− F ∗

x (z)|2
]

= E
[( 1

kn

kn∑
i=1

(
F ∗
Xi:n(x)

(z)− F ∗
x (z)

))2]
+

1

k2n

kn∑
i=1

E
[
F ∗
Xi:n(x)

(z)(1− F ∗
Xi:n(x)

(z))
]
.
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Using Jensen’s inequality and integrating with respect to PX(dx)dz, we deduce
that the excess risk (A.1) satisfies

E[RP (F̂n)]−RP (F
∗) ≤ 1

kn

kn∑
i=1

E
[∫

R
(F ∗

Xi:n(X)(z)− F ∗
X(z))2dz

]

+
1

k2n

kn∑
i=1

E
[∫

R
F ∗
Xi:n(X)(z)(1− F ∗

Xi:n(X))dz

]
.

Using conditions ii) and iii) in the definition of the class D(h,C,M) to bound
from above the first and second term respectively, we get

E[RP (F̂n)]−RP (F
∗) ≤ C2

kn

kn∑
i=1

E
[
∥Xi:n(X)−X∥2h

]
+

M

kn

≤ C2E
[
∥Xkn:n(X)−X∥2h

]
+

M

kn
,

where the last inequality uses the fact that, by definition of nearest neighbors,
the distances ∥Xi:n(X)−X∥, 1 ≤ i ≤ kn, are non-increasing.

The last step of the proof is to use Theorem 2.4 from Biau & Devroye (2015)
stating that

E[∥Xkn:n(X)−X∥2] ≤


8
kn

n
if d = 1,

cd

(
kn

n

)2/d

if d ≥ 2.

Together with the concavity inequality (as h ∈ (0, 1])

E[∥Xkn:n(X)−X∥2h] ≤ E[∥Xkn:n(X)−X∥2]h,

we deduce

E[RP (F̂n)]−RP (F
∗) ≤


C28h

(
kn

n

)h

+
M

kn
if d = 1,

C2cd
h

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

concluding the proof of Proposition 1.

Appendix B. Proof of Proposition 2

Proof. Equation (11) can be rewritten as

F̂n,x(z) =

∑n
i=1 1{Xi∈Sx,hn}1{Yi≤z}

nPn(Sx,hn
)

,
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with Sx,ϵ the closed ball centered at x of radius ϵ > 0 and

Pn(·) =
1

n

n∑
i=1

1{Xi∈·}

the empirical measure corresponding to X1, . . . , Xn. Recall that we use the
estimator F̂n(x) =

1
n

∑n
i=1 1{Yi≤z} when nPn(Sx,hn

) = 0.
Similarly as in the proof of the Proposition 1, a bias/variance decomposition

of the squared error yields

E
[
|F̂n,x(z)− F ∗

x (z)|2
]

= E

(∑n
i=1

(
F ∗
Xi(x)

(z)− F ∗
x (z)

)
1{Xi∈Sx,hn}

nPn(Sx,hn
)

)2

1{nPn(Sx,hn )>0}


+ E

[∑n
i=1 F

∗
Xi

(z)(1− F ∗
Xi

(z))1{Xi∈Sx,hn}

(nPn(Sx,hn))
2

1{nPn(Sx,hn )>0}

]

+ E

( 1

n

n∑
i=1

1{Yi≤z} − F ∗
x (z)

)2

1{nPn(Sx,hn )=0}


:= A1(z) +A2(z) +A3(z).

The excess risk at X = x is thus decomposed into three terms

E
[∫

R
|F̂n,x(z)− F ∗

x (z)|2dz
]
=

∫
R
A1(z)dz +

∫
R
A2(z)dz +

∫
R
A3(z)dz

that we analyze successively.
The first term (bias) is bounded from above using Jensen’s inequality and

property iii) of D(h,C,M):∫
R
A1(z)dz ≤ E

∑n
i=1

∫
R
(
F ∗
Xi(x)

(z)− F ∗
x (z)

)2
dz1{Xi∈Sx,hn}

nPn(Sx,hn
)

1{nPn(Sx,hn )>0}


≤ E

[∑n
i=1 C

2∥Xi − x∥2h1{Xi∈Sx,hn}

nPn(Sx,hn
)

1{nPn(Sx,hn )>0}

]
≤ C2hn

2h.

The second term (variance) is bounded using property ii) of D(h,C,M) and
an elementary result for the binomial distribution:∫

R
A2(z)dz = E

[∑n
i=1

∫
R F ∗

Xi
(z)(1− F ∗

Xi
(z))dz1{Xi∈Sx,hn}

(nPn(Sx,hn
))2

1{nPn(Sx,hn )>0}

]

≤ ME
[
1{nPn(Sx,hn )>0}

nPn(Sx,hn
)

]
≤ 2M

nPX(Sx,hn)
.
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In the last line, we use that Z = nPn(Sx,hn) follows a binomial distribution with
parameters n and p = PX(Sx,hn) so that E

[
1
Z1{Z>0}

]
≤ 2

(n+1)p , see Lemma 4.1
in Györfi et al. (2002).

The last term is a remainder term and is bounded by∫
R
A3(z)dz ≤ E

[
1

n

n∑
i=1

∫
R

(
F ∗
Xi

(z)− F ∗
x (z)

)2
dz1{nPn(Sx,hn )=0}

]

+ E

[
1

n2

n∑
i=1

∫
R
F ∗
Xi

(z)(1− F ∗
Xi

(z))dz1{nPn(Sx,hn )=0}

]
.

Properties ii) and iii) of D(h,C,M) and the fact that ∥Xi − x∥ ≤
√
d imply∫

R
A3(z)dz ≤

(
C2dh +

M

n

)
E
[
1{nPn(Sx,hn )=0}

]
≤
(
C2dh +

M

n

)
e−nPX(Sx,hn ).

For the second inequality, we use that P(Z = 0) = (1 − p)n ≤ e−np where
Z = nPn(Sx,hn) follows a binomial distribution with parameters n and p =
PX(Sx,hn

) .
Collecting the three terms, we obtain the following upper bound for the

excess risk at X = x:

E
[∫

R
|F̂n,x(z)− F ∗

x (z)|2dz
]
≤ C2hn

2h+
2M

nPX(Sx,hn)
+

(
C2dh +

M

n

)
e−nPX(Sx,hn ).

We finally integrate this bound with respect to PX(dx). According to Equa-
tion (5.1) in Györfi et al. (2002), there exists a constant c̃d depending only on
d such that ∫

[0,1]d

1

nPX(Sx,hn)
PX(dx) ≤ c̃d

nhd
n

.

Note that c̃d can be chosen as c̃d = dd/2. We also have∫
[0,1]d

e−nPX(Sx,hn )PX(dx) ≤ max
u≥0

ue−u

∫
[0,1]d

1

nPX(Sx,hn
)
PX(dx)

≤ c̃d
nhd

n

.

We obtain thus

E[RP (F̂n)]−RP (F
∗) = E

[∫
R
|F̂n,x(z)− F ∗

x (z)|2dz
]

≤ C2hn
2h + c̃d

2M + C2dh + M
n

nhn
d

.

17



Appendix C. Proof of Proposition 3

The proof of Proposition 3 relies on the next two elementary lemmas. The
first one states that for a binary outcome Y ∈ {0, L}, forecasters should focus
on binary forecast F ∈ M({0, L}) only, which is very natural. More precisely,
any predictive distribution F ∈ M(R) can be associated with F ∈ M({0, L})
with a better expected CRPS.

Lemma 1. Let G ∈ M({0, L}). For F ∈ M(R), the distribution

F̃ (z) = (1−m)10≤z +m1L≤z with m =
1

L

∫ L

0

(1− F (z))dz

satisfies
CRPS(F̃ , G) ≤ CRPS(F,G).

Proof. Let F ∈ M(R) and G ∈ M({0, L}). We have

CRPS(F,G) =

∫
R

∫
R
(F (z)− 1y≤z)

2dzG(dy)

≥
∫
R

∫ L

0

(F (z)− 1y≤z)
2dzG(dy)

Because 1−m is the mean value of F on [0, L], we have for y ∈ {0, L}∫ L

0

(F (z)− 1y≤z)
2dz ≥

∫ L

0

((1−m)− 1y≤z)
2dz.

Integrating with respect to G(dy), we deduce

CRPS(F,G) ≥
∫
R

∫ L

0

((1−m)− 1y≤z)
2dzG(dy).

The right-hand side equals CRPS(F̃ , G) and we conclude

CRPS(F,G) ≥ CRPS(F̃ , G).

Lemma 2 shows that for binary outcome and predictions, the CRPS reduces
to a quantity proportional to the Brier score (Brier, 1950)

Brier(p, y) = (y − p)2, y ∈ {0, 1}, p ∈ [0, 1],

which is closely related to the mean squared error used in regression.

Lemma 2. For all y ∈ {0, L} and F (z) = (1 − p)10≤z + p1L≤z ∈ M({0, L})
with p ∈ [0, 1], it holds

CRPS(F, y) = LBrier(p,
y

L
) = L(

y

L
− p)2.
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Proof. We compute

CRPS(F, y) =

∫ L

0

(1− p− 1y≤z)
2dz

=

{
Lp2 if y=0
L(1− p)2 if y=L .

In both cases, this equals L( y
L − p)2 = LBrier(p, y

L ).

Proof of Proposition 3. Since only binary outcomes are considered in the class
B(h,C,L), Lemma 1 implies that

inf
F̂n

sup
P∈B(h,C,L)

{
E[RP (F̂n)]−RP (F

∗)
}
= inf

F̃n

sup
P∈B(h,C,L)

{
E[RP (F̃n)]−RP (F

∗)
}

where the infimum are taken over models F̂n and F̃n trained on the first ob-
servations (Xi, Yi)1≤i≤n and with values in M(R) and M({0, L}), respectively.
Indeed, the left-hand side is a priori smaller since the family F̂n is larger but
Lemma 1 ensures that each model F̂n can be associated with a model F̃n with
equal or lower expected score.

We then apply Lemma 2. For a binary outcome, the conditional distribution
of Y given X = x writes

F ∗
x (z) = (1−m(x))10≤z +m(x)1L≤z,

and the model F̃n with values in M({0, L}) takes the form

F̃n,x(z) = (1−mn(x))10≤z +mn(x)1L≤z,

with m(x) = 1
L

∫ L

0
(1− F ∗

x (z))dz and mn(x) =
1
L

∫ L

0
(1− F̂n,x(z))dz.

Then Lemma 2 implies

E[RP (F̂n)]−RP (F
∗) = E

[
CRPS(F̂n,X , Y )− CRPS(F ∗

X , Y )
]

= LE
[
(Y/L−mn(X))2 − (Y/L−m(X))2

]
= LE

[
(mn(X)−m(X))2

]
,

which corresponds to the excess risk in regression with squared error loss. The
property iii) of B(h,C,L) is equivalent to

|m(x)−m(x′)|h ≤ C∥x− x′∥h, x ∈ [0, 1]d,

which is the standard regularity assumption on the regression function m. Using
the result of the Problem 3.3 in Györfi et al. (2002) dealing with binary models,
we finally obtain that the sequence an = n− 2h

2h+d is a lower minimax rate of
convergence for this class of distributions and more precisely that Equation (12)
holds.
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