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Abstract

The theoretical advances on the properties of scoring rules over the past decades
have broaden the use of scoring rules in probabilistic forecasting. In meteoro-
logical forecasting, statistical postprocessing techniques are essential to improve
the forecasts made by deterministic physical models. Numerous state-of-the-
art statistical postprocessing techniques are based on distributional regression
evaluated with the Continuous Ranked Probability Score (CRPS). However, the-
oretical properties of such minimization of the CRPS have mostly considered
the unconditional framework (i.e. without covariables) and in�nite sample sizes.
We circumvent these limitations and study the rate of convergence in terms of
CRPS of distributional regression methods We �nd the optimal minimax rate
of convergence for a given class of distributions. Moreover, we show that the k
nearest neighbor method and the kernel method for the distributional regression
reach the optimal rate of convergence in dimension d ≥ 2 and in any dimension,
respectively.

Keywords: Distributional Regression, Probabilistic Forecast, CRPS, Minimax
Rate of Convergence, Nearest Neighbor Method, Kernel Method.

1. Introduction1

In meteorology, ensemble forecasts are based on a given number of determin-2

istic models whose parameters vary slightly in order to take into account obser-3

vation errors and incomplete physical representation of the atmosphere. This4

leads to an ensemble of di�erent forecasts that overall also assess the uncertainty5

of the forecast. Ensemble forecasts su�er from bias and underdispersion (Hamill6

& Colucci, 1997; Baran & Lerch, 2018) and need to be statistically postprocessed7
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in order to be improved. Di�erent postprocessing methods have been proposed,8

such as Ensemble Model Output Statistics (Gneiting et al., 2005), Quantile Re-9

gression Forests (Taillardat et al., 2019) or Neural Networks (Schulz & Lerch,10

2021). These references, among other, also discuss the stakes of weather forecast11

statistical postproccessing.12

13

Postprocessing methods rely on probabilistic forecast and distributional re-14

gression (Gneiting & Katzfuss, 2014) where the aim is to predict the conditional15

distribution of the quantity of interest (e.g. temperatures, wind-speed, or pre-16

cipitation) given a set of covariates (e.g. ensemble model output statistics).17

Algorithms are often based on the minimization of a proper scoring rule that18

compares actual observations with the predictive distribution. Scoring rules19

can be seen as an equivalent of a loss function in classical regression. A detailed20

review of scoring rules is given by Gneiting & Raftery (2007). The Continu-21

ous Ranked Probability Score (CRPS; Matheson & Winkler, 1976), de�ned in22

Equation (4), is one of the most popular score in meteorological forecasts. The23

CRPS is also minimized to infer parameters of statistical models used in post-24

processing (e.g. Gneiting et al., 2005; Naveau et al., 2016; Rasp & Lerch, 2018;25

Taillardat et al., 2019).26

27

To the best of our knowledge, most convergence statements about the CRPS28

are not only derived within an unconditional framework, i.e. without taking into29

account the covariates, but also these limiting results are based on in�nite sam-30

ple sizes. In this work, our goal is to bypass these two limitations. To go further,31

we need to set the stage by including a few notations.32

33

In this article, we consider the regression framework (X,Y ) ∈ Rd × R with
distribution P . In forecast assessment, we make the distinction between the
construction of the estimator relying of the training sample Dn = {(Xi, Yi), 1 ≤
i ≤ n} and its evaluation with respect to new data (X,Y ). Statistically, the goal
of distributional regression is to estimate the conditional distribution of Y given
X = x, noted F ∗

x (y) : = P (Y ≤ y|X = x). Given the training sample Dn, the
forecaster constructs a predictor F̂n : x 7→ F̂n,x that estimates the conditional
distribution F ∗

x , x ∈ Rd. In this context, it is crucial to assess if F̂n,x is close to
F ∗
x over the range of possible values of X = x. We denote by PX the marginal

distribution of X. The main goal of this work is to study the following positive
quantity :

EX∼PX ,Dn∼Pn

[∫
R
|F̂n,X(z)− F ∗

X(z)|2dz
]

(1)

where EX∼PX ,Dn∼Pn denotes the expectation with respect to X and Dn follow-34

ing PX and Pn respectively. This averaged L2-norm is the distance between the35

predicted distribution F̂n,x and the true conditional distribution F ∗
x . We focus36

on this speci�c distance because it corresponds to the excess of risk associated37

with the CRPS, i.e. it is the di�erence between the expected CRPS for the38

predicted distribution F̂n,x and the expected CRPS for the ideal prediction F ∗
x ,39
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see Section 2.1 for more details.40

41

In order to study the rate of convergence of (1) as n → ∞, we will adapt42

the notion of optimal minimax rate of convergence that quanti�es the best error43

that an estimator can achieve uniformly on a given family of distributions D44

when the size of the training set Dn gets large. Stone (1982) provided minimax45

rates of convergence within a point regression framework and the minimax the-46

ory for nonparametric regression is well-developed, see e.g. Györ� et al. (2002)47

or Tsybakov (2009). To the extent of our knowledge, this paper states the �rst48

results for distributional regression.49

50

Many predictors F̂n,x can be studied and achieve the optimal minimax rate51

of convergence. To go further, we focus on two cases : k-nearest neighbor and52

kernel estimators.53

The k-nearest neighbor (k-NN) method is well-known in the classical frame-
work of regression and classi�cation (see, e.g. Biau & Devroye, 2015). In distri-
butional regression, the k-NN method can be suitably adapted to estimate the
conditional distribution F ∗

x and the estimator is written as

F̂n,x(z) =
1

kn

kn∑
i=1

1Yi:n(x)≤z, (2)

where 1 ≤ kn ≤ n and Yi:n(x) denotes the observation at the i-th nearest
neighbor of x. As usual, possible ties are broken at random to de�ne nearest
neighbors.
The kernel estimate in distributional regression (see, e.g. Chapter 5 of Györ�
et al., 2002) can be expressed as

F̂n,x(z) =

∑n
i=1 K(x−Xi

hn
)1Yi≤z∑n

i=1 K(x−Xi

hn
)

, (3)

if the denominator is nonzero. When the denominator is zero, we use the con-54

vention F̂n,x(z) =
1
n

∑n
i=1 1Yi≤z. Here the bandwidth hn > 0 depends on the55

sample size n, and the function K : Rd → [0,∞) is called the kernel.56

57

Minimax rates of convergence of the k-NN and kernel models in point re-58

gression are well-studied and it is known that, for suitable choices of number59

of neighbors kn and bandwidth hn respectively, the methods are minimax rate60

optimal on classes of distributions with Lipschitz or more generally Hölder con-61

tinuous regression functions (see e.g. Theorem 14.5 in Biau & Devroye, 201562

and Theorem 5.2 in Györ� et al., 2002). For classes of distributions where the63

conditional distribution F ∗
x satis�es some regularity requirements with respect64

to the covariates x (see De�nition 1 of class D(h,C,M)), we are able to extend65

these results to distributional regression. We obtain non asymptotic bounds for66

the minimax rate of convergence for both the k-NN and kernel models.67

68
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To summarize, this paper is organized as follows. Our main results are69

presented in Section 2. Section 2.1 provides the theoretical background on70

distributional regression and its evaluation using the CRPS. In Section 2.2, we71

study the k-NN estimators (2) and derive a non asymptotic upper bound for the72

excess of risk (1) uniformly on the class D(h,C,M). Section 2.3 provides similar73

results for the kernel method (3). In Section 2.4, we �nd a lower minimax rate74

of convergence by reducing the problem to standard point regression solved by75

Györ� et al. (2002). We can deduce that the k-NN method for the distributional76

regression reaches the optimal rate of convergence in dimension d ≥ 2, while the77

kernel method reaches the optimal rate of convergence in any dimension. The78

proofs of all the results presented in Section 2 are detailed in Appendix.79

2. Main results80

2.1. CRPS and distributional regression81

The Continuous Ranked Probability Score (CRPS; Matheson & Winkler,
1976) compares a predictive distribution F and a real-valued observation y by
computing the following integral

CRPS(F, y) =

∫
R
(F (z)− 1y≤z)

2dz. (4)

The expected CRPS of a predictive distribution F when the observations Y are
distributed according to G is de�ned as

CRPS(F,G) =

∫
R
CRPS(F, y)G(dy), F,G ∈ M(R) (5)

where M(R) denotes the set of all distribution functions on R. This quantity is
�nite when both F and G have a �nite moment of order 1. Then, the di�erence
between the expected CRPS of the forecast F and the expected CRPS of the
ideal forecast G can be written as

CRPS(F,G)− CRPS(G,G) =

∫
R
|F (z)−G(z)|2dz ≥ 0. (6)

This implies that the only optimal prediction, in the sense that it minimizes the82

expected CRPS, is the true distribution G. A score with this property is said83

to be strictly proper. This property is essential for distributional regression as it84

justi�es the minimization of the expected score in order to construct or evaluate85

a prediction.86

Example 1. (CRPS for Generalized Pareto distributions)
Explicit parametric formulas of the CRPS exist for most classical distribution
families : e.g. Gaussian, logistic, censored logistic, Generalized Extreme Value,
Generalized Pareto (see Gneiting et al., 2005; Taillardat et al., 2016; Friederichs
& Thorarinsdottir, 2012). We focus here on the Generalized Pareto Distribution
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(GPD) family and we denote by Hξ,σ the GP distribution with shape parameter
ξ ∈ R and scale parameter σ > 0. Recall that it is de�ned, when ξ ̸= 0, by

Hξ,σ(z) = 1−
(
1 +

ξz

σ

)−1/ξ

+

, z > 0,

with the notation (·)+ = max(0, ·). When ξ = 0, the standard limit by conti-
nuity is used. For ξ < 1, the GPD has a �nite �rst moment and the associated
CRPS is given by (Friederichs & Thorarinsdottir, 2012)

CRPS (Hξ,σ, y) =

(
y +

σ

ξ

)
(2Hξ,σ(y)− 1)−

2σ

ξ(ξ − 1)

(
1

ξ − 2
+ (1−Hξ,σ(y))

(
1 + ξ

y

σ

))
.

(7)
When Y ∼ Hξ∗,σ∗ , the expected CRPS is (Taillardat et al., 2022)

CRPS (Hξ,σ, Hξ∗,σ∗) =
σ∗

1− ξ∗
+

2σ

1− ξ
m0 +

2ξ

1− ξ
m1 + 2σ∗

(
1

1− ξ
−

1

2(2− ξ)

)
(8)

with

m0 = EY∼Hξ,σ

(1 + ξ

σ
Y

)−1/ξ
 , m1 = EY∼Hξ,σ

Y (1 + ξ

σ
Y

)−1/ξ
 .

In particular,

CRPS (Hξ∗,σ∗ , Hξ∗,σ∗) =
σ∗

(2− ξ∗)(1− ξ∗)
.

In distributional regression, a predictor F̂ : x 7→ F̂x is evaluated thanks to
its expected risk

RP (F̂ ) = E(X,Y )∼P

[
CRPS(F̂X , Y )

]
= EX∼PX

[
CRPS(F̂X , F ∗

X)
]
.

This quantity is important as many distributional regression methods try to
minimize it in order to improve predictions. When Y is integrable, Equation (6)
implies

RP (F̂ )−RP (F
∗) = E(X,Y )∼P

[
CRPS(F̂X , Y )− CRPS(F ∗

X , Y )
]

= EX∼PX

[∫
R

∣∣∣F̂X(z)− F ∗
X(z)

∣∣∣2 dz] ≥ 0. (9)

We recall that Bayes risk is the minimal theoretical risk over all possible pre-87

dictors and that Bayes predictor is a predictor achieving Bayes risk. Thus,88

Equation (9) implies that RP (F
∗) is Bayes risk and that RP (F̂ ) = RP (F

∗) if89

and only if F̂x = F ∗
x PX -a.e. An introduction to the notions of theoretical risk,90

Bayes risk and excess of risk can be found in Section 2.4 of Hastie et al. (2001).91
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Example 2. (GPD regression)
We illustrate the above statement in the case of a Generalized Pareto regression
model where Y given X = x follows a GPD with shape parameter ξ∗(x) and
scale parameter σ∗(x). Then, it is possible to show that Bayes risk is equal to

RP (F
∗) =

∫
Rd

σ∗(x)

(2− ξ∗(x))(1− ξ∗(x))
PX(dx)

when 0 < ξ∗(x) < 1 for all x ∈ Rd. For a forecast in the GPD class, i.e. Fx is a92

GPD with shape parameter ξ(x) and scale parameter σ(x), then the risk RP (F )93

is equal to Bayes risk if and only if ξ(x) = ξ∗(x) and σ(x) = σ∗(x) PX -a.e.94

Finally, we consider the case of a predictor F̂n built on a training sample
Dn = {(Xi, Yi), 1 ≤ i ≤ n}, as presented in the introduction, to estimate the
conditional distribution of Y given X. Then, (X,Y ) denotes a new independent
observation used to evaluate the performances of F̂n. The predictor has the
expected CRPS

EDn∼Pn [RP (F̂n)] = EDn∼Pn,(X,Y )∼P [CRPS(F̂n,X , Y )],

with expectation taken both with respect to the training sample Dn and test
observation (X,Y ). Once again, when Y is integrable, the expected risk has a
unique minimum given by RP (F

∗). The excess of risk becomes

EDn∼Pn

[
RP (F̂n)

]
−RP (F

∗)

= EDn∼Pn,X∼PX

[∫
R

∣∣∣F̂n,X(z)− F ∗
X(z)

∣∣∣2 dz] ≥ 0. (10)

For large sample sizes, one expects that the predictor correctly estimates95

the conditional distribution and that the excess of risk tends to zero. A genuine96

question is to investigate the rate of convergence of the excess of risk to zero as97

the sample size n → ∞. The risk depends on the distribution of observations98

and we want the model to perform well on large classes of distributions. Hence,99

we consider the standard minimax approach, see for instance Györ� et al. (2002)100

for the standard cases of regression and classi�cation.101

102

We consider the following classes of distributions.103

De�nition 1. For h ∈ (0, 1], C > 0 and M > 0, let D(h,C,M) be the class of104

distributions P such that F ∗
x (y) = P (Y ≤ y|X = x) satis�es :105

i) X ∈ [0, 1]d PX-a.s.;106

ii) For all x ∈ [0, 1]d,
∫
R F ∗

x (z)(1− F ∗
x (z))dz ≤ M ;107

iii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.108
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Remark 1. In condition i), [0, 1]d could be replaced by any compact set of Rd.109

Condition ii) requires that CRPS(F ∗
x , F

∗
x ) remains uniformly bounded by M ,110

which is a condition on the dispersion of the distribution F ∗
X since its implies111

that the absolute mean error (MAE) remains uniformly bounded. Condition112

iii) is a regularity statement of the conditional distribution in the space L2(R).113

Conditions i)− iii) in De�nition 1 are very similar to the conditions considered114

in the point regression framework, see Theorem 5.2 in Györ� et al. (2002).115

Example 3. In the GPD regression framework, condition ii) is equivalent to116

σ∗(x) ≤ M(2 − ξ∗(x))(1 − ξ∗(x)) when 0 < ξ∗(x) < 1, for all x ∈ [0, 1]d. The117

regularity condition iii) holds with constants C and h as soon as x 7→ ξ∗(x)118

and x 7→ σ∗(x) are both h-Hölder. For example, the popular case were the119

shape parameter ξ∗(x) and the scale parameter σ∗(x) are assumed to be linearly120

dependent on x (i.e. ξ∗(x) = ξ0 + α · x and σ∗(x) = σ0 + β · x with α, β ∈ Rd)121

is in a class of distributions of De�nition 1.122

In the following, we study the convergence rate of the excess of risk in order123

to obtain the optimal minimax convergence rate. The reasoning is divided into124

three steps:125

1. We provide in Section 2.2 an explicit and nonasymptotic upper bound for126

the excess of risk of the k-nearest neighbor model uniformly on the class127

D(h,C,M); the upper bound is then optimized with a suitable choice of128

k = k(n).129

2. In Section 2.3, we obtain similar results for the kernel model.130

3. We show in Section 2.4 that an = n− 2h
2h+d is a lower minimax rate of131

convergence; the main argument is that it is enough to consider a binary132

model when both the observation Y and prediction F̂X take values in133

{0, L}; we deduce that in this case, the CRPS coincides with the mean134

squared error so that we can appeal to standard results on lower minimax135

rate of convergence for regression.136

Combining these three steps, we �nally obtain Theorem 1 providing the optimal137

minimax rate of convergence of the excess of risk on the class D(h,C,M). All the138

proofs are postponed to the Appendix.139

2.2. Upper bound for the k-nearest neighbor model140

The k-NN method for distributional regression is de�ned in Equation (2).141

Here, we do not use only the mean of the nearest neighbor sample (Yi:n(x))1≤i≤kn
142

but its entire empirical distribution. Interestingly, the tools developed to ana-143

lyze the k-NN in point regression can be used in our distributional regression144

framework.145

Proposition 1. Assume P ∈ D(h,C,M) and let F̂n be the k-nearest neighbor
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model de�ned by Equation (2). Then,

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤


8hC2

(
kn

n

)h

+
M

kn
if d = 1,

cd
hC2

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

where cd = 23+
2
d (1+

√
d)2

V
2/d
d

and Vd is the volume of the unit ball in Rd.146

Let us stress that the upper bound is non-asymptotic and holds for all �xed147

n and kn. Optimizing the upper bound in kn yields the following corollary.148

Corollary 1. Assume P ∈ D(h,C,M) and consider the k-NN model (2).149

� For d = 1, the optimal choice kn =

(
M

hC28h

) 1
h+1

n
h

h+1 yields

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ Bn− h

h+1

with constant B = C
2

h+1M
h

h+1

(
8

h
h+1h− h

h+1 + (8hhC)
1

h+1

)
.150

� For d ≥ 2, the optimal choice kn =

(
Md

2hC2chd

) d
2h+d

n
2h

2h+d yields

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ Bn− 2h

2h+d

with constant B = (C2chd)
d

2h+dM
2h

2h+d

((
d
2h

) 2h
2h+d +

(
2h
d

) d
2h+d

)
.151

152

2.3. Upper bound for the kernel model153

Kernel methods adapted to distributional regression are de�ned in Equation
(3). For convenience and simplicity of notations, we develop our result for the
simple uniform kernel K(x) = 1{∥x∥≤1}. However, it should be stressed that
all the results can be extended to boxed kernels (Györ� et al., 2002, Figure 5.7
p73) to the price of some extra multiplicative constants. For the uniform kernel,
the estimator writes

F̂n,x(z) =

∑n
i=1 1{∥Xi−x∥≤hn}1{Yi≤z}∑n

i=1 1{∥Xi−x∥≤hn}
, (11)

when the denominator is non zero and F̂n(x) =
1
n

∑n
i=1 1{Yi≤z} otherwise.154

8



Proposition 2. Assume P ∈ D(h,C,M) and let F̂n be the kernel model de�ned
by Equation (11). Then,

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ c̃d

2M + Cdh/2 + M
n

nhd
n

+ C2h2h
n

where c̃d only depends on d.155

Once again, the upper bound is non-asymptotic and holds for all �xed n and156

hn. Optimizing the upper bound in hn yields the following corollary.157

Corollary 2. Assume P ∈ D(h,C,M) and consider the kernel model (11). For
any d, the optimal choice

hn =

(
c̃dd(M + Cdh/2 + M

n )

2hC2

) 1
2h+d

n− 1
2h+d

yields

EDn∼Pn [RP (F̂n)]−RP (F
∗) ≤ Bn− 2h

2h+d

with

B = C
2d

2h+d

(
c̃d(2M + Cdh/2 +

M

n
)

) 2h
2h+d

((
d

2h

)− d
2h+d

+

(
d

2h

) 2h
2h+d

)
.

2.4. Optimal minimax rates of convergence158

We �nally compare the rates of convergence obtained in Corollaries 1 and 2159

with a lower minimax rate of convergence in order to see whether the opti-160

mal rate of convergence are achieved. We �rst recall these di�erent notions of161

minimax rates of convergence.162

De�nition 2. A sequence of positive numbers (an) is called an optimal minimax
rate of convergence on the class D if

lim inf
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)]−RP (F
∗)

an
> 0 (12)

and

lim sup
n→∞

inf
F̂n

sup
P∈D

EDn∼Pn [RP (F̂n)]−RP (F
∗)

an
< ∞, (13)

where the in�mum is taken over all distributional regression models F̂n trained163

on Dn. If the sequence (an) satis�es only the lower bound (12), it is called a164

lower minimax rate of convergence.165
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To prove a lower bound on a class D, it is always possible to consider a
smaller class B. Indeed, if B ⊂ D, we clearly have

inf
F̂n

sup
P∈B

{
EDn∼Pn [RP (F̂n)]−RP (F

∗)
}
≤ inf

F̂n

sup
P∈D

{
EDn∼Pn [RP (F̂n)]−RP (F

∗)
}

so that any lower minimax rate of convergence on B is also a lower minimax166

rate of convergence on D.167

To establish the lower minimax rate of convergence, we focus on the following168

classes of binary responses.169

De�nition 3.170

Let B(h,C,L) be the class of distributions of (X,Y ) such that :171

i) Y ∈ {0, L} and X is uniformly distributed on [0, 1]d;172

ii) ∥F ∗
x′ − F ∗

x∥L2 ≤ C∥x′ − x∥h for all x, x′ ∈ [0, 1]d.173

Since a binary outcome Y ∈ {0, L} satis�es
∫
R F ∗

x (z)(1 − F ∗
x (z))dz ≤ L/4,174

condition ii) in De�nition 1 holds with M ≥ L/4. Then B(h,C,L) ⊂ D(h,C,M)
175

and the following lower bound established on the smaller class also holds on the176

larger class.177

Proposition 3. The sequence an = n− 2h
2h+d is a lower minimax rate of conver-

gence on the class B(h,C,L). More precisely,

lim inf
n→∞

inf
F̂n

sup
P∈B(h,C,L)

EDn∼Pn [RP (F̂n)]−RP (F
∗)

C
2d

2h+dn− 2h
2h+d

≥ C1 (14)

for some constant C1 > 0 independent of C.178

Combining Corollaries 1 and 2 and Proposition 3, we can deduce that for179

d ≥ 2, the k-NN model reaches the minimax lower rate of convergence an =180

n− 2h
2h+d for the class D(h,C,M) and that the kernel model reaches the minimax181

lower rate of convergence in any dimension d. This shows that the lower rate of182

convergence is in fact the optimal rate of convergence and proves the following183

theorem.184

Theorem 1. The sequence an = n− 2h
2h+d is the optimal minimax rate of con-185

vergence on the class D(h,C,M).186

It should be stressed that the rate of convergence n− 2h
2h+d is the same as in187

point regression with square error, see Theorems 3.2 and 5.2 in Györ� et al.188

(2002) for the lower bound and upper bound, respectively.189

3. Conclusion and Discussion190

We found that the optimal rate of convergence for distributional regression191

on D(h,C,M) is of the same order as the optimal rate of convergence for point192

regression. Thus, with regard to the sample size n, distributional regression193

10



evaluated with the CRPS converges at the same rate as point regression even194

though the distributional estimate carries more information on the prediction195

of the underlying process.196

We have also shown that the k-NN method and the kernel method reach197

this optimal rate of convergence, respectively in dimension d ≥ 2 and in any198

dimension. However, these methods are not used in practice because of the199

limitations of their predictive power in moderate or high dimension d ≥ 3 due200

to the curse of dimension. An extension of this work could be to study if state-of-201

the-art techniques reach the optimal rate of convergence obtained in this article.202

Random Forests (Breiman, 2001) methods, such as Quantile Regression Forests203

(Meinshausen, 2006) and Distributional Random Forests (�evid et al., 2020),204

appear to be natural candidates as they are based on a generalized notion of205

neighborhood and have been subject to recent development in weather forecast206

statistical postprocessing (see, e.g., Taillardat et al., 2016).207

The results of this article were obtained for the CRPS, which is widely used
in practice, but can easily be extended to the weighted CRPS in its standard
uses. The weighted CRPS is de�ned as

wCRPS(F, y) =

∫
R
(F (z)− 1y≤z)

2w(z)dz

with w the weight chosen. The weighted CRPS is used to put the focus of the208

score in speci�c regions of the outcome space (Gneiting & Ranjan, 2011). It209

is used in the study of extreme events by giving more weight to the extreme210

behavior of the distribution.211

Moreover, an interesting development would be to obtain similar results for212

rate of convergence with respect to di�erent strictly proper scoring rules or met-213

rics, for instance energy scores or Wasserstein distances.214
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Appendix A. Proof of Proposition 1288

For the simplicity of notation, we write simply E for the expectation with289

respect to (X,Y ) ∼ P and Dn ∼ Pn. The context makes it clear enough so as290

to avoid confusion.291

Proof. Recall that for the CRPS, the excess of risk is equal to

E[RP (F̂n)]−RP (F
∗) = E

[∫
R
|F̂n,X(z)− F ∗

X(z)|2dz
]
. (A.1)

We �rst estimate E[|F̂n,x(z)−F ∗
x (z)|2] for �xed x ∈ [0, 1]d and z ∈ R. Denote by

X1:n(x), · · · , Xkn:n(x) the nearest neighbors of x and by Y1:n(x), . . . , Ykn:n(x)
the associated values of the response variable. Conditionally on Xi:n(x) = xi,
1 ≤ i ≤ kn, the random variables Yi:n(x), 1 ≤ i ≤ kn, are independent and
with distribution F ∗

xi
, 1 ≤ i ≤ kn. This implies that, conditionally, F̂n,x(z) is

the average of the kn independent random variables 1{Yi:n(x)≤z} that have a
Bernoulli distribution with parameter F ∗

xi
(z). Therefore, the conditional bias
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and variance are given by

E[F̂n,x(z)− F ∗
x (z) | Xi(x) = xi, 1 ≤ i ≤ kn] =

1

kn

kn∑
i=1

(
F ∗
xi
(z)− F ∗

x (z)
)

Var[F̂n,x(z) | Xi(x) = xi, 1 ≤ i ≤ kn] =
1

k2n

kn∑
i=1

F ∗
xi
(z)(1− F ∗

xi
(z)).

Adding up the squared conditional bias and variance and integrating with re-
spect to Xi:n(x), 1 ≤ i ≤ kn, we obtain the mean squared error

E
[
|F̂n,x(z)− F ∗

x (z)|2
]

= E
[( 1

kn

kn∑
i=1

(
F ∗
Xi:n(x)

(z)− F ∗
x (z)

))2]
+

1

k2n

kn∑
i=1

E
[
F ∗
Xi:n(x)

(z)(1− F ∗
Xi:n(x)

(z))
]
.

Using Jensen's inequality and integrating with respect to PX(dx)dz, we deduce
that the excess of risk (A.1) satis�es

E[RP (F̂n)]−RP (F
∗) ≤ 1

kn

kn∑
i=1

E
[∫

R
(F ∗

Xi:n(X)(z)− F ∗
X(z))2dz

]

+
1

k2n

kn∑
i=1

E
[∫

R
F ∗
Xi:n(X)(z)(1− F ∗

Xi:n(X))dz

]
.

Using conditions ii) and iii) in the de�nition of the class D(h,C,M) to bound
from above the �rst and second term respectively, we get

E[RP (F̂n)]−RP (F
∗) ≤ C2

kn

kn∑
i=1

E
[
∥Xi:n(X)−X∥2h

]
+

M

kn

≤ C2E
[
∥Xkn:n(X)−X∥2h

]
+

M

kn
,

where the last inequality uses the fact that, by de�nition of nearest neighbors,292

the distances ∥Xi:n(X)−X∥, 1 ≤ i ≤ kn, are non-increasing.293

The last step of the proof is to use Theorem 2.4 from Biau & Devroye (2015)
stating that

E[∥Xkn:n(X)−X∥2] ≤


8
kn

n
if d = 1,

cd

(
kn

n

)2/d

if d ≥ 2.

Together with the concavity inequality (as h ∈ (0, 1])

E[∥Xkn:n(X)−X∥2h] ≤ E[∥Xkn:n(X)−X∥2]h,
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we deduce

E[RP (F̂n)]−RP (F
∗) ≤


C28h

(
kn

n

)h

+
M

kn
if d = 1,

C2cd
h

(
kn

n

)2h/d

+
M

kn
if d ≥ 2,

concluding the proof of Proposition 1.294

Appendix B. Proof of Proposition 2295

Proof. Equation (11) can be rewritten as

F̂n,x(z) =

∑n
i=1 1{Xi∈Sx,hn}1{Yi≤z}

nPn(Sx,hn
)

,

with Sx,ϵ the closed ball centered at x of radius ϵ > 0 and

Pn(·) =
1

n

n∑
i=1

1{Xi∈·}

the empirical measure corresponding to X1, . . . , Xn. Recall that we use the296

estimator F̂n(x) =
1
n

∑n
i=1 1{Yi≤z} when nPn(Sx,hn

) = 0.297

Similarly as in the proof of the Proposition 1, a bias/variance decomposition
of the squared error yields

E
[
|F̂n,x(z)− F ∗

x (z)|2
]

= E

(∑n
i=1

(
F ∗
Xi(x)

(z)− F ∗
x (z)

)
1{Xi∈Sx,hn}

nPn(Sx,hn
)

)2

1{nPn(Sx,hn )>0}


+ E

[∑n
i=1 F

∗
Xi

(z)(1− F ∗
Xi

(z))1{Xi∈Sx,hn}

(nPn(Sx,hn
))2

1{nPn(Sx,hn )>0}

]

+ E

( 1

n

n∑
i=1

1{Yi≤z} − F ∗
x (z)

)2

1{nPn(Sx,hn )=0}


:= A1(z) +A2(z) +A3(z).

The excess of risk at X = x is thus decomposed into three terms

E
[∫

R
|F̂n,x(z)− F ∗

x (z)|2dz
]
=

∫
R
A1(z)dz +

∫
R
A2(z)dz +

∫
R
A3(z)dz

that we analyze successively.298
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The �rst term (bias) is bounded from above using Jensen's inequality and
property iii) of D(h,C,M):∫
R
A1(z)dz ≤ E

∑n
i=1

∫
R
(
F ∗
Xi(x)

(z)− F ∗
x (z)

)2
dz1{Xi∈Sx,hn}

nPn(Sx,hn)
1{nPn(Sx,hn )>0}


≤ E

[∑n
i=1 C

2∥Xi − x∥2h1{Xi∈Sx,hn}

nPn(Sx,hn)
1{nPn(Sx,hn )>0}

]
≤ C2hn

2h.

The second term (variance) is bounded using property ii) of D(h,C,M) and
an elementary result for the binomial distribution:∫

R
A2(z)dz = E

[∑n
i=1

∫
R F ∗

Xi
(z)(1− F ∗

Xi
(z))dz1{Xi∈Sx,hn}

(nPn(Sx,hn
))2

1{nPn(Sx,hn )>0}

]

≤ ME
[
1{nPn(Sx,hn )>0}

nPn(Sx,hn
)

]
≤ 2M

nPX(Sx,hn)
.

In the last line, we use that Z = nPn(Sx,hn
) follows a binomial distribution with299

parameters n and p = PX(Sx,hn
) so that E

[
1
Z1{Z>0}

]
≤ 2

(n+1)p , see Lemma 4.1300

in Györ� et al. (2002).301

The last term is a remainder term and is bounded by∫
R
A3(z)dz ≤ E

[
1

n

∫
R

n∑
i=1

(
F ∗
Xi

(z)− F ∗
x (z)

)2
dz1{nPn(Sx,hn )=0}

]

+ E

[
1

n2

n∑
i=1

∫
R
F ∗
Xi

(z)(1− F ∗
Xi

(z))dz1{nPn(Sx,hn )=0}

]
.

Properties ii) and iii) of D(h,C,M) and the fact that ∥Xi − x∥ ≤
√
d imply∫

R
A3(z)dz ≤

(
Cdh/2 +

M

n

)
E
[
1{nPn(Sx,hn )=0}

]
≤
(
Cdh/2 +

M

n

)
e−nPX(Sx,hn ).

For the second inequality, we use that P(Z = 0) = (1 − p)n ≤ e−np where302

Z = nPn(Sx,hn
) follows a binomial distribution with parameters n and p =303

PX(Sx,hn
) .304

Collecting the three terms, we obtain the following upper bound for the
excess of risk at X = x:

E
[∫

R
|F̂n,x(z)− F ∗

x (z)|2dz
]
≤ C2hn

2h+
2M

nPX(Sx,hn
)
+

(
Cdh/2 +

M

n

)
e−nPX(Sx,hn ).
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We �nally integrate this bound with respect to PX(dx). According to Equa-
tion (5.1) in Györ� et al. (2002), there exists a constant c̃d depending only on
d such that ∫

[0,1]d

1

nPX(Sx,hn
)
PX(dx) ≤ c̃d

nhd
n

.

Note that c̃d can be chosen as c̃d = dd/2. We also have∫
[0,1]d

e−nPX(Sx,hn )PX(dx) ≤ max
u≥0

ue−u

∫
[0,1]d

1

nPX(Sx,hn
)
PX(dx)

≤ c̃d
nhd

n

.

We obtain thus

E[RP (F̂n)]−RP (F
∗) = E

[∫
R
|F̂n,x(z)− F ∗

x (z)|2dz
]

≤ C2hn
2h + c̃d

2M + Cdh/2 + M
n

nhn
d

.

305

Appendix C. Proof of Proposition 3306

The proof of Proposition 3 relies on the next two elementary lemmas. The307

�rst one states that for a binary outcome Y ∈ {0, L}, forecasters should focus308

on binary forecast F ∈ M({0, L}) only, which is very natural. More precisely,309

any predictive distribution F ∈ M(R) can be associated with F ∈ M({0, L})310

with a better expected CRPS.311

Lemma 1. Let G ∈ M({0, L}). For F ∈ M(R), the distribution

F̃ (z) = (1−m)10≤z +m1L≤z with m =
1

L

∫ L

0

(1− F (z))dz

satis�es
CRPS(F̃ , G) ≤ CRPS(F,G).

Proof. Let F ∈ M(R) and G ∈ M({0, L}). We have

CRPS(F,G) =

∫
R

∫
R
(F (z)− 1y≤z)

2dzG(dy)

≥
∫
R

∫ L

0

(F (z)− 1y≤z)
2dzG(dy)

Because 1−m is the mean value of F on [0, L], we have for y ∈ {0, L}∫ L

0

(F (z)− 1y≤z)
2dz ≥

∫ L

0

((1−m)− 1y≤z)
2dz.
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Integrating with respect to G(dy), we deduce

CRPS(F,G) ≥
∫
R

∫ L

0

((1−m)− 1y≤z)
2dzG(dy).

The right hand side equals CRPS(F̃ , G) and we conclude

CRPS(F,G) ≥ CRPS(F̃ , G).

312

Lemma 2 shows that for binary outcome and predictions, the CRPS reduces
to a quantity proportional to the Brier score (Brier, 1950)

Brier(p, y) = (y − p)2, y ∈ {0, 1}, p ∈ [0, 1],

which is closely related to the mean squared error used in regression.313

Lemma 2. For all y ∈ {0, L} and F (z) = (1 − p)10≤z + p1L≤z ∈ M({0, L})
with p ∈ [0, 1], it holds

CRPS(F, y) = LBrier(p,
y

L
) = L(

y

L
− p)2.

Proof. We compute

CRPS(F, y) =

∫ L

0

(1− p− 1y≤z)
2dz

=

{
Lp2 if y=0
L(1− p)2 if y=L

.

In both cases, this equals L( y
L − p)2 = LBrier(p, y

L ).314

Proof of Proposition 3. Since only binary outcomes are considered in the class
B(h,C,L), Lemma 1 implies that

inf
F̂n

sup
P∈B(h,C,L)

{
E[RP (F̂n)]−RP (F

∗)
}
= inf

F̃n

sup
P∈B(h,C,L)

{
E[RP (F̃n)]−RP (F

∗)
}

where the in�mum are taken over models F̂n and F̃n trained on the �rst ob-315

servations (Xi, Yi)1≤i≤n and with values in M(R) and M({0, L}), respectively.316

Indeed, the left hand side is a priori smaller since the family F̂n is larger but317

Lemma 1 ensures that each model F̂n can be associated with a model F̃n with318

equal or lower expected score.319

We then apply Lemma 2. For a binary outcome, the conditional distribution
of Y given X = x writes

F ∗
x (z) = (1−m(x))10≤z +m(x)1L≤z,

18



and the model F̃n with values in M({0, L}) takes the form

F̃n,x(z) = (1−mn(x))10≤z +mn(x)1L≤z,

with m(x) = 1
L

∫ L

0
(1− F ∗

x (z))dz and mn(x) =
1
L

∫ L

0
(1− F̂n,x(z))dz.

Then Lemma 2 implies

E[RP (F̂n)]−RP (F
∗) = E

[
CRPS(F̂n,X , Y )− CRPS(F ∗

X , Y )
]

= LE
[
(Y/L−mn(X))2 − (Y/L−m(X))2

]
= LE

[
(mn(X)−m(X))2

]
,

which corresponds to the excess of risk in regression with squared error loss.
The property iii) of B(h,C,L) is equivalent to

|m(x)−m(x′)|h ≤ C∥x− x′∥h, x ∈ [0, 1]d,

which is the standard regularity assumption on the regression functionm. Using320

the result of the Problem 3.3 in Györ� et al. (2002) dealing with binary models,321

we �nally obtain that the sequence an = n− 2h
2h+d is a lower minimax rate of322

convergence for this class of distributions and more precisely that Equation (14)323

holds.324
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