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Coulomb diamonds are the archetypal signatures of Coulomb blockade, a well-known charging effect mainly
observed in nanometer-sized electronic islands tunnel-coupled with charge reservoirs. Here, we identify apparent
Coulomb diamond features in the scanning gate spectroscopy of a quantum point contact carved out of a
semiconductor heterostructure in the quantum Hall regime. Varying the scanning gate parameters and the
magnetic field, the diamonds are found to smoothly evolve to checkerboard patterns. To explain this surprising
behavior, we put forward a model which relies on the presence of a nanometer-sized Fabry-Pérot quantum Hall
interferometer at the center of the constriction with tunable tunneling paths coupling the central part of the
interferometer to the quantum Hall channels running along the device edges. Both types of signatures, diamonds
and checkerboards, and the observed transition, are reproduced by simply varying the interferometer size and
the transmission probabilities at the tunneling paths. The proposed interpretation of diamond phenomenology
will likely lead to revisiting previous data, and opens the way toward engineering more complex interferometric
devices with nanoscale dimensions.

DOI: 10.1103/PhysRevB.105.115144

I. INTRODUCTION

When a two-dimensional electronic gas (2DEG) is placed
in a large perpendicular magnetic field, charge carriers flow
in one-dimensional quantum Hall edge channels (QHECs)
formed as the Landau levels (LLs) cross the Fermi en-
ergy along device edges. If charge carrier phase coherence
is preserved over sufficiently long distances, these edge
channels can play the role of monochromatic wave beams
to form quantum Hall interferometers (QHIs), the counter-
parts of optical interferometers in electronic systems. QHI
device design relies on beamsplitters bringing the interfer-
ing QHECs in close proximity to modulate the reflection
r and the transmission t = 1 − r of charge carriers in and
out the interferometer [1]. In this framework, Fabry-Perot
(FP) [2] and Mach-Zehnder [3] QHIs have been success-
fully implemented, displaying clear interference due to the
Aharonov-Bohm (AB) effect. They offer a promising path
toward quantum computing based on anyonic braiding [4–6]
as well as opportunities to test the groundwork of quan-
tum physics, e.g., through tests of Bell inequalities violation
in a Hanbury Brown and Twiss configuration [7]. Note
that the latter objective can only be reached provided that
QHIs have a small size compared with the phase coherence
length [8].
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Nevertheless, small QHIs are plagued by Coulomb charg-
ing effects, which mask AB interferences. Indeed, Coulomb
blockade may also lead to oscillations of the QHI conductance
when varying the magnetic flux [9,10]. Inferring the precise
origin of such oscillations, and hence the regime of the stud-
ied QHI, is achieved via spectroscopy measurements. They
consist of measuring the conductance through the QHI while
varying both the dc bias and the magnetic flux. If the resulting
map draws a checkerboard pattern, it indicates that the QHI
operates in the AB regime [11–15] whereas a diamond pattern
is associated to the Coulomb dominated (CD) regime in the
literature [13,16,17].

Such spectroscopies, combined with scanning gate mi-
croscopy (SGM), have revealed that a QHI can form
spontaneously in the vicinity of a quantum point contact
(QPC) where an antidot, associated to potential inhomo-
geneities, couples to the counterpropagating QHECs flowing
along both sides of the constriction [14,17]. Intriguingly, these
QHIs have been found to exhibit both AB [14] and CD signa-
tures [17].

Here we study a semiconductor-based 2DEG patterned in
a QPC geometry in the quantum Hall (QH) regime. Thanks
to SGM, we reveal the presence of a natural nanometer-sized
QHI, associated with an impurity-induced quantum dot lo-
cated in the vicinity of the constriction. Spectroscopy on this
QHI exhibits a continuous evolution from checkerboard to
diamond patterns when varying the magnetic flux. With the
help of a basic FP model, we show that the transition between
both types of signatures can be explained without invoking
Coulomb charging effects. Instead, it can be reproduced, as-
suming a smooth change of the reflection and transmission
amplitudes (r, t).
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II. RESULTS

A. Experimental setup

The device is built from an In0.7Ga0.3As/In0.52Al0.48As
quantum well grown by molecular beam epitaxy on an InP
substrate (see Refs. [18,19]). A 15-nm-thick quantum well
buried 25 nm below the surface hosts a 2DEG with a bare
electronic density NS = 5.7 × 1015 m−2 and a mobility μ =
5.3 × 104 cm2/Vs. The 2DEG was electrically contacted by
means of Ge/Au ohmic contacts. The Hall bar and the QPC
were patterned using electron beam lithography and wet etch-
ing. The QPC materializes thanks to two narrow trenches
defining a ∼350-nm-wide constriction [see Fig. 1(a)]. The
2DEG areas beyond the etched trenches of the QPC were used
as side gates (with an applied bias Vg) to control the effective
width of the constriction.

Transport measurements were performed in a dilution re-
frigerator (base temperature T ≈ 100 mK) with a magnetic
field B applied perpendicular to the plane of the 2DEG. The
sample’s resistance Rxx = dV/dI was measured using stan-
dard ac lock-in techniques with a 2 nA excitation current and
frequencies between 8 Hz and 90 Hz. The dilution refrigera-
tor is also equipped with an atomic force microscope whose
metallic tip was used as a local gate. Using this microscope,
we acquired SGM images of the device by recording its resis-
tance while the tip biased at a voltage Vtip was scanning the
sample’s surface at a distance of ∼60 nm. In addition, two
types of spectroscopies were obtained. For this purpose, a dc
electric current Isd was added to the lock-in signal, and the
QPC’s differential resistance Rxx = dV/dI|Isd was recorded as
a function of Isd and B or Isd and Vtip, keeping the tip at a fixed
position.

B. Evolution of the magnetoresistance

Figure 1(b) compares the evolution of Rxx as a function
of B with Vg = 5 V in two different regions of the sample: a
macroscopic Hall bar (top panel) and the QPC region (bottom
panel). Both curves show Shubnikov-de Haas oscillations and
QH effect stemming from the magnetic depopulation of the
LLs in the 2DEG. The bulk integer filling factor ν is deduced
from the oscillations in the Hall bar. In the QPC trace, the
more complex series of oscillations in the vicinity of the
integer filling factor ν is highlighted in Fig. 1(d). Similar
resistance oscillations have been reported in QPCs and were
attributed to the interaction between the counterpropagating
QHECs through a small QHI [see Fig. 1(c)] located in the
vicinity of the constriction [14,20–25]. The same mechanisms
are at play in the present sample. We will indeed show below
that successive types of QHIs, whose configurations depend
on the magnetic field, are located in the constriction region.

We first focus on the Rxx evolution around ν = 4 [Fig. 1(d)]
and discover four different QHI configurations as B is raised
[Figs. 1(e)–1(h)]. The whole picture, detailed hereafter, relies
on a peculiar electrostatic potential landscape in the con-
striction region, with a central dot (larger electron density)
surrounded by a region of lower electron density, fully deter-
mined by disorder-related potential fluctuations. This model
is further justified in Appendix A, in particular, with respect
to another hypothesis involving a central antidot instead of
a dot.
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FIG. 1. (a) Artist view of the experimental setup with the buried
2DEG depicted in red. The biased tip locally changes the electron
density when applying the voltage Vtip and is moved at a distance
dtip ∼ 60 nm above the 2DEG. A magnetic field B is applied perpen-
dicularly to the 2DEG plane. (b) Rxx as a function of B measured on
a Hall bar patterned next to the QPC (top panel) and in the QPC
(bottom panel) with Vg = 5 V. The vertical lines indicate integer
filling factors. (c) Schematic of a QHI formed by a QHEC loop cou-
pling two counterpropagating QHECs (the dotted lines correspond to
tunneling paths). (d) Zoom of the gray shaded region in (b). 2.2 k�

and 4.3 k� plateaus are indicated with red dashed lines. (e)–(h)
Evolution of the QHEC spatial configuration with B in the vicinity
of the constriction (top panels) and the corresponding Landau level
positions compared to the Fermi energy EF . Higher potential (lower
electron density) is depicted with darker gray shades.

At the onset of the ν = 4 QH state (5.2 T � B � 5.6 T),
Rxx shows a series of narrow peaks superimposed on a 0 �

plateau. This indicates the presence of a QHI formed as the
counterpropagating QHECs [red channels at the top and bot-
tom of Fig. 1(e)] are coupled at both sides of the QPC [red
dotted lines in Fig. 1(e)].
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A large Rxx peak is then observed (5.6 T � B � 6 T). It is
the signature of a large transmission probability between the
counterpropagating QHECs, as sketched in Fig. 1(f).

As B is further increased (6 T � B � 6.4 T), Rxx exhibits
dips below a ∼2.2 k� plateau [red dashed line in Fig. 1(d)].
Such a plateau appears when the inner QHEC is completely
backscattered so the region outside of the QPC exhibits a dif-
ferent filling factor (ν in the bulk) from the QPC region (filling
factor ν∗), as illustrated in Fig. 1(g). In such a configuration,
the resistance is given by [26]

Rxx = h

e2

(
1

ν∗ − 1

ν

)
, (1)

where e is the electron charge and h is the Planck’s constant.
The 2.2 k� plateau is consistent with ν = 4 and ν∗ = 3. It
indicates that the spin degeneracy of the LLs has been lifted
due to Zeeman effect [27]. The second LL (and its correspond-
ing QHEC) is therefore split in two states: one spin-down
polarized [in red in Figs. 1(e)–1(h)] and one spin-up polarized
(in orange). Based on this picture, the dips below the plateau
are explained by the presence of a dot (QHEC loop) at the
center of the constriction which acts as a QHI coupling the
QHECs running at the left and right sides of the QPC in
Fig. 1(g). When the QHI formed by this dot [Fig. 1(c)] is
active, these QHECs are not perfectly backscattered anymore
and Rxx drops below the 2.2 k� plateau.

In the next B range (6.4 T � B � 6.7 T), Rxx peaks are
observed above the 2.2 k� plateau. This magnetoresistance
sequence is close to the first regime [Fig. 1(e)] but the QHI
is created by the spin up-polarized QHEC while the spin
down-polarized QHEC is perfectly backscattered [Fig. 1(h)].

When B is further increased, the regimes highlighted in
Fig. 1(d) are repeated with the spin up-polarized QHEC. Rxx

then features fluctuations around a plateau close to 4.3 k�

[right red dashed line in Fig. 1(d)], corresponding to the filling
factors ν = 3 and ν∗ = 2 in Eq. (1). In the remainder of this
paper, we will further characterize the QHI formed by the
spin-up polarized QHEC in the configuration of Fig. 1(g).

C. dc bias spectroscopies

Figure 2(a) displays a Rxx map as a function of the elec-
trically biased tip position, with the etched area defining the
constriction indicated by the white shaded regions. This map
features concentric fringes centered on the QPC, which clearly
confirms that the QHI is located in the constriction. In the
AB framework, these oscillations originate from a change of
the magnetic flux � = BA enclosed in the QHI whose area A
varies when the electrically biased tip moves in its vicinity. As
a result, interference conditions in the QHI alternate between
constructive and destructive, which yields concentric fringes
in the SGM image. Note that another explanation could be
given for the same phenomenon in the framework of the CD
regime (with the tip influencing energy levels of a tunnel-
coupled quantum dot), but we will see below that we can
discard this hypothesis.

Figure 2(b) shows Rxx as a function of Vtip for the tip
position indicated with a green dot in Fig. 2(a). When Vtip is
tuned to large negative values (below ∼−3 V), Rxx reaches
the 4.3 k� plateau, decorated with a set of narrow dips. This
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FIG. 2. (a) SGM map obtained by recording Rxx as a function of
the tip position at B = 7.3 T [blue dashed line in Fig. 1(d)] and with
Vtip = 0 V (depleting tip due to the work function difference with the
sample surface). The QPC borders are indicated by the white shaded
area. (b) Evolution of Rxx with Vtip for the tip position indicated with
a green dot in (a). The red dashed lines indicates the 4.3 k� plateau.
(c), (d) Evolution of the QHECs spatial configuration with Vtip in
the vicinity of the constriction (top panels) and the corresponding
Landau level positions compared to the Fermi energy EF (bottom
panel). (c) and (d) correspond, respectively, to the blue and orange
regions in (b). (e), (f) Experimental map of �Rxx and simulated map
of G, respectively, as a function of Vsd and Vtip [blue region in (b)].
The maps feature diamond patterns. (g) �Rxx at Vsd = 0 from (e) in
red and G versus Vtip from (f) in blue. (h), (i) Experimental map of
�Rxx and simulated map of G, respectively, as a function of Vsd and
Vtip [orange region in (b)]. The maps feature checkerboard patterns.
(j) �Rxx at Vsd = 0 from (h) in red and G versus Vtip from (i) in blue.

behavior is perfectly consistent with the picture presented in
Fig. 1. Indeed, a negative Vtip decreases the electron den-
sity (i.e., the electrostatic potential landscape shifts upward)
which implies a smaller QHI size. Consequently, the trans-
mission probability to the backscattered QHECs is decreased
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[Fig. 2(c)] compared to a less negative Vtip [Fig. 2(d)]. With
a smaller transmission probability, Rxx remains close to the
plateau that corresponds to a perfect backscattering of the
QHECs.

Next, we compare the dc bias spectroscopies in the
blue (weak transmission) and orange (stronger transmission)
ranges in Fig. 2(b) to obtain further information on the differ-
ent regimes of transmission between the dot and the QHECs.
In such measurements, one records Rxx as a function of Vtip

and the source-drain voltage Vsd . Both parameters change the
phase of the QHI. A high-pass filter has been applied to each
map to get rid of the broad background evolution of Rxx and
only keep the oscillations �Rxx originating from the QHI.
First, Fig. 2(e) shows the spectroscopy obtained at large neg-
ative values of Vtip [weak transmission - blue in Fig. 2(b)]. In
this situation, �Rxx features a characteristic diamond pattern,
usually associated with Coulomb charging effects [13,16,17].
Second, when examining data at less negative values of Vtip

[stronger transmission—orange in Fig. 2(b)], the obtained
spectroscopy displays a checkerboard pattern [Fig. 2(h)]. The
latter pattern is the signature observed in QHIs in the AB
regime [11–15,28–31].

However, the apparent transition from the AB to CD
regime when varying Vtip seems surprising for at least two
reasons. First, the characteristic energy scales in Vsd are ex-
pected to be different, because they are ascribed to different
and uncorrelated mechanisms: a phase change explains the
AB oscillations in Vsd whereas the Coulomb charging energy
should determine the height of the Coulomb diamonds. Inter-
estingly, the energy scale extracted from the spectroscopies
in Figs. 2(e) and 2(h) remains the same for the checkerboard
and the diamonds, with a value around 0.2 mV. Second, the
Coulomb charging energy is determined by the size of the
QHI and we will show in the next section that this size
does not change significantly within the Vtip range of Fig. 2.
Therefore, if the Coulomb charging energy does not dom-
inate in Fig. 2(h), nor should it in Fig. 2(e). Figures 3(c)
and 3(d), obtained by varying B instead of Vtip, confirms that
the checkerboard pattern [Fig. 3(c)] evolves continuously, and
with a constant energy scale in Vsd , to a diamond pattern
[Fig. 3(d)] with a small increase of the magnetic flux enclosed
in the QHI.

Studying the evolution of Rxx oscillation amplitude �Rxx

with the temperature yields a third reason to discard the
hypothesis of a different origin for checkerboard and di-
amond patterns. The oscillation amplitude associated with
both patterns [orange and blue regions in Fig. 3(a)] turns
out to follow the same exponential dependence �Rxx =
�Rxx,0 exp(−T/T0) with the temperature T [Fig. 3(b)], con-
sistent with the AB effect [14]. The CD regime, on the
contrary, would imply a T −1 dependence [25]. These obser-
vations suggest that the QHI remains in the pure AB regime,
whatever the observed phenomenology (checkerboard- or di-
amondlike). In that framework, it remains to explain how a
diamond pattern can be observed in the AB regime.

III. DISCUSSION

To explain the transition between checkerboard and di-
amond patterns in Figs. 2(e), 2(h), 3(c), and 3(d), we
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FIG. 3. (a) Rxx versus B [blue region in Fig. 1(d)] with Vtip = 0 V.
The red dashed line indicates the 4.3 k� plateau. (b) Oscillation am-
plitude �Rxx measured at different temperatures T for the two ranges
of B [orange and blue regions in (a)]. The temperature dependence,
fitted with a continuous line, displays a similar exponential evolution
for both B ranges. (c), (d) Experimental map of �Rxx and simulated
map of G as a function of Vsd and B. (e), (g) Zooms on the low B
range of (c), (d) displaying a checkerboard pattern. (f), (h) Zooms on
the high B range of (c), (d) displaying a diamond pattern.

have considered that the QHI always acts as a simple FP
interfometer in the AB regime whatever the Vtip or B range.
From this hypothesis, we have developed a model inspired
from Ref. [30] and described in details in Appendix B. Our
model relies on the schematic shown in Fig. 1(c), where the
FP QHI is formed by a closed-loop QHEC (inside a dot)
connected to the left (input) and the right (output) QHECs by
two beam splitters (dotted lines).

Hereafter, we show that this model accurately reproduces
the experimental spectroscopy results. Before developing the
comparison between experimental and simulation results, we
should stress that experiment yields maps of �Rxx, the os-
cillating component of the resistance through the sample,
whereas model results, obtained from Eq. (B7), correspond to
oscillating components of the conductance G through the dot.
The two quantities are directly linked since a large value of G
favors the transport through the QPC, lowering Rxx below the
plateau value, and therefore increasing �Rxx. Note also that
the spectroscopies shown in Figs. 2(e), 2(h), 3(c), and 3(d)
feature a decrease of the oscillations visibility when |Vsd | is
raised. Nevertheless, the origin of the phase randomization
mechanism leading to this behavior is debated in the literature
and a consensual explanation is still missing [32–35]. Here,
we have modeled the visibility decay with a Gaussian function
[Eq. (B7)] fitted to the data.

The correspondence between the simulated G and
experimental �Rxx spectroscopies is illustrated in
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Figs. 2(e), 2(f), 2(h), and 2(i). Both simulated maps were
obtained with the same parameters in Eq. (B7): B = 7.3 T
as in the experiment, the QHEC velocity v = 0.5 × 105 m/s
and the parameters associated to the visibility decay γ = 1
and �Vsd = 0.6 mV. The following parameters were the
only ones adjusted when changing Vtip: L = 404.6 nm and
RL = RR = 0.05 at Vtip = −8 V, and L = 435.1 nm and
RL = RR = 0.3 at Vtip = −1 V. (These values were used to
find the free parameters in Eqs. (B8) and (B9)]. Three main
outcomes can be highlighted from simulation results, and the
good fit to the experimental data: (i) At large negative Vtip, a
good correspondence has been obtained for a small dot size
and a large reflection probability (weak transmission) and a
diamond pattern is observed in this case, whereas at smaller
negative Vtip (larger dot, stronger transmission), the model
yields a checkerboard pattern. (ii) The dot size obtained
from a fit to the AB oscillation is fully consistent with the
constriction width of 350 nm. Indeed, the dot diameter is
around 250 nm. (iii) The QHEC velocity v used to fit the
Vsd oscillations is fully consistent with values obtained in
previous studies [13,14].

Figures 3(e) and 3(f) also show that the model can accu-
rately reproduce the experimental data of Figs. 3(c) and 3(d),
respectively. The simulations have been performed with an
evolution of the QHI parameters from L = 427.3 nm and
RL = RR = 0.3 at B = 7.5 T to L = 407.8 nm and RL = RR =
0.05 at B = 7.7 T. The other constant parameters are the same
as in Fig. 2. Again, the dot shape evolution and its coupling to
QHECs follow the pictures proposed in Fig. 1(g), with a size
and a transmission probability decreasing with the magnetic
field. This set of maps further draws a clear overview of the
evolution from a checkerboard to a diamond pattern as the dot
geometry and transmission are changed.

At this point, it is worth providing an intuitive physi-
cal picture explaining how diamond patterns, very similar
to Coulomb blockade signatures, can emerge in FP QHIs.
Figures 2(g) and 2(j) show the measured Rxx and the simulated
G as a function of Vtip at zero Vsd . The curves extracted from
the diamond pattern [Fig. 2(g)] exhibit sharp peaks whereas
the ones corresponding to the checkerboard pattern [Fig. 2(j)]
are characterized by a smooth sinusoidal evolution. This is
consistent with the FP theory where resonances narrow as
the reflection is increased at the interferometer beam split-
ters, due to recursive interference of the electronic waves
partially confined in the interferometer: the sharpness of the
QHI resonances is related to the quality factor or the finesse
of the cavity. When applying a Vsd bias, an extra phase is
accumulated by the charge carriers [Eq. (B4) in Appendix B],
leading to a shift of the sharp resonances for large reflection
probabilities at the beam splitters and, hence, to the charac-
teristic diamond features of Figs. 2(e) and 2(f). With smaller
reflection probabilities, the bias-induced phase shift is initially
less visible than in the former case as resonances are broader
and is also masked by the bias-induced loss of visibility. The
dephasing then appears more abruptly at larger Vsd , resulting
in the checkerboard pattern of Figs. 2(h) and 2(i).

Note also that similar observations (diamond patterns)
were already reported in the case of FP cavities formed
in carbon nanotubes between partially transmitting metallic
contacts [36]. In the latter case, sets of parallel lines were

observed, reminiscent of excited states signatures in Coulomb
diamonds, but captured by a FP model. Our data also show
faint signatures of parallel lines in some cases, e.g., around
Vtip = −7.1 V in Fig. 2(e). The latter lines could, however, be
related to a mixture of different effects such as the activation
of different QHIs in parallel (whose signatures would then
superimpose) or of additional tunneling channel within the
same QHI. The SGM map in Fig. 2(a), obtained at Vtip = 0 V
also points toward more complex behavior when the tip ap-
proaches the constriction region (multiple crossings between
resonance lines) or, at a fixed tip position, when Vtip becomes
more negative [equivalent to expanding the SGM pattern in
Fig. 2(a)]. Further data would be necessary to disentangle this
type of complex phenomena but this is beyond the scope of
this paper.

As discussed above, we have accurately reproduced the
experimental spectroscopy data in Figs. 2 and 3 with a
model of QHI operating in the AB regime and whose radius
is around 125 nm (A < 0.05 μm2). We have also observed
QHIs functioning in the same regime with similar sizes in
graphene [37]. However, up to our knowledge, no QHI operat-
ing in the AB has ever been reported with a size under 1 μm2,
even with architectures optimized to reduce Coulomb interac-
tions [15,30,31]. According to Ref. [1], finding a QHI in the
AB or CD regime depends on the capacitive coupling between
the QHEC loop forming the QHI and the localized states
enclosed in the QHI, caused by potential fluctuations. When
the QHI size decreases, the capacitive coupling is enhanced
and Coulomb interactions tend to dominate the transport. The
main difference between the configuration measured here and
previous studies is the absence of localized states inside the
QHEC loop forming the QHI: the quantum dot confinement
results from a simple single dip in the potential landscape
[Fig. 1(g)]. This advantageous potential landscape is the key
to reach a fully AB-dominated regime in nanoscale QHI.

A last point to discuss is the generality of the results
exposed in this paper. Indeed, the transitions between the
different regimes of Fig. 1(d), due to a FP interferometer
coupling the counterpropagating QHECs, requires the pres-
ence of a dot located in the vicinity of the constriction.
Whereas this configuration seems specific to the studied sam-
ple, dots or antidots coupling counterpropagating QHECs
have been highlighted thanks to SGM in several other
samples, being in the vicinity constrictions in semiconductor-
based 2DEGs [14,17,25] or along the edges in graphene
devices [38]. Therefore, this shows that random potential
fluctuations, ubiquitous even in relatively high mobility two-
dimensional electron systems, indeed provide various natural
pinning locations for dots and antidots mediating coupling
between counterpropagating QHECs. Based on this paper,
one can then devise more elaborated architectures, where the
position and potential landscape giving rise to the dots or
antidots could be predetermined and tuned by a local gate.

IV. CONCLUSION

In this paper, we have used SGM to reveal the presence
of a quantum dot located in the vicinity of a QPC. In the
QH regime, it acts as a FP inteferometer that modulates
electrons backscattering between the two sides of the QPC.
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dc bias-spectroscopies reveal a continuous transition from
checkerboard to diamonds patterns. With a simple FP model,
we have shown that both patterns can be explained in a fully
AB (coherent) regime: this represents a paradigm shift in
the field, compared to the usual practice that automatically
associates diamond patterns in the spectroscopy with the CD
regime. We associate the observed transition with a change
of transmission probability between the central QHEC loop
and the counterpropagating QHECs flowing at each side of the
QPC. Finally, we point out that finding a QHI with a size of a
few hundreds of nanometers in a pure AB regime is surprising
since it should yield a large charging energy. We resolve
this apparent contradiction by pointing that no localized state
exists inside the QHI, lowering strongly the probability of
emergence of Coulomb interactions, a behavior also observed
in graphene [37]. Our paper therefore paves the way toward
the design of nano-sized QHIs, allowing us to feature both a
pure AB regime and a coherence length much larger than the
interferometer size, two key ingredients in the progress toward
anyonic braiding and tests of quantum physics groundwork.
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APPENDIX A: DOT OR ANTIDOT?

In Figs. 1(e)–1(h), we have presented the QHEC configu-
rations in the vicinity of the QPC that explains the transport
curve of Figs. 1(b) and 1(d). This relies on a global decrease
of the electron density in the constriction region and a lo-
cal increase of the density, due to potential inhomogeneities,
forming a quantum dot in the center of the constriction.
However, similar transport data in the literature have been
explained with the presence of an antidot near the QPC, asso-
ciated with a local decrease of the electron density [14,20,23–
25]. In this Appendix, we justify why the latter model (anti-
dot), despite being simpler, is not consistent with the present
data.

Figure 4 presents the QHEC configurations in the situation
where an antidot is located in the center of the constriction.
At first sight, the four configurations are compatible with the
different regimes in Fig. 1(d). However, Fig. 4(c) presents
a first inconsistency. Indeed, we have shown that the spin
degeneracy is lifted and the third (orange) and fourth (red) LLs
are polarized with opposite spins. Therefore, the tunneling
between the counterpropagating QHECs via the antidot in
Fig. 4(c) is prohibited.

A second argument against the antidot model [and hence
in favor of the model proposed in Figs. 1(e)–1(h)] is found in
the Rxx evolution versus Vtip in Fig. 2(b). As discussed in the
main text, large negative values of Vtip, leading to a decrease
of the electron density, are associated with high reflection

(a) (b) (c) (d)

EF

g*
μBeh
B

m
*

FIG. 4. (a)–(d) Evolution of the QHEC spatial configuration with
B in the vicinity of an antidot located in the center of the constriction
(top panels) and the corresponding Landau-level position compared
to the Fermi energy EF . A high potential (low electron density) is
depicted with darker gray shades.

probabilities at the QHI beam splitters. It is inconsistent with
the antidot model where a decrease of the electron density
should yield a larger antidot, closer to the counterpropagating
QHECs, leading to a smaller reflection coefficient at the beam
splitters (due to a higher transmission probability between
the QHECs and the antidot). On the contrary, the model of
Figs. 1(e)–1(h) correctly captures the evolution of the trans-
mission probability with Vtip.

APPENDIX B: FABRY-PEROT MODEL

In this Appendix, we develop the model used to produce
the simulated maps of Figs. 2 and 3. It relies on the schematic
shown in Fig. 1(c). In that framework, the wave function ψD

at the left side of the dot can be written

ψD = itLψin + rRrL exp(i2φD)ψD, (B1)

where tL is the transmission amplitude at the left side of the
dot, rL and rR are the reflection amplitude at the left and right
sides of the dot, ψin is the wave function of the left QHEC
and φD is the phase accumulated along one arm of the QHI
with a length L = √

πA. Following the same logic, the wave
function of the right QHEC is given by

ψout = itR exp(iφD)ψD, (B2)

where tR is the transmission amplitude at the right side of
the dot. From Eqs. (B1) and (B2), we define the transmission
probability through the dot T = |ψout|2/|ψin|2 as a function
of the reflection probabilities at each beam splitter RL(R) =
|rL(R)|2 = 1 − |tL(R)|2 and we obtain

T (φD) = (1 − RL )(1 − RR)

1 + RLRR − 2
√

RLRR cos(φD)
. (B3)

This transmission depends on the phase φD that can be devel-
oped as [39]

φD(ε,�) = π
�

�0
+ Lε

h̄v
+ ϕ, (B4)

where the first term of the sum is the AB phase, with �0 =
h/2e the quantum of magnetic flux, the second term is the
phase associated with the source-drain bias-induced energy
shift ε, where v is the QHEC velocity in the QHI and the third
term ϕ is a constant phase. From Eq. (B3), one can extract the
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oscillating component of the transmission by subtracting the
average term 〈T (ε,�)〉. It yields

Tosc(ε,�) = T (ε,�) − (1 − RL )(1 − RR)

1 + RLRR
. (B5)

The oscillation component of the current through the dot can
then be expressed as

Iosc = −e

h

∫ eVsd /2

−eVsd /2
Tosc(ε,�)dε, (B6)

where Vsd is the dc source-drain bias voltage. We assume an
equal voltage drop at both beam splitters. The conductance G
through the QHI is obtained from Eq. (B6) and the visibility
decay is modeled with a Gaussian function in Vsd as [12–14]

G = dIosc

dVsd
exp

(
−2πγ

( Vsd

�Vsd

)2)
, (B7)

where γ and �Vsd are fitting parameters.
In the experimental spectroscopies of Figs. 2 and 3, the

AB phase evolves with � [Eq. (B4)] through Vtip or B. Indeed,
both parameters tune the dot area A as illustrated in Figs. 1(f)–

1(h) for a change of B, modifying the spacing between the
LLs, and in Figs. 2(e) and 2(h) for a change of Vtip, shifting
the potential and the LLs compared to the Fermi energy EF .
The QHI size, given by the arm length L, then evolves as

dL = ∂L

∂Vtip
dVtip + ∂L

∂B
dB. (B8)

Since the terms ∂L/∂Vtip and ∂L/∂B are extremely difficult to
assess, we assume that they are constant. The evolution of L
with Vtip and B is therefore linear.

Furthermore, any change of the dot size also affects its
proximity, and hence its transmission probability [dotted lines
in Figs. 1(e)–1(h) and Figs. 2(e)–2(h)], with the backscattered
QHECs. Since the coupling occurs through tunneling, the as-
sociated transmission probability evolves exponentially with
the distance between the dot and the QHECs. In turn, since
this distance evolves linearly with the dot size, one has

RL(R) = α exp(−βL), (B9)

where α and β are positive coefficients to ensure that the
reflection probability increases when the dot size decreases
[see Fig. 1(c)]. This expression is only valid when RL(R) � 1.
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