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Non‑circularly shaped conical 
diffraction
Muhammad Waqar Iqbal1,2*, Nicolas Marsal1,2 & Germano Montemezzani1,2

Waves with tailored shape and vectorial non-homogeneous polarization are of much interest due to 
the many prospects for relevant applications in the classical and quantum domains. Such vector beams 
can be generated naturally via conical diffraction in optically biaxial crystals. The recent strongly 
revived attention to this phenomenon is motivated by modern applications such as optical trapping, 
polarimetry or super-resolution imaging, partly enabled by new configurations increasing the beam 
complexity, like those with several crystals in cascade. However, up to now all beams generated by 
conical diffraction conserve at their sharpest plane the underlying circular shape connected with the 
planar section of light cones. Here we show that a proper manipulation in wave-vector space within a 
conical diffraction cascade produces vector beams with highly peculiar non-circular forms, leading to 
an interesting and reconfigurable platform for easily shaping all structured wave properties, increasing 
complexity and information content. The experimental observations are confirmed by numerical 
integration of a paraxial model incorporating the effects of the wave-vector space manipulation.

The shaping and structuring of light beams in terms of intensity, phase and polarization distribution is presently 
attracting wide attention with applications extending from 3D micro-manipulation and imaging, to classical 
and quantum communication1,2. Among the most important custom light fields one counts vector beams that 
possess a spatially varying light polarization across the beam, as well as beam exhibiting phase singularities and 
an optical angular momentum (OAM), such as optical vortices. Besides their strong fundamental interest, such 
tailored light fields are emerging for an increasing number of applications. These include optical manipulation 
or tweezing3,4, the exploiting of OAM for mode division multiplexing in optical communication5 or for quantum 
information6,7, super-resolution imaging8, as well as other key enabling technologies in fields including metrol-
ogy, optical machining, biomedicine, chemistry, and several others1,9.

Internal conical diffraction (CD, also called internal conical refraction) is a natural phenomenon leading 
to vector beams of circular shape possessing a fractional OAM. This peculiar effect has intrigued the scientific 
community since its prediction by W. R. Hamilton nearly 200 years ago and the first experimental observation 
by H. Lloyd soon after. The CD phenomenon is observed when a sufficiently tightly focused beam is incident on 
an optically biaxial crystal (BC) with its wave-vector k parallel to one of the optical axes of the crystal10. For this 
singular k-direction, the Poynting vector directions are degenerate and lie on the surface of a slanted cone with 
circular base inside the crystal. The section of this cone can be easily visualized in the plane of tighter focusing of 
the incident wave (focal image plane, FIP), where one observes two closely spaced circularly shaped bright rings 
(double rings) separated by a dark ring (called Poggendorff ring). Two diametrically opposite points always pos-
sess orthogonal linear polarizations, leading to the vector beam character10–12. An elegant geometrical explanation 
on how the Poynting vector directions on the cone depend on the local electric ( E ) and electric displacement vec-
tors ( D ) of the wave is given in Born and Wolf ’s book13. In the last two decades research on CD has been strongly 
relaunched. This is due on one hand to an improved theoretical understanding of the phenomenon following 
its paraxial diffraction theory11 and on the other hand to its potential for several modern photonics applications 
in the framework of structured light10 among which one may cite optical trapping14,15, beam shaping16,17, free-
space multiplexing for communication18, polarimetry19–21, super-resolution imaging22 or OAM management23–25.

A major recent development in the field of CD consists in the study of cascaded configurations, where two 
or more crystals are put in series with their optical axes being aligned26–29. Such a cascaded CD leads to a mul-
tiplication of the number of observed rings in the FIP, for N crystals one gets 2N−1 double rings26. The cascade 
still has as free parameters the relative rotation angles γn (around the common optical axis) of the nth crystal 
with respect to the first in the cascade. For instance, for N = 2 the relative intensities in the two double rings 
depend on this angle29, for γ2 = 0 (parallel crystals) only the external of the two double rings survives, while 
for γ2 = π (antiparallel crystals) only the internal one survives. For a single crystal the radius of the CD double 
ring corresponds to the product R = αL of the half-angle of aperture α of the CD cone (depending on the 
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material birefringence) and the crystal length L. Importantly, for two BC in cascade of the same kind (same α ) 
of lengths L1 and L2 the external and internal double rings have a radius Rext ∝ L1 + L2 and Rint ∝ |L1 − L2| , 
respectively26,29. Obviously, if the lengths of the two crystals are identical, the internal double-ring will degener-
ate into a central spot. There is however an elegant way introduced recently by Peet30 to modify these radii by a 
technique called variable two-crystals cascade. A spherical lens is intercalated between the two cascaded crystals 
in such a way as to image the FIP near the first crystal into a second FIP near the second BC. It was shown that the 
magnification factor M of this imaging modifies the relative values of the observed double ring radii according to 
Rext ∝ ML1 + L2 and Rint ∝ |ML1 − L2|30. This make the effect much more versatile and allows the continuous 
tuning of the actual cascade parameters despite using crystals of fixed lengths.

With respect to the intensity distribution, if the input wave has circular polarization the intensity along the 
rings is homogeneous. An inhomogeneous azimuthal distribution can be achieved by linearly polarizing the 
light at the input or output10 or, more drastically, by scrambling the polarization between two or more BCs in 
cascade17, in which case also polarization patterns of increased complexity are obtained. Nevertheless, despite for 
all the above described developments, the CD patterns obtained so far always possess an intrinsic circular shape. 
This form is associated to the section of the CD cone with a plane perpendicular to the central light wavevector 
and the optical axis of the BCs. In this work we show that the circular symmetry can be dramatically broken by 
a proper manipulation in the wave-vector space between the BCs in a cascade. This leads to CD patterns with 
highly increased complexity, both in terms of the shapes and of the polarization distribution. The resulting vector 
beams can be modified in an extremely versatile way by changing the positions of the elements inserted in the 
cascade that will be described below. Our unexpected experimental observations are shown to be in very good 
agreement with the predictions of a Fourier domain theoretical model based on paraxial diffraction theory that 
takes into account the applied wave-vector manipulation.

Principle, optical set‑up and modeling
The concept underlying our approach is illustrated in Fig. 1a. The key aspect is in the manipulation of the 
transverse wave-vector space (k-space) that effectively splits this 2D space into two 1D spaces. As seen in the 
experimental set-up of Fig. 1b, this manipulation is done with the help of two crossed cylindrical lenses CLx and 
CLy . The linear polarized He–Ne laser beam (wavelength � = 633 nm) is transformed to circular polarization 
by the quarter-wave plate (QWP) and focused by the spherical lens L (focal length f = 200 mm) to the first BC 
(C1 ). The CD in this crystal can be observed as a sharp round and azimuthally homogeneous double ring at the 
first focal image plane (FIP1). Importantly, both cylindrical lenses (CL) image this plane into a same plane (the 
second focal image FIP2) near the position of the second BC (C2 ), however with different magnification factors 
Mx and My , respectively. The choice of identical focal lengths for the two CL would leave only limited versatility 
for the selection of the Mx and My values and it is better to choose different focal lengths, in our case fx = 100 
mm for CLx and fy = 75 mm for CLy . The cascaded CD pattern is formed in FIP2 and is imaged by the imaging 
spherical lens IL ( f = 100 mm) on the CCD camera. In our experiments KGd(WO4)2 is chosen for both BCs 
with lengths L1 = 22.6 mm for C 1 and L2 = 17.6 mm for C 2 . The angles γ1 (chosen = 0) and γ2 give the relative 
orientation of the two BCs around the common optical axis, as shown in Fig. 1b.

Before discussing the experimental results, we present briefly the main features of the theoretical model uti-
lized to numerically calculate the expected cascaded CD patterns. The model builds on Berry’s paraxial theory 
for cascaded CD26 by including the effects of the k-space manipulation. It is useful to use normalized coordinates 
in both real and wave-vector space so that the polar coordinate radius r in real space becomes ρ ≡ r/w , and the 
small transverse wave-vector kt in k-space (with respect to the exact optical axis direction) becomes κ ≡ ktw , 
with w being the 1/e intensity width of the input wave at its focal point17,26. We consider an incident paraxial 
wave field, whose Fourier transform of the electric displacement vector at the position of FIP1 is D0(κ ,φ) with φ 
being the azimuthal angle in polar coordinates. The distribution of the D-field in real space after going through 
the whole cascade is obtained as

where ϕ is the azimuthal angle in real space. Note that here the above real space D-field is calculated at the plane 
FIP1 at which the input field D0 and the width w are defined. It corresponds to the field at FIP2 back imaged to 
the plane FIP1 by the CL pair. Therefore a forward imaging of this field to plane FIP2 must be performed in order 
to compare with the experimental images obtained at the CCD camera. The key element in the above integral 
is the transfer matrix Utot that contains the effect of the cascade on each plane wave component composing 
the input beam, i.e. the effects of the two BCs and of all the optical elements in the path. For our situation this 
transfer function can be expressed as

where the matrices Ui (i = 1, 2) are given as

with ρi ≡ αLi/w being the normalized strength parameters for the CD in the two crystals, proportional to their 
lengths Li . The essential element in Eq. (2) is the transformation in the wave-vector space coordinates from (κ ,φ) 
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1
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to (κ ′,φ′) between the two transfer matrices U1 and U2 , which reflects the applied k-space manipulation. It can 
be easily shown that the needed transformations are

and

In the latter case one needs to take care of the correct quadrant for the arctangent function in accordance with 
the signs of numerator and denominator inside the round brackets. The calculations that will be shown below 
for the two-crystal cascade case are obtained by numerical integration of Eqs. (1) and (2) with an input electric 
displacement field D0 = 1/

√
2 exp(−κ2/2)(1, i)T corresponding to a circularly polarized gaussian beam. The 

used strength parameters ρ1 = 17.9 and ρ2 = 13.9 reflect the experimental focusing conditions and the crystal 
lengths. The obtained real space complex output field D is forward imaged to the plane FIP2 and its local relative 
intensity is calculated by its square module ( I ∝ |D|2).

Results and discussion
We consider first the case where the two BCs are either parallel ( γ1 = γ2 = 0 ) or antiparallel ( γ2 = π ), the 
results are shown in the first two columns of Fig. 2 for magnifications Mx = 1.25 and My = 0.325 . Figure 2a 
(experiments) and b (theory) show the parallel case. Clearly the pattern is dominated by an internal structure of 
strongly non-circular shape looking rather like a rotated diamonds symbol in playing cards. This structure has a 
reversed curvature, it is convex rather than concave if looked from inside. A very faint external structure can also 
be recognized both in experiments and theory. For the antiparallel case (Fig. 2c,d) the situation is reversed. Here 

(4)κ ′ = κ

√

cos2 φ

M2
x

+
sin2 φ

M2
y

(5)φ′ = arctan

[

Mx

My

(

− sinφ

− cosφ

)]

.

Figure 1.   (a) Schematic concept for generating non-circularly shaped conical diffraction beams. (b) Optical 
setup; QWP: quarter-wave plate, L: focusing lens, C 1/C2 : biaxial crystals, CLx/CLy : crossed cylindrical lenses, 
FIP1/FIP2: focal image planes, IL: imaging lens of FIP2 onto CCD camera. The angle γ2 is the rotation angle of 
crystal C 2 with respect to C1 around the common optical axis.
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the external structure dominates with only spurious presence of the internal one. This oval external structure 
is always concave and importantly, cannot be described by the equation of an ellipse, which would be expected 
by the deformed imaging of a circle with our optical system. Moving radially, both internal and external struc-
tures present two intensity maxima separated by a Poggendorff-like zero-intensity region. In conventional and 
cascaded CD without k-space manipulation, the external of each double ring is the most intense. This remains 
true for the oval outer structure with the stronger features on the outside. However, the internal convex structure 
presents the most intense features on the inside, which is again an opposite behavior. Obviously in our case the 
internal structure takes the role of the internal double ring in normal cascaded CD and the external the one of 
the external double ring. However, besides for the form, two other major differences exist. The first is that for 
normal cascaded CD only the external double ring is present for the parallel case and vice versa, which is exactly 
contrary to the present situation. The reason is the switch of the transverse wave-vector components signs at 
the CLs. The second difference is the fact that in the present case, unlike for normal cascaded CD, the second 
structure, though very faint, does not vanish completely. This is due to the fact that the destructive interference 
leading to this disappearance is not fully complete for our anisotropic imaging case. We can also notice that the 
light polarization on the pattern is always linear but has a complex distribution (see red arrows in theoretical 
pictures). Any two points connected by a central inversion possess orthogonal polarizations. We also note that, 
unlike in the case where the patterns would be circular, the intensity distribution within the pattern is highly 
inhomogeneous. Nevertheless, a symmetry with respect to a horizontal and a vertical axis through the center is 
present throughout for the cases of Fig. 2a–d. However, this symmetry is lost when the second BC is no longer 
parallel or antiparallel to the first one, as seen in Fig. 2e,f, where γ2 = π/2 . Clearly both structures become 
roughly equally important and the maximum of intensities are shifted towards one of the diagonals. We attribute 
this shift to the artificial chirality introduced into the system by the rotation of the second BC. A comparison of 
the local polarizations in Fig. 2b,d,f shows the crucial role of the angle γ2 on the polarizations.

The shapes of the CD structures can be easily modified by changing the k-space manipulation between the BCs 
and some examples are given in Fig. 3. The first column (Fig. 3a,b) displays a situation more strongly stretched 
in x-direction (larger Mx and smaller My ). Here the internal and external structures basically merge to give an 
upper region with essentially vertical polarization and a lower one with nearly horizontal polarization, the two 
being joint by two weak “rings” with polarizations near ±45

◦ . The central column (Fig. 3c,d) corresponds to a 
case where the anisotropic imaging squeezes both directions. Here the pattern is more gentle and all structures 
are concave, as is the case (not shown) of a stretching in both directions. The light distribution is still strongly 
inhomogeneous and the lack of symmetry with respect to the horizontal and vertical axes are less evident, but 
still present.

In our calculations (bottom rows of Figs. 2 and 3) the x and y axes are scaled as x = −Mxρ cosϕ and 
y = −Myρ sin ϕ , what takes into account the imaging between the calculated pattern at FIP1 and the observed 
one at FIP2. The positions of the points of intersection of the obtained structures with these axes merit a discus-
sion. Let’s call ±X± and ±Y± the four intersections of the external (subscript +) and internal structure (subscript 
−) with the x-axis and the y-axis, respectively. It can be easily verified that these intersection points satisfy well 
the relations

For instance for the case in Fig. 2 these expressions give X+ = 36.3 , X− = 8.5 , Y+ = 19.7 and Y− = −8.1 in 
accordance with the numerical calculations. Similarly, for the case of Fig. 3c,d one has X+ = 21.1 , X− = −6.0 , 

(6)X± = Mxρ1 ± ρ2; Y± = Myρ1 ± ρ2.

Figure 2.   Experimentally observed (upper row) and theoretically calculated (lower row) non-circular conical 
diffraction patterns for the cases of parallel, (a) + (b), antiparallel, (c) + (d), and crossed biaxial crystals, (e) 
+ (f). The magnifications between the planes FIP1 and FIP2 provided by the crossed CL are Mx = 1.25 and 
My = 0.325 . The coordinates x = −Mxρ cosϕ and y = −Myρ sin ϕ in the theoretical plots are proportional 
to the linear dimensions on the CCD camera. The red arrows give the local linear polarization direction. The 
intensity scales are shown on the right.
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Y+ = 18.1 and Y− = −9.7 . In general the most striking patterns are obtained when either X− or Y− is negative, 
but not both. It is worth noting that the above expressions (6) for X± and Y± are a generalization of the one given 
by Peet30 for the radii of the double rings in variable two-crystal cascade by intercalation of a spherical lens. 
Unfortunately our formulas hold only for the intersection points on the main axes and such simple expressions 
cannot be given for points lying obliquely on the structures.

Following the above argumentation it is interesting to investigate the case where either X− = 0 or Y− = 0 , 
but not both. This is a partially 1D degenerate situation (degeneration only along one of the two axes) and is a 
unique feature possible with our k-space manipulation that treats the two 1D transverse spaces separately. The 
1D degeneration is obtained if MxF = 1 or MyF = 1 , with the factor F defined as F ≡ ρ1/ρ2 . In our experiments 
F = L1/L2 = 1.284 and a corresponding 1D degenerated case (along x) is shown in Fig. 3e,f. The obtained CD 
pattern is composed of an external oval and of a complex internal structure resembling a calligraphic letter I  . 
Unlike for the other patterns in Fig. 3 that exhibit always linear polarization everywhere, here in the very center 
of the internal structure components of different polarizations and phases collide and interfere, leading locally 
to a significant degree of ellipticity. However, away from the degenerate zone the local polarization is still linear 
also in this exemple.

The technique is obviously not limited to the case of two crystals specifically discussed above and the cascade 
can be extended to N crystals with intermediate manipulations in k-space. Similar to the case of a conventional 
N-crystals cascade, CD patterns formed by a total of 2N−1 structures can be expected in this case. Two calcu-
lated examples for the case of a cascade of three mutually crossed crystals with wave-vector space manipulation 
between each pair of them are shown in Fig. 4. The simulations are performed using Eq. (1) and the proper gen-
eralization of Eqs. (2), (4) and (5). Here the CD strength parameters of the three BCs are chosen to be ρ1 = 12.0 , 
ρ2 = 9.3 and ρ3 = 7.3 with nearly equal ratios F12 ≈ F23 with Fij ≡ ρi/ρj . A set of two crossed cylindrical lenses 

Figure 3.   Experimentally observed (upper row) and theoretically calculated (lower row) non-circular CD 
patterns for crossed crystals ( γ2 = π/2 ) and various combinations of the magnification factors Mx and My . (a) 
+ (b): Mx = 2.50 , My = 0.233 ; (c) + (d): Mx = 0.400 , My = 0.232 ; (e) + (f): Mx = 0.778 , My = 0.323 (partially 
degenerate case). Remaining parameters and symbols as for Fig. 2.

Figure 4.   Calculated non-circular CD patterns for a cascade of three mutually crossed crystals ( γ1 = 0 , 
γ2 = π/2 , γ3 = π ) with CD strengths ρ1 = 12.0 , ρ2 = 9.3 and ρ3 = 7.3 . The magnification factors associated 
to the k-space manipulations between each pair of BCs (see text) are: (a) Mx1 = 2.50 , My1 = 4.30 , Mx2 = 1.25 , 
My2 = 0.325 ; (b) Mx1 = 1.25 , My1 = 0.325 , Mx2 = 2.50 , My2 = 4.30 . Therefore the manipulation in (b) 
between the second and third BC is the same as the one in (a) between the first and second BC, and vice versa. 
The color scale gives the relative intensity.
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is assumed to be placed between each pair of BCs giving magnifications Mx1 and My1 between the focal image 
planes FIP1 and FIP2 (near the first and second crystal), and magnifications Mx2 and My2 between FIP2 and 
a third focal image plane FIP3 near the last crystal in the cascade. The calculated intensity images depicted on 
Fig. 4 are those observable at FIP3. The case of Fig. 4a showing four structures looking like orbits with two of 
them intersecting each other is obtained for Mx1 = 2.50 , My1 = 4.30 and Mx2 = 1.25 , My2 = 0.325 . Remarkably, 
the mere permutation of the Mx1 and My1 values with the Mx2 and My2 ones leads to a completely different beam 
shape. This situation is shown in Fig. 4b, where one observes an internal Maltese cross-like shape formed by the 
two intersecting convex internal structures, combined with two concave external ones. The above permutation 
of the magnification values corresponds in practice to exchanging the cylindrical lenses between the first and 
second BC with those between the second and the third. The fact that this operation leads to fully different pat-
terns is related to the lack of commutation of the matrices within the integral (1) associated to a generalization 
of Eq. (2). Similarly to the relationships (6), the eight intersection points ±X±± and ±Y±± of the four structures 
with the x- and y-axes are found here by

and

The generalization of these expressions to a longer cascade of N crystals is straightforward. As it can be easily 
verified, it is worth noting that the ordering and the signs of the eight values X++ , X+− , X−+ , X−− , Y++ , Y+− , 
Y−+ and Y−− give a direct qualitative guidance on the kind of structure that can be expected for a given set of 
parameters.

Conclusion
We have shown that a proper wave-vector space manipulation within a CD cascade leads to highly structured 
vector beams with striking non-circular shapes. Our experiments performed with a cascade of two biaxial crys-
tals agree very well with the predictions of a corresponding paraxial diffraction model. The generalization to a 
longer cascade is straightforward and leads to a further increase in the CD pattern complexity. It is also worth 
mentioning that the addition of intermediate polarization scrambling by electro-optic elements can lead to a 
switching of the sub-structures in a way similar to the one proposed in an earlier work17, with speeds potentially 
of the order of GHz. The fast commutation of such highly complex structures is therefore feasible, which may 
be used also to address resonant phenomena, for instance in connection with optical trapping. Furthermore, 
the structured beams obtained by the technique described here may lead to multi-chamber and dynamically 
reconfigurable bottle beams, as an extension to the single chamber bottle beams already demonstrated earlier 
with CD31. Therefore, we believe that the richness and complexity of these naturally created vector beams and 
the versatility to tailor their properties by just a few parameters allows for a new platform for fundamental and 
applied studies of structured light. Finally, it is worth mentioning that CD beams present generally very interest-
ing features in terms of the OAM of light23,24,32. As cylindrical lenses are known to modify the OAM, we expect 
the present technique to highly enrich the opportunities for its tailoring and its manipulation.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.
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