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Abstract We explore three different classes of rela-

tivistic approaches applied to the description of dense

nuclear matter: a Walecka-type relativistic mean field

model (RMF), an extension including an effective chiral

potential (RMF-C) and a further extension with a chi-

ral potential and confinement effects (RMF-CC). The

parameters of the latter are controlled by fundamen-

tal properties such as the chiral potential, Lattice-QCD

predictions, the quark sub-structure, as well as empiri-

cal properties at nuclear matter saturation. While these

models are calibrated to the same properties at satu-

ration density, they differ in their predictions as the

density increases. We take care of parameter uncertain-

ties and propagate them to our predictions for sym-

metric nuclear matter by employing Bayesian statis-

tics. We show that RMF and RMF-C share common

features as the density increases, while RMF-CC be-

haves differently. For instance, the scalar field at 6nsat
reaches ∼ 20 MeV for RMF-CC while it is larger than

∼ 70 MeV for RMF and RMF-C. Interestingly, we also

show that, by fixing the ρ coupling constant from the

quark structure of the nucleon, these three models re-

produce only half of the empirical symmetry energy.

PACS 12.39.FeChiral Lagrangians · 21.65.+fNuclear

matter · 26.60.-cNuclear matter aspects of neutron

stars

1 Introduction

The understanding of the properties of dense nuclear

matter remains a challenge since, on the theoretical side

Quantum Chromo-Dynamics (QCD) cannot be solved

directly and, on the experimental side very few data

exist, see Ref. [1] for a recent review. Effective nuclear

modeling may be employed to tackle the problem and

efforts had been made to connect those descriptions to

the fundamental theory QCD, in particular its chiral

properties [2]. This effective approach is well suited to

address low-energy systems, but as the energy, or equiv-

alently the density, increases it faces a natural break-

down. In cold neutron matter, the break-down is ex-

pected to occur between nsat and 2nsat, where nsat is

the nuclear saturation density (nsat ≈ 0.155 fm−3), see

for instance Ref. [3] and references therein. The explo-

ration of the densest phase of nuclear matter there-

fore requires extrapolations such as the one proposed

in Ref. [4].

In this study, we adopt a different viewpoint and in-

vestigate a relativistic modeling of nuclear matter along

the lines originally proposed in Refs. [5,6] where spon-

taneous chiral symmetry breaking and confinement ef-
fects are incorporated (RMF-CC model). We also com-

pare this model to other effective approaches such as

the Walecka-type RMF model [7,8] and the RMF-C

ones, inspired from Refs. [9,10,11,12] (note that in the

present work we introduce the names RMF-CC and

RMF-C for convenience). We focus our analysis on rel-

ativistic frameworks since such approaches aim at de-

scribing the dense core of neutron stars (NSs). In par-

ticular, recent radio observations [13,14,15,16] as well

as X-ray observations from NICER [17,18] of NSs with

masses around two solar masses have indicated that the

sound speed in the cores of NSs is expected to be larger

than 10% of the velocity of light [3,19]. Therefore the

study of the densest phases in the core of neutron stars

requires the development of a relativistic description of

nuclear matter.

While for densities well above the saturation den-

sity, the question of possible phase transitions and nat-

ural degrees of freedom is important, see Ref. [20] for in-

stance, in the present paper we restrict ourself to matter
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made of nucleons only. The model dealing with the nu-

cleonic substructure (RMF-CC), however, already con-

tains the seeds for the emergence of more fundamen-

tal degrees of freedom and could be extended – in the

future – for a description of phase transitions in dense

matter. Bridging the fundamental aspects of QCD with

nucleonic degrees of freedom has indeed became a fun-

damental question in the recent development of nuclear

physics. Typically around saturation density, one could

consider nucleons as the basic degrees of freedom that

exist in nuclei since energies up to few tens of MeV per

nucleon are involved [21]. By the advent of QCD, it has

however established that nucleons are not fundamental,

but they are instead composed of colored quarks which

interact through the exchange of colored gluons at a

resolution scale of the few hundreds of MeV per nu-

cleon [22]. The typical low energy nuclear scale there-

fore remains too low to excite the nucleon substruc-

ture. This scale ordering has been employed to develop

an effective theory of QCD at low energy [2]. Further,

the quark sub-substructure could contributes to the po-

larization of the nucleon, which in turn might play an

important role in the properties of dense matter [23].

Before returning to this point, a brief reminder of

the development of our understanding of the low energy

nuclear interaction is necessary. In 1935, the Yukawa

meson-exchange model [24] has shaped the global un-

derstanding of nuclear physics in terms of nucleons and

mesons, producing the first good qualitative results by

fixing the coupling constant and associating a particle

exchange to the strong interaction. In the early 1960’s,

the discovery of heavy mesons helped in the modeling

of better one-boson-exchange potentials (OBEP) con-

taining the exchange of well identified vector mesons

namely the omega (ω) and rho (ρ) mesons. There were

however still some problems, e.g., the scalar sigma boson-

exchange, now named f0(600), for which the experi-

mental evidence was polemic as well as its link to the

broad 2π scalar resonance. Nevertheless, high-precision

potentials based on the meson-exchange picture with

the inclusion of a scalar meson were constructed and

successful, see for instance Ref. [25].

Since then, some phenomenological approaches such

as the Walecka model [7,8], aimed at describing the

binding energy in finite nuclei, as well as low-energy ex-

citations, have anchored their modeling into the meson-

exchange picture and have suggested that relativistic

descriptions could explain both the nuclear saturation

and the spin-orbit coupling. It is nowadays often called

the relativistic mean field (RMF) model, see Ref. [26]

for instance. The link between such Lagangians and the

bare nucleon-nucleon interaction could be performed

through the Dirac-Brueckner-Hartree-Fock (DBHF) ap-

proach [27,28] which produces a mean-field that guides

the parametrization of the RMF model, introducing

density-dependent coupling constants [29,30]. Some re-

cent RMF models accurately reproducing nuclei proper-

ties have included this link to DBHF potentials [31,32].

However, the question of the very nature of the back-

ground mesonic fields is still to be elucidated or, said

differently, it is highly desirable to clarify their relation-

ship with the low-energy realization of the symmetries

of QCD.

Chiral symmetry together with color confinement

are the most prominent low-energy features of QCD.

In the limit of vanishing quark masses, the QCD la-

grangian has essentially no dimensional parameter. This

scale invariance is however broken by quantum fluctu-

ations [22] leading to the formation of the character-

istic QCD momentum scale ΛQCD ≈ 200 MeV. Much

below ΛQCD, the coupling constant of the theory be-

comes very large, a feature which is supposed to gen-

erate color confinement and consequently render QCD

a non-perturbative theory in the energy range of nu-

clear physics, often referred to as low-energy [33]. Fur-

thermore, the chiral symmetery between left and right

handed quarks is spontaneously broken by the ground

state of QCD leading to the formation of ’Goldstone

bosons’ (that are identified with pions) as well as their

chiral partner, a scalar-isoscalar field. To bridge the

gap between relativistic theories of the Walecka type

and approaches based on chiral symmetry, one has to

map the nuclear physics sigma meson of the Walecka

model at the origin of the nuclear binding with a chiral

quantity. In this work, we will review the argument sug-

gested by Chanfray et al. [5], complemented with the

nucleon response [6], to perform this mapping. We will

also comment on and provide comparisons with other

approaches.

The paper is organized as follows. In Sec. 2 the rel-

ativistic models are described in details, including the

discussion of the link between the parameters and the

fitted data as well as their uncertainties. For simplicity,

we consider the Hartree approximation, also called the

classical field case, and the properties of these models

are explored in symmetric matter (SM), even though

the question of the prediction of the symmetry energy

is also addressed at the end of our study. Note that

the parameter adjustment is done in such a way that

all models are consistent at saturation density and ex-

trapolation to high density is performed with Bayesian

statistics. The predictions at high density therefore in-

corporate uncertainties from the model parameters. In

Sec. 3 we begin the comparison of the relativistic mod-

els. In Sec. 3.1 we show that the predictions of the mod-

els do not agree at high density by studying the energy
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per particle and the self-energies. Secs. 3.2 and 3.3 fo-

cus on the interpretation of the scalar potential of the

different models. Sec. 4 is devoted to a discussion of

the Landau parameter F0. Finally, in Sec. 5 we discuss

the predictions for the symmetry energy, and describe

limitations of the Hartree approximation and possible

ways to cure those limitations.

2 The relativistic nuclear models

Considering only the lightest u and d quarks and the

flavor number Nf = 2, the chiral fields associated to the

fluctuations of the quark condensate 〈q̄q〉 resulting from

chiral symmetry breaking are usually parametrized in

term of a SU(2) matrix M as:

M = σ + i~τ · ~φ ≡ S U (1)

with S = s + fπ and U = ei ~τ ·~π/fπ . The scalar field σ

(S) and pseudoscalar fields ~φ (~π) written in cartesian

(polar) coordinates appear as the dynamical degrees of

freedom. As stated in Sec. 1, it is necessary to clarify

the connection between the nuclear physics sigma me-

son of the Walecka model (let us call it σW from now

on) at the origin of the nuclear binding with a chiral

field (1). For instance, one may be tempted to identify

σW with the scalar field σ in cartesian coordinates. It is

however forbidden by chiral constraints and this point

has been first addressed by Birse [34]: it would lead to

the presence of terms of order mπ in the NN interaction

which is not allowed.

In this study, we follow Ref. [5] and identify σW
with the chiral invariant s (= S − fπ) field associated

with the radial fluctuation of the chiral condensate S

around the chiral radius fπ, in polar coordinates. It for-

mally consists of promoting the chiral invariant scalar

field s and the pion field ~π appearing in the matrix

M (1) to effective degrees of freedom. This was origi-

nally formulated in the framework of the linear sigma

model [5] but an explicit construction using a bosoniza-

tion technique of the chiral effective potential can be

done within the NJL model [35] where the linear sigma

model potential is recovered through a second order

expansion in S2 − f2π of the constituent quark Dirac

sea energy. This proposal, which gives a plausible an-

swer to the long standing problem of the chiral status

of Walecka theories, has also the merit of respecting all

the desired chiral constraints [34]. In particular the cor-

respondence s ≡ σW generates a coupling of the scalar

field to the derivatives of the pion field, as expected in

the physical world. Hence the radial mode decouples

from low-energy pions whose dynamics is governed by

chiral perturbation theory. A detailed discussion of this

sometimes subtle topic is given in [5,36].

Once the effective degrees of freedom are identified,

the relativistic Lagrangian can generically be written

as the sum of a kinetic fermionic term,

Lψ = ψ̄ (iγµ −MN ) ∂µψ ,

where the field ψ represents the nucleon spinor, and of

meson-nucleon interaction terms,

Lm = Ls + Lω + Lρ + Lδ + Lπ , (2)

collecting all mesonic contributions considered in a given

model. Using notation of Ref. [37] these can be enumer-

ated as,

Ls =
(
MN −MN (s)

)
ψ̄ψ − V (s) +

1

2
∂µs∂µs ,

Lω = −gωωµψ̄γµψ +
1

2
m2
ωω

µωµ −
1

4
FµνFµν ,

Lρ = −gρρaµψ̄γµτaψ + gρ
κρ

2MN
∂νρaµψ̄σ

µντaψ

+
1

2
m2
ρρaµρ

µ
a −

1

4
Gµνa Gaµν , (3)

Lδ = −gδδaψ̄τaψ −
1

2
mδδaδa +

1

2
∂µδa∂µδa ,

Lπ =
gA
2fπ

∂µϕπaψ̄γ
µγ5τaψ −

1

2
m2
πϕπaϕπa

+
1

2
∂µϕπa∂µϕπa ,

where the symbols have their usual meaning. In Eq. (3),

two quantities are of particular interest to us, the scalar

potential V (s) and the s-field dependent nucleon mass

MN (s). Different expressions for these quantities have

been employed in the past. For instance, the RMF-CC

approach, that we will detailed hereafter, employs the

chiral potential breaking the chiral symmetry in the

vacuum, while in RMF-C, the chiral potential is con-

sidered as an effective potential, which is adjusted to

reproduce saturation properties. Finally, the scalar po-

tential V (σW = s) in RMF is possibly non-linear and

has been introduced in a pragmatic way to better re-

produce the incompressibility modulus and the effective

mass.

In this paper we will restrict our attention to only

symmetric matter (SM), although the symmetry en-

ergy is explored at the end of our study. The energy

density at the Hartree level can be computed from the

Lagrangian of Eq. (3) in the usual way [6]. It is ex-

pressed as

ε =

∫
4d3k

(2π)3

(√
k2 +M2

N (s) + gω ω0

)
Θ(kF − k)

+V (s) − 1

2
m2
ω ω

2
0 , (4)

where the scalar and vector fields are obtained from the

equations of motion given in Appendix A. Note that in

relativistic approaches, two densities are defined, the
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Table 1 Nuclear Empirical Parameters (NEP) (Esat and
nsat) as given from Ref. [38] and Lattice parameters (a2 and
a4) extracted from Ref. [39], used in the fits. For the NEP
the mean and standard deviations correspond to a Gaussian
distribution, while for the Lattice parameters the standard
deviation refers to the width of a uniform distribution.

Parameter Mean Standard deviation

Esat (MeV) −15.8 0.3

nsat ( fm−3) 0.155 0.005

a2 (GeV−1) 1.533 0.136

a4 (GeV−3) −0.509 0.054

vector density (or baryonic density) ρ ≡ 〈ψ̄γ0ψ〉 and

the scalar density ρS ≡ 〈ψ̄ψ〉.
Note that Eq. (3) contains three isovector coupling

constants, gρ, gδ and gA. Since most of the paper is

dedicated to SM, these parameters play no role (at

the Hartree level) and are included in Eq. (3) only

for the sake of completeness. In Sec. 5 of the paper,

where the symmetry energy is discussed, we will fo-

cus only on the role of the ρ meson and set gδ = 0

since the effects of the δ are expected to be small [37],

and gA does not contribute at the Hartree approxima-

tion. Furthermore, the masses of all the mesons, except

the σ, are taken from hadron phenomenology. It should

however be noted that, in the Hartree approximation,

only the ratio of the coupling constant to the mass (for

all mesons) determines our results and not the masses

themselves.

In the next subsections, we present the following
models: RMF-CC, RMF-C and RMF. Since RMF-CC

is the model anchored into microscopic predictions from

QCD, in part, we present it first. The two other models

(RMF-C and RMF) will naturally be better understood

if presented after, especially since they are calibrated to

reproduce the same empirical parameters as the ones

predicted by RMF-CC.

2.1 Relativistic Mean Field including Chiral potential

and Confinement effects (RMF-CC)

We first discuss the relativistic model that incorpo-

rates both chiral symmetry and some effects of con-

finement, namely the nucleon polarisability originating

from its substructure treated in the linear response ap-

proximation. The former is enunciated via the chiral

effective potential, which is a Mexican hat potential for

the scalar field,

V (s) =
m2
σ −m2

π

8f2π

(
σ2 + φ2 − v2

)2 − fπm
2
πσ , (5)

with

v2 = f2π
m2
σ − 3m2

π

m2
σ −m2

π

. (6)

The chiral effective potential (5) corresponds to the

original linear sigma model using the cartesian coor-

dinates, namely the chiral partners σ and φ.

As explained in Sec. 2, we employ the polar coor-

dinates and, additionally, keep only the leading order

mass term for the pion. The chiral potential can then

be expressed as

V (s) =
m2
π

2

(
S2 − f2π

)
+
m2
σ −m2

π

8f2π

(
S2 − f2π

)2
+

1

2
m2
ππ

2 + ... (7)

In Eq. (7) the higher order terms generate pion-pion

interactions which disappear in the chiral limit.

We finally get the following expression that will be

used for this model:

V (s) =
m2
σ

2
s2 +

m2
σ −m2

π

2fπ

(
s3 +

s4

4fπ

)
, (8)

where we only keep the radial fluctuation field s, the

field identified with σW the ”nuclear physics” sigma

meson.

We now come to a very important point. The poten-

tial (8) does not allow for SM to saturate because of the

attractive contribution of the s3 term in Eq. (8), i.e.,

the tadpole diagram [40,41,42,43]. This problem can

be circumvented by introducing the nucleon response

to the scalar field at finite density, which is the central

ingredient of the quark-meson coupling model (QMC),

introduced in the seminal work of P. Guichon [23] and

successfully applied to finite nuclei with an explicit con-

nection to the Skyrme force [44]. The physical moti-

vation to introduce this nucleonic response is the ob-

servation that nucleons experience huge fields at finite

density, e.g. the scalar field is of the order of a few hun-

dred of MeV at saturation density. Nucleons, being in

reality composite objects, will react against the nuclear

environment (i.e., the background nuclear scalar fields)

through a (self-consistent) modification of the quarks

wave functions. This effect may generate a three body

force which brings the desired repulsion if confinement

dominates spontaneous chiral symmetry breaking, as

discussed in Ref. [35] within particular models. This is

the key ingredient of the saturation mechanism of the

RMF-CC model. The attractive chiral s3 tadpole dia-

gram responsible for the instability of the ground state
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Fig. 1 Probability Distribution Function (PDF) for the parameters of the RMF-CC model, adjusted to reproduce the NEPs
Esat and nsat as well as the Lattice parameters a2 and a4, see Table 1 for more details.

at finite density is counterbalanced by the nucleon re-

sponse driven by the susceptibility κNS modifying the

nucleon in-medium mass as:

MN (s) = MN + gss+
1

2
κNS

(
s2 +

s3

3fπ

)
. (9)

In Eq. (9), the quadratic term leads to a non-zero nu-

cleon susceptibility, and we have added a cubic term,

which is fixed such that the susceptibility

κNS =
d2MN (s)

ds2
(10)

vanishes at full chiral restoration [6]. In the following, it

will be convenient to introduce the dimensionless quan-

tity

C =
f2π

2MN
κNS . (11)

We will now make the connection with Lattice QCD

(L-QCD) more clear by following the approach of Refs.

[45,37]. The structure of the nucleon, in particular its

mass can be obtained from L-QCD, see for instance

Ref. [46]. In this reference precise calculations were lim-

ited to quark masses much larger than the physical one.

Therefore, extrapolation of L-QCD results to the phys-

ical value of the quark mass is required, but such ex-

trapolations run into diffcutly due to the fact that MN

is a non-analytic function of mq (or equivalently m2
π).

Such non-analytic behaviour arises due to contributions

from pion loops. Following the strategy of Refs. [39,47],

we express the nucleon mass as

MN (m2
π) = a0 + a2m

2
π + a4m

4
π + · · ·+Σπ, (12)

where we have isolated two contributions: one analytic

in m2
π (the terms before the dots) and another, con-

taining a non-analytic piece, denoted by Σπ which is

identified with the pion self energy contribution to the

nucleon mass. Note that in reality Eq. (12) is an ex-

pansion in the quark mass mq, but we have replaced

the quark mass with the pion mass (squared) using the

GOR relation m2
π ∝ mq [37]. The derivative of Eq. (12)

with respect to the pion mass gives the so-called sigma

commutator σN , i.e.

σN ≡ m2
π

dMN

d(m2
π)

= a2m
2
π + 2a4m

4
π + · · ·+m2

π

dΣπ
d(m2

π)
.

(13)

The sigma commutator σN is an important quan-

tity because on the one hand – on the theory side –

it is related to symmetry properties and their explicit

breaking and, on the other hand, it can be extracted

from experimental results. It can also be calculated via
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M *

D /MN

PD
F
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Ksat [MeV]
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PD
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Fig. 2 Prediction of the Dirac effective mass and the incompressibility modulus obtained from the RMF-CC model. The
PDFs of C and gs are also shown.

L-QCD [35]. The authors of Refs. [39,47] showed that

it is possible to estimate the non-analytic pion self en-

ergy contribution Σπ and its derivative in an essentially

model independent way using chiral perturbation the-

ory, with the pion loops suitably regularized. Then, the

parameters a2 and a4 are fit to L-QCD results [46] and

one obtains a range of values for a2 and a4, given in

Table. 1, due to the ambiguity in the regulator of the

pion loops, for which four different functional forms are

used: sharp-cutoff, monopole, dipole and Gaussian [47].

Furthermore, the parameters a2 and a4, which are

related to the analytic, non-pionic piece of σN , can

be used to determine the parameters of the RMF-CC

model: gs, mσ and C (see Refs. [45,37]) using the rela-

tions

a2 =
gsfπ
m2
σ

, (14)

and

a4 = −fπgs
2m4

σ

(
3− 2C

MN

fπgs

)
. (15)

Notice that in the expression of a4 the factor MN/fπgs
was absent in [45,37] since the nucleon mass was fixed

to be MN = fπgs.

In our approach we therefore have four fit parame-

ters a2, a4, mσ and gω. These are fixed by the analysis

of the Lattice results and by two saturation properties,

nsat and Esat (Table. 1). Considering the uncertainties

in these parameters, one can also predict the Probabil-

ity Distribution Functions (PDF) for the parameters:

gσ ≡ gs and C from Eqs. (14) and (15), as well as

Ksat and the Dirac mass M∗D. Note that in SM, at the

Hartree approximation, the Dirac mass is the same as

the s-field dependent nucleon mass, i.e. M∗D = MN (s).

The uncertainties in the quantities to fit (given in Ta-

ble. 1) are explored within a Bayesian method using

Markov-Chain Monte-Carlo (MCMC) approach. In this

way full exploration of the uncertainties in the Nuclear

Empirical Parameters (NEP) and the Lattice parame-

ters are translated into uncertainty in the model param-

eters. The PDFs obtained from the MCMC sampling

over our fit parameters a2, a4, gω and mσ are shown

in Fig. 1. The distributions over a2 and a4 are almost

flat (as imposed in the prior), and the confrontation

against the NEP changes very little. The distributions

over gω and mσ are much more peaked. The PDFs of

gω is peaked around 6.5. The PDF of mσ is peaked

around 820 MeV which is larger than the scalar mass

(≈ 500 − 600 MeV) usually considered by RMF ap-

proaches. The mass mσ is indeed related to the physi-
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cal origin of the ”nuclear physics” sigma meson, which

is still a controversial subject since there is no sharp

scalar resonance observed in the expected mass range

≈ 600 MeV. Instead a broad resonance, usually refereed

as f0(600), observed at around 600 MeV, is a ππ reso-

nance which has no direct relation with the background

scalar field introduced above.

Let us discuss this controversy in some detail, by re-

peating arguments already presented in Ref. [35]. The

emergence of a scalar field is linked to the presence of

a quark condensate, see for instance the Nambu-Jona-

Lasinio model (NJL) which describes the chiral symme-

try breaking in the QCD vacuum. This scalar field is by

construction a low momentum concept which does not

imply the existence of a sharp scalar meson: it has been

demonstrated by Celenza et al [48,49] that the inclu-

sion of a confining interaction on top of the NJL model

pushes the qq̄ scalar state, located originally at twice

the constituent quark mass, well above one GeV. Com-

ing back to the nuclear physics σW and its associated

“scalar mass”, it is indeed a low momentum parameter

related to the inverse of the vacuum scalar susceptibil-

ity, typically of the order of 600 to 800 MeV. There is

then no need to associate it to any existing meson in

the physical world.

Based on the parameter distributions shown in Fig. 1,

we can now analyze the impact of the uncertainties in

these parameters on several interesting properties of

dense matter, e.g. the Dirac mass at saturation M∗D
and the incompressibility modulus Ksat. For complete-

ness, we also show the distribution over the parameters

C and gσ. These results are shown in Fig. 2. The Dirac

mass is peaked around ≈ 0.85 ± 0.02MN . The predic-

tions for Ksat, with a PDF peaked at ≈ 265 MeV, are

slightly larger than the expected empirical value around

230− 250 MeV [38]. We expect however that quantum

corrections, e.g. Fock term or pion cloud [50], could

change these quantities and shift them towards lower

values. The PDF of C is consistent with the value used

in Ref. [37] and gs is consistent with the canonical value

of MN/fπ ≈ 9.98.

Note that the nucleon response κNS contributes as

well to the curvature coefficient at saturation – the in-

compressibility modulus Ksat. In a set of successive

works [6,45,37,50,35,51] this approach has been ap-

plied to the equation of state of nuclear matter and

neutron stars as well as to the study of chiral properties

of nuclear matter at different levels of approximation in

the treatment of the many-body problem (RMF, Rela-

tivistic Hartree Fock or RHF, pion loop correlation en-

ergy). Note also that, the quark substructure plays also

a crucial role for the spin-orbit potential as discussed

in a recent paper [52].

2.2 Relativistic Mean Field with Chiral Symmetry

only (RMF-C)

We now consider an approach where chiral symmetry is

incorporated within a chiral potential V (s), but with-

out the effect of confinement in terms of nucleon polar-

isation. This so-called RMF-C model is inspired from

Refs. [9,10,11,12].

Several chiral relativistic theories (of the RMF-C

type) have indeed been formulated but without ref-

erence to the nucleon response [40,53,9,10]. Recently,

such a RMF-C model has been used to study the pos-

sible mixed phase at the chiral transition in SM [11]

and neutron stars [12]. Note that our chiral invariant S

field is named χ in the latter paper. In this approach

the chiral potential deviates from the pure linear sigma

model potential (used by our RMF-CC model) by terms

of first and third order in S2 − f2π with additional pa-

rameters (a3, a4). This is a legitimate attitude since

any microscopic underlying model, including the NJL

model for instance, will certainly generate such higher

order many-body terms at low-energy.

Since the non-trivial scalar response of the nucleon

is neglected in this model, the s-field dependent nucleon

mass is simply given by

MN (s) = MN + gss , (16)

as in the linear sigma model [54].

The chiral potential is expressed in a very general

way as

V (s) =

4∑
n=1

bn
n!

(S2 − f2π)n

2n
− fπm2

πσ. (17)

Notice that contrary to Eq. (7), this chiral potential

contains terms of order n = 3, 4 in the S2 − f2π expan-

sion.

One interesting question is whether this higher order

terms may simulate the effect of the nucleon response.

Since a term in sn corresponds to a (n− 1)-body force,

one may thus expect that the expansion in the scalar

field s is perturbative, at least at low density: the 2-

body force is expected to be larger than the 3-body one,

itself larger than the 4-body force, and so on. Models

violating this ordering will thus be referred as anoma-

lous ones in the following. Anticipating our results, we

found that this RMF-C model lead to anomalous chiral

potentials.

An important specific point is that, as in the linear

sigma model, the scalar coupling parameter is fixed,

gs = MN/fπ. This leaves us with 4 unknown param-

eters gω, b2, b3 and b4 that we fit in a consistent way

compared to RMF-CC. To do so, we consider the two

NEPs in Table 1, Esat and nsat as in the RMF-CC

model and, additionally we use the predictions of the
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D and Ksat

shown in Fig. 2.
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RMF-CC model for the Dirac effective mass and the

incompressibility modulus shown in Fig. 2.

The result of sampling this distribution in the pa-

rameter space spanned by gω, b2, b3 and b4 is shown

in Fig. 3. First let us comment on the marginalized

1-dimensional PDF over gω. The distribution is peaked

around ≈ 6.25. This is a rather low value given that the

value of gω found in Ref. [12] is 9.47. This discrepancy

is due to the fact that we have fitted gω to a Dirac effec-

tive mass M∗D that is ≈ 0.85MN (see Fig. 2), whereas

the value of M∗D used in Ref. [12] is 0.75MN . We have

verified that if M∗D = 0.75MN is used in our approach,

we are able to reproduce the gω found in Ref. [12]. Re-

garding the other parameters b2, b3 and b4, the PDFs

are also peaked at values different from the ones found

in Ref. [12]. This is due to the fact the NEP used in

this work are different from that used in Ref. [12], most

notably Ksat but also Esat and nsat, therefore a precise

agreement of our results should not be expected. Indeed

for this work what is important is that the three mod-

els are parametrized consistently at saturation density.

In this way, the differences in the predictions at high

density could only be related to the ingredients of the

models.

Finally, let us note that the result of gω presented

here is consistent with what one obtains in the RMF-

CC model, see Fig. 1. We also remark that the PDFs are

broad and thus the parameters cannot be very well con-

strained by empirical knowledge of SM saturation. We

will comment more on the values of these parameters

later when comparing the scalar potentials of different

models.

2.3 Relativistic Mean Field Theory (RMF)

We now turn to a model in which both the chiral po-

tential and the response of the nucleon is ignored. The

first attempt to go beyond a non relativistic treatment

of nuclear matter was the relativistic mean field (RMF)

approach initiated by Walecka and collaborators [7,8],

which is based on meson exchange between nucleons

whose wave functions are solution of the in-medium

Dirac equation. In this framework nucleons move in an

attractive (scalar field) and in a repulsive (vector field)

backgrounds. This provides both the ”Walecka” satura-

tion mechanism and the correct magnitude of the spin-

orbit potential. The parameters describing the meson-

nucleon couplings are adjusted to the saturation prop-

erties of nuclear matter and/or nuclear ground state

properties through the nuclear chart (binding energies,

charge radii, etc). Hence there is no explicit or direct

connection with the underlying QCD theory but instead

this approach describes the nuclear properties in terms

of a meson exchange potential renormalized around nu-

clear saturation density.

As in the original Walecka model, the scalar poten-

tial is limited to the mass term:

V (σW ) =
1

2
m2
σσ

2
W , (18)

and for the σW -field dependent mass one has:

MN (σW ) = MN + gσσW , (19)

where gσ is the scalar coupling constant.

While the saturation mechanism arises from the equi-

librium between the scalar and the vector fields and al-

lows a good reproduction of the saturation density and

binding energy – at the cost of large coupling constants

– other properties of the model, e.g. the compression

modulus, the effective nucleon mass and the symmetry

energy, are in poor agreement with the empirical values.

Boguta and Bodmer [55] have thus suggested an exten-

sion of the original Walecka model, whose main purpose

is to bring the compression modulus and nucleon effec-

tive mass at saturation under control, by introducing

self-interactions of the scalar field by modifying the po-

tential (18) as,

V (σW ) =
1

2
m2
σσ

2
W +

1

3
c2MNσ

3
W +

1

4
c3σ

4
W . (20)

Such self-interacting scalar field potentials have been

largely employed in what is commonly referred as the

Relativistic Mean-Field Model (RMF), e.g. NL3 [26]

and see also the Glendenning book [56]. Note that other

extensions based on density dependent coupling con-

stant will not be considered in the present study. It is

interesting to remark that the Euler-Lagrange equation

for the scalar field is modified by the self-interaction

terms, but the nucleon effective mass remains described

by Eq. (19), as in the original Walecka model. This

also makes the RMF model qualitatively similar to the

RMF-C one, as we will illustrate it in the next section.

We have 4 parameters to fit, gσ, gω, c2 and c3.

As with the case of the RMF-C model, we use the

two NEPs of Table 1 and the PDFs of M∗D and Ksat

shown in Fig. 2. The results of sampling this distribu-

tion is shown in Fig. 4. We see that the PDF of gσ
is peaked around 10, which is consistent with what is

shown in Fig. 2 for the RMF-CC model. Note that we

fix mσ = 800 MeV compatible with the peak predicted

by the RMF-CC model. Fixing the value of mσ in RMF

is not constraining if gσ is varied: only the ratio gσ/mσ

matters. We remind that in the RMF-CC model how-

ever this degeneracy is broken by Eqs. (14) and (15).

Additionally, the fixing of mσ at a constant value can

be seen as analogous to the RMF-C model where the

parameter gs is frozen instead of mσ. For gω we again

obtain a value ≈ 6.25 which is again due to the fact

that we fit to a large value of M∗D ≈ 0.85MN . This

value of gω is very close to those obtained previously
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Fig. 5 The correlation between gs and gω for the three mod-
els. The 95 % confidence levels are shown. The dots represent
the centroids of the distributions.

for the RMF-CC and RMF-C models. Finally, we note

that the PDF of the c2 parameter has a peak around

10 but with an uncertainty of about 10, making it com-

patible with 0. The PDF of c3 prefers very large values.

We will comment extensively on our results for c2 and

c3 later when we compare the scalar potentials of the

different models.

Having obtained the values of gs(gσ) and gω for the

three models, we can study how the three models can

be separated when the correlation between gω and gs
is analysed. In Fig. 5, this correlation is plotted for the

three models in different colors, where the contours rep-

resent the 95% confidence level. For the RMF-C model,

only a vertical line is shown since gs is fixed in this

case. We see that for the three models, the centroid of

gω are very close (≈ 6.25). However, the models can

be separated along the horizontal coordinate (gs). The

RMF-CC model prefers larger values of gs, whereas the

RMF-C and RMF models prefer the lower value close

to MN/fπ.

3 Comparison of the three classes of relativistic

models

In the previous section, the three models have been fit

to reproduce the same properties at saturation in SM.

These properties are the saturation density and energy

for all models, and the models RMF-C and RMF are

adjusted to reproduce the same Dirac mass and incom-

pressibility modulus as RMF-CC, which, for this model

are deduced from fundamental L-QCD properties. The

models are therefore treated on an equal footing by en-

suring that they agree on the empirical parameters and

their uncertainties: nsat, Esat, Ksat and M∗D(n = nsat).

In this section we will show that although the pre-

dictions of these three models agree at saturation den-

sity, they differ quantitatively at larger densities since

they represent different density functionals. Moreover,

a detailed analysis of the scalar field properties indi-

cates that RMF-CC represents a microscopically justi-

fied and an economical way to incorporate in-medium

corrections on top of the chiral potential defined in the

vacuum.

3.1 The energy per particle, the self-energies and the

effective masses

We first start with an analysis of the energy per parti-

cle in SM. In Fig. 6, the results are shown in the left

panel. The three models correspond to the three colors.

The upper and lower limits represent the 95% CL, al-

lowing a visualization of the uncertainties in the model

predictions as a function of density. Recall that these

uncertainties originate from our imperfect knowledge of

nuclear matter saturation properties and fundamental

predictions of L-QCD. We see that the three models

agree well at densities n ≈ nsat, since they are con-

strained to do so. The agreement also appears to be

quite good at n < nsat. However, at n > 2nsat, RMF-

CC model predicts the larger values for the energy per

particle, while RMF-C model produces the smaller ones

and RMF model lies in the intermediate range. Note

however, that all model predictions are compatible with

each other within the considered 95% confidence levels.

Given that gω is similar for all three models, the reason

for differences at high densities is most probably related

to the scalar interaction, i.e. the scalar potential and/or

the scalar coupling to the nucleons. In the next section,

we will investigate the former in detail.

In the center and right panels of Fig. 6, the scalar

and the vector (time component) self energies, Σs and

Σ0 are shown. At the mean-field level in SM, we have

Σs = MN (s)−MN (21)

Σ0 = g2ω/m
2
ωρ . (22)

We see again that the three models agree at low den-

sities. At larger densities RMF-CC predicts a slightly

larger value for Σs, however there is still significant

overlap among the predictions. For Σ0, the models still

agree at large densities. This is expected since gω is the

only parameter that controls the density dependence

of Σ0, and all three models have similar values of gω.

Since correlations beyond the mean field lead to a more

complicated density dependence of Σ0 [57,58], it would
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Fig. 7 The density dependence of the Dirac and Landau
masses are shown.

be interesting to re-analyse this quantity by including

Fock contributions in the future.

Finally, in Fig. 7, the Dirac and Landau masses (M∗D
and M∗L) are shown. The Landau mass has been com-

puted by deriving the Schrödinger equivalent single-

particle potential following Refs. [57,58]. At the Hartree

approximation, it reads

M∗L = MN −Σ0. (23)

On the other hand, the Dirac mass is the same as the

s-field dependent nucleon mass, i.e. M∗D = MN (s). All

the comments made regarding Σs and Σ0 are applicable

to the Dirac and Landau masses respectfully, since the

relationship between the self energies and the effective

masses is quite straightforward in the mean-field level.

In summary, the three models presented here, while

being calibrated on the same quantities at saturation,

lead to slightly different predictions above saturation

density: RMF-CC is more repulsive than RMF-C on

the average, while RMF lies in between them. In the

following, we investigate more closely the properties of

the microscopic quantities at the base of the models:

the scalar potential and the self-consistent equation for

the scalar field.

3.2 Analysis of the scalar potential V (s)

The scalar potentials V (s) have different expressions in

the models considered in our analysis. For an easy com-

parison, we recast the chiral potential V (s) for RMF-

CC and RMF-C into the form of the scalar potential in

RMF, see Eq. (20). In doing so, the chiral potential (8)

in RMF-CC leads to the following coupling constants,

cRMF-CC
2 =

3

2fπMN
(m2

σ −m2
π) (24)

cRMF-CC
3 =

1

2f2π
(m2

σ −m2
π) =

MN

3fπ
cRMF-CC
2 , (25)

and for RMF-C the chiral potential (17) gives

cRMF-C
2 =

1

MN

(
3

2
b2fπ +

1

2
b3f

3
π

)
(26)

cRMF-C
3 =

1

2
b2 + b3f

2
π +

1

6
b4f

4
π . (27)

The sign of the parameters c2 and c3 are impor-

tant for the interpretation of the scalar potential in

terms of a Mexican hat potential. It indeed implies

that a positive c2 generates an attractive term (since

s is negative) and a positive c3 a repulsive term. As we

already pointed out, the magnitude of these parame-

ters is also important in order to interpret the different

terms of the potential as an expansion in terms of many-

body interactions, since a term in sn corresponds to an

(n − 1)−body force. Since these many-body forces are

expected to be hierarchically ordered (at least at low
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Fig. 8 Analysis of the potential of the scalar field. Considering the potential as an expansion in s, the number in the legend
refers to the order at which this expansion is truncated. The parameters of the scalar potential are taken to be the mean values
reported in Table. 2. In the right panel, for the NL3 parametrization (dashed lines) the orange dashed line is hidden behind
the green one.

Table 2 Coefficients of the scalar potentials expressed as in
Eq. (20) for the three models considered here. The quoted
uncertainties represent the 95% CL.

Model c2 c3

RMF-CC 11.3+2.2
−1.7 37.5+7.3

−5.6

RMF-C 47.2+37.4
−23.5 5880+3870

−2470

RMF 8.9+17.2
−12.6 2010+940

−820

NL3[26] -29.89 -2.19

densities), truncation at different orders of the scalar
potential are expected to evolve smoothly. When this

is not the case, we will interpret it as an anomaly of the

scalar potential.

In Tab. 2 we compare the parameters c2 and c3 de-

termined for the three models. For all the models con-

sidered in this work, except NL3, the centroids of both

c2 and c3 are positive, as expected. The parameters c2
and c3 of the RMF model are found to be different

from the original NL3 model of Ref. [26], where c2 and

c3 are both negative. Since the parameters c2 and c3
are obtained from a fit to the NEPs, their values are

determined from the values considered for these NEPs.

The values for Esat, nsat, M
∗
D(n = nsat) = MN (s) and

Ksat are indeed different for NL3 and the RMF case.

Large values of c3 found for RMF and RMF-C in-

dicate that V (s), when considered as an expansion in

s, might present an anomaly in the order hierarchy. To

make it more clear, we show in Fig. 8 the chiral po-

tential truncated at various orders in s, starting from

order 2. In RMF-CC, the distinction between order 3

and order 4 curves appears only at large s, and the

4th order correction is relatively small. In the case of

RMF-C however, we see that every addition of a higher

order correction drastically changes the behaviour of

the scalar potential. Indeed, a truncation at order 3

or 5 would result in an overall change of sign of V (s)

at s ≈ 0.5. Therefore in the case of RMF-C, the cor-

rect reproduction of nuclear NEPs in SM is due to a

fine tuning between the parameters b2, b3 and b4, ren-

dering difficult the interpretation of V (s) in terms of

many-body forces. We thus qualify the chiral potential

in RMF-C as presenting an anomaly. We have a simi-

lar behaviour for RMF. The 4th order correction to the

order 3 curve is very large, which is imposed by the sat-
uration properties of RMF-CC. The scalar potential of

RMF is thus also possibly anomalous. This conclusion

is of course limited to the explored parameters region

considered in our study - and related to the predic-

tions of RMF-CC model - but different parameter sets

could lead to a convergent expansion, as illustrated for

instance by NL3 (RMF model), see the right panel of

Fig. 8. Note that in this case the 4th order correction

(dashed green line) is so small that it lies on top of and

thus hides the 3rd order term.

In conclusion, we observe that if the three models

RMF-CC, RMF-C and RMF are constrained to repro-

duce the same properties at saturation, the s expansion

of the scalar potential V (s) may manifest an anoma-

lous behaviour for RMF-C and RMF, at variance with

RMF-CC. In the following section, we show that the

origin of this anomaly for RMF-C and RMF can be re-

lated to the absence of the scalar nucleon response in

their Lagrangian.
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3.3 Analysis of the equation of motion of the scalar

field

We now analyze in details the Equation of Motion (EoM)

for the scalar field where the scalar potential plays nat-

urally a crucial role. We will show that the anomaly of

the scalar potential observed in the previous subsection

for RMF-C and RMF models impacts the solution of

the EoM.

The EoM for the scalar field s is, see Appendix A,

V ′(s) = −g∗SρS with g∗S =
∂MN (s)

∂s
, (28)

where ρS is the scalar density. Note that for RMF-C

and RMF models, g∗s = gs since MN (s) is simply linear

in the field s.

In Fig. 9, we represent the graphical solution of the

EoM by drawing the two sides of the equation: V ′(s) is

plotted as the solid blue lines and −g∗SρS as the solid or-

ange lines for the three models (by columns) and at dif-

ferent densities (by rows). The parameters of the scalar

potential are taken to be the mean values reported in

Table. 2, and similarly we consider the centroid of the

PDFs for gs which are 11.10, 9.98 and 10.08 for RMF-

CC, RMF-C and RMF respectively. In case of several

solutions, the physical one is the smallest one and it is

identified as a black star. We see that as the density

increases, the solution for the s-field (abscissa of the

black star) of the scalar EoM increases. It is interesting

to note that for all three models, at a given density,

the value of this solution is quite similar. This is due

to the fact that the quantity gss defines the in-medium

Dirac mass (except for RMF-CC where the nucleon re-

sponse is also included) which remains almost identical

for the three models, see Fig. 7 and gs does not differs

by more than about 10% between the different models,

see Fig. 5. As a consequence the values of the field s are

very close between the three models considered here.

The absolute value of the y-coordinate of the solu-

tion (∝ V ′(s)) is however always smaller for RMF-CC

compared to the RMF-C and RMF models. Since V (s)

is the vacuum chiral potential in the case of RMF-CC,

the vertical position of the intersection point informs

us about the derivatives of this potential for various

values of the field s. In other words, for RMF-CC den-

sity scans the chiral potential function of s and the

in-medium effects are entirely captured by the nucleon

response given by g∗s .

The situation is however different for RMF-C and

RMF models. These models share two important fea-

tures: i) they do not incorporate explicitly the nucleon

response as in RMF-CC, and ii) the scalar potential

is determined from the fit to saturation properties. If

the fit imposes a modification of the scalar potential

making it different from the vacuum one, it is inter-

preted as an in-medium correction to the scalar poten-

tial. It is interesting to remark that the result of the

fit, which is made differently for RMF-C and RMF,

is to impose larger absolute values for V ′(s) as func-

tion of s compared to the vacuum values represented

by RMF-CC model. As a consequence, the intersection

points in RMF-C and RMF happen at larger absolute

values compared to RMF-CC. The vertical intersection

point therefore informs us either on the role of the nu-

cleon response in the EoM (28) (for RMF-CC), or on

the in-medium modification of the scalar potential (for

RMF-C and RMF).

At first sight, the models fitted to saturation and

disregarding nucleon response (RMF-C and RMF) sug-

gest large in-medium modification of the scalar poten-

tial, while the models considering the vacuum chiral

potential complemented with nucleon response (RMF-

CC) do not require any in-medium modification of the

chiral potential. One may however wonder to which ex-

tend these two opposite conclusions do not reflect a sim-

ilar reality suggesting that the nucleon polarization may

modify in an effective way the vacuum scalar potential.

It may even be the dominant in-medium correction to

the scalar EoM.

In order to address this question, we rewrite the

EoM for RMF-CC to absorb the effects of the nucleon

response in an effective scalar potential Ṽ ′(s) = V ′(s)+

g∗SρS − gS ρ̃S , as

Ṽ ′(s) = −gS ρ̃S . (29)

This leaves the standard scalar coupling gS on the RHS

of Eq. (29) (as in the other models). Note that this re-

arrangement has been done by ensuring that it is still

the same self-consistent equation of motion that is being

solved for the RMF-CC. Finally, ρ̃S denotes that the

dependence of the scalar density on s via the nucleon

mass MN (s) is obtained by using a linear relation for

MN (s) (as in RMF-C and RMF) and not the non-linear

one used in RMF-CC. In this way, Eq. (29) is formally

equivalent to the EoM (28) solved for RMF-C and RMF

models.

In Fig. 9, the left column (for RMF-CC) displays

dashed blue and dashed orange lines corresponding to

the graphical solution of Eq. (29) in terms of the ef-

fective potential Ṽ ′(s). With such a construction, we

see that the dashed blue line intersects the dashed or-

ange line for lager absolute values of Ṽ ′(s), similar to

RMF-C and RMF. This clearly demonstrates that the

smaller absolute values of V ′(s) obtained for RMF-CC

is a consequence of the inclusion of the scalar response
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Fig. 9 Analysis of the equation of motion of the scalar field. The different rows correspond to different densities. Dashed lines
correspond to the equation of motion written for RMF-CC with the effective potential, see Eq. (29).
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Fig. 10 The Landau parameter evaluated at different densities. In the top panel, the inset shows a zoom of the region where
the PDFs are nonzero.

of the nucleon. In other words, the nucleon polarisa-

tion captures most of the in-medium correction to the

vacuum scalar potential.

While Fig. 9 clearly demonstrates that the nucleon

polarisation is the dominant in-medium correction to

the scalar EoM, a similar conclusion may have been

obtained in the previous section based on the values for

c2 given in Tab. 5. In the RMF-CC model, the (posi-

tive) c2 parameter controls the magnitude of the above

mentioned attractive tadpole diagram which destroys

saturation. For hierarchically ordered scalar potentials,

it has been shown that after an appropriate shift of the

scalar field, σW = s + (κNS/2gs)s
2, where the term

∝ κNS represents the nucleon response, the Dirac mass

of the nucleon become MN (s) = MN + gsσW and the

nucleon polarizability renormalizes the cubic term of

the scalar potential as c2 (1−2C) ' −2 c2 if C ' 1.5 [59]

. One sees that this is qualitatively compatible with the

values of c2 for RMF-CC and NL3 quoted in Tab. 2.

One can thus remark that the negative value of c2 in

the original NL3 model Ref. [26] simulates in an ef-

fective way the nucleon response. Note also that this

discussion is not applicable to the RMF model since

its scalar potential displays an anomalous behaviour.

However it is interesting to note that while having a

positive centroid for c2, negative values for c2 are also

allowed in the PDF for the RMF model.

In conclusion, we have shown that the in-medium

modification of the scalar potential which is captured in

RMF-C and RMF models by the fit to saturation prop-
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erties can also be simulated in RMF-CC by a single in-

medium term in the Lagrangian: the nucleon response

generated by the coupling of the constituent quarks to

the large scalar field at finite density. The nucleon re-

sponse effect, being characterized by a single coupling

constant (κNS or C) in the RMF-CC Lagrangian rep-

resents therefore a very economical way to capture in-

medium correction to the scalar EoM, on top of being

well motivated from a microscopic viewpoint. In RMF-

CC the chiral potential at finite density is identical to

the vacuum one and one could interpret the solution

of the scalar EoM as a scan of V ′(s) at different val-

ues of s. This latter point suggests that the solution of

the EoM at finite density may be a way to probe the

properties of the chiral potential in vacuum.

4 Excitations in dense matter

In the previous section, we have illustrated the equiv-

alence between actual in-medium modification of the

scalar potential guided by the fit to saturation prop-

erties (as in RMF-C and RMF) and in-medium effect

of the nucleon polarization (as in RMF-CC). We have

also suggested that the nucleon polarization is an eco-

nomical way to treat in-medium correction to the scalar

EoM. One may however wonder if the effect of the nu-

cleon polarization could influence other properties in

medium. It is therefore natural to come to the explo-

ration of the excitation spectrum of dense matter.

We limit ourself to the scalar-isoscalar excitation

channel, which is determined by the scalar-isoscalar

Landau parameter F0 at low excitation energy (and

zero momentum transferred). Following Ref. [6], we have

computed the fully relativistic Landau parameter F0 for

the three models (see Appendix A for the derivation).

The final expression is

F0 =N0R

(
g2ω
m2
ω

− g∗2S
m∗2σ

(
MN (s)

EF

)2

×
[
1 +

g∗2S
m∗2σ

I3(kF )

]−1)
,

where the meaning of the various symbols are explained

in Appendix A. The nucleon polarization appears in F0

through the effective scalar coupling constant g∗S .

Fig. 10 shows the Landau parameter F0, for the

three models evaluated at three different densities, nsat,

2nsat and 4nsat. We see that at saturation density, the

results agree for the three models, as it could be ex-

pected because the three models are calibrated such

that they reproduce the same incompressibility modu-

lus (Ksat), see Eq. (A.11). However, at larger densities,

the RMF-CC models predict larger values of F0, fol-

lowed by RMF and then RMF-C. At 4nsat the values

for F0 suggested by RMF-CC are almost twice the ones

predicted by RMF-C.

This distinction in the predictions of F0 by the three

models at large densities may have important phenomeno-

logical consequences for dense matter in neutron stars.

As an example, since it modifies the nuclear response

functions, it may have implications for neutrino scatter-

ing and other phenomena in the core of neutron stars.

Additionally, it may also modify the properties of the

dense fire-ball produced by relativistic heavy-ion colli-

sion.

5 The symmetry Energy

In this paper, we have restricted our many-body treat-

ment to the Hartree approximation (classical fields) and

to SM. In the future, we will also include the contribu-

tion of the Fock terms and we will explore asymmet-

ric matter. At the Hartree level, the symmetry energy

is however only determined by the ρ vector iso-vector

meson since the small contribution of the δ meson is

neglected here. One obtains

Esym =
k2F

6
√
k2F +M2

N (s)
+

g2ρ
2m2

ρ

ρ (30)

where gρ andmρ are the coupling constant and the mass

of the ρ meson. If the quark model is assumed, then

gρ = gω/3. In this case, the predictions for the symme-

try energy at saturation density Esym is shown for the

three models in the upper panel of Fig. 11. The empir-

ical value is shown as a red band. We see that there

is a difference of about 12 − 15 MeV (about half the

expected value for Esym) between the predicted value

and the empirical one. In the lower panel, in solid lines

the value of gρ assuming the quark model (as in the up-

per panel) is confronted to the dashed lines showing the

value of gρ required to reproduce the empirical value for

Esym. There is a factor 2 difference between the solid

and the dashed curves.

We thus see that setting gρ ≈ 4.25 would be a simple

way of obtaining the empirical value of Esym. However,

we interpret the discrepancy between the quark model

prediction and the empirical value for Esym as originat-

ing from the correlations beyond the Hartree approxi-

mation. In a future work, we will illustrate this point

by adding to the present modeling the contribution of

the Fock term, without modification of the fitting pro-

cedure. Preliminary results presented in Ref. [37] give

us confidence in our interpretation.
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Fig. 11 (TOP) The Symmetry Energy predicted by the
three models assuming the quark model relation between gρ
and gω. The empirical value (that can be obtained by break-
ing the quark model relation) is shaded in red. (BOTTOM)
The coupling constant predicted by the quark model is shown
as solid lines and the coupling required to obtain the empiri-
cal value is shown as dashed lines.

6 Conclusions

In this paper we have compared several classes of rel-

ativistic models applied to the description of nuclear

matter. A systematical analysis was performed by en-

suring a democratic treatment of the three models: we

constrained the three models to agree with each other

in the vicinity of saturation density of SM. In particu-

lar, the fit of the RMF-CC parameters to SM proper-

ties was performed by incorporating the parameter un-

certainty, in the L-QCD parameters for instance, and

propagating them in the predictions in dense matter us-

ing Bayesian statistics. In doing so, we directly connect

RMF-CC with the underlying QCD theory and explore

how uncertainties in this link propagate as function of

the density. The fit of RMF-C and RMF models to SM

properties predicted by RMF-CC was performed in a

consistent Bayesian manner which allows us to properly

explore the uncertainties in the empirical knowledge of

nuclear matter saturation.

Examining various aspects of the models and their

predictions at different densities we have shown that

the scalar nucleon response is a microscopically justi-

fied and an economical way to incorporate in-medium

corrections to the scalar EoM. In RMF-CC the mod-

ification of the effective potential at high density is

driven by a microscopic mechanism, while in RMC-C

and RMF approaches the scalar potential already en-

compasses finite density properties at saturation, that

are simply extrapolated to high densities. In addition,

we have shown that if the nucleon response is neglected,

the scalar potential become anomalous since the hierar-

chy in the orders of s is not respected as it is expected

in a many-body framework. Moreover the ground state

and excited states in the scalar-isoscalar channel are

predicted to be noticeably different among the various

classes of relativistic approaches as the density increases

(2 to 4nsat).

Finally, phase transitions are expected to occur in

the very dense matter found in the core of massive

neutron stars. These phase transitions could lead to

the appearance of other (non-nucleonic) hadronic de-

grees of freedom such as pion and kaon condensates as

well as hyperons. Other phenomena such as chiral sym-

metry restoration and transition to deconfined quark

matter might also take place. The exploration of these

two possibilities will also be very interesting to inves-

tigate in the future using the models developed in this

work, since they incorporate chiral symmetry and con-

finement.
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Appendix A: Compressibility modulus and

Landau parameter F0 in relativistic theory

The nuclear matter energy density in the RMF theories

discussed in this paper can be written as :

ε =

∫
4d3k

(2π)3

(√
k2 +M2

N (s) + gω ω0

)
Θ(kF − k)

+V (s) − 1

2
m2
ω ω

2
0 , (A.1)

where the scalar and vector field are obtained from the

equations of motion :

m2
ω ω0 = gω ρ (A.2)

V ′(s) = −g∗SρS with g∗S =
∂MN (s)

∂s
. (A.3)
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In the following we will make use of the following rela-

tions or definitions:

ρ =
1

3

2 k3F
π2

,
∂kF
∂ρ

=
1

3

kF
ρ

N0R =
2 kFEF
π2

, (A.4)

where EF =
√
k2F +M2

N (s) is the Fermi energy and

N0R is the density of states on the (relativistic) Fermi

surface. The first derivative with respect to the den-

sity of the energy density is obtained using equations

of motion with the result:

∂ε

∂ρ
= EF +

g2ω
m2
ω

ρ ≡ µ. (A.5)

The second derivative is:

∂2ε

∂ρ2
=

[
kF
EF

+
MN (s)

EF
g∗S

∂s

∂kF

]
∂kF
∂ρ

+
g2ω
m2
ω

. (A.6)

The derivative of s with respect to the Fermi momen-

tum is obtained by taking the derivative of the equation

of motion (Eq. A.3):

V ′′(s)
∂s

∂kF
= −κ̃NS

∂s

∂kF
ρS + g∗SρS with κ̃NS =

∂g∗S
∂s

.

(A.7)

We introduce an effective sigma meson mass, such as

m∗2σ = m2
σ + κ̃NS ρS , to obtain:

∂s

∂kF
= − 1

m∗2σ

∂ρS
∂kF

(A.8)

and the derivative of the scalar density has the form:

∂ρS
∂kF

=
∂

∂kF

[∫
4d3k

(2π)3
MN (s)√
k2 +M2

N (s)
Θ(kF − k)

]

=
∂ρ

∂kF

MN (s)

EF
+ I3(kF ) g∗S

∂s

∂kF

with I3 =

∫
4d3k

(2π)3
k2

(k2 +M2
N (s))

3/2
Θ(kF − k).(A.9)

Combining Eqs. (A.8) and (A.9), we obtain:
∂ρS
∂ρ

=
∂ρS
∂kF

∂kF
∂ρ

= − g∗2S
m∗2σ

MN (s)

EF

[
1 +

g∗2S
m∗2σ

I3(kF )

]−1
. (A.10)

Using the previous results, the compressibility modulus

can be written in the following form:

Ksat = 9ρ
∂2ε

∂ρ2
=

3 k2F
EF

(1 + F0) , (A.11)

which depends on the relativistic generalization of the

Landau parameter F0:

F0 = N0R

(
g2ω
m2
ω

− g∗2S
m∗2σ

(
MN (s)

EF

)2

[
1 +

g∗2S
m∗2σ

I3(kF )

]−1 )
. (A.12)

This result derived in a different manner has been quoted

in [6] but omitting the (small) correction arising from

the I3 integral. Notice that, as demonstrated in Ref.

[60], g∗2S I3(kF ) corresponds to the nuclear response as-

sociated with NN̄ excitation. Also notice that our re-

sult coincides with the one derived by T. Matsui [61]

but in the absence of medium modification (i.e., in the

absence of the nucleon susceptibility term) of the scalar

mass and coupling constant.
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