
HAL Id: hal-03662634
https://hal.science/hal-03662634

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Possibilistic Networks: Computational Analysis of MAP
and MPE Inference

Amélie Levray, Salem Benferhat, Karim Tabia

To cite this version:
Amélie Levray, Salem Benferhat, Karim Tabia. Possibilistic Networks: Computational Analysis of
MAP and MPE Inference. International Journal on Artificial Intelligence Tools, 2020, 29 (03n04),
pp.2060005. �10.1142/S0218213020600052�. �hal-03662634�

https://hal.science/hal-03662634
https://hal.archives-ouvertes.fr


Possibilistic networks: computational analysis of

MAP and MPE inference

(Prepring version)
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Abstract

Possibilistic networks are powerful graphical uncertainty representa-
tions based on possibility theory. This paper analyzes the computational
complexity of querying min-based and product-based possibilistic net-
works. It particularly focuses on very common kind of queries: computing
maximum a posteriori explanation (MAP ) and computing most plausible
explanation (MPE). The main result of the paper is to show that the de-
cision problem of answering these queries in both min-based and product-
based possibilistic networks is NP-complete. Such computational com-
plexity results represent an advantage of possibilistic networks over prob-
abilistic networks since MAP querying is NPPP -complete in probabilistic
Bayesian networks. We provide the proof based on reductions from the
3SAT decision problem to querying possibilistic networks decision prob-
lem. We also provide reductions that are useful for the implementation of
MAP and MPE queries using SAT solvers. For product-based possibilistic
networks, we provide incremental proofs based on polynomial reductions
from SAT and its weighted variant WMAXSAT decision problem.

1 Introduction

Beliefs graphical models, such as Bayesian networks [13], credal networks [12],
or possibilistic networks [6] are powerful means to compactly represent uncer-
tainty distributions using directed acyclic graphs and independence relation-
ships. Despite many similarities with probabilistic networks, possibilistic graph-
ical models offer interesting advantages especially for modeling and reasoning
with qualitative and incomplete uncertainty. For example, in the ordinal possi-
bilistic setting, there may be meaningful gains where the idempotence property
of minimum and maximum operators benefit to inference algorithms, as stressed
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in [21]. Also, recent works [10, 18, 24, 30] involve using possibilistic setting ap-
plied to web semantics. Thus, possibility theory [17,20] is a natural alternative
uncertainty theory particularly appropriate when only the plausibility ordering
between events is useful. In fact, there are two main definitions of possibility
theory. The first one is called min-based possibility theory. In this setting,
the unit interval [0, 1], used for assessing the uncertainty degrees of events, is
viewed as an ordinal scale. Hence, only the minimum and maximum operators
are used for defining uncertainty measures. This contrasts with the second def-
inition of possibility theory, called product-based possibility theory, where the
unit interval is used in the general sense.

Inference in possibilistic networks has been extensively studied and many al-
gorithms have emerged. On the other hand, while complexity results regarding
inference in probabilistic networks are well-established [14–16], there is no such
deep study for possibilistic networks. This paper aims at filling this gap. More
precisely, in this paper, we provide additional benefits for adopting such tools
in terms of inferential computational complexity in the context of possibility
theory frameworks [17,20].

Essentially, in graphical models there are three common types of queries:
computing most probable (or plausible) explanation (MPE); computing a pos-
teriori probability (or possibility) degrees (Pr); and computing the maximum
a posteriori explanation (MAP ). These tasks are known to be very hard in the
probabilistic setting. Indeed, the decision problems associated toMPE, Pr, MAP
are NP -complete, PP -complete and NPPP -complete respectively (see [14,16] for
more details on complexity issues in Bayesian and credal networks).

This paper focuses most plausible explanation (MPE) and maximum a pos-
teriori (MAP ) in the context of min-based and product-based possibilistic net-
works. One of the major result of this paper is to show that querying possi-
bilistic networks has a lower complexity than querying probabilistic networks.
More precisely, we show that the decision problem associated with answering
MAP and MPE queries in possibilistic networks is NP -complete. The proof is
provided for both min-based and product-based networks and is built progres-
sively. To show the hardness of the decision problem of MAP (resp. MPE)
querying a possibilistic network, we focus on a special type of possibilistic net-
works called Binary and Boolean possibilistic networks. We provide a reduction
from 3SAT to MAP (resp. MAP ) querying a Binary and Boolean possibilistic
network. Finally, we provide reductions from querying a possibilistic network to
two well-known NP -complete problems: SAT and weighted MaxSAT decision
problems.

The rest of this paper is organized as follows: Section 2 recalls basic notions
on possibilistic frameworks. Section 3 discusses motivations and related work.
Section 4 introduces the definition of MAP and MPE inference in possibilistic
networks and give first results on the computational complexity of these infer-
ences. Section 5 presents an overview of the solution to prove the complexity
results of the decision problems considered in this paper. The remaining sections
present different polynomial-time reductions used in this paper.
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2 Background notions

This section provides a brief refresher on possibility theory (for more details
see [20]) and possibilistic networks ( [2, 8, 22]). One of the basic elements in
possibility theory is the notion of a possibility distribution, denoted by π, which
is a mapping from the universe of discourse Ω to the unit interval [0, 1]. Espe-
cially, we consider a finite and discrete universe of discourse. By convention, for
a given ω ∈ Ω, π(ω) = 1 means that ω is fully possible while π(ω) = 0 means
that it is impossible for ω to be the real world. A possibility distribution π is
said to be normalized if there is at least an element ω ∈ Ω such that π(ω) = 1.

Given a possibility distribution π, one can define a possibility measure, de-
fined for each event φ ⊆ Ω, by:

Π(φ) = max{π(ω) : ω ∈ φ}. (1)

It expresses to what extent φ is coherent (compatible) with available informa-
tion represented by π.

There are two interpretations of possibility degrees, either the product-based
interpretation of the scale [0, 1] like in probability theory or the min-based inter-
pretation which consider degrees on an ordinal scale. These two interpretations
lead to two different ways to deal with possibility degrees. Indeed, updating
degrees given a new evidence, namely conditioning, differs whether the interval
[0, 1] is just used to rank-order events or not. We call min-based conditioning
|m [20, 23] the operation defined by: given a possibility distribution π, and a
new evidence φ ⊆ Ω (with Π(φ) > 0) the conditional distribution π(.|mφ) is
obtained as follows:

π(ωi|mφ) =

 1 if π(ωi) = Π(φ) and ωi ∈ φ;
π(ωi) if π(ωi) < Π(φ) and ωi ∈ φ;
0 otherwise.

(2)

The product-based conditioning, denoted by |∗, is, as in the probabilistic
setting, defined as follows:

π(ωi|∗φ) =


π(ωi)

Π(φ)
if ωi ∈ φ;

0 otherwise.
(3)

When there is no ambiguity, we simply write π(ω|φ) to indifferently refer to
π(ω|mφ) or π(ω|∗φ).

The compact representation, in form of a graphical model, associated with
a possibility distribution is known as possibilistic networks. As in Bayesian
networks, a possibilistic network denoted PN =< G,Θ > is defined by two
components:

• A graphical component G: a directed acyclic graph (DAG) where each
node represents a discrete variable (from the set of variables V = {X1, .., Xn})
and edges encode independence relations between variables.
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• A numerical component Θ: a set of local normalized possibility distribu-
tions Θi = πPN (Xi|par(Xi)) of each node Xi given its parents par(Xi),
where the normalized condition is defined by:

∀uij ∈ Dpar(Xi) max
xi∈DXi

πPN (xi|uij) = 1.

The semantics associated with a possibilistic network is a joint possibility dis-
tribution obtained using a so-called chain rule. As there are two definitions of
conditioning, there are also two definitions of chain rule that compute a joint
distribution. We denote by PNm (respectively PN ∗) a min-based (respectively
a product-based) possibilistic network. The possibilistic chain rule for these
networks is defined as:

πPNm
(X1, .., Xn) = min

i=1,..,n
πPNm

(Xi|m par(Xi)).

and (4)

πPN∗(X1, .., Xn) =
∏

i=1,..,n

πPN∗(Xi|∗ par(Xi)).

where
∏

is the product operator.

Example 1 Figure 1 is an example of a possibilistic network on the set of
boolean variables V = {A,B,C,D}. The domains of each variable X of V is
simply represented by the two values x and ¬x.

A

BC

D

A πPN (A)

a 1
¬a .6

B A πPN (B|A)

b a .3
¬b a 1
b ¬a 1

¬ b ¬a .7

D B πPN (D|B)
d b 1
¬d b .4
d ¬b .4
¬d ¬b 1

C B πPN (C|B)
c b 1
¬c b .5
c ¬b 1
¬c ¬b .3

Figure 1: Example of a possibilistic network PN over four boolean variables.

Again, when there is no ambiguity, we simply write PN to indifferently refer
to PNm or PN ∗.
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3 Related works and motivations

Possibilistic graphical models offer some advantages over probabilistic ones es-
pecially for modeling and reasoning with qualitative and incomplete uncertainty.
Moreover, possibilistic graphical models also offer nice features regarding practi-
cal and computational aspects. This section illustrates two examples of features
when it comes to modeling complex problems.

3.1 Probability underflow/undistinguishable likelihoods

In many real-world problems (eg. forecasting [28], simulation of physical [1]
or biological systems [9, 25], etc.) there is need to model a sequential or more
generally a dynamic system with many variables over a long period of time.
Inference typically consists in computing the likelihood of an outcome or any
event of interest given an input. The problem then is that drawing inferences for
a long sequence leads inevitably to what is called probability underflow problem
due to propagating a long series of small probabilities (indeed, the computer
representation of numbers does not allow to represent extremely small proba-
bilities and rounds them to zero). As a consequence, two events with relatively
different likelihoods will be associated to equal likelihoods. Of course, an alter-
native and very common approach is to use log likelihood values rather than
computing likelihood itself but then over long sequences one can encounter the
overflow problem. Possibilistic propagation thanks to the use of idempotent
operators will not encounter such a problem.

3.2 High computational complexity

Inference in probabilistic models is a hard task in the general case. In partic-
ular, the decision problem associated with MAP is NPPP -complete (see [14, 16]
for more details on complexity issues in Bayesian and credal networks). As
said in the introduction, it is important to note that while the complexity
results regarding inference in probabilistic networks are well-established [15],
there is, to the best of our knowledge, no systematic study of such issues for
possibilistic networks (except a study of complexity in possibilistic influence
diagrams [22]). Some probabilistic network inference algorithms have already
been adapted from the probabilistic setting and seem to show the same com-
plexity. Among the first works on inference in possibilistic graphical models
we mention [19] dealing with inference in hypergraphs. Most of the works are
more or less direct adaptations of probabilistic networks inference algorithms.
For example, a possibilistic elimination variable algorithm can be found in [5] in
the context of possibilistic network classifiers. In [8], a possibilistic counterpart
of the well-known Message passing algorithm is proposed. A direct adaptation
of the Junction tree algorithm in the possibilistic setting is presented in [7].
Possibilistic networks could also be used to approximate inference models of
some imprecise probabilistic models. For instance, in [3], an approach based
on probability-possibility transformations is proposed to perform approximate
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MAP inference in credal networks whereMAP inference is very hard [15]. Clearly,
modeling and reasoning with complex problems involving many variables will
not be tractable unless strong assumption are made regarding the structure of
the network. One of the main results of this paper is to show that querying
possibilistic networks has a lower complexity than querying probabilistic ones
making the former more appropriate for modeling and reasoning with complex
problems.

4 Inference in possibilistic networks

In this paper, we investigate two of the most common types of queries when
reasoning with graphical models, that are MAP inference and MPE inference.
MAP queries require searching for the most plausible instantiation of query vari-
ables Q given an evidence e (an instantiation of a set of variables E). While
MPE queries search for the most plausible explanation of an evidence e. More
formally,

MAP query: Let PN be a possibilistic network over the set of variables V ,
Q ⊂ V be a set of query variables and E ⊂ V be a set of evidence variables
with Q ∩ E = ∅. Then, given an evidence E = e, the aim is to compute the
most plausible instantiation q of Q given the evidence e. More formally, MAP
queries aim to compute

argmax
q∈DQ

(ΠPN (q|⊗e)) (5)

where |⊗ is either min-based or product-based conditioning.

MPE query: Let PN be a possibilistic network over the set of variables V ,
E ⊂ V be a set of evidence variables. We denote X the set of remaining variables
(X = V \ E). Then, given an evidence E = e, MPE query compute the most
plausible instantiation x of X compatible with the evidence e. Namely1:

argmax
x∈X

(ΠPN (x, e)). (6)

In the case of a MAP query, the problem can be reduced to finding the
most plausible assignment of query variables Q compatible with the evidence e.
More precisely, using the maximum property of possibility measures allows us
to rewrite Equation (5) as follows:

argmax
q∈DQ

(ΠPN (q, e)). (7)

This is formally stated in the following proposition.

1Note that ΠPN (x, e) is the possibility degree of the conjunction of x and e, especially
since X ∩ E = ∅. Another notation commonly used is ΠPN (x ∧ e).
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Proposition 1 Given a possibilistic network PN , Q the set of query variables
and an evidence e (an instantiation of variables E), we have:

argmax
q∈DQ

(ΠPN (q|e)) = argmax
q∈DQ

(ΠPN (q, e)). (8)

for both min-based and product-based conditioning rule.

Proof 1

• Let us start with the min-based conditioning. Given a possibilistic network
PNm over V and let Q and E be two subsets of V (s.t. Q∩E = ∅). Then,
computing argmaxq∈DQ

(Π(q|e)) is equivalent to searching the instantia-
tion q such that Π(q|e) = 1. By definition of the min-based conditioning,
Π(q|e) = 1 if Π(q, e) = Π(e). Assume that argmaxq∈DQ

(Π(q, e)) is q′

then since Π(e) = maxω�e π(ω) or said otherwise Π(e) = maxq∈DQ
Π(q, e)

which is given by Π(q′, e).

• Let us now consider product-based conditioning. In the same way, since the
possibilistic network PN ∗ is normalised then ∀e ∈ E, argmaxq∈DQ

(Π(q|e))
is equivalent to searching the instantiation q such that Π(q|e) = 1. Which,

by definition, is given by Π(q|e) =
Π(q, e)

Π(e)
, therefore, Π(q|e) = 1 if

Π(q, e) = Π(e). From there, assume that argmaxq∈DQ
(Π(q, e)) is q′ then

since Π(e) = maxω�e π(ω) = Π(q′, e). Thus, argmaxq∈DQ
(ΠPN (q|e)) =

argmaxq∈DQ
(ΠPN (q, e)).

Given this equivalence, we can focus only on the MAP problem redefined by
Equation (7).

5 Overview of the solution

In order to analyse the computational complexity of inference in possibilistic
networks, we provide first in this section, a reminder of the notions of boolean
satisfiability decision problems and a description of the different steps we will
take, to prove that MAP inference (resp. MPE inference) is NP -complete in
possibilistic networks. In particular, the analysis breaks down into showing
the hardness and the completeness of the decision problems associated to MAP
and MPE queries. Let us first denote each of these decision problems. More
precisely2,

• We denote by π⊗-D-MAP(PN⊗, Q, e, t) the decision problem associated
to a MAP query in a possibilistic network (i.e. π∗-D-MAP(PN ∗, Q, e, t)
in product-based possibilistic networks and πm-D-MAP(PNm, Q, e, t) in
min-based possibilistic networks)

2these decision problems will be formally defined in relevant sections
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• We denote by π⊗-D-MPE(PN⊗, e, t) the decision problem associated to
a MPE query in a possibilistic network (i.e. π∗-D-MPE(PN ∗, e, t) in
product-based possibilistic networks and πm-D-MPE(PNm, e, t) in min-
based possibilistic networks)

We will also refer to a special case of possibilistic networks that only involve
boolean variables and binary possibility degrees 0 or 1 (namely, each conditional
event is either fully possible or fully impossible). We call this type of networks
Boolean and Binary possibilistic networks, denoted by B&B possibilistic net-
works. A joint B&B possibility distribution is therefore a particular case of a
general possibility distribution which is defined over {0,1} rather than over then
whole unit interval [0, 1]. Thus it keeps the same properties and the same defini-
tion of computations of conditioning and chain rules. The following introduces
notations associated with MAP and MPE decision problems defined for B&B
possibilistic networks:

• We denote by B&B⊗-D-MAP(PNB&B⊗ , Q, e) the decision problem as-
sociated to MAP querying a binary and boolean possibilistic network.

• In the same way, we denote by B&B⊗-D-MPE(PNB&B⊗ , e) the decision
problem associated to MPE querying a binary and boolean possibilistic
network.

We recall that the operator ⊗ can be either the min or product operation.
To show hardness and completeness of MAP and MPE queries, we will pro-

vide polynomial-time reductions from some known NP -complete problems to
our MAP decision problems (resp. MPE decision problems) and conversely.

5.1 Background on satisfiability problems

Let us first recall the basic notions of boolean satisfiability where we only con-
sider formulas that are in conjunctive normal form (this is enough for the pur-
pose of this paper). Let us consider a set of boolean variables V = {X1, ..., Xn}.
We denote by xi (¬xi respectively) the positive literal (the negative literal re-
spectively) of variable Xi. A clause C is a disjunction of literals (or a single
literal). For instance a clause C would be: x1 ∨ ¬x2.

Definition 1 We define a CNF (Conjunctive Normal Form) formula Ψ as a
conjunction of clauses.

An example of a CNF formula is (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x2). In particular,
a 3CNF is a formula in a conjunctive normal form for which each clause is a
disjunction of at most 3 literals.

A CNF formula Ψ is said to be satisfiable (or consistent) if there exists an
assignment of all the variables (that we also call an interpretation) that renders
Ψ true. Now, we define the boolean satisfiability decision problem CNF-SAT
(specified for conjunctive normal form formulas), denoted simply by D-SAT,
as follows:
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Definition 2 By D-SAT(Ψ) we denote the decision problem associated to de-
termining if there exists an assignment that satisfies Ψ. It is defined by:
Input: The input is a formula Ψ given in a conjunctive normal form
Question: The question is whether the formula Ψ satisfiable or not?

The D-3SAT decision problem is defined as:

Definition 3 By D-3SAT(Ψ) we denote the decision problem defined by:
Input: The input is a 3CNF formula, denoted by Ψ
Question: The question is whether the formula Ψ satisfiable or not?

Example 2 Let us consider the set of variables V = {X1, X2, X3, X4} and the
following 3CNF Ψ over V :

(x1 ∨ ¬x2 ∨ x3) ∧
(¬x3 ∨ ¬x2 ∨ x4)

One can check that Ψ is satisfiable. Indeed the assignment (or interpretation)
ω = x1, x2,¬x3,¬x4 satisfies all clauses. Hence, the answer to the decision
problem D-SAT(Ψ) is ”yes”.

The last problem that we will refer to in this paper is the weighted MaxSAT
problem. This problem generalizes the SAT problem: given a formula with
non-negative integer weights on each clause, find an assignment of variables
that maximizes the sum of the weights of the satisfied clauses. More precisely,
we define its associated decision problem as follow:

Definition 4 By D-WMaxSAT(Ψ, k) we denote the decision problem defined
by:
Inputs: The input of this problem is composed of two elements :

• Ψ: a weighted CNF formula over V = {X1, ..., Xn} simply represented by

Ψ =


(C1, α1),
(C2, α2),

...
(Cm, αm).


where C ′is are clauses and α′is are positive integers.

• k: a positive integer

Question: Is there an instantiation of variables V such that the sum of weights
of satisfied clauses in Ψ is greater or equal to k?

Example 3 Let us consider the following weighted CNF formula Ψ over V =
{X1, X2, X3, X4}:

Ψ =


(x1 ∨ ¬x2, 4),
(¬x1 ∨ x2, 6),

(¬x3 ∨ ¬x2 ∨ x4, 5),
(x5 ∨ x4 ∨ ¬x1, 2)
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Let k = 10. The instantiation of the variables V (or interpretation) ω =
x1,¬x2, x3, x4 satisfies all clauses except (¬x1∨x2, 6). Hence

∑
{αi : (Ci, αi) ∈

Ψ s.t ω |= Ci} = 11 ≥ 10 where |= denotes the propositional logic satisfaction
relation. Therefore, the answer to the decision problem D-WMaxSAT(Ψ, 10)
is ”yes”.

5.2 Description of the solution

The following sections provide the proof of the NP -completeness of π⊗-D-MAP
and π⊗-D-MPE decision problems. This is done following these steps:

• We first show the NP -hardness of πm-D-MAP and π∗-D-MAP. We will
provide a reduction from the D-3SAT decision problem to both πm-D-
MAP and π∗-D-MAP decision problems. In this reduction, we use the
restricted version, B&B possibilistic networks, and we will provide inter-
mediary results and the reductions from the D-3SAT decision problem
to B&B⊗-D-MAP decision problem.

• We provide a reduction of the πm-D-MAP decision problem, defined
for min-based possibilistic networks, to the D-SAT decision problem (for
completeness in min-based possibilistic networks).

• We provide the completeness of the proof by reducing the π∗-D-MAP
decision problem, defined for product-based possibilistic networks, to the
D-WMaxSAT decision problem.

This concludes the proof for MAP querying possibilistic networks. To tackle the
MPE querying of possibilistic networks, we will follow the same steps:

• We show the NP -hardness of πm-D-MPE and π∗-D-MPE with a re-
duction from the D-3SAT decision problem to B&B⊗-D-MPE decision
problem.

• We provide a reduction of the πm-D-MPE decision problem, defined for
min-based possibilistic networks, to the D-SAT decision problem (for
completeness in min-based possibilistic networks).

• Lastly, we will focus on reducing the π∗-D-MPE decision problem, defined
for product-based possibilistic networks, to the D-WMaxSAT decision
problem (for completeness in product-based possibilistic networks).

6 Analysis of MAP querying a possibilistic net-
work

In this section, we focus on proving that the decision problem behind MAP infer-
ence in possibilistic networks is NP -complete. First, we propose, in Subsection
6.1, to reduce the 3SAT decision problem to MAP querying B&B possibilistic
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networks. This shows that the decision problem behind MAP is NP -hard. By
proving, in Subsections 6.2 and 6.3, that the decision problem associated to MAP
inference is also in NP, hence we prove that MAP inference is NP -complete.

6.1 From 3SAT to MAP querying over B&B possibilistic
networks

In this context, we are faced to only consider two kinds of queries: given e an
instantiation of evidence variables E, is there an instantiation q of query vari-
ables Q such that ΠPN⊗(q∧e) ≥ 0 or such that ΠPN⊗(q∧e) ≥ 1 with ⊗ = m for
min-based possibilistic setting or ⊗ = ∗ for product-based possibilistic setting.
The inequality ΠPN⊗(q ∧ e) ≥ 0 is trivially satisfied since any instantiation q of
Q is a solution to the query.

Hence, we will only focus on analyzing the computational complexity of the
decision problems πm-D-MAP(PNB&Bm

, Q, e, 1) and π∗-D-MAP(PNB&B∗ , Q, e, 1).

Example 4 We illustrate the decision problem π-D-MAP(PNB&B , Q, e, 1) on
the B&B possibilistic network of Figure 2 over the boolean variables V = {A,B,C}.

A

B C

A πB&B(A)
a 1
¬a 1

B A C πB&B(B|AC)
b a c 1
¬b a c 0
b a ¬c 1
¬b a ¬c 1
b ¬a c 1
¬b ¬a c 0
b ¬a ¬c 0
¬b ¬a ¬c 1

C πB&B(C)
c 1
¬c 0

Figure 2: Example of a B&B possibilistic network.

Let Q = {B} be the set of query variables and E = {C} be the set of
evidence variables. Assume that e = c, then one can check that the answer to
the question: is there an instantiation q of B such that ΠPNB&B

(q ∧ c) = 1? is
”yes”. Indeed, we have ΠPNB&B

(bc) = 1 and this is valid independently if we
consider the min-based chain rule or the product-based chain rule.

6.1.1 Equivalence of the MAP decision problem in min-based B&B
possibilistic networks and product-based B&B possibilistic net-
works

Given the definition of a B&B possibilistic network, the following proposition
states that the decision problems π∗-D-MAP(PNB&Bm

, Q, e, 1) and π∗-D-
MAP(PNB&B∗ , Q, e, 1) are equivalent.

Proposition 2 Let e be an instantiation of evidence variables and Q be a sub-
set of query variables. Let PNB&Bm and PNB&B∗ be two B&B possibilistic
networks such that ∀Xi, ∀µ an instance of parents of Xi, πPNB&Bm

(Xi|µ) =
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πPNB&B∗
(Xi|µ). Then the answer to πm-D-MAP(PNB&Bm , Q, e, 1) is ”yes”

if and only if the answer to π∗-D-MAP(PNB&B∗ , Q, e, 1) is ”yes”.

Proposition 2 means that the answer to a MAP query in a B&B possibilistic
network does not depend on whether we consider the min-based version of B&B
possibilistic networks or the product-based version one. The proof of Proposi-
tion 2 is immediate. It is based on the fact that operators ∗ and min when only
applied to possibility degrees 0 and 1 lead to same results. Hence, when only
considering binary degrees {0, 1}, then joint distributions associated with PNm

and PN ∗ are equals. Namely:

Proposition 3 Let PNB&Bm
and PNB&B∗ be two B&B possibilistic networks

such that ∀Xi, ∀µ an instance of parents of Xi, πPNB&Bm
(Xi|µ) = πPNB&B∗

(Xi|µ).
Then we have:

∀ω ∈ Ω, πPNB&Bm
(ω) = πPNB&B∗

(ω). (9)

The proof of Proposition 3 is immediate and follows from the fact that if a and
b are either equal to 0 or 1 then min(a, b) = a ∗ b. Hence, the application of
min-based chain rule or product-based chain rule leads to same result.

6.1.2 Definition of the B&B possibilistic network associated to a
3CNF

Now we can tackle the reduction from 3SAT to querying B&B possibilistic
networks. Since we showed that MAP querying B&B possibilistic networks is
the same in min-based or in product-based B&B possibilistic networks, we can
consider in this section the decision problem in the general case, denoted by
B&B-D-MAP. Since ΠPN (q ∧ e) ≥ 1 is trivially equivalent to ΠPN (q ∧ e) = 1
there is no need to specify the threshold t. Then we get:

Definition 5 By B&B-D-MAP(PNB&B , Q, e) we denote the decision prob-
lem associated with MAP querying a B&B possibilistic network that we define
by:
Inputs: The input of this decision problem has three components :

• PNB&B: a B&B possibilistic network over V = {X1, ..., Xn}

• e (evidence): an instantiation of a set of observation variables E

• Q (query): a set of query variables with Q ∩ E = ∅

Question: The question addressed in this decision problem is : is there an in-
stantiation q of variables Q such that ΠPNB&B

(q ∧ e) = 1?

We first provide the B&B possibilistic network associated with a 3CNF for-
mula Ψ. This reduction takes inspiration from the probabilistic reduction pro-
vided in [11] and used to prove the fact that probabilistic inference in belief
networks is NP -hard. More precisely, the B&B possibilistic network associated
with a 3CNF is given by the following definition.
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Definition 6 Let Ψ = C1 ∧ C2 ∧ ... ∧ Cm be a 3CNF formula. Let V =
{X1, ..., Xn} be the set of propositional variables appearing in Ψ. The B&B
possibilistic network associated with Ψ, denoted by PNΨ is defined as follows:

1. Representing propositional variables: For each propositional symbol
Xi appearing in Ψ, we create a rooted boolean node variable, also and sim-
ply denoted by Xi, in the graph (with two values xi and ¬xi). Each rooted
variable Xi is associated with a local uniform binary possibility distribution
defined by: πPNΨ

(xi) = 1 and πPNΨ
(¬xi) = 1.

2. Modeling the satisfaction of a clause Cj: For each clause Cj of Ψ,
we create a conditional node variable, again simply denoted Cj. Cj is a
boolean variable, its two values are denoted by cj and ¬cj. Parents of Cj
are the rooted variables Xi that are involved in Cj. Each conditional node
variable Cj is associated with a conditional possibility distribution given
by: ∀ujk an instance of parents of Cj:

πPNΨ
(cj |ujk) =

{
1, if ujk |= Cj ,
0, otherwise.

πPNΨ
(¬cj |ujk) =

{
0, if ujk |= Cj ,
1, otherwise.

where ujk is an instantiation of the parents of Cj, namely the instantiation
of variables Xi involved in Cj and uk |= Cj means that the instantiation
uk satisfies the clause Cj.

3. Modeling the satisfaction of the 3CNF formula Ψ: Lastly, we add
a single boolean node denoted by EΨ, which represents the satisfiability of
the overall formula Ψ. Its values are denoted by eΨ and ¬eΨ. It has all
nodes C ′js as parents. The conditional possibility distributions associated
with EΨ are as follow:

πPNΨ
(eΨ|C1 ∧ .. ∧ Cm) =

{
1, if ∀Cj , Cj = cj ,
0, otherwise (∃j∈{1..m} s.t. Cj=¬cj)

πPNΨ
(¬eΨ|C1 ∧ .. ∧ Cm) =

{
0, if ∀Cj , Cj = cj ,
1, otherwise

The reduction (from 3SAT clauses to a B&B possibilistic network) given by
Definition 6 is done in polynomial time. Its space complexity is also polynomial
with respect to the size of the formula.

Example 5 Let us consider the 3CNF Ψ of Example 2.
Following Definition 6, the B&B possibilistic network PNΨ, associated with

Ψ, consists of three levels of nodes. The first level of nodes represents the set of
variables. In this example we have the first level containing the nodes X1, X2, X3

and X4 as depicted in Figure 3.
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X1 X2 X3 X4

X1

x1 1
¬x1 1

X2

x2 1
¬x2 1

X3

x3 1
¬x3 1

X4

x4 1
¬x4 1

Figure 3: First level of nodes in PNΨ.

X1 X2 X3 X4

C1 C2

C1 X1X2X3

c1 ¬x1x2¬x3 0
c1 1
¬c1 ¬x1x2¬x3 1
¬c1 0

C2 X2X3X4

c2 1
c2 x2x3¬x4 0
¬c2 0
¬c2 x2x3¬x4 1

Figure 4: First two levels of nodes Xi and Cj in PNΨ.

The second level of nodes has 2 nodes C1 and C2 with local distributions as
illustrated in Figure 4. Note that in local distributions of Figures 4 and 5 we
denote by the remaining instantiations of par(Cj) and par(EΨ).

By adding the last node EΨ representing the 3CNF formula, we obtain the
final binary possibilistic network, given in Figure 5.

X1 X2 X3 X4

C1 C2

EΨ

EΨ C1C2

eΨ c1c2 1
eΨ 0
¬eΨ c1c2 0
¬eΨ 1

Figure 5: B&B possibilistic network PNΨ obtained from the 3CNF formula Ψ
given in Example 2.
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6.1.3 Reduction from 3SAT problem to B&B-D-MAP problem

Theorem 1 provides the reduction from the decision problem D-3SAT(Ψ) into
B&Bm-D-MAP(PNΨ, Q, e). The input e is let to eΨ while Q is set to the
remaining variables in PNΨ (namely, ({X1, ..., Xn} ∪ {C1, ..., Cm}) \ {EΨ}).
More formally:

Theorem 1 Let Ψ be a 3CNF formula. Let PNΨ be the B&B possibilistic
network given by Definition 6. Let VPNΨ

be the set of variables in PNΨ, namely
{X1, ..., Xn} ∪ {C1, ..., Cm} ∪ {EΨ}. Then, D-3SAT(Ψ) answer is ”yes” if and
only if the B&Bm-D-MAP(PNΨ, (VPNΨ

\ {EΨ}), eΨ) answers ”yes” where
D-3SAT is given in Definition 3 and B&Bm-D-MAP is given by Definition
5.

Proof 2
? Let us assume that the answer to D-3SAT(Ψ) is ”yes”. It means that there
exists an interpretation or an instantiation of the variables {X1, ..., Xn}, denote
by ω∗, that satisfies all the clauses in Ψ. If ω is an interpretation and X is a
variable then we simply denote by ω[X] the instance of X present in ω.

Let us construct an interpretation, denoted ωPNΨ
, of VPNΨ

such that ωPNΨ
|=

eΨ and πPNΨ(ωPNΨ) = 1. For the variable EΨ, we let ωPNΨ [EΨ] = eΨ.
For variables Xi ∈ {X1, ..., Xn} we let ωPNΨ [Xi] = ω∗[Xi]. For variables
Cj ∈ {C1, ..., Cm} we simply let ωPNΨ

[Cj ] = cj. Now, let us show that indeed
πPNΨ

(ωPNΨ
) = 1.

Recall that for all variables Xi in PNΨ, we have πPNΨ
(Xi) = 1. Since ω∗

satisfies all clauses, then for all variables Cj in PNΨ (namely, the set of nodes
representing the clauses), we have πPNΨ(cj |ujk) = 1 where ω∗ |= ujk. Lastly,
the variable EΨ = eΨ when all C ′js are set to c′js respectively have a possibility
degree of 1 (πPNΨ

(eΨ|c1 ∧ ... ∧ cm) = 1).
Therefore, using the min-based chain rule, we have

πPNΨ
(ωPNΨ

) = min{πPNΨ
(eΨ|c1 ∧ ... ∧ cm),

minj=1,...,m,ωPNΨ
|=ucj

πPNΨ
(cj |ucj ),

mini=1,...,n,ωPNΨ
|=Xi

πPNΨ(Xi))}
= 1

where ucj is the instance parents of Cj such that ωPNΨ |= ucj . Therefore, defin-
ing q as the instantiation of Q satisfied by ωPNΨ we have ΠPNΨ(q ∧ eΨ) = 1,
hence B&Bm-D-MAP(PNΨ, (VPNΨ

\ {EΨ}), eΨ) is ”yes”.

? Let us assume that the answer to D-3SAT(Ψ) is ”no”. Hence, whatever
the considered interpretation ωPNΨ where ωPNΨ |= eΨ there exists at least Cj
such that πPNΨ(cj |ucj ) = 0 with ωPNΨ |= ucj . Hence, πPNΨ(ωPNΨ) = 0. So
using the min operator of the chain rule, we obtain that ΠPNΨ

(q ∧ eΨ) = 0 for
all instantiation q of Q. Hence, B&Bm-D-MAP(PNΨ, (VPNΨ

\ {EΨ}), eΨ) is
”no”.
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By this reduction we have shown that MAP querying possibilistic network
is NP -hard. In addition to this proof, we provide the completeness of πm-
D-MAP and π∗-D-MAP. One can either show their membership to NP or
provide reductions from πm-D-MAP and π∗-D-MAP to SAT and WMAXSAT
decision problems. In the following, we adopt the second option. Indeed, the
proposed reductions can be used as useful transformations for implementation
of MAP queries in possibilistic networks using SAT solvers.

6.2 From MAP querying min-based possibilistic networks
to SAT

In this subsection, we no longer restrict ourselves to binary possibility distribu-
tions. Namely, (conditional) possibility degrees can take any value in the unit
interval [0, 1]. However, for the sake of simplicity, we still only consider boolean
variables. This is not a restriction and the proof can be adapted by encoding
a non-boolean variable by a set of boolean variables. We propose to reduce the
decision problem πm-D-MAP to the decision problem D-SAT.

We now formally define the decision problem associated with a MAP query
in min-based possibilistic networks, denoted πm-D-MAP. It is given by the
following:

Definition 7 By πm-D-MAP(PNm, Q, e, t) we denote the decision problem
associated with MAP querying min-based possibilistic networks that we define
by:
Input: The input of this decision problem is composed of four elements :

• PNm: a min-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• Q (query): a set of variables with Q ∩ E = ∅

• t: a real number in (0, 1].

Question: Is there an instantiation q of non observed variables Q such that
ΠPNm(q ∧ e) ≥ t?

6.2.1 Definition of a CNF formula associated with a min-based pos-
sibilistic network

We now define the transformation of a min-based possibilistic network PNm into
a CNF formula, denoted ΨPNm,Q,e,t. The following gives the definition of the
CNF formula associated with the network PNm, the set Q, the evidence e (an
instantiation of the variables E) and the positive real number t in ΨPNm,Q,e,t.

Definition 8 Let PNm be a min-based possibilistic network over the set of
boolean variables V = {X1, ..., Xn}. Let Q be a subset of V , e = e1, ..., el be
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an instantiation of evidence variables E (with Q∩E = ∅) and let t be a thresh-
old. Then ΨPNm,Q,e,t over the same set of boolean variables V = {X1, ..., Xn},
is given by:

ΨPNm,Q,e,t = {(¬xi ∨ ¬uij) : πPNm(xi|uij) < t}
∪ {ek : k = 1, ..., l}

Clearly, this reduction is done in polynomial time (and space) with respect
to the size of PNm.

Example 6 Let us consider the possibilistic network PNm of Figure 1 over
the set of variables V = {A,B,C,D}. Let E = {D} be the set of evidence
with e = {D = d} be an instantiation of E, Q = {B,C} be the set of query
variables and t = .5. Then the CNF ΨPNm,{B,C},d,.5 given by the transformation
of Definition 8 is:

ΨPNm,{B,C},d,.5 =


(c ∨ b) ∧

(d ∨ ¬b) ∧
(¬d ∨ b) ∧

(¬b ∨ ¬a) ∧
d


6.2.2 Reduction from a min-based possibilistic network into a CNF

The following theorem states that πm-D-MAP can be reduced to D-SAT.

Theorem 2 Let PNm be a min-based possibilistic network, Q be a subset of
query variables, e be an instantiation of evidence variables E and t be a real num-
ber in (0, 1]. Let ΨPNm,Q,e,t be the CNF formula given by Definition 8. Then,
πm-D-MAP(PNm, Q, e, t) answers ”yes” if and only if D-SAT(ΨPNm,Q,e,t)
answers ”yes” where πm-D-MAP is given by Definition 7 and D-SAT is given
by Definition 2.

Proof 3
? Assume that ΨPNm,Q,e,t is satisfiable. This means that there exists an instan-
tiation of all variables, denoted by ω∗, that satisfies all clauses of ΨPNm,Q,e,t in-
cluding e = e1, ..., el. Recall that by construction of ΨPNm,Q,e,t, if (¬xi∨¬uij) ∈
ΨPNm,Q,e,t then we have πPNm

(xi|uij) < t. So if ω∗ satisfies all clauses in
ΨPNm,Q,e,t then ω∗ falsifies each of the formulas in {(xi ∧ uij) : (¬xi ∨ ¬uij) ∈
ΨPNm,Q,e,t}. This means that all conditionals πPNm

(xi|uij) used in chain rule
for defining πPNm(ω∗) have a possibility degree greater or equal to t.Hence, their
minimal is also greater or equal to t. Therefore, using the min-based chain rule
we get πPNm

(ω∗) ≥ t.
Denoting now q = ω∗[Q] the instantiation of the variables Q such that

ω∗ � q, we have ΠPNm
(q ∧ e) ≥ t since πPNm

(ω∗) ≥ t, ω∗ |= q and ω∗ � e.
Hence the answer to πm-D-MAP(PNm, Q, e, t) is also ”yes”.
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? Assume that ΨPNm,Q,e,t is unsatisfiable. Then for all instantiation of variables
ω such that ω |= e(= e1∧..∧el), there exists at least a clause Ci = ¬xi∨¬uij that
is falsified by ω (and hence ω |= xi ∧ uij). Now by construction of ΨPNm,Q,e,t,
we have πPNm

(xi|uij) < t, so using the min-based chain rule we have ∀ω |= e,
πPNm

(ω) < t and therefore ∀q ∈ DQ, ΠPNm
(q ∧ e) < t.

We illustrate the above theorem and its proof with an example using a MAP
query.

Example 7 Let us consider the CNF formula ΨPNm,{B,C},d,.5, of Example 6,
corresponding to the MAP query:

Is there an instantiation q of query variables {B,C} such that ΠPNm
(q∧

e) ≥ .5?

Namely, the decision problem is πm-D-MAP(PNm, {B,C}, d, .5). There exist
two models ¬abcd and ¬ab¬cd. Hence, the answer to D-SAT(ΨPNm,Q,e,t) is
”yes”. Lastly, using the min-based chain rule on the possibilistic network of
Figure 1, we get π(¬abcd) = .6; hence ΠPNm

(bcd) = .6 which is higher or equal
than .5. So the answer to πm-D-MAP(PNm, {B,C}, d, .5) is ”yes”.

This proves that MAP querying a min-based possibilistic network is NP -
complete. We now tackle the product-based possibilistic setting by providing
a reduction from the decision problem π∗-D-MAP to the decision problem
D-WMaxSAT, given by Definition 4.

6.3 From MAP querying product-based possibilistic net-
works to WMaxSAT

In this section, we will consider that the possibility degrees in the possibilistic
networks are of the form 2−αi (plus 0 and 1) where αi’s are positive integers.
Having uncertainty degrees of the form 2−αi will allow us to easily reduce PN ∗
to WMaxSAT given the fact that the weights used in WMaxSAT are integers
(it is enough to use − log2(2−αi) to get positive integers). This assumption is
done again for the sake of clarity but the proof can be generalized to other real
numbers between 0 and 1. Note that αi may represent a degree of surprise used
in Spohn’s ordinal conditional function [29].

Before giving the definition of the transformation, we formally define the
decision problem associated to MAP querying a product-based possibilistic net-
work π∗-D-MAP.

Definition 9 By π∗-D-MAP(PN ∗, Q, e, t) we denote the decision problem as-
sociated with MAP querying product-based possibilistic networks that we define
by:
Input: The input of this decision problem is composed of four elements :

• PN ∗: a product-based possibilistic network

• e (evidence): an instantiation of a set of variables E
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• Q (query): a set of variables with Q ∩ E = ∅

• t: a real number in (0, 1].

Question: Is there an instantiation q of non observed variables Q such that
ΠPN∗(q ∧ e) ≥ t?

6.3.1 Definition of a weighted CNF formula associated to a product-
based possibilistic network

In the following definition, we give the weighted CNF formula associated with a
MAP query in product-based possibilistic networks. More precisely, it takes into
account the evidence e = e1, ..., el of the set of variables E (of size |E| = l), the
set of query variables Q and the threshold t to produce the associated weighted
CNF formula.

Definition 10 Let PN ∗ be a product-based possibilistic network over the set of
boolean variables V = {X1, ..., Xn}. Let Q be a subset of V , e = e1, ..., el be
an instantiation of evidence variables E (with Q ∩E = ∅) and t be a threshold.
Then ΨPN∗,Q,e,t is defined by: ΨR ∪Ψ0 ∪Ψe where

ΨR = {(¬xi ∨ ¬uij , αi) : πPN∗(xi|uij) = 2−αi},
Ψ0 = {(¬xi ∨ ¬uij ,M) : πPN∗(xi|uij) = 0},
Ψe = {(ek,M) : k = 1, ..., l},

(10)

where M is a positive number such that M >
∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR}.

ΨR represents the clauses in ΨPN∗,Q,e,t such that have possibility degrees
of the form 2−αi . Ψ0 represents the clauses for which the possibility degrees
in PN ∗ are 0. The information Ψe represents the clauses added to enforce
the evidence. Intuitively, the integer weight M is used for fully certain pieces of
information. Besides, Ψ0∧Ψe is of course assumed to be consistent (this reflects
the very reasonable assumption that the evidence is somewhat possible).

For the following, we will also denote by X =
∑
{αi : (¬xi∨¬uij , αi) ∈ ΨR}

the sum of weights in ΨR.

Example 8 illustrates Definition 10.

Example 8 Let us consider the product-based possibilistic network PN ∗ of Fig-
ure 6. Let Q = {B} be a subset of V , let e = ¬c be an instantiation of evidence
variables E = {C} and let t = 2−2 be the threshold.

Let M = 30. Then following Definition 10, the weighted CNF formula
ΨPN∗,{B},¬c,2−2 is

ΨPN∗,{B},¬c,2−2 =



(a, 4),
(¬b, 8),

(¬c ∨ ¬a ∨ ¬b, 7),
(c ∨ ¬a ∨ b, 2),

ΨR

(¬c ∨ a ∨ b, 30),
(¬c ∨ a ∨ ¬b, 30),

}
Ψ0

(¬c, 30)
}

Ψe
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A B

C

A πPN∗ (A)
a 1
¬a 2−4

B πPN∗ (B)
b 2−8

¬b 1

C A B πPN∗ (C|AB)
c a b 2−7

¬c a b 1
c a ¬b 1
¬c a ¬b 2−2

c ¬a b 0
¬c ¬a b 1
c ¬a ¬b 0
¬c ¬a ¬b 1

Figure 6: Example of a product-based possibilistic network PN ∗ over A,B and
C.

6.3.2 Reduction from a product-based possibilistic network to a
weighted CNF formula

Theorem 3 provides the reduction from the decision problem π∗-D-MAP(PN ∗, Q, e, t)
into D-WMaxSAT (ΨPN∗,Q,e,t, k). We will denote by Z the number of possi-
bility degrees, πPN∗(xi|uij) in PN ∗ that are equal to 0 (namely, Z is the number
of clauses in Ψ0).

The input k is let to X + log2 t + M ∗ (Z + |E|) while ΨPN∗,Q,e,t is the
weighted CNF formula given associated to PN ∗ given by Definition 10 (we also
assume for only sake of simplicity that t is of the form 2−α with α an integer).
More formally:

Theorem 3 Let PN ∗ be a product-based possibilistic network. Let Q be a subset
of V , e be an instantiation of variables E and t be a threshold. Let ΨPN∗,Q,e,t be
the CNF formula given by Definition 10. Then, π∗-D-MAP(PN ∗, Q, e, t) an-
swers ”yes” if and only if D-WMaxSAT(ΨPN∗,Q,e,t, X+log2 t+M ∗(Z+|E|))
answers ”yes” where π∗-D-MAP is given by Definition 7 and D-WMaxSAT
is given by Definition 4.

Proof 4 Let us first recall the parameters of the WMaxSAT decision problem,
D-WMaxSAT(ΨPN∗,Q,e,t, k). Namely,

• ΨPN∗,Q,e,t is the weighted CNF formula given by Definition 10.

• k is the threshold for the problem and it is given by:

k = X + log2 t+M ∗ ((
∑

ΠPN∗(xi|ui) = 0) + 1) (11)

where M is defined in Definition 10. The value of X is defined by the sum
of weights in ΨR: X =

∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR} .

Recall that π∗-D-MAP decision problem is: Given an instantiation e of ev-
idence variables, is there an instantiation q of query variables Q such that
Π(q, e) ≥ t?
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Let us now show that the two decision problems π∗-D-MAP(PN ∗, Q, e, t)
and D-WMaxSAT(ΨPN∗,Q,e,t, X+ log2 t+M ∗ (Z+ |E|)) are equivalent. Let
the query associated to D-WMaxSAT be: Does D-WMaxSAT(ΨPN∗,Q,e,t, X+
log2 t + M ∗ (Z + 1)) answer ”yes”? More precisely, is there an instantiation
of all variables that satisfies a subset of clauses in ΨPN∗,Q,e,t having the sum of
the degrees of the satisfied clauses greater or equal to k?

For the sake of clarity, in this proof, we simply write Ψ instead of ΨPN∗,Q,e,t.
? Assume that D-WMaxSAT(Ψ, k) answers ”yes”. This means that there
exists a subset A ⊆ Ψ such that:

• {(φi, αi) ∈ A} is consistent and

•
∑

(φi,αi)∈A αi ≥ k

Note that we can state that {(ek,M) : k = 1, ..., l} is included in A. Indeed,
if some (φi,M) of Ψ is not in A then (

∑
(φi,αi)∈A αi) cannot be greater than

M ∗ (Z + |E|). Let us denote by A∗ = A \ {(φi,M) : (φi,M) ∈ A} then we can
also state that:

• {(φi, αi) ∈ A∗} is consistent,

•
∑

(φi,αi)∈A∗ αi ≥ X + log2 t

Let ω be a model of {φi : (φi, αi) ∈ A} and {φi : (φi, αi) ∈ A∗}. Since X =∑
{αi : (φi, αi) ∈ Ψ and αi 6= M}. Then the latter equation implies that:∑

{αi : (φi, αi) 6∈ A∗} ≤ − log2 t

This can be rewritten as:∑
{αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t

It is enough now to consider the following immediate simplified inequalities to
get the desirable result.∑

{αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t
−
∑
{log2 2−αi : (φi, αi) ∈ Ψ \A, ω 2 φi} ≤ − log2 t

− log2(∗{2−αi : (φi, αi) ∈ Ψ \A, ω 2 φi}) ≤ − log2 t
− log2(∗{2−αi : ω 2 ¬xi ∨ ¬uij}) ≤ − log2 t
− log2(∗{2−αi : ω � xi ∧ uij}) ≤ − log2 t

− log2 πPN∗(ω) ≤ − log2 t
πPN∗(ω) ≥ t

with ω � e. Hence the answer to π∗-D-MAP(PN ∗, Q, e, t) is also ”yes” by
taking q such that ω |= q.

? Assume that D-WMaxSAT(ΨPN∗,Q,e,t, k) answers ”no”. Then, for all con-
sistent subset of clauses A that include Ψ0 and Ψe we have∑

{αi : (φi, αi) ∈ A} < k.
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Let us consider such a subset A∗. Let ω be a model of A∗, then following the
same previous steps we have:∑

{αi : (φi, αi) ∈ Ψ \A∗ s.t ω 2 φi} > − log2 t
− log2(∗{2−αi : ω 2 ¬xi ∨ ¬uij}) > − log2 t
− log2(∗{2−αi : ω � xi ∧ uij}) > − log2 t

− log2 πPN∗(ω) > − log2 t
πPN∗(ω) < t

with ω � e. Hence the answer to π∗-D-MAP(PN ∗, Q, e, t) is also ”no”.

The next example illustrates Theorem 3.

Example 9 Let us continue Example 8. Let Q = {B} and E = {C} be the
set of query variables and evidence variables respectively. Let us consider the
evidence e = ¬c. Let ΨPN∗,Q,e,t be the weighted CNF formula associated to
PN ∗ given by Definition 10. The MAP query over PN ∗ is:

Is there an instantiation q of the variables Q such that ΠPN∗(q, e) ≥
2−2?

Hence, the corresponding problem D-WMaxSAT(ΨPN∗,Q,e,t, k) is given by:

Is there an instantiation of the variables such that the sum of the
degrees of the satisfied clauses is greater or equal to k?

Let us set the values of the variables X,M and Z: X = 21, M = 30, and
Z = 2. Then, k = X + log2 t + 30 ∗ (Z + 1) = 109. Given this configuration,
D-WMaxSAT(ΨPN∗,{B},¬c,2−2 , 109) answers ”yes”. Indeed, it is enough to

consider A such that

A =



(a, 4),
(¬b, 8),

(¬c ∨ ¬a ∨ ¬b, 7),
(¬c ∨ a ∨ b, 30),

(¬c ∨ a ∨ ¬b, 30),
(¬c, 30)


The sum of the weights in A is equal to 109. A model of formulas in A can be
a¬b¬c for which using the product-based chain rule has a possibility degree of
ΠPN∗(a¬bc) = 2−2. Hence, π∗-D-MAP(PN ∗, {B},¬c, 2−2) answers ”yes” as
well.

In this section, we have shown that the complexity of MAP inference in
possibilistic networks is NP -complete. We have also provided the transforma-
tions that encode a possibilistic network into a satisfiability problem in order to
use the power of SAT solvers. These results are significant as it overrides the
complexity for the same queries in Bayesian networks. In the next section, we
provide, following the same hypothesis the proof of hardness and completeness
for MPE query in possibilistic networks.
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7 Analysis of MPE querying a possibilistic net-
work

This section briefly focuses on MPE query in possibilistic networks where we
will follow the same steps as for showing the computational complexity of MAP
querying.

7.1 From 3SAT to MPE querying over B&B possibilistic
networks

In the previous section, we have shown that MAP querying a min-based B&B
possibilistic network and MAP querying a product-based B&B possibilistic net-
work give the same result. This results is also valid for a MPE query as shown
below.

Proposition 4 Let e be an instantiation of evidence variables. Let PNB&Bm

and PNB&B∗ be two B&B possibilistic networks such that ∀Xi, ∀µ an in-
stance of parents of Xi, πPNB&Bm

(Xi|µ) = πPNB&B∗
(Xi|µ). Then the answer

to πm-D-MPE(PNB&Bm
, e, 1) is ”yes” if and only if the answer to π∗-D-

MPE(PNB&B∗ , e, 1) is ”yes”.

Proof 5 Assume that πm-D-MPE(PNB&Bm
, e, 1) is ”yes”. This means that

there exists an interpretation ω such that πm(ω) = 1 and for all conditionals,
involved in the computation of πm(ω), πm(xi|par(xi)) = 1. By definition of
PNB&B∗ , we have π∗(xi|par(xi)) = 1 and using the product-based chain rule,
we obtain that π∗(ω) = 1 so π∗-D-MPE(PNB&B∗ , e, 1) is ”yes”. The same
reasoning can be used to prove the ‘only if ’ condition.

7.1.1 Reduction from 3SAT problem to B&B-D-MPE problem

In the previous sections, we gave the transformation definition of a 3CNF to
a B&B possibilistic network in the context of a MAP query. In the following,
we provide the same definition for a MPE query. We first formally define the
B&B-D-MPE problem.

Definition 11 By B&B-D-MPE(PNB&B , e) we denote the decision problem
associated with MPE querying a Boolean and Binary possibilistic network that
we define by:
Input: The input of this decision problem is composed of two elements :

• PNB&Bm : a B&B possibilistic network over V = {X1, ..., Xn} (min-based
or product-based)

• e (evidence): an instantiation of a set of observation variables E

Question: Is there an instantiation x of variables X such that ΠPNB&B
(x, e) =

1?
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As for MAP inference, we build a B&B possibilistic network from a 3CNF.
Definition 6 given for the MAP inference in the previous section can be reused
to transform the 3CNF into a B&B possibilistic network. Indeed, the difference
between MAP and MPE inference in B&B possibilistic network lies in the pres-
ence of a subset of query variables. The set of variables Q is not used in the
definition of the transformation.

Theorem 4 provides the reduction from the decision problem D-3SAT(Ψ)
into B&B-D-MPE(PNΨ, e) where the input e is let to eΨ. More formally:

Theorem 4 Let Ψ be a 3CNF formula. Let PNΨ be the B&B possibilistic
network given by Definition 6. Let VPNΨ

be the set of variables in PNΨ, namely
{X1, ..., Xn} ∪ {C1, ..., Cm} ∪ {EΨ}. Then, D-3SAT(Ψ) answer is ”yes” if and
only if the B&B-D-MPE(PNΨ, eΨ) answers ”yes” where D-3SAT is given in
Definition 3 and B&B-D-MPE is given by Definition 11.

The proof of Theorem 4 is the same as the proof of Theorem 1. It is even
shorter as we don’t have to restrict the model instantiation to the variables in Q.

Note that it is clear that MAP is a generalization of MPE where, in MPE,
Q is set to the remaining variables not used in E. This explains why it is
easier in this second part to prove that MPE queries in possibilistic networks
are NP -complete.

7.2 From MPE querying a min-based possibilistic network
to SAT

The decision problem associated with a MPE query in min-based possibilistic
networks, denoted πm-D-MPE is defined by:

Definition 12 We denote πm-D-MPE(PNm, e, t) the decision problem asso-
ciated with MPE querying a min-based possibilistic network. It is defined by:
Input: The input of this decision problem is composed of three elements :

• PNm: a min-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• t: a real number in (0, 1].

Question: Is there an instantiation x of the variables X such that ΠPNm(x, e) ≥
t?

The definition of ΨPNm,e,t, the CNF formula associated to a min-based pos-
sibilistic network for the MPE query with evidence e and threshold t is given
by Ψ′PNm,∅,e,t where Ψ′ is given by definition 8.

The following theorem states that πm-D-MPE can be reduced to D-SAT.
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Theorem 5 Let PNm be a min-based possibilistic network, e be an instantiation
of evidence variables E and t be a real number in (0, 1]. Let ΨPNm,e,t be the
CNF formula given by Definition 8 with Q = ∅. Then, πm-D-MPE(PNm, e, t)
says ”yes” if and only if D-SAT(ΨPNm,e,t) says ”yes” where πm-D-MPE is
given by Definition 12 and D-SAT is given by Definition 2.

Proof 6 We need to prove that when ΨPNm,e,t is satisfiable then ΠPNm
(x, e) ≥

t and that when ΨPNm,e,t is unsatisfiable then ΠPNm
(x, e) < t for all assign-

ments of all variables compatible with e.

• Assume that ΨPNm,e,t is satisfiable. This means that there exists an in-
stantiation of all variables, denoted by ω∗, that satisfies all clauses of
ΨPNm,e,t including e = e1, ..., el. Then we have πPNm

(xi|uij) < t by con-
struction of ΨPNm,e,t. So if ω∗ satisfies all clauses in ΨPNm,e,t then ω∗ fal-
sifies each of the formulas in {(xi∧uij) : (¬xi∨¬uij) ∈ ΨPNm,e,t}. Thus,
all conditionals πPNm(xi|uij) applied in chain rule to compute πPNm(ω∗)
have a possibility degree greater or equal to t. Therefore, πPNm

(ω∗) ≥ t.
Hence the answer to πm-D-MPE(PNm, e, t) is also ”yes”.

• Assume that ΨPNm,e,t is unsatisfiable. Then for all instantiation of vari-
ables ω such that ω |= e(= e1 ∧ .. ∧ el), there exists at least a clause
Ci = ¬xi ∨ ¬uij that is falsified by ω (and hence ω |= xi ∧ uij). Again
by construction of ΨPNm,e,t, we have πPNm

(xi|uij) < t, so using the
min-based chain rule we have ∀ω |= e, πPNm

(ω) < t. Hence πm-D-
MPE(PNm, e, t) is also ”no”.

7.3 From MPE querying a product-based possibilistic net-
work to WMaxSAT

The decision problem associated with a MPE query in product-based possibilis-
tic networks, denoted π∗-D-MPE is defined by:

Definition 13 We denote π∗-D-MPE(PN ∗, e, t) the decision problem associ-
ated with MPE querying a product-based possibilistic network. It is defined by:
Input: The input of this decision problem is composed of three elements :

• PN ∗: a product-based possibilistic network

• e (evidence): an instantiation of a set of variables E

• t: a real number in (0, 1].

Question: Is there an instantiation x of the variables X such that ΠPN∗(x, e) ≥
t?

The definition of ΨPN∗,e,t, the CNF formula associated to a product-based
possibilistic network for the MPE query with evidence e and threshold t is given
by Ψ′PN∗,∅,e,t where Ψ′ is given by definition 10.
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Theorem 6 provides the reduction from the decision problem π∗-D-MPE(PN ∗, e, t)
into D-WMaxSAT (ΨPN∗,e,t, k). We denote (in the same way as for the MAP
analysis) by Z the number of possibility degrees, πPN∗(xi|uij) in PN ∗ that are
equal to 0.

The input k is let to X+ log2 t+M ∗(Z+ |E|) while ΨPN∗,e,t is the weighted
CNF formula given associated to PN ∗ given by Definition 10 where Q is let to
the empty set. More formally:

Theorem 6 Let PN ∗ be a product-based possibilistic network. Let e be an in-
stantiation of variables E and t be a threshold. Let ΨPN∗,e,t be the CNF formula
given by Definition 10. Then, π∗-D-MPE(PN ∗, e, t) answers ”yes” if and only
if D-WMaxSAT(ΨPN∗,e,t, X + log2 t + M ∗ (Z + |E|)) answers ”yes” where
π∗-D-MPE is given by Definition 7 and D-WMaxSAT is given by Definition
4.

The proof follows the same reasoning as the proof of Theorem 3.

To summarise Theorems 4, 5 and 6 show that the decision problem associated
with MPE inference is NP -complete for both min-based and product-based
possibilistic networks.

8 Conclusions

As stressed out in the motivations, inference in probabilistic models is a hard
task in the general case. Indeed, computing MAP queries in Bayesian networks
is NPPP -complete [16, 27]. This paper provided complexity results for possi-
bilistic networks where MAP inference queries are shown to be NP -complete.
Especially, these results are valid in both min-based and product-based possi-
bilistic networks. The other main result of this paper is that the complexity
of MPE inference is also NP -complete. These results proved that possibilistic
networks offer interesting advantages for reasoning with uncertain information.

A future work concerns the computational complexity analysis ofMAP queries
in interval-based possibilistic networks. We believe that our results on MAP
queries will still hold in the interval-based possibilistic setting. Since in interval-
based possibilistic logic the complexity of conditioning is the same as the com-
plexity of conditioning a standard possibilistic knowledge base. Among other
future works, we also argue that the nice complexity results of possibilistic net-
works shown in this paper can really benefit for inference in probabilistic credal
networks where these latter can be approximated by possibilistic networks by
means of imprecise probability-possibility transformations [4, 26].
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plexity of MAP inference in bayesian networks specified through logical
languages. In Qiang Yang and Michael Wooldridge, editors, Proceedings
of the Twenty-Fourth IJCAI, Buenos Aires, Argentina, July 25-31, pages
889–895. AAAI Press, 2015.
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