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Abstract

Most existing automatic kinship verification methods focus on learning the opti-

mal distance metrics between family members. However, learning facial features

and kinship features simultaneously may cause the proposed models to be too

weak. In this work, we explore the possibility of bridging this gap by developing

knowledge-based tensor models based on pre-trained multi-view models. We

propose an effective knowledge-based tensor similarity extraction framework for

automatic facial kinship verification using four pre-trained networks (i.e., VGG-

Face, VGG-F, VGG-M, and VGG-S). Therefore, knowledge-based deep face

and general features (such as identity, age, gender, ethnicity, expression, light-

ing, pose, contour, edges, corners, shape, etc.) were successfully fused by our

tensor design to understand the kinship cue. Multiple effective representations

are learned for kinship verification statements (children and parents) using a

margin maximization learning scheme based on Tensor Cross-view Quadratic

Exponential Discriminant Analysis. Through the exponential learning process,

the large gap between distributions of the same family can be reduced to the

maximum, while the small gap between distributions of different families is si-
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multaneously increased. The WCCN metric successfully reduces the intra-class

variability problem caused by deep features. The explanation of black-box mod-

els and the problems of ubiquitous face recognition are considered in our system.

The extensive experiments on four challenging datasets show that our system

performs very well compared to state-of-the-art approaches.

Keywords: kinship verification, knowledge-based tensor subspace analysis,

convolutional neural networks, multi-view deep features, metric learning, facial

images analysis.

1. Introduction

The task of kinship verification aims to determine whether two peoples are

biologically related based on their appearance [1]. Image-based kinship verifica-

tion allows learning and extracting similarities between family members, which

is a new challenge in face image analysis. This presents a new challenge for

face image analysis. Moreover, this can provide valuable clues for many poten-

tial applications such as searching for missing children and human trafficking,

organizing family albums, creating family trees, forensics, and image labeling.

There were challenges in automatic kinship recognition using facial images such

as different age groups and genders. Also, the images were taken in uncontrolled

environments and without constraints on expression, partial occlusion, lighting,

and background.

Kin verification schemes typically utilize shallow features-based face repre-

sentation to learn the facial features and kinship traits simultaneously [1, 2].

This results in weakly learned kinship verification models. Several methods used

a hierarchical approach to learn kinship features. First, they used knowledge-

based pre-trained models that incorporate a better understanding the facial

cues, and then project this knowledge to learn kinship cues from understand-

able faces of family members. Therefore, frameworks that used metric learning

over knowledge-based deep features achieved the best results [3, 4, 5, 6, 7, 8, 9].

Tensor-based metric learning methods (multi-linear subspace) show better
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performance than vector-based (linear subspace) counterparts using shallow fea-

tures [10, 11] for kinship verification topic. Face feature extraction is an im-

portant step for tensor subspace analysis methods. The authors in [12] discuss

in their paper and conclude that the face contains heterogeneous information

where the face contains large dissimilarity parts (i.e. eyes, nose, mouth, etc.).

It follows that the tensor-based methods perform better when using texture

information (shallow features) and that the raw face images are poor input in-

formation for the tensor-based methods. Many works [13, 10, 11] propose the

use of histograms of multiple local texture descriptors as an elegant method

for describing face images. This confirms that texture representation (shallow

representation) is more discriminative for tensor based face images.

However, deep features show great improvement over shallow features for

computer vision topics such as facial expression classification [14], age estima-

tion [15], gender classification [16], and pain estimation [17].

Explaining black-box models and ubiquitous face recognition are challenging

topics to address with deep face recognition models. Based on the perspectives

in [18, 19], a popular approach uses simpler and more axiomatic decision algo-

rithms to build an alternative black-box model (e.g., a deep-learning algorithm)

that is used for decision making. However, there is a risk that the alternative

paradigm is too large to be truly comprehensible to humans.

Many of previous studies [3, 4, 5, 7, 9] aims to project deep features from the

unknown subspaces (black-box subspaces) to the known and more discriminative

subspaces (e.g., microaggregation and shallow decision trees [20]). Through

this transformation, they benefit from the knowledge-based domain and their

proposed frameworks guarantee the transparency, efficiency and robustness of

the proposed models based on deep features.

The authors in [21] conclude in their review for face recognition that the

solution is to build a generic model trained on generic propositions and then

applied to a specific application (in our case, a facial kinship verification ap-

plication) and consolidate multiple sources of biometric data. Therefore, deep

features obtained from different pre-trained networks trained on multiple state-
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ments of biometric evidence are considered as a rich source of information that

can be compatible to different biometric attributes.

Dornaika et al. [4] propose for the first time to use deep object information

about contour, edges, corners, shape, etc. of facial parts (i.e., mouth, nose,

eyebrows, eyes, etc.) alongside deep facial features (i.e., identity, age, gender,

ethnicity, expression, illumination, pose, etc.) for the topic of kinship verifica-

tion by fusing the VGG-F [22] and VGG-Face [23] features using the Multi-view

Neighborhood Repulsed Metric Learning [1] subspace (linear subspace).

In general, metric learning methods focus on increasing the spread between

samples of different classes while minimizing the spread between samples of the

same class. One of the most popular criteria is the exponential criterion [24, 25,

26]. Figure 1 shows the exponential process at different eigenvalues. Through

this application, the metric learning methods can greatly extend and improve

their separation (classification). Thus, the eigenvalues with lower importance

were minimized and those with high importance were maximized.
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Figure 1: Explanation of (a) Linear and exponential functions applied on different eigenvalues, and

(b) Example of the proportions
Λk∑
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(blue bars) and
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exp(Λk)

(orange bars).

Tensor metric learning methods have yet to show an advantage in using

deep features for facial kinship verification, where deep object and face fea-

tures seem to be more promising. Moreover, the design of tensor subspace

analysis (multi-linear subspace) needs to be increasingly adapted to the deep
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features. Cross-view metric learning methods [11, 27] show great improvement

over traditional metric learning in computer vision. For this reason, we aim to

fully exploit the dependency structure between parents and children in a tensor

cross-view manner. We call our method Tensor Cross-view Quadratic Exponen-

tial Discriminant Analysis integrating Within-Class Covariance Normalization

(TXQEDA+WCCN).

The obtained results confirm that the use of deep object features (using a

network trained on object classification) are a good complement to deep face

features by tensor cross-view learning and the proposed ensemble can realize,

fuse, analyse and separate the multi-factorial structure (extracted from deep

face and object features) of face images related to identity, age, gender, eth-

nicity, expression, illumination, pose, contour, edges, corners, shape, etc over

the various dimensions of tensor design [28]. Moreover, the VGG-Face model

achieved the best performance in face recognition with accuracy of 98.95% and

97.3% on LFW [29] and YTF [30] databases, respectively. Our knowledge-based

tensor subspace model also addresses the problem of ubiquitous face recogni-

tion by fusing features extracted from the VGG-Face model with those from the

VGG-F, VGG-M, and VGG-S models via a tensor design. Moreover, we succeed

in transferring the one entry problem to the model (i.e., face recognition/object

detection) to deal with the binary and ternary entries model (bi-subject and

tri-subject kinship verification). Moreover, our TXQEDA+WCCN approach

addresses the problems of black-box models and considers the following proper-

ties: accuracy, fidelity, consistency, stability, representativeness, certainty, nov-

elty, importance, and comprehensibility. These need to be considered in kinship

verification frameworks. The main idea of our proposed knowledge-based frame-

work for kinship verification problem can be explained in the following points:

1. We derive a novel hybrid knowledge-based multi-linear subspace for the

kinship verification task. The proposed kinship verification subspace is

based on multi-view deep networks to study the efficiency of different

deep face image representations. While feature fusion has already been
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exploited in each tensor mode unfolding.

2. We propose an improvement scheme based on margin maximization using

both cross-view similarity learning and exponential discriminant analysis.

3. Large intra-class variance is considered to be the main challenge in kinship

verification tasks. Inspired by this problem, we applied WCCN to solve

the intra-class variability problem. The combination of TXQEDA and

WCCN would minimize the expected classification error.

4. Many experiments were conducted with four public databases (TSKin-

Face, Cornell, KinFaceW-I, and KinFaceW- II), with favorable results

compared to state-of-the-art approaches

The remainder of this paper is organized as follows. We begin with an overview

of our system methodology in Section 2. In Section 3, we give an overview of

our knowledge-based multi-linear subspace for face kinship verification. The

TXQEDA+WCCN approach is presented in Section 4. The experimental data,

setup and results are presented in Section 5. Finally, conclusions are drawn in

Section 6.

2. Methodology

As mentioned earlier, the main idea of our work is to develop an effective

metric learning that provides a small margin for points with kin relation and a

large margin for points with no kin relation over a tensor subspace for kinship

verification. More specifically, we propose the following novel criterion: Tensor

Cross-view Quadratic Exponential Discriminant Analysis integrating Within-

Class Covariance Normalization (TXQEDA+WCCN) method. For brevity, we

denote a particular image representation, we extract two layers of features,

namely, the fully connected layer 6 and 7 (FC6 and FC7) through VGG-F, VGG-

M, VGG-S [22] and VGG-Face [23] pre-trained models to train the proposed

TXQEDA+WCCN scheme. The overview of the proposed knowledge-based

system is shown in Figure 2. For the offline training phase we extracted FC6
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and FC7 layers using four deep feature descriptors (i.e., VGG-F, VGG-M, VGG-

S, and VGG-Face).

The feature vectors of all training faces of parents sub-set or children sub-set

are expressed by a 3rd order tensor A,B ∈ ℜI1×I2×I3 (shown in Figure 3), where

I1, I2, I3 represent the weights, the fully connected layers (FC6 and FC7) of each

descriptor, and the samples respectively. The proposed TXQEDA+WCCN pro-

jected and reduced the input tensors A,B corresponding to I1 and I2 modes.

Consequently, we obtain a reduced tensor with i1×i2 << I1×I2. TXQEDA+WCCN

estimates the projection matrices W iter
k ∈ ℜIk×ik for each kth mode tensor.

In the online verification phase (test phase), the feature extraction for the

test inputs (parent-child test pair) was performed in the same way as in the

training phase, where each test image is represented as a tensor of order 2nd.

Then, both test pair tensors are projected by TXQEDA+WCCN, then we obtain

two output matrices E1 and E2 with dimensions i1, i2 where i1 × i2 << I1×I2.

These two matrices (E1 and E2) are concatenated to a feature vector e1 and e2

of length i1 × i2. Finally, to compute the similarity between the test pairs we

use the cosine similarity between the two vectors e1 and e2.

The Receiver Operating Characteristic (ROC) curve compares the cosine

score to an iterative threshold during performance evaluation. A high value of

the ROC curve score implies that there is a high probability that the test pairs

belongs to the same family.

3. Knowledge-based multi-linear subspace

It is well known that strong facial features are crucial in determining and

verifying the relationship between people. Therefore, the deep features are

represented to explain kinship attribution becomes an important issue and a

major challenge in determining kinship. Recently, deep features show better

performance than shallow features (i.e. LPQ, LBP, BSIF ...etc.) in kinship

verification. To find efficient and discriminative features from face images, We

suggest taking advantage of prior knowledge and fuse the deep features provided
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Figure 2: The proposed knowledge-based tensor subspace analysis system.

by four pre-trained networks VGG-F, VGG-M, VGG-S and VGG-Face to extract

a complementary information to solve the kin relations between samples in

multi-linear subspace and generate the kinship factor information.

The proposed multi-linear subspace transfers the knowledge from large-scale

data-driven face and object recognition to the kinship verification system to find

a metric space in which the facial features of family members become discrimina-

tive via a multi-linear cross-view. Figure 3 illustrates the proposed knowledge-

based multi-linear subspace, each face image is represented using four deep

feature descriptors (i.e., VGG-F, VGG-M, VGG-S, and VGG-Face) extracted

in two fully connected layers FC6 and FC7, each with 4096 neurons. Thus, the

feature vectors are considered as 2D arrays for each face. The features of the

face images in each database are arranged to form a third-order tensor. Further-

more, feature fusion has already been brought to unfold in each tensor mode.

Our method concerns the feature fusion process without using the usual fea-

ture fusion techniques. In other words, using a multi-dimensional tensor-based

metric learning method simplifies the feature fusion task.

8



CNN pre-t nrai  ed Models

VGG-F

VGG-M

VGG-Face

VGG-S

FC6

FC7

FC7

FC7

FC7

FC6

FC6

FC6

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

W
e

ig
h

ts

D ffe ni re t Deep Features De c ps ri tors

CNN pre-t nrai  ed Models

VGG-F

VGG-M

VGG-Face

VGG-S

FC6

FC7

FC7

FC7

FC7

FC6

FC6

FC6

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 4x 1 x 096

1 x 1 x 4096

1 4x 1 x 096

1 4x 1 x 096

W
e

ig
h

ts

D ffe ni re t Deep FeaturesDe c ps ri tors

VGG-F

Children sub-set
P

a
n

re
ts

- C
i

n
h

ld
re

s
e
t

Pa nre ts sub-set

(a) Features e txtrac ion (b Te s) n or design

VGG-F VGG-M VGG-S VGG-Fa ec

VGG-F VGG-M VGG-S VGG-Fa ec

Figure 3: Knowledge-based multi-view deep features extraction (Mv-VGG) and tensor design.

(1) (2) (  )3
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B

Figure 4: Visualisation of 3D subset unfolding, where Mode 1, Mode 2 and Mode 3 define weights,

scales and samples, receptively.

Figure 4 illustrates how unfolding is used to perform deep feature fusion.

The process of unfolding is performed mathematically as follows:

For a tensor B ∈ ℜI1×I2×···×IN with size (I1 × I2 × · · · × IN) tensor, then ele-

ment (i1 × i2 × · · · × iN) ofB maps to element (ik, j) of matrix B(k) ∈ ℜIk×
∏

i ̸=kIi

, the k-mode unfolding of B , with:

Bk ⇐k B (1)
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Where

B
(k)
ik,j

= B i1...iN , j = 1 +

N∑
l=1,l̸=k

(il − 1)

N∏
o=l+1,o̸=k

Io (2)

For mode 3, we ignored the unfolding process, since this dimension contains the

number of samples, while the learning of the kinship verification is based on

these samples. Therefore, we avoid the unfolding process in the third mode
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X
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Figure 5: An example of the parent/child subset {A,B} in the case of each class (family)

contains more than one face image for each individual. The first transition (1) is from raw

images to deep features, while the second transition (2) is from tensor representation of deep

features to unfolding representation.
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4. Tensor Cross-view Quadratic Exponential Discriminant Analysis

Integrating Within Class Covariance Normalization

This section focuses on the algebra of multi-linear Cross-view Quadratic

Exponential Discriminant Analysis (TXQEDA) involving the Within Class Co-

variance Normalization metric (WCCN). We define a specific symbolic notation

for different data types and use bold italic uppercase letters, normal italic up-

percase letters, bold lowercase letters, lowercase letters and uppercase letters to

denote tensors, matrices, vectors and scalars respectively.

4.1. Tensor Cross-view Quadratic Exponential Discriminant Analysis (TXQEDA)

In particular, given samples from training set {A,B} of t classes/families

with n/m images. Since each image provides 8 deep feature vectors, the input 3D

tensors for parents and children are as follows. A ∈ ℜI1×I2×I3 (I1 = 8, I2 = 4096, I3 = n)

is parents sub-set contains t individuals A = {X 1,X 2, . . . ,X t} (the first view),

and B ∈ ℜI1×I2×I3 (I1 = 8, I2 = 4096, I3 = m) is children sub-set contains t indi-

viduals B = {Y 1,Y 2, . . . ,Y t} (the second view), where X i = {p1,p2, . . . ,pni
}

and Y i = {c1, c2, . . . , cmi
} i ∈ [1, t], each individual from parents or children

X i,Y i contains ni,mi images. Then, the training samples are transformed into

a new unfolded subspace using Equations (1) and (2). We obtain new training

sets Ak ∈ ℜIk×Ii ̸=kI3 and Bk ∈ ℜIk×Ii̸=kI3 (see Figure 5 for further illustrations

of the data structure).

We have:

Ak = {Xk
1,X

k
2, . . . ,X

k
t }, X

k
i = {pk

1,p
k
2, . . . ,p

k
ni
} i ∈ [1, t]

Bk = {Yk
1,Y

k
2, . . . ,Y

k
t }, Y

k
i = {ck1, ck2, . . . , ckmi

} i ∈ [1, t]

Laiadi et al. [11], extended XQDA [27] method into TXQDA [11], the TXQDA

objective is to estimate N projection matrices (W1 ∈ ℜI1×i1 ,W2 ∈ ℜI2×i2 , . . . ,WN ∈

ℜIN×iN), for each kth, mode tensor, which has a form of Generalized Rayleigh

Quotient:

J(Wk) =
Tr

(
WT

k Σk
EWk

)
Tr

(
WT

k Σk
IWk

) (3)
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Besides the two cross-view matrices Σk
I and Σk

E can be efficiently calculated

without actually computing the n/m pairwise differences, by simplifying them

as follows:

nIΣ
k
I =

∏
o̸=k Io∑
f=1

nIΣ
k,f
I

nIΣ
k,f
I = P̃ k,f(P̃ k,f)T + C̃k,f(C̃k,f)T − Sk,f(Rk,f)T −Rk,f(Sk,f)T

(4)

Where:

P̃ k,f = (
√
m1X

k,f
1 ,

√
m2X

k,f
2 , . . . ,

√
mtX

k,f
t )

C̃k,f = (
√
n1Y

k,f
1 ,

√
n2Y

k,f
2 , . . . ,

√
ntY

k,f
t )

S̃k,f = (
n1∑

yi=1,j=1

pk,f
j ,

n2∑
yi=2,j=1

pk,f
j , . . . ,

nt∑
yi=t,j=1

pk,f
j )

R̃k,f = (
m1∑

li=1,j=1

ck,fj ,
m2∑

li=2,j=1

ck,fj , . . . ,
mt∑

li=t,j=1

ck,fj )

nI =
t∑

i=1

ni ×mi

For all representations, yi and lj are class/family labels, ni is the number of

images for each ith individual Xi, and mi is the number of images for each ith

individual Yi.

nEΣ
k
E =

∏
o̸=k Io∑
f=1

nEΣ
k,f
E

nEΣ
k,f
E = mP k,f(P k,f)T + nCk,f(Ck,f)T − sk,f(rk,f)T − rk,f(sk,f)T − nIΣ

k,f
I

(5)

Where :

P k,f = (Xk,f
1 ,Xk,f

2 , . . . ,Xk,f
t )

Ck,f = (Yk,f
1 ,Yk,f

2 , . . . ,Yk,f
t )

sk,f =
t∑

j=1

nj∑
i=1

pk,f
i and rk,f =

t∑
j=1

mj∑
j=1

ck,fj

nE = np × nc − nI where, np and nc represent the number of parents and chil-

dren images.

It can be observed that TXQEDA computes ΣI and ΣE directly from the

samples mean and covariance of each class/family and all classes/families (sam-

ples of parents from A and samples of children from B , i.e. only positive pairs
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in training data). Therefore, the matrices , P̃ k,f , Sk,f , P k,f sk,f depend on data

samples from the parents’ view, while the matrices C̃k,f , Rk,f , Ck,f rk,f depend

on data samples from the children view.

The goal of our TXQEDA+WCCN is to achieve better separation of the

learned knowledge-based information. TXQEDA+WCCN replaces the two co-

variance matrices Σk
E and Σk

I of the equation (3) with exp(Σk
E) and exp(Σk

I ),

respectively. Thus, the objective function of TXQEDA+WCCN becomes:

J(Wk) =
Tr

(
WT

k exp(Σk
E)Wk

)
Tr

(
WT

k exp(Σk
I )Wk

)
=

Tr
(
WT

k

(
(Vk

E)
T exp(Λk

E)(V
k
E)
)
Wk

)
Tr

(
WT

k

(
(Vk

I )
T exp(Λk

I )(V
k
I )
)
Wk

) (6)

Where :

Σk
E = (Vk

E)
TΛk

E(V
k
E)

Σk
I = (Vk

I )
TΛk

I (V
k
I )

V k
E = ((vE)

k
1, (vE)

k
2, . . . , (vE)

k
Ik
) is the eigenvector matrix of Σk

E .

Λk
E=diag((λE)

k
1, (λE)

k
2, . . . , (λE)

k
Ik
) represent the corresponding eigenvalues.

V k
I = ((vI)

k
1, (vI)

k
2, . . . , (vI)

k
Ik
) is is the eigenvector matrix of Σk

I .

Λk
I=diag((λI)

k
1, (λI)

k
2, . . . , (λI)

k
Ik
) represent the corresponding eigenvalues.

Therefore, there is a greater difference in the distribution scale within the

class and between classes, where exp(Σk
E)/exp(Σ

k
I ) is larger than Σk

E/Σ
k
I . This

leads to a better separation. The exponential transformation maps move the

covariance matrices Σk
E and Σk

I to another nonlinear space:

Ω : ℜg×g→ℜg×g

Σk
I→Ω(Σk

I ) = exp(Σk
I )

Σk
E→Ω(Σk

E) = exp(Σk
E)

(7)

Thus, TXQEDA yields to better performance compared to the TXQDA

method when dealing with the nonlinearity problem. The objective function for

distinctive TXQDA [11] criterion in equation (3) is to augment the same-class

distance (distanceE) and reduce the different-class distance (distanceI) for all
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tensor kth mode. (distanceI) and (distanceE) computed by trace of covariance

matrices Σk
E and Σk

I :

distanceE = trace(Σk
E)

= (λE)
k
1 + (λE)

k
2 + . . .+ (λE)

k
Ik

and

distanceI = trace(Σk
I )

= (λI)
k
1 + (λI)

k
2 + . . .+ (λI)

k
Ik

By applying exponential function distanceE and distanceI can be calculated

as follows:

distance´E = trace(exp(Σk
E))

= exp(λE)
k
1 + exp(λE)

k
2 + . . .+ exp(λE)

k
Ik

and

distance´I = trace(exp(Σk
I ))

= exp(λI)
k
1 + exp(λI)

k
2 + . . .+ exp(λI)

k
Ik

However, TXQEDA uses the exponential process to discriminate the classes.

More specifically, TXQEDA obtains the discriminant eigenvalues exp(Λk
E) and

exp(Λk
I ) in Σk

E and Σk
I such that they maximize the ratio

λEi

λIi
to

exp(λEi
)

exp(λIi
) where

λEi

λIi
<<

exp(λEi
)

exp(λIi
) . Figure 1 illustrates the exponential application on different

eigenvalues. The cost function J(Wk) in (6) can be rewritten by the generalized

eigenvalue decomposition:

exp(Σk
E)Wk = Λkexp(Σ

k
I )Wk (8)

Where, Wk is the eigenvectors matrix and Λk is a diagonal matrix whose diag-

onal elements are the eigenvalues λk
i .
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(a)                                                     (b)                                                (c)

Figure 6: Illustration of margin maximization between samples belonging to positive and negative

pairs. (a) The original face images with/without kinship relations in the primary Mv-VGG space.

(b) The face images after projection through the basic TXQDA into the new high-dimensional

space. (c) The face images after projection by the proposed method (TXQEDA+WCCN) into the

new high-dimensional space.

To illustrate the mechanism of how TXQEDA affects the performance of

kin verification, we draw the nodes of different elements (images) with different

colors in 2-D space. Each point represents a 2-D representation of the cor-

responding sample, with the green, blue, red, and yellow points denoting the

positive parents, positive children, negative parents, and negative children, re-

spectively. Figure 6 shows the results of visualizing our algorithm and baselines.

In Figure 6-(a), we can see that the original face images spread in the Mv-VGG

space with large overlap. In Figure 6-(c), we can see that TXQEDA+WCCN

distinguishes the nodes with same/different labels more clearly than the base-

line algorithms (TXQDA) in Figure 6-(b). The result of TXQDA (Figure 6-(b))

is not satisfactory because all the negative nodes are intermixed and the posi-

tive ones are spaced. In TXQEDA+WCCN (Figure 6-(c)), most of the negative

nodes are separated and the positive ones are contiguous. However, the posi-

tive pairs are projected as close as possible and the negative ones are pushed

as far away as possible. In this way, the distance between the negative pairs is

maximized and the distance between positive pairs is minimized. It is observed

that the visualization of the separation result by TXQEDA is better compared

with the baselines.
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4.2. Within Class Covariance Normalization

WCCN [31] metric is one of the most preferred metrics to decrease the

effect of the within class variations in Speaker Recognition literature. However,

it uses the minimization of within class variability for feature learning, which

reduces the expected variances between training features of the same class. The

WCCN metric has highlighted the benefit of mapping the feature vectors of the

TXQEDA approach to a new subspace. Therefore, it is of great importance for

us to obtain an efficient version of TXQEDA. We show that TXQEDA+WCCN

can efficiently learn multi-view deep features to handle the complex variability

in the same classes.

nIG
k =

∏
o̸=k Io∑
f=1

nIG
k,f

nIG
k,f = (W k)T P̃ k,f(P̃ k,f)T + (W k)T C̃k,f(C̃k,f)T − (W k)TSk,f(Rk,f)T − (W k)TRk,f(Sk,f)T

(9)

W k represents the projection matrix estimated in (8), the WCCN matrix Q

can be calculated and expressed by Cholesky decomposition [32] as:

(Gk)−1 = Qk(Qk)T (10)

Hence, we have the following new projection matrix Wk :

W k = (Qk)TW k (11)

TXQEDA uses an iterative optimization process to estimate the projection

matrices in equation (6), making the proposed distance metric more stable

and efficient during the classification process. TXQEDA learns a subspace

W1,W2, . . . ,Wk−1,Wk+1, . . .WN that supposed known and initialized to iden-

tity initially and Wk is estimated. Set: U = A ×1 W1 . . . ×k−1 Wk−1 ×k+1

Wk+1 . . . ×N WN and V = B ×1 W1 . . . ×k−1 Wk−1 ×k+1 Wk+1 . . . ×N WN, the

TXQEDA algorithm has to be formulated in terms of iterative optimization the

discriminative subspace A and B into U and V in equation (4) and equation

(5), respectively. The optimization process terminates if any of the following
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conditions are met: (a) The number of iterations reaches a predefined maximum;

or b) The difference in the estimated projection between two successive itera-

tions is smaller than a threshold,
∥∥W iter

k −W iter−1
k

∥∥ < IkIkϵ, where iter refers

to the current iteration number and Ik is the kth mode dimension of W iter
k .

The TXQEDA+WCCN parameters i1 × i2 × . . .× iN (final dimensions) are

solved by applying the energy percentage (Energyk) to the eigenvalues for each

tensor mode:

Energyk =

∑ik
j=1 λ

k
j∑Ik

j=1 λ
k
j

× 100 (12)

with λk
1 > λk

2 > . . . > λk
Ik
.

The entire procedure of the proposed TXQEDA+WCCN scheme is described

in Algorithm 1.
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Algorithm 1 TXQEDA+WCCN

Input:

• The tensor A ∈ ℜI1×I2×···×IN×n contains parents samples (the first view).

• The tensor B ∈ ℜI1×I2×···×IN×m contains children samples samples (the second view).

• The positive labels (labelsW) for extracting the match tensor pairs.

• The maximal number of iterations Iterationmax.

• The final lower dimensions: i1 × i2 × · · · × iN.

Output:

• The projection matrices of each mode Wk = W iter
k ∈ ℜIk×ik , k = 1, · · · ,N.

Algorithm:

1. Initialization: W 0
1 = II1 ,W

0
2 = II2 , · · · ,W 0

N = IIN .

2. For iter : 1 to Iterationmax

(a) For k=1 to N

• U = A×1 W
iter−1
1 . . .×k−1 W

iter−1
k−1 ×k+1 W

iter−1
k+1 . . .×N W iter−1

N .

• Uk ⇐k U .

• V = B ×1 W
iter−1
1 . . .×k−1 W

iter−1
k−1 ×k+1 W

iter−1
k+1 . . .×N W iter−1

N .

• V k ⇐k V .

• nIΣ
k
I =

∏
o̸=k Io∑
f=1

nIΣ
k,f
I .

nIΣ
k,f
I = P̃ k,f(P̃ k,f)T + C̃k,f(C̃k,f)T −Sk,f(Rk,f)T −Rk,f(Sk,f)T .

• nEΣ
k
E =

∏
o̸=k Io∑
f=1

nEΣ
k,f
E .

nEΣ
k,f
E = mP k,f(P k,f)T + nCk,f(Ck,f)T −sk,f(rk,f)T − rk,f(sk,f)T − nIΣ

k,f
I .

• Moving the covariance matrices Σk
E and Σk

I into another nonlinear space by:

Ω : ℜg×g→ℜg×g

Σk
I→Ω(Σk

I ) = exp(Σk
I )

Σk
E→Ω(Σk

E) = exp(Σk
E)

• Estimate W iter
k by solving the following eigenvalue decomposition problem :

exp(Σk
E)W

iter
k = Λkexp(Σ

k
I )W

iter
k .

• nIG
k =

∏
o̸=k Io∑
f=1

nIG
k,f .

nIG
k,f = (W k)P̃ k,f(P̃ k,f)T + (W k)C̃k,f(C̃k,f)T −(W k)Sk,f(Rk,f)T − (W k)Rk,f(Sk,f)T .

• Compute WCCN projection matrix Qk: (Gk)−1 = Qk(Qk)T

• Compute the new projection matrix W iter
k = (Qk)TWk

(b) If iter > 2 and
∥∥W iter

k −W iter−1
k

∥∥ < IkIkϵ, k = 1, · · · ,N, break;

3. Compute the final lower dimensions ik by: Energyk =
∑ik

j=1 λk
j∑Ik

j=1 λk
j

× 100, where ( λk
1 > λk

2 > . . . > λIk
k).

4. Sort the iN eigenvectors W iter
k ∈ ℜIk×ik according to Λk in decreasing order, k = 1, · · · ,N.
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5. Performance evaluation

The proposed kin verification approach has been experimentally verified by

applying it to publicly available kin verification datasets(KinFaceW-I, KinFaceW-

II [1], TSKinFace [33], and Cornell KinFace database [34]). Images in these

databases were captured and recorded under uncontrolled conditions for ges-

tures, demographic attributes, background, lighting, partial occlusion, and facial

expressions. The KinFaceW-I dataset contains 4 kinship relations. There are

156 (F-S), 134 (F-D), 116 (M-S) and 127 (M-D) kinship pairs. The KinFaceW-

II dataset contains 4 kinship relations (F-S), (F-D), (M-S) and (M-D), 250

pairs of kinship images for each kinship relation. We also used the TSKinFace

database, which contains two types of kinship relations between three indi-

viduals: Father-Mother-Daughter (FM-D) with 502 relationships and Father-

Mother-Son (FM-S) with 513 relationships. To make a fair comparison, we

reorganized the TSKinFace database by splitting the Father-mother-daughter

group into two groups father-daughter (F-D) with 502 relationships, Mother-

Daughter (M-D) with 502 kinship relations, and the Father-Mother-Son group

into two groups Father-Son (F-S) with 513 kinship relations, Mother-Son (M-S)

with 513 kinship relations, in total the TSKinFace database contains 2052 face

images. The Cornell KinFace database contains 150 pairs (300 images) with

different demographic attributes. The distribution of kinship pairs is as follows:

40% (F-S), 22% (F-D), 13% (M-S), and 26% (M-D).

5.1. Parameter Settings

We followed the framework and testing protocol in [1] and used a five-fold

cross-validation testing scheme to evaluate the performance of our approach.

For the four kinship databases KinFaceW-I, KinFaceW-II [1], TSKinFace [33],

and the Cornell KinFace database [34], we cropped the images to face size

64 × 64 pixels, then we resized the input images to the required 224 × 224 di-

mensions to use as input for deep feature extraction. The TXQEDA+WCCN

subspaces are set to 96% energy of the eigenvalues, preserving the eigenval-
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ues that provide up to 96% of the information. For example, in KinFaceW-

II, and for the F-S relation, the A, B are ∈ ℜ4096×8×200 and their projec-

tion 1000× 8× 200, and also provide the dimensions of the two projections

W1 with dimensions 8× 8 and W2 with dimensions 4096× 1000.

5.2. Experimental Results

We tested our TXQEDA+WCCN approach on the various relations. Table

1 (KinFaceW-I), Table 2 (KinFaceW-II), Table 3 (TSKinFace), Table 4 (Cor-

nell KinFace) show the performance of the proposed TXQEDA+WCCN ap-

proach with different deep feature descriptors. The results of TXQEDA+WCCN

performance compared to the state-of-the-art methods are shown in Table 5

(KinFaceW-I), Table 6 (KinFaceW-II), Table 7 (TSKinFace), and Table 8 (Cor-

nell KinFace). Experiments were also performed on the baseline approaches

with the same settings, which are included in Table 9 and 10. We note that:

Table 1: The average verification accuracy (%) of the proposed method using several deep features

on KinFaceW-I database.

Method Features F-S F-D M-S M-D Mean

TXQDA VGG-F 80.07 82.42 78.48 78.79 79.94

TXQDA VGG-M 77.36 80.00 74.85 76.67 77.22

TXQDA VGG-S 81.30 84.85 84.47 87.78 84.60

TXQDA VGG-Face 74.84 71.82 76.67 76.97 75.07

TXQDA Mv-VGG 75.77 73.33 78.48 77.88 76.36

TXQEDA+WCCN VGG-F 82.93 70.30 81.82 79.39 78.61

TXQEDA+WCCN VGG-M 82.00 76.67 80.00 79.09 79.44

TXQEDA+WCCN VGG-S 83.20 79.39 81.82 84.24 82.16

TXQEDA+WCCN VGG-Face 73.99 68.48 75.15 73.64 72.81

TXQEDA+WCCN Mv-VGG 91.00 87.78 92.32 93.35 91.11

• From the analysis of the results associated with the four databases Ta-

ble 1 (KinFaceW-I), Table 2 (KinFaceW-II), Table 3 (TSKinFace) and ,

Table 4 (Cornell KinFace) using the Mv-VGG description, our proposed

TXQEDA+WCCN method outperforms the TXQDA schemes for most of

the image features. The results reported in Tables 1, 2, 3, and 4 show that
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Table 2: The average verification accuracy (%) of the proposed method using several deep features

on KinFaceW-II database.

Method Features F-S F-D M-S M-D Mean

TXQDA VGG-F 78.60 79.80 78.40 77.60 78.60

TXQDA VGG-M 76.40 77.80 76.00 75.60 76.45

TXQDA VGG-S 83.40 81.20 82.40 81.20 82.05

TXQDA VGG-Face 76.00 71.80 75.20 76.40 74.85

TXQDA Mv-VGG 78.40 72.20 76.40 76.40 75.95

TXQEDA+WCCN VGG-F 82.40 76.80 82.20 81.40 80.70

TXQEDA+WCCN VGG-M 82.60 81.00 82.00 65.20 77.70

TXQEDA+WCCN VGG-S 84.00 79.40 82.20 84.00 82.40

TXQEDA+WCCN VGG-Face 79.20 73.40 77.60 79.00 77.30

TXQEDA+WCCN Mv-VGG 89.80 90.60 87.60 93.20 90.30

Table 3: The average verification accuracy (%) of the proposed method using several deep features

on TSKinFace database.

Method Features F-S F-D M-S M-D Mean FM-S FM-D

TXQDA VGG-F 70.10 69.41 70.97 71.94 70.60 77.18 72.72

TXQDA VGG-M 73.59 72.38 71.46 73.98 72.85 79.71 74.83

TXQDA VGG-S 67.48 66.63 67.38 68.25 72.43 73.30 69.81

TXQDA VGG-Face 74.27 74.06 78.06 79.61 76.50 83.01 79.42

TXQDA Mv-VGG 87.08 84.45 88.25 88.69 87.11 94.37 93.85

TXQEDA+WCCN VGG-F 68.06 66.83 67.77 69.03 67.92 72.82 69.13

TXQEDA+WCCN VGG-M 81.84 79.70 82.52 8029 81.08 89.90 84.08

TXQEDA+WCCN VGG-S 64.27 63.66 65.53 64.66 64.53 66.5 69.42

TXQEDA+WCCN VGG-Face 76.31 70.29 74.66 76.31 74.39 76.99 76.80

TXQEDA+WCCN Mv-VGG 89.42 89.31 90.87 93.15 90.68 95.34 96.53

Table 4: The average verification accuracy (%) of the proposed method using several deep features

on Cornell KinFace database.

Method Features Accuracy

TXQDA VGG-F 86.39

TXQDA VGG-M 88.88

TXQDA VGG-S 88.04

TXQDA VGG-Face 88.87

TXQDA Mv-VGG 92.70

TXQEDA+WCCN VGG-F 88.44

TXQEDA+WCCN VGG-M 88.88

TXQEDA+WCCN VGG-S 88.37

TXQEDA+WCCN VGG-Face 89.22

TXQEDA+WCCN Mv-VGG 93.77
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Table 5: Comparison of the proposed approach with other kinship verification approaches on

KinFaceW-I database.

Method F-S F-D M-S M-D Mean

MNRML [1] 72.50 66.50 66.20 72.00 69.90

DMML [2] 74.50 69.50 69.50 75.50 72.25

MPDFL [35] 73.50 67.50 66.10 73.10 70.10

DDMML [36] 86.40 79.10 81.40 87.00 83.50

SIEDA [37] - - - - 80.00

PML-COV-S [38] 91.00 84.30 87.10 90.20 88.20

KML [39] 83.80 81.00 81.20 85.00 82.80

MNRML+SVM [4] 85.90 79.85 86.20 86.62 84.55

KVRL+fcDBN [40] 98.10 96.30 90.50 98.40 96.10

Method in [41] - - - - 96.90

AdvKin [42] 75.70 78.30 77.60 83.10 78.70

Method in [43] - - - - 80.50

WGEML [7] 78.50 73.90 80.60 81.90 78.70

NESN-KVN [44] 76.50 77.00 85.20 75.80 78.60

Method in [45] 85.80 87.50 88.10 80.90 85.60

MSIDA+WCCN [8] 85.98 85.93 90.05 88.62 87.65

SSADL-HF [9] 87.10 79.50 81.90 83.90 83.10

TXQDA (Mv-VGG) 75.77 73.33 78.48 77.88 76.36

TXQEDA+WCCN (Mv-VGG) 91.00 87.78 92.32 93.35 91.11

using Mv-VGG with our method improves the accuracy of 14%, 3.5% and

1.07% for bi-subject kinship verification on KinFaceW-I, KinFaceW-II and

TSKinFace databases and Cornell KinFace database, respectively. For a

general observation, TXQEDA+WCCN was trained with a single feature

representation to learn kinship verification, with the goal of finding the

image representation that leads to the highest accuracy. Tables 1, 2, 3

and 4 show the results of these tests. Accordingly, the TXQEDA+WCCN

approach performs better than the TXQDA approach on all features, both

in verifying single or multi-view kin verification.

• The proposed TXQEDA+WCCN method outperforms other shallow ap-

proaches [1, 2, 11, 5, 37, 38] diffused with handcrafted features and metric

learning models, as shown in Table 5 (KinFaceW-I), Table 6 (KinFaceW-

II), Table 3 (TSKinFace) and Table 4 (Cornell KinFace). Note that some

of these methods, such as [1, 2, 11, 5] , used features fusion to describe
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Table 6: Comparison of the proposed approach with other kinship verification approaches on

KinFaceW-II database.

Method F-S F-D M-S M-D Mean

MNRML [1] 76.90 74.30 77.40 77.60 76.50

DMML [2] 78.50 76.50 78.50 79.50 78.25

MPDFL [35] 77.30 74.70 77.80 78.00 77.00

DDMML [36] 87.40 83.80 83.20 83.00 84.30

SIEDA [37] - - - - 87.60

PML-COV-S [38] 88.60 85.80 87.20 91.00 88.20

MNRML+SVM [4] 87.20 82.60 88.40 89.40 86.90

SILD+WCCN/LR [5] 88.40 84.20 85.80 86.40 86.20

KML [39] 87.40 83.60 86.20 85.60 85.70

KVRL+fcDBN [40] 96.80 94.00 97.20 96.80 96.20

Method in [41] - - - - 97.10

TXQDA [11] 90.20 86.40 85.60 86.40 87.15

AdvKin [42] 88.40 85.80 88.00 89.80 88.00

Method in [43] - - - - 82.30

WGEML [7] 88.60 77.40 83.40 81.60 82.80

NESN-KVN [44] 86.70 88.70 91.60 89.10 89.00

Method in [45] 90.40 86.60 91.00 87.20 88.80

MSIDA+WCCN [8] 89.40 82.80 87.80 88.00 87.00

SSADL-HF [9] 88.60 80.00 81.00 80.00 82.40

TXQDA (Mv-VGG) 78.40 72.20 76.80 76.40 75.95

TXQEDA+WCCN (Mv-VGG) 89.80 90.60 87.60 93.20 90.30

Table 7: Comparison of the proposed approach with other kinship verification approaches on TSKin-

Face database.

Method F-S F-D M-S M-D Mean FM-S FM-D

RSBM [33] 83.00 80.50 82.80 81.10 81.85 86.40 84.40

DDMML [36] 86.60 82.50 83.20 84.30 84.15 88.50 87.10

MKSM [46] 84.80 83.20 85.19 84.90 84.52 - -

SILD+WCCN/LR [5] 89.08 87.05 88.59 89.63 88.59 90.94 91.23

TXQDA [11] 89.32 90.69 90.29 90.97 90.32 94.85 95.63

WGEML [7] 90.30 89.80 91.40 90.40 90.47 93.50 93.00

TXQDA (Mv-VGG) 87.08 84.45 88.25 88.69 87.11 94.37 93.85

TXQEDA+WCCN (Mv-VGG) 89.42 89.31 90.87 93.15 90.68 95.34 96.53

the face images.

• The proposed framework also outperforms Deep Learning based face ver-

ification for kinship verification, such as MNRML+SVM [5], AdvKin[42],

KML [39], DDMML [36], WGEML [7]. Unlike these, the method in [41]
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Table 8: Comparison of the proposed approach with other kinship verification approaches on Cornell

KinFace database.

Method Accuracy

DMML [2] 73.75

MPDFL [35] 71.90

SIEDA [37] 81.50

KVRL+fcDBN [40] 89.75

AdvKin [42] 81.40

KML [39] 81.40

TXQDA [11] 93.04

Method in [41] 94.40

SSADL-HF [9] 70.30

TXQDA (Mv-VGG) 92.70

TXQEDA+WCCN (Mv-VGG) 93.77

outperforms all approaches to kinship verification approaches in KinFace-I,

KinFace- II, and the Cornell KinFace database. Also, the KVRL+fcDBN

[40] approach outperforms ours and other CNN-based methods except for

the method in [41] in KinFace-I, KinFace-II database. The reason is that

the work in [40] is based on a deep learning approach (KVRL-fcDBN),

the fcDBN algorithm was to learn a large number of external data (more

than 600,000 external face images) and achieved 96.20% on KinFaceW-

II databases, 96.10% on KinFaceW-I databases, and 89.50% on Cornell

KinFace. The authors in [41] used an external dataset in a new kinship

video database (KIVI) that contains over 250.000 still images extracted

from 355 real kinship video pairs, and achieved 97.10% on KinFaceW-

II, 96.90% on KinFaceW-I, and 94.40% on Cornell KinFace. However,

in our work, we used tensor approach TXQEDA+WCCN to learn only

the available data (i.e., no external data used in the training phase) and

we achieved performances 90.30% on the KinFaceW-II database, 91.16%

on the KinFaceW-I database, 90.68% on the TSKinFace database, and

93.77% on the Cornell KinFace database. In general, CNN-based methods

provide low performance when using small datasets. The 4 VGG models

(i.e., VGG-M, VGG-F, VGG-Face, and VGG-S) also used external images

like the Imagenet and VGGFace datasets, but only for object features and
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face features, respectively. In fact, training these CNN architectures did

not use external kinship (i.e., mother-son, father-son, mother-daughter,

and father-daughter, etc.) to train these models to solve kinship veri-

fication problems. While KVRL+fcDBN [40] and the method in [41],

external faces are used according to policies related only to the kinship

verification problem. In other words, kinship relations were specifically

used in the development of the algorithm in [40, 41].

• The proposed TXQEDA+WCCN framework outperforms all the kinship

methods except the methods in [41], KVRL+fcDBN [40] which are used

on external large face data. This proves the effectiveness of using the

robust tensor model (TXQEDA+WCCN) on kinship verification topics.

Moreover, TXQEDA+WCCN improved the performance of their coun-

terpart (i.e. TXQDA). Thus, the integration of the exponential criterion

and the WCCN metric leads to stable and high performances in kinship

verification.

5.3. Discussion and further experiments

• TXQEDA+WCCN shows the effectiveness of combining face and object

features in tensor models. This is because combining deep features can

provide complementary information for feature learning which is robust

enough to represent the samples used for training TXQEDA+WCCN. The

VGG-Face models [23] are trained on face images containing 2.6 million

images of over 2.6K individuals to extract deep facial features manifested

in deep information about identity, age, gender, ethnicity, expression, il-

lumination, and pose. While the models trained on object images (i.e.,

VGG-S, VGG-F, and VGG-M) [22] with the large number of object im-

ages, these models help to extract the key hidden facial features that

manifest in deep information about: contours, edges, corners, shape etc.,

extracted from the face parts (i.e., eyes, eyebrows, nose, mouth, etc.).

• In contrast to the TXQEDA+WCCN approach, most existing kinship veri-
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fication methods use hand-crafted low-level descriptors (Shallow features),

which are unlikely to be powerful enough to characterize kinship based on

facial images. Also, the other kinship verification methods that use deep

features simply do not take into account the problem of cross-view match-

ing and the curse of intra-class variability.

• For the databases provided, the competing methods reached an accuracy

of 66% to 93.77%, without counting the results of KVRL+fcDBN [40] and

the method in [41], the proposed TXQEDA+WCCN obtained the best

results (90.30% for the KinFaceW-II database, 91.16% for the KinFaceW-I

database, 90.68% for the TSKinFace database, and 93.77% for the Cornell

KinFace database). To make a fair comparison, we need to take into

account the external data used to train kinship verification methods. The

methods that used a large external face database to train the algorithm

(i.e. KVRL+fcDBN [40], method in [41]) were able to increase the average

verification accuracy of kinship verification. We believe that the results

can be higher and exceed the results of KVRL+fcDBN [40] and the method

in [41] when external data are used to train our TXQEDA+WCCN.

• All parent-child pairs in the KinFaceW-II dataset are cropped from the

same source. This fact of cropping seems to simplify the classification

considerably. The KinFaceW-II dataset contains a larger number of pho-

tos cropped from the same original image compared to KinFaceW-I. The

authors in [47] concluded that the KinFaceW-II dataset is less challeng-

ing than the KinFaceW-I dataset. Therefore, we have greater confidence

results for KinFaceW-I dataset.

• To gain more confidence in the efficacy of our system in face pruning, we

also evaluated our approach using another database. In the Cornell Kin-

Face database, most pairs were obtained from different images from dif-

ferent cameras and different times under uncontrolled environment. From

table 8, our approach is clearly outperforming recent methods for kinship

verification.
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To better illustrate the high performance and effectiveness of our TXQEDA+WCCN

and its TXQDA counterpart, the receiver operating characteristic (ROC) curves

of the different deep descriptors are shown in Figures 7, 8, 9, and 10, respec-

tively. 10, respectively. We observe that the proposed fusion scheme of deep

features (Mv-VGG) with the TXQEDA+WCCN tensor approach provided the

best performance in terms of the ROC curve for all tasks.
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Figure 7: ROC curves of different deep features descriptors with our proposed method on KinFaceW-

I database obtained on (a) F-S set, (b) F-D set, (c) M-S set and (d) M-D set, respectively.
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Figure 8: ROC curves of different deep features descriptors with our proposed method on KinFaceW-

II database obtained on (a) F-S set, (b) F-D set, (c) M-S set and (d) M-D set, respectively.
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Figure 9: ROC curves of different deep features descriptors with our proposed method on TSKinFace

database obtained on (a) F-S set, (b) F-D set, (c) M-S set and (d) M-D set, (e) FM-S set and (f)

FM-D set, respectively.
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Figure 10: ROC curves of different deep features descriptors with our proposed method on Cornell

database.

• Our approach vs. TXQDA method:

In both cases, our TXQEDA+WCCN approach and the TXQDA method,

features are structured in the shape of a tensor of order 3 in the hope of

extracting maximum information from the input face image. The basic

TXQDA approach has been applied in a multi-view learning system and

works well only for shallow features. Unlike the deep features, the shallow

features do not cause the problem of intra-class variability which increases

the classification error. The intra-class variability causes TXQDA to clas-

sify the pairs that are related as unrelated pairs. On the other hand,

this error is significantly reduced when the proposed TXQEDA+WCCN

method is used. We emphasize that a single deep descriptor generates one

level of intra-class variability, while deep descriptors with multiple views

generate multiple levels of intra-class variability. In this case, classification

is more difficult for TXQDA as the classification error may increase. Incor-

porating the WCCN metric into our approach helps to solve the intra-class

variability problem, thereby reducing the classification error. To further

increase the inter-sample distance, we included the exponential matrix in

the TXQEDA+WCCN approach. Moreover, by using the exponential ma-

trices, the TXQEDA+WCCN method is not affected by the nonlinearity

problem.
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• Our tensor-based (multi-linear) method vs. vector-based (lin-

ear) methods using multi-view features:

Many methods, such as [1, 2, 5, 9], use several different features by trans-

forming them into a linear subspace to project the face images used for

kinship verification. In general, applying the linear subspace transforma-

tion to features with multiple views compromises the natural structure of

the data, which is neglected or lost when arranging the feature vectors.

Moreover, each feature type may lose its discriminative information due

to concatenation with other feature types used by linear subspace trans-

form methods. Therefore, these methods arrange multiple data regions

into a subspace (linear subspace). These methods may be limited in that

they cannot explicitly take any property from the description of multi-

ple features for each view. Unlike the linear subspace transformation, the

transformation into multiple linear subspaces (i.e., our TXQEDA+WCCN

method) preserves the data structure by stacking the data in a tensor rep-

resentation, which provides more discriminative information. Moreover,

with a high order tensor subspace, TXQEDA+WCCN can circumvent

the dimensionality dilemma by using the k-mode optimization technique.

This optimization technique helps to obtain a more discriminative sub-

space with smaller dimension than traditional linear multi-view methods.

• Our approach vs. baseline methods:

To quantify the actual effect of single/multiple types of deep features, we

used simple score matching separately. Simple score matching is based

on estimating the kin relation between samples directly using the cosine

similarity between the trait vectors of the parents and the children. The

motivation for using cosine similarity is to demonstrate the true effect of

single/multiple deep features. At this point, cosine similarity is used with

the original data without any pre-processing steps (calculating the cosine

similarity between the family members’ feature vectors before any projec-

tion). As can be seen in Table 9, the cosine similarity has obtained the
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lowest result for all the feature tasks. This means that we cannot assume

that the actual performance improvement achieved by our framework is

only due to the single/multiple deep features.

In contrast to cosine similarity, the main motivation for using the proposed

scheme for the kinship verification problem is to reduce the difference be-

tween parents and children in order to decide whether or not they later

come from the same family. The projection matrices of our method reduce

the difference between parents and children who are really from the same

family, and increase the difference between parents and children who had

no kinship relationship. The goal is achieved in three ways (preprocess-

ing before we send them to cosine similarity): (i) deep feature extraction,

dimensionality reduction and margin maximization based on multi-linear

representation and exponential discriminant analysis criterion; (ii) feature

fusion of multiple deep features in different modes; (iii) solving the intra-

class variability problem caused by one/multiple deep features. From Ta-

ble 9, we can see that the effectiveness of single/multiple deep features is

given only by a robust knowledge-based tensor model (TXQEDA+WCCN)

Table 9: Performance comparison (%) of simple score matching and TXQEDA+WCCN using dif-

ferent deep features on KinFaceW-I, KinFaceW-II, TSKinFace and Cornell datasets.

Method Features
KinFaceW-I KinFaceW-II TSKinFace Cornell

F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean Mean

Simple score matching

VGG-F 74,89 81.00 75,83 78,32 77,51 72,60 74.00 72,40 72,60 72,90 70,47 68,43 69,88 71,21 69,99 72,42

VGG-M 71,39 77,25 72,77 75,95 74,34 70.00 72,20 70,60 69,80 70,65 71,44 68,82 70,76 72,41 70,85 72,78

VGG-S 75,90 82,08 78,86 81,51 79,58 76,80 77,80 77,20 76.00 76,95 72,32 70,71 73,09 74,60 72,68 73,03

VGG-Face 70,90 70,09 76,68 79,08 74,18 71,80 68,60 73,40 73.00 71,70 68,22 68,02 68,42 73,10 69,44 71,80

Mv-VGG 71,57 70,83 77,12 79,88 74,85 72,80 69.00 73,80 73,80 72,35 68,42 67,92 68,72 73,10 69,54 71,77

TXQEDA+WCCN

VGG-F 82,93 70,30 81,82 79,39 78,61 82,40 76,80 82,20 81,40 80,70 68,06 66,83 67,77 69,03 67,92 88,44

VGG-M 82.00 76,67 80.00 79,09 79,44 82,60 81.00 82.00 65,20 77,70 81,84 79,70 82,52 80.29 81,08 88,88

VGG-S 83,20 79,39 81,82 84,24 82,16 84.00 79,40 82,20 840 82,40 64,27 63,66 65,53 64,66 64,53 88,37

VGG-Face 73,99 68,48 75,15 73,64 72,81 79,20 73,40 77,60 79.00 77,30 76,31 70,29 74,66 76,31 74,39 89,22

Mv-VGG 91.00 87,78 92,32 93,35 91,11 89,80 90,60 87,60 93,20 90,30 89,42 89,31 90,87 93,15 90,68 93,77
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Table 10: Performance comparison (%) of baseline methods with the same settings as our method

using Mv-VGG on KinFaceW-I, KinFaceW-II, TSKinFace and Cornell datasets.

Features
KinFaceW-I KinFaceW-II TSKinFace Cornell

F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean Mean

SILD 73.13 68.99 77.99 79.86 74.99 72.60 68.20 73.60 74.00 72.10 70.52 70.27 70.47 74.59 71.46 75.30

XQDA 73.35 72.35 77.59 78.35 75.41 80.20 76.60 78.20 80.00 78.75 70.82 70.82 74.46 77.38 73.37 76.96

MSIDA 77.86 74.81 79.67 81.84 78.54 75.80 69.60 74.60 76.60 74.15 74.75 74.35 74.66 75.09 74.71 81.16

MSIDA+WCCN 84.69 83.33 88.29 86.63 85.73 90.00 83.00 88.00 87.20 87.05 84.46 82.77 87.47 87.89 85.64 83.87

TXQDA 75.77 73.33 78.48 77.88 76.36 78.40 72.20 76.40 76.40 75.95 87.08 84.45 88.25 88.69 87.11 92.70

TXQEDA+WCCN 91.00 87.78 92.32 93.35 91.11 89.80 90.60 87.60 93.20 90.30 89.42 89.31 90.87 93.15 90.68 93.77

Table 10 shows a comparison of some baseline methods with the same

settings. It shows a significant difference in performance by fusing several

deep features (Mv-VGG). Our work beats the linear methods XQDA [27]

by a large margin of 15%, 11%, 17% and 16%, while the margin for SILD [5]

was 11%, 18%, 19% and 18% on KinFaceW-I, KinFaceW- II, TSKinFace

and Cornell database, respectively. The improvement over TXQDA multi-

linear subspace methods was 14.75%, 14.35%, 3.57% and 1.07%, while the

improvement over MSIDA [8] was 12.57%, 16.15%, 15.97% and 12.61%

on KinFaceW-I, KinFaceW-II, TSKinFace and Cornell databases, respec-

tively. Otherwise, our work is better than the MSIDA+WCCN [8] ap-

proach with a performance of 5.38%, 3.25%, 7.51% and 9.90% for the

KinFaceW-I, KinFaceW- II, TSKinFace and Cornell database, respec-

tively. Since the proposed framework is based on several components that

have higher performance, we consider the three components: the tensor

mode, the WCCN technique, and the exponential criterion. The per-

formance of the TXQEDA+WCCN approach using different component

combinations compared to some baseline methods is shown in Table 10.

Here, the best configuration is the proposed framework. We can clearly

conclude that the combination of all components, that is: the tensor mode,

the WCCN technique and the exponential criterion, led to the best perfor-

mance. The results in Table 10 can confirm the statements mentioned in

our work: (a) The multi-linear transformation (TXQEDA+WCCN) pre-

serves the natural data structure by stacking the feature vectors in a tensor
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representation, which provides more discriminative information. While

linear transformation leads to loss of natural structure data when feature

vectors are arranged in a linear manner. (b) Embedding WCCN metric

in TXQEDA approach helps to solve the intra-class variability problem.

(c) The samples are well distributed by the exponential criterion, where

the pairs of the same family are folded into one point, maximally reducing

the intra-class dispersion while increasing the relative separation between

classes.

5.4. Computational Cost

The experiments were performed on aWindows 10 computer (Intel(R) Xeon(R)

CPU E5-2620 v2 @ 2.10 GHz 2.10 GHz and 48GB RAM) using MATLAB 2018b.

Table 11 shows the CPU time taken to test the kin relation between a pair of

face samples using our TXQEDA+WCCN approach and the baseline TXQDA

approach. The CPU time of feature extraction and total time are given in sec-

onds (s), while the projection and matching time is given in milliseconds (ms).

From Table 11, it can be seen that the time cost for projection and matching is

negligible compared to the time for feature extraction. The total time cost for

testing kinship faces with Mv-VGG features and TXQEDA+WCCN method is

1.08 (s). The test time is very small (not more than 0.0798 ms), so the proposed

kinship verification method performs in real time. We can also find that the

total time cost of TXQEDA+WCCN and TXQDA are almost identical, but our

TXQEDA+WCCN method performs better than TXQDA as explained in this

paper.

Table 11: Computational cost of our TXQEDA+WCCN for a pair of face images (parent-child)

compared to the baseline TXQDA approach. The CPU feature extraction time and total time cost

in seconds(s), while the projection and matching CPU time in milliseconds(ms)

Database
Feature extraction (s) Projection (ms) Matching (ms) Total (s)

Mv-VGG TXQEDA+WCCN TXQDA TXQEDA+WCCN TXQDA TXQEDA+WCCN TXQDA

KinFaceW-II

1.0843

1.6000 0.9969 0.0798 0.0458 1.0860 1.0853

KinFac.eW-I 4.3548 1.6129 0.2758 0.0137 1.0889 1.0859

TSKinFace 2.6699 4.1748 0.1442 0.2350 1.0871 1.0887

Cornell KinFace 5.1852 6.8519 0.2765 0.4022 1.0898 1.0916
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6. Conclusion

We proposed an efficient knowledge-based tensor system of for kinship ver-

ification based on multiple deep features. For feature extraction, we stud-

ied 4 well-known deep features: VGG-Face, VGG-M, VGG-S and VGG-F. To

improve the robustness of the designed tensor and reduce its dimension, we

proposed a Tensor Cross-view Quadratic Exponential Discriminant Analysis

(TXQEDA) that integrates the Within-Class Covariance Normalization tech-

nique (WCCN). The WCCN metric can solve the within-class variability at

each level and enhances the TXQEDA classification performance. The limita-

tions of the proposed method (TXQEDA+WCCN) based on tensor analysis are

mathematical complexity and coding difficulties. Despite these difficulties, the

proposed framework illustrates the complementarity between the four deep fea-

ture descriptors in tensor subspace. The proposed knowledge-based tensor ap-

proach achieved successful results in kinship verification on four public databases

KinFaceW-I, KinFaceW-II, TSKinFace and Cornell KinFace. In terms of per-

spectives, future work mainly involves two aspects. First, we envision extract-

ing more discriminative features using less pre-trained networks. Our goal is

to reduce the size of the training data while maintaining the peak performance

already achieved. Second, we are interested in increasing the dissimilarity be-

tween negative pairs (the problem of classifying negative pairs as positive pairs)

for the kinship verification task, since we have handled intra-class variability

well in our work.
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