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All-experimental analysis of doubly resonant Sum-Frequency Generation spectra for

Franck-Condon and Herzberg-Teller vibronic modes

Bertrand Busson1

Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 ORSAY, Francea)

(Dated: 25 April 2022)

The transform technique applied to the analysis of doubly-resonant sum-frequency

generation (DR-SFG) spectra is extended to include Herzberg-Teller (HT) vibronic

modes. The experimentally measured overlap spectral function generates all the en-

ergy resonant amplitudes of the DR-SFG excitation function for both Franck-Condon

(FC) and HT modes. When FC modes dominate the DR-SFG spectra, a methodol-

ogy is provided to perform efficient curve fitting and orientation analysis, in order to

extract FC activities of the various vibration modes from experimental spectra with

the help of a molecular model. Determination of the FC or HT natures of the vibra-

tion modes from DR-SFG data is also shown possible through their visible lineshapes

with an appropriate choice of polarizations. As an example, experimental DR-SFG

data suggest that a known HT-active mode in the vibronic structure of rhodamine

6G monomers exhibits a FC behavior in molecular aggregates.

a)Electronic mail: bertrand.busson@universite-paris-saclay.fr
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I. INTRODUCTION

Photo-induced processes take part in numerous applications, triggering chemical reactions1

or participating in the production of electricity,2 for example. They often involve charge

separation after photo-excitation and production of either electron-hole pairs in a solid state

entity (e.g. photovoltaics), or molecular excited states (e.g. photochemistry). They may

also involve the transformation of one kind of excitation into another by energy transfer, as

happens in plasmon-induced chemistry,3 photocatalytic chemical reactors for environmental

remediation,4 or inside dye-sensitized solar cells.5 As these transfers happen at an interface

where molecules and their solid state partner coexist and may exchange energy,6 they rely

on a fine tuning of the interaction between both entities.

Taking as an example the molecular side of dye-sensitized solar cells, geometry and orien-

tation in the ground and excited states;7,8 vibrational, electronic and vibronic structures9,10

including vibronic coupling; aggregation states;11 lifetimes and relaxation paths of the in-

volved excited states,12 all these parameters have to be monitored or controlled at the

interface where the processes actually take place in order to improve their efficiency. Both

theoretical and experimental investigations show that there is a vibrational or vibronic com-

ponent involved in the charge transfer mechanism induced by the molecular excitation in

the visible range.12–17 There is therefore a need for non invasive and non destructive tools

to monitor as accurately as possible the molecular properties and their link to substrate

properties in situ, in real time and with a fast dynamics.12 Among these, doubly-resonant

sum-frequency generation spectroscopy (DR-SFG) provides the absolute surface specificity

giving straight access to molecular properties at the interface only, getting rid of all the

molecular background in the surrounding bulk. Being resonant with vibrational, electronic

and vibronic transitions, it possesses the energy resolution needed to selectively probe the

elementary processes chosen by the experimenters. Its tensorial nature and specific selec-

tion rules make it also sensitive to the absolute orientation of chemical groups and electron

density towards the interface, resolved by tuning polarizations of light7,18 or analyzing peak

intensity ratios.19 Finally, timescales of ultrafast phenomena become accessible using ultra-

short laser pulses while adjusting time delays.20

DR-SFG setups with tunable visible lasers remain rare in spite of the variety of ap-

plications of such experiments available in the literature: chiral response of coupled
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oscillators21–27, vibrational and electronic structures of chromophores16,28–33 and conjugated

polymers,34,35 charge transfer states induced by molecular adsorption on metals.36–42 One of

the reasons for this sparseness may be that, as for resonant Raman scattering, data inter-

pretation is made difficult by several aspects. i) The selection rules for double resonance of a

vibration mode depend on the nature of the vibronic activity of this mode. Franck-Condon

(FC) active modes are straightforwardly DR-SFG active, but FC-inactive ones may still

acquire DR-SFG activity through vibronic coupling to another mode by a Herzberg-Teller

(HT) mechanism.43,44 The question whether FC and non-FC mode intensities may compare

in an experimental spectrum is still open in spite of a few results tending to prove that

it should be possible in some cases.33,45 ii) It is rather simple to predict the theoretical

DR-SFG lineshape of a vibration mode when electron-vibration coupling is supposed linear

in the vibration coordinates.46–48 However, it is well-known from resonant Raman literature

that quadratic coupling terms may alter the intensities and profiles of vibrations when they

cannot be neglected.49 iii) Even in the linear coupling scheme, the DR-SFG activity involves

the whole molecular vibronic structure through FC overlap integrals. Predicting the DR-

SFG activity, for example from first-principle calculations,45 supposes to take this complete

structure into account, or to add hypotheses to drastically simplify the theory.34 iv) The

theory predicts that the vibrational Lorentzian functions generating a DR-SFG spectrum

do not share a common phase, as is usually the case for singly-resonant SFG experiments,19

adding a difficulty in the fitting step of the experimental data.50 In order to come over these

issues, we have introduced in a previous paper the overlap spectral function formalism.17 It

allows to skip point iii) by including the whole vibronic activity into a single function Φ of

the visible energy, which is in addition extracted from elementary experimental absorption

data. Moreover, quadratic coupling phenomena mentioned in point ii) appear as higher

order terms which still factorize into sums of Φ functions.48,49

In this paper, we propose to build on the overlap spectralfunction formalism to address the

remaining points i) and iv). Specifically, we show that Φ is also well adapted to describe the

amplitude lineshapes of HT modes in a DR-SFG spectrum, important as vibronic coupling

plays a role in the electron injection processes.12 Interestingly, the predicted lineshapes

for HT modes fundamentally differ from FC modes, and should allow clear experimental

determination of the FC or HT natures of the vibration modes from their excitation spectra.

We also provide some direct tools dedicated to the curve fitting procedures and orientational
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analysis of the DR-SFG spectra (point iv), in order to guide future users to extract reliable

and useful data from their experimental spectra.

II. MICROSCOPIC DR-SFG RESPONSE

In a single infrared-visible DR-SFG process, the whole vibrational and vibronic structure

of the molecule may be probed in a resonant manner. The infrared photon induces a change

in vibrational quantum number for vibration mode l and a jump to the first vibrational

level of the ground state. From there, the visible photon induces a second jump towards

the vibronic structure, potentially resonant with any vibronic mode of the excited state,

in accordance with the photon energy and vibronic selection rules. We may separate these

selection rules in two families. In the first one, the Condon approximation is valid, meaning

that the electronic jump induced by the visible photon is so fast that the nuclei don’t have

time to move. As consequences, the electronic transition dipole moment does not depend on

the vibration coordinates and is considered as a constant µ0
eg, the electronic jump is vertical.

Within this approximation, the activity of a vibronic mode is evaluated by the Franck-

Condon (FC) overlap between the vibrational parts of the wavefunctions in the ground and

excited states. As many overlap integrals do not vanish, the number of modes involved

is rather significant. In the second family, vibronic coupling is taken into account in a

Herzberg-Teller (HT) process. This time, the electronic transition moments is supposed to

depend on the vibration coordinate of some vibration modes. This induces an extra activity

of these modes beyond (or in place of) their FC activity, and allows for coupling between

vibronic states, leading to intensity borrowing from HT-active modes by other modes.

In a very general way, the molecular doubly resonant SFG hyperpolarisability may be

written as:48

βαβγ(ωSFG, ωIR, ωvis) = 1/ℏ2
∑
l

[
FC

]αβγ
l

+
3∑
p=1

[
HTp

]αβγ
l

ωIR − ωl + iΓl
, (1)

where α, β, γ stand for Cartesian coordinates in the molecular frame and summation {l}

runs over the IR-active modes. The first term at the numerator stands for the Franck-

Condon amplitude. The others (HT1, HT2, HT3) represent the first three components of

the Herzberg-Teller contribution. They involve vibronic couplings between mode l and all
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HT-active modes, including itself if relevant.[
FC

]αβγ
l

= Aαβγl Dl(ωSFG) (2)

[
HT1

]αβγ
l

=
HT−active∑

a

Bαβγ
1,l,aE1,l,a(ωSFG) (3a)

[
HT2

]αβγ
l

=
HT−active∑

a

Bαβγ
2,l,aE2,l,a(ωSFG) (3b)

[
HT3

]αβγ
l

=
HT−active∑

a,b

Bαβγ
3,l,a,bE3,l,a,b(ωSFG) (4)

All these terms consist of a static amplitude Al or Bl, carrying the (αβγ) components of

the molecular transition dipole moments in the molecular frame, multiplied by an excitation

spectrum Dl(ωSFG) or El(ωSFG) responsible for the energy resonances between the optical

processes and the electronic and vibronic transitions. For all terms, these energy lineshapes

are therefore separated from the mode activities and molecular geometry. These functions

Dl(ω) and El(ω) (and, by extension, the part of the experimental DR-SFG amplitude of a

vibration mode which varies with the visible color) will be equally called excitation spectra

or visible lineshapes in the following.

Expanding the electronic transition dipole moment between ground state (g) and excited

state (e) gives

µeg = µ0
eg +

∑
a

(
∂µeg

∂Qa

)
0

Qa, (5)

where the static moment at equilibrium µ0
eg fulfils the Condon approximation and is therefore

responsible for the FC-response. The other terms represent the first-order deviation to this

approximation, giving rise to the HT contribution. The summation is effectively restricted

to the vibration modes with HT activity, i.e. for which
(
∂µ
∂Qa

)
0
does not vanish. We have:

Aαβγl =µ0,α
eg µ

0,β
eg

(
∂µγ

∂Ql

)
0

(6)

where the last term is the IR activity of mode l. The HT amplitudes are given by:

Bαβγ
1,l,a = µ0,α

eg

(
∂µβeg
∂Qa

)
0

(
∂µγ

∂Ql

)
0

(7)

Bαβγ
2,l,a =

(
∂µαeg
∂Qa

)
0

µ0,β
eg

(
∂µγ

∂Ql

)
0

(8)
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Bαβγ
3,l,a,b =

(
∂µαeg
∂Qa

)
0

(
∂µβeg
∂Qb

)
0

(
∂µγ

∂Ql

)
0

(9)

There is no unique definition of the so-called Herzberg-Teller contribution, as it has evolved

over fifty years of literature. Some authors consider HT1 and HT2 as mixed FC/HT terms,

and HT3 as the pure HT contribution.43 On the contrary, some others limit the Herzberg-

Teller contributions to the first order in Q-dependency, thus to HT1 and HT2.45,51 Finally,

the name Herzberg-Teller sometimes refers to all three terms, as we do here, and HT1 and

HT2 are considered as the first two HT terms.33 Many publications also simply separate

the DR-SFG response into A and B contributions, referring (explicitly or not) to FC and

HT terms, respectively.24,52 This formalism originates in the Raman analysis by Albrecht,53

where A, B and C refer to FC, HT1/2 and HT3, respectively. Finally, a subsequent publica-

tion by the same author, explicitly relying on the transform technique formalism, modified

these into generalized A, B and C, referring to FC, HT1 and HT2, respectively.54

As for the excitation lineshapes Dl and El in Eq. 2-4, the FC response has been calculated

in the harmonic oscillator frame, taking into account several degrees of complexity of the

vibronic structure. In the excited state, the vibronic eigenmodes differ in general from the

vibrational ones in the ground state as a result of mode distortion (implying a change in

the vibration frequencies) and Duschinsky rotation (leading to mode mixing) induced by

quadratic electron-vibration coupling terms in the hamiltonian describing the excited state.

When these two effects are fully taken into account at arbitrary temperature, the resulting

Dl(ω) is given in integral form in Ref. 55. For low amplitude mode distortions and low

angle mode mixing limited to an arbitrary number of pairs of modes, these effects appear

as a higher-order perturbation of the linear electron-vibration coupling situation and the

expression of Dl(ω) at vanishing temperature may be simplified to the first order into:48,49

Dl(ω) = DDIS
l (ω) +Dθ

l (ω) +DCT
l (ω) (10)

where DDIS
l (ω) stands for the excitation spectrum in the distorted vibronic structure,

DCT
l (ω) for the corrective term due to mode mixing involving mode l, and Dθ

l (ω) for the

corrective term due to mode mixing of all other vibronic modes. These excitation spectra are

conveniently factorized by the introduction of the overlap spectral function Φ(ω) according

to the expressions recalled in Ref. 48. This function Φ(ω) may be deduced from absorbance
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measurements

A(ω) ∝ ω |µe←g|2 Im [Φ(ω)] , (11)

where A is the molecular absorbance, in order to recover the spectral shape of the excitation

function Dl(ωSFG).
17 The essential vibronic parameters are the shifts ∆l in the harmonic

potential wells along the normal mode coordinate Ql of mode l. Using either linear or

quadratic electron-vibration coupling, the FC activity of mode l is essentially determined

and quantified by the value of ∆l. When this quantity vanishes, the mode is FC-inactive,

except from a potential small contribution due to coupling with another FC-active mode

through mode mixing.48,49 At the lowest order of approximation, i.e. linear electron-vibration

coupling, ∆l fully drives the FC-activity, and we have:

Dl (ωSFG) =
∆l

2
[Φ (ωSFG)− Φ (ωSFG − ωl)] (12)

It has been shown17 that the experimental visible lineshape for a FC mode follows indeed

this equation.

The HT contribution has been less studied for application to DR-SFG24,26,33,45 but is well

known in the resonance Raman spectroscopy community, which has developed a method-

ology to integrate it into the RRS formalism and other nonlinear phenomena.43 It is in

principle possible to introduce quadratic electron-vibration coupling phenomena at the HT

level of theory.56 However, as the HT terms already represent a first-order correction to FC

terms, we may safely neglect these higher order contributions and stick to the linear cou-

pling scheme. Details on the implementation of HT terms into the overlap spectral function

formalism are provided in the Appendix.

We get for the excitation functions:

E1,l,a(ω) =
∆l

2

∆a

2
[−Φ(ω) + Φ(ω − ωl) + Φ(ω − ωa)− Φ(ω − ωl − ωa)]−

ℏ
2ωl

Φ(ω)δal (13)

E2,l,a(ω) =
∆l

2

∆a

2
[−Φ(ω) + Φ(ω − ωl) + Φ(ω − ωa)− Φ(ω − ωl − ωa)]−

ℏ
2ωl

Φ(ω − ωl)δal

(14)
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E3,l,a,b(ω) =
∆l

2

∆a

2

∆b

2
[Φ(ω)− Φ(ω − ωl)− Φ(ω − ωa)− Φ(ω − ωb)

+ Φ(ω − ωl − ωa) + Φ(ω − ωl − ωb) + Φ(ω − ωa − ωb)− Φ(ω − ωl − ωa − ωb)]

+
ℏ∆l

4ωa
[Φ(ω − ωa)− Φ(ω − ωa − ωl)] δba +

ℏ∆b

4ωl
[Φ(ω − ωl)− Φ(ω − ωl − ωb)] δal

+
ℏ∆a

4ωl
[Φ(ω)− Φ(ω − ωa)] δbl

(15)

After determining function Φ(ω) of the system once for all,17 all the HT excitation spectra

for mode l become available with a minimal amount of parameters, namely shift ∆l, and

those for the selected HT-active modes ∆a and ∆b. As the FC activity of mode l is essentially

determined and quantified by the value of ∆l, this shows that the FC and HT activities

are not completely independent, i.e. all FC-active modes have a HT contribution to their

excitation lineshapes by coupling to a HT-active mode a. In the HT excitation spectra, most

of the terms are indeed proportional to ∆l, and therefore vanish only for a FC-inactive mode

l. In the same way, as HT-activity of mode l relies on its coupling to a and b modes, these

must be both HT- and FC-active to contribute. The only exception lies in the self-coupling

terms (proportional to δal) in Eq. 13 and 14, through which mode l contributes to its own

DR-SFG excitation function at the HT level as long as it exhibits a non-Condon nature,

and whatever its FC-activity.

Equations 1 to 15 provide the full molecular DR-SFG response using a minimal amount

of approximations. However, the various terms listed in Eq. 10 to 15 don’t have the same

order of magnitude. The FC-terms have been studied in details:48,49 in the linear electron-

vibration coupling approximation (as is usually seen in the literature at either arbitrary46,47

or vanishing17 temperature), they represent the lowest order of perturbation and, thus, the

dominant terms. Contributions due to mode distortion and mode mixing are higher-order

perturbations (i.e. increasing powers of the Huang-Rhys factors Sj =
ωj(∆j)

2

2ℏ ) of the lowest

order. In the same way, the HT-terms arise from a perturbation, through the
(
∂µeg
∂Qa

)
0

coupling constants, of the lowest order represented by the µ0
eg factors. In this way, keeping

only the lowest order of perturbation, the E3 contribution may be neglected as a second order

term. In the E1 and E2 functions, the generic terms also appears as a higher order term,

of the order of Sj. As a consequence, the lowest order term for the whole HT development

only lies in the self-coupling contributions in E1 and E2 (i.e. the last terms in Eq. 13 and
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14).

To summarize this discussion, when neglecting all the higher order contributions, the

excitation spectrum of mode l dramatically simplifies and involves four terms, each one

proportional to Φ function evaluated at a particular energy:

βαβγ = 1/ℏ2
∑
l

(
∂µγ

∂Ql

)
0

ωIR − ωl + iΓl

{
µ0,α
eg µ

0,β
eg

∆l

2

[
Φ(ωSFG)− Φ(ωSFG − ωl)

]

− ℏ
2ωl

[
µ0,α
eg

(
∂µβeg
∂Ql

)
0

Φ(ωSFG) +

(
∂µαeg
∂Ql

)
0

µ0,β
eg Φ(ωSFG − ωl)

]}
.

(16)

When the mode is FC-active, the first two terms dominate, and the last two (HT-terms)

represent a small perturbation to the well-known FC excitation spectrum.46 When the mode

is FC-inactive, the HT-terms are the only contribution at the lowest order of perturbation.

Amplitude of mode l in this case should be overwhelmed by the amplitudes of neighbouring

FC-active modes,26 but it may happen that it remains among the most intense in the DR-

SFG spectrum, when its infrared activity is high enough to compensate for the low excitation

function or has favourable components along IR beam polarization,45 or when the choice of

the visible wavelength favors double resonance of the HT modes rather than FC ones.33

III. MACROSCOPIC DR-SFG RESPONSE OF AN ISOTROPIC THIN

FILM

Having evaluated the hyperpolarizability αβγ component in the molecular frame, we now

turn to the macroscopic nonlinear response. The SFG intensity I(ωIR, ωvis) is equal to

I(ωIR, ωvis) =
8π3ω2

SFG

c3 cos2 θSFG
|χ(2)

eff |
2IvisIIR (17)

where the effective nonlinear susceptibility χ
(2)
eff is a linear combination of (i,j,k) components

χ
(2)
ijk in the (x,y,z) laboratory frame, weighted by local field factors,19 which may be explic-

itly calculated, and χ
(2)
ijk

=
Ns

ε0
⟨βαβγ⟩ where Ns is the surface density of molecules, βαβγ the

molecular hyperpolarisability in a molecular frame (a,b,c) and the angle brackets average

over molecular orientations.57 When the SFG process takes place at an isotropic (x,y) thin

film, it is well-known that only xxz=yyz, xzx=yzy, zxx=zyy and zzz components survive

the averaging step. For s-polarization of light aligned along y, these components follow the

conventional correspondence between ssp and yyz; sps and yzy; pss and zyy, whereas ppp is
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a combination of xxz, xzx, zxx and zzz. Averaging is conveniently performed by considering

distributions over molecular Euler angles (ψ, θ, ϕ), namely:

χ
(2)
ijk =

Ns

ε0

∑
αβγ

⟨DiαDjβDkγ⟩βαβγ (18)

where matrix D gathers the projections of the molecular frame vectors onto the laboratory

basis.58,59 In an isotropic thin film on a solid substrate, it is usually considered that the

molecular tilt (θ) and twist (ψ) angles are fixed.45 The detailed expression of Eq. 18 in this

case as a function of θ and ψ may be found in the literature.60,61 Molecules at the surface of

water show a broader distribution of θ and ψ angles.26 For terminal methyl vibrations of an

alkyl chain, or for uniaxial molecular symmetry in general, averaging over ψ is sometimes

also considered, provided that c is aligned with the symmetry axis.62 In these isotropic

conditions, there are no anisotropic molecular interactions and all molecules therefore share

the same single electronic transition.

Experimentally, a series of vibrational spectra, I(ωIR, ωvis) as a function of ωIR with

fixed ωvis, is recorded while selecting several values for ωvis. Each vibrational spectrum is in

general described by Eq. (17), (18) and (1). The challenge lies first in extracting the energy

and amplitude of each mode from the experimental data, then linking the amplitudes to

the relevant molecular parameters (transition dipole moments, vibration shifts) in order to

finally deduce the molecular orientation in the films. We show how to proceed when only

FC-active modes are present in the spectra, then consider also the presence of HT-modes.

A. All modes FC active

1. Principles

When all modes l in a spectrum are FC-active, the hyperpolarizability components be-

come:

χ
(2)
ijk =

∑
l

Φ (ωSFG)− Φ (ωSFG − ωl)

ωIR − ωl + iΓl
χlijk (19)

with

χlijk =
Ns

2ε0ℏ2
∆l

∑
αβγ

⟨DiαDjβDkγ⟩Aαβγl (20)

where the static amplitude Aαβγl of each mode l is given by Eq. 6, and χlijk are real numbers.

We note that the electronic transition moments in Aαβγl are symmetric in α and β, with
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the consequence that ijk and jik components of χ(2) become equal,62 and in the isotropic

case we have zyy = yzy. We recover the rule applicable to singly-resonant SFG (SR-SFG,

i.e. far from an electronic resonance), where the Raman tensor is symmetric in α and β as

soon as molecular chirality does not come into play.22,63 There are only three independent

χ(2) components left in the macroscopic response. We see that each Dl lineshape (Eq. 12)

is common to all hyperpolarizability components and therefore transfers to the macroscopic

response,49 as has been shown experimentally on ssp and ppp visible lineshapes of rhodamine

films.17

As there is now a separation as a product between the energy lineshapes and molecular

amplitudes, it becomes possible to calculate on one side the visible lineshape Φ (ωSFG) −

Φ (ωSFG − ωl), and extract on the other side the IR lineshape by fitting the vibrational

spectra to a sum of Lorentzian functions. After this curve fitting step, amplitude χlijk for

each vibration l is a linear combination of real factors Aαβγl ∆l. For DR-SFG used as a

chemical probe of the interface, the important parameters are vibrational frequencies and

widths,38 or the evolution of Lorentzian amplitudes as a function of the visible color,35 and

such a curve fitting may suffice.

To go further into tensorial analysis, we note that the electronic part of the hyperpolar-

izability tensor (i.e. indexed by α and β) does not depend on the vibration mode l, but only

on the α and β components of the electronic transition moments and on constant parameter

∆l. This fundamentally differs from the usual SR-SFG case,61,64 for which this electronic

part is proportional to the αβ component of the Raman tensor of mode l. Consequently,

orientation analysis for DR-SFG relies separately on the projections of electronic transition

dipoles µ0,α
eg µ

0,β
eg and vibrational activities

(
∂µγ

∂Ql

)
0
, and not on molecular

(
∂ααβ

∂Ql

)
0
as for SR-

SFG.57 In a DR-SFG spectrum, different vibration modes share common µ0
eg components

but differ in ∆l and
(
∂µγ

∂Ql

)
0
, while, for different polarization combinations, a given vibration

mode has a constant ∆l but µ
0,α
eg , µ

0,β
eg and

(
∂µγ

∂Ql

)
0
components differ.

For vibrational SR-SFG, the molecular frame (a,b,c) is typically set according to molecu-

lar symmetries, in order to reduce the number of nonvanishing β components. The essential

quantities like
(
∂µγ

∂Ql

)
0
are therefore deduced or calculated in this frame, where they also

benefit from the symmetry properties, and the SFG spectra simulated as functions of θ and

ψ.65–67 Here we proceed in a different way by first choosing (c) axis along the molecular

electronic transition moment, that is µ0,a
eg = µ0,b

eg = 0.68 For a symmetric molecule, the ori-
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entation of its transition dipole moments is linked to its symmetry elements, and so is axis

(c). However, we present a general methodology valid for C1 molecules, which means that

all µ vectors have three independent nonvanishing components in the general case. We also

choose the direction of axis c to get cos θ ≥ 0, which fixes the quadrant of θ. At this stage,

only components βcca, βccb and βccc remain, from which
∣∣µ0,c
eg

∣∣2 may be factored. Again, for a

molecule with a high symmetry, components βcca and βccb may vanish, which substantially

simplifies the analysis.68

Following Eq. 19 and 20, we have:

χlyzy = χlzyy =
Ns∆l

2ϵ0ℏ2
sin θ cos θ

[
Acccl sin θ + Accal cos θ cosψ − Accbl cos θ sinψ

]
(21)

χlyyz =
Ns∆l

2ϵ0ℏ2
sin2 θ

[
Acccl cos θ − Accal sin θ cosψ + Accbl sin θ sinψ

]
(22)

χlzzz =
Ns∆l

ϵ0ℏ2
cos2 θ

[
Acccl cos θ − Accal sin θ cosψ + Accbl sin θ sinψ

]
(23)

It appears that χlyyz is proportional to χlzzz (and conversely χ
(2)
yyz to χ

(2)
zzz) by a geometric

factor
sin2 θ

2 cos2 θ
corresponding to the

(
µ0,y
eg

)2
/
(
µ0,z
eg

)2
ratio. In the same way, we have two

relationships between yzy and yyz, namely:

sin2 θχlyzy + cos2 θχlyyz =
Ns∆l

2ϵ0ℏ2
sin2 θ cos θ

∣∣µ0,c
eg

∣∣2(∂µc
∂Ql

)
0

(24)

and

χlyzy − χlyyz =
Ns∆l

2ϵ0ℏ2
sin θ

[
Accal cosψ − Accbl sinψ

]
(25)

where, for each mode l:

Accal cosψ − Accbl sinψ =
∣∣µ0,c
eg

∣∣2 [(∂µa
∂Ql

)
0

cosψ −
(
∂µb

∂Ql

)
0

sinψ

]
≡
∣∣µ0,c
eg

∣∣2(∂µψ
∂Ql

)
0

(26)

and
(
∂µψ

∂Ql

)
0
corresponds to the projection of

(
∂µ⊥

∂Ql

)
0
, the IR dipole moment component in

the (a,b) plane, onto ψ = 0 axis (i.e. the (a) axis before ψ rotation). There are in fact

four unknown parameter for each mode l, namely ∆l and the three
(
∂µγ

∂Ql

)
0
coordinates, in

addition to θ and ψ common to all modes, whereas only two independent equations remain.

Additional input, either experimental or computed, is therefore necessary.
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2. Practical implementation

Tilt angle θ accounts for the projection from (c) to (z), and it is easy to show that(
µ0,y
eg

)2
=

1

2

(
µ0,c
eg

)2
sin2 θ and

(
µ0,z
eg

)2
=
(
µ0,c
eg

)2
cos2 θ.58,69 By comparing in situ maximal ab-

sorbance on oblique incidence with s- and p-polarized light (accounting for Fresnel reflec-

tivity correction) or by rotating the film,70 θ is experimentally determined, and we deduce

the χ
(2)
yyz to χ

(2)
zzz ratio. Resonant second order nonlinear optical techniques like Second Har-

monic Generation or Electronic Sum-Frequency Generation,71,72 more elaborate and more

sensitive to the monolayer level, may even prove more efficient to provide valuable informa-

tion on tilt angle θ and the electronic part of the phenomenon in general. At this stage, it

becomes helpful to involve a molecular model in the analysis, from which the orientation of

the electronic transition dipole moment may be estimated. This model may follow from first

principle calculations (e.g. geometry optimization and vibration mode calculation by DFT),

but even a simpler and more flexible ball-and-stick model of the molecular structure may be

sufficient, provided that it is complemented with some spectroscopic data. Orientation anal-

ysis amounts to adjusting θ and ψ angles to match the model with the experimental data,

in a first step the knowledge of θ makes it possible to orient the (c) axis of the molecular

model73,74 with respect to the surface. The value of ψ is still undetermined, which means

that axes (a) and (b) may rotate freely around (c), or that there is no fixed orientation for

the molecule as for the (c)-rotation.

Recording and fitting DR-SFG spectra with sps, ssp and ppp polarization combinations

suffices to carry out the analysis described in part IIIA 1, as detailed below. For SR-SFG,

it is sometimes difficult to measure sps and pss polarization combinations due to low signal

levels.61,75,76 Here, specific enhancements due to the double resonance should lead to better

signal-to-noise ratios. The χlijk components have to be separated in the three experimental

spectra by curve fitting. In conventional SFG data analysis, vibrational spectra are fitted

by a sum of complex Lorentzian functions as a function of ωIR with constant amplitudes Al,

the unknown parameters being ωl, Γl and Al. For DR-SFG (Eq. 16), the FC amplitudes also

depend on ωl and ωIR throughDl (Eq. 1 and 12), which means that their spectral dependence

slightly varies from mode to mode, that they are not constant over the vibrational spectrum

and that they each possess a distinct phase,49 all this being often simplified in the literature.28

From Eq. (11), function Φ(ω) is first deduced from a single in situ absorption measurement
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followed by a Kramers-Kronig transformation,17 then used as an input in the curve fitting

procedure. The knowledge of Φ(ω) makes it in principle possible to calculate the amplitude

and phase of the visible lineshape for each mode and correct the vibrational spectrum from

the Φ-dependent terms in Eq. (16). This supposes that a starting point for the values

of resonance frequencies ωl is provided to the fitting algorithm. Of course these may be

estimated from the spectra, but interference with a nonresonant background50 or between

nearby modes frequently may make it difficult to determine ωl without curve fitting. The

optimal solution is probably to perform a first simplified fit to get the starting ωl values. It

is conceivable to fit with Lorentzians amplitudes independent from the energies, but their

unknown phases remain a problem. Another solution lies in replacing the exact Eq. 12 by its

value at peak maximum D̃l =
∆l
2
[Φ(ωSFG)− Φ(ωvis)], which becomes identical for all modes

and may be factorized. A comparison of both Dl and D̃l functions in Fig. 1 shows that, for

standard experimental conditions, their difference reaches at maximum 6% in magnitude

and 3◦ in phase at 50 cm−1 distance from the vibration maximum (i.e. far beyond the

homogeneous vibrational linewidth Γl, usually a few wavenumbers). We therefore suggest

to first fit the spectra using the peak maximum D̃l function, then turn to the full Dl for

final convergence of the fit.

The values of
∣∣χlyzy∣∣ = ∣∣χlzyy∣∣ and ∣∣χlyyz∣∣ = sin2 θ

2 cos2 θ

∣∣χlzzz∣∣ are now known from curve fitting

of sps and ssp spectra after proper account of the local field factors, but not their signs.

As is usually done, those may be obtained from heterodyne measurements77–79, or from the

interference with a nonresonant contribution of known phase (e.g. gold80,81). The overall

consistency may then be checked by comparing the ppp spectrum calculated from the linear

combination of the four previous tensor components to the experimental spectrum. Once

these signed quantities are known for each mode l, so are the left sides of Eq. 24 and 25,

providing useful information.

If Eq. 24 vanishes, it means that vibration mode l is perpendicular to c axis. If Eq. 25

vanishes, mode l should be aligned along c, except for very unlikely situations (e.g. mode

l aligned along b and ψ = 0). In the general case, we first suppose that there is at least

one mode, called l = ref , for which neither of these equations vanish, and that quantities(
∂µc

∂Qref

)
0
and

(
∂µ⊥

∂Qref

)
0
(i.e. IR activities parallel and perpendicular to the electronic tran-

sition moment) are known (or at least their ratio) from the molecular model. We note that

these quantities may also stem from polarized infrared absorption spectroscopy experiments,
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FIG. 1. Relative difference in amplitude (A) and phase difference (B) between functions Dl and D̃l,

using Φ function calculated from the absorption spectrum of a 10−4M rhodamine 123 solution17

and ωl = 1655 cm−1.

but those usually do not succeed in extracting a measurable signal at the monolayer level,

hence the resort to SFG spectroscopy. Performing such an assignment of DR-SFG experi-

mental vibration modes to specific modes of the molecular model supposes that they may

be unambiguously identified and separated. Considering the usually complex molecular

structure of chromophores, one should avoid focusing on a crowded or unspecific vibra-

tional range (e.g. CH stretch region for aliphatic chains) and rather turn to the fingerprint

region.27,79 Taking this ref mode as the reference, we fix axis (a) along its vibrational tran-

sition dipole moment perpendicular to (c) (i.e. we assign it to the (a,c) plane), leading to(
∂µψ

∂Qref

)
0
=
(

∂µ⊥

∂Qref

)
0
cosψ, and dividing Eq. 25 by Eq. 24 provides cosψ. This leaves two

possible orientations for the molecule with opposite values of ψ, discriminated by either

steric hindrance, optimal chemical interaction with the surface or SFG analysis of another

vibration mode not parallel to (a). At this stage, the molecular model and its (a,b,c) frame

is fixed on the surface. The hard point for the extension to other vibration modes lies in the
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proportionality of Eq. 24 and 25 to ∆l, so that absolute DR-SFG amplitudes depend on the

product of an infrared transition moment by ∆l. Nevertheless, if the molecular model gives

access to the infrared dipole moments projected onto (c) axis, Eq. 24 allows determining

the signed ratios of all ∆l to that of the reference mode ∆ref , including modes for which

Eq. 25 vanishes. For modes l with vanishing
(
∂µc

∂Ql

)
0
, the knowledge of

(
∂µ⊥

∂Ql

)
0
(i.e. the full

IR dipole moment) and its angle with the (a) axis is sufficient to calculate ∆l/∆ref .

If no ref mode can be found, it means that all probed modes in the DR-SFG spec-

trum vibrate strictly either parallel or perpendicular to (c), potentially as a consequence of

molecular symmetry.68 There is here no simple way to calculate angle ψ: transitions mo-

ments along (c) are not correlated to those in the (a,b) plane anymore, as comparing them

requires to analyze two modes (instead of one) and consequently involves the unknown ratio

of their ∆l. For two modes parallel to (c), we may anyway follow the same analysis as

above, using Eq. 24 to determine their ∆l ratio from the projections along (c) only of their

infrared dipole moments
(
∂µc

∂Ql

)
0
. This method is also valid for two modes perpendicular

to (c) and vibrating parallel to each other. Finally, only the situation of two non-parallel

modes in the (a,b) plane and no ref mode may be assigned leads to the impossibility to

get straightforward information on their ∆l ratio. To conclude, for most cases, it is possible

to determine the relative FC activities (i.e. signed ∆l) of vibration modes using the experi-

mental DR-SFG data and a small amount of parameters stemming from a simple molecular

model.

B. Mixed FC and HT active modes

For a HT mode, several simplifying factors introduced in the FC case disappear. The

visible lineshapes (Dl, E1,l and E2,l) in Eq. 16 may not be factored anymore, making the

curve fitting procedure more complex. However, when i=j (i.e. for xxz, yyz and zzz terms),

we may group the αβγ and βαγ coefficients to get:

χ
(2)
iik =

Ns

ε0ℏ2
∑
l

El(ωSFG)

ωIR − ωl + iΓl

∑
α≤β,γ

⟨DiαDiβDkγ⟩Bαβγ
l (27)

with

Bαβγ
l =

[
µ0,α
eg

(
∂µβeg
∂Ql

)
0

+

(
∂µαeg
∂Ql

)
0

µ0,β
eg

](
∂µγ

∂Ql

)
0

for α ̸= β, (28)
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Bααγ
l = µ0,α

eg

(
∂µαeg
∂Ql

)
0

(
∂µγ

∂Ql

)
0

(29)

and

El (ωSFG) = − ℏ
2ωl

[Φ (ωSFG) + Φ (ωSFG − ωl)] (30)

This shows that, for ssp polarization combination (i.e. yyz tensor component), the visible

lineshape of a HT mode follows a El(ω) profile rather than a Dl(ω) one. It is therefore

possible to use this particular configuration as a clear marker of the FC or HT nature of a

given mode. For conventional singly resonant vibrational SFG, it is sometimes not possible

to record ssp signals due to strong screening of the s-polarized beams at the interface as a

consequence of high refractive index of the substrate (e.g. metals, silicon) in this range. It

is conceivable that the SFG enhancement due to double resonance will compensate for this

and make ssp signals measurable. If not, then we may anyway rely on ppp configuration

for the following reasons. First, xxz and zzz terms follow the same El(ω) or Dl(ω) profiles

as ssp. For the two remaining components (xzx and zxx), we may consider the following

situations for their local field factors: for substrates with a high refractive index in the

IR (e.g. a metal), they become negligible as compared to xxz and zzz80,82; for substrates

with a high refractive index in the visible range (e.g. silicon), the zzz component alone

dominates.83 Consequently, in all situations where ssp spectra may not be recorded, the ppp

configuration will involve only components which also follow the El(ω) versus Dl(ω) profiles

for HT versus FC modes, respectively. The discussion below about Fig. 2 shows that is

therefore always possible to discriminate the nature of a vibration mode by recording either

ssp (low refractive index substrate) or ppp (high refractive index substrate) polarization

combination while tuning the visible wavelength.

Components zxx and xzx become important in ppp spectra for substrates with a low

refractive index in both visible and infrared ranges (e.g. water, glass). In this situation, as

the local field factors for zxx and xzx only differ by the angles of incidence and dispersion of

the refractive index at the visible and SFG wavelengths, it may be shown that they almost

coincide.84 Consequently, zxx and xzx terms sum up (with a sign difference19), and we may
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FIG. 2. Amplitudes of Dl (line with open dots) and El (line with crosses) functions at vibration

peak maximum, using Φ function calculated from the absorption spectrum of a 10−4M rhodamine

123 solution17 and ωl = 1655 cm−1.

group them into

χ(2)
zxx − χ(2)

xzx =
Ns

ε0ℏ
1

∆lωl

∑
l

Dl(ωSFG)

ωIR − ωl + iΓl

×
∑
αβγ

⟨DxαDzβDxγ⟩

[
µ0,α
eg

(
∂µβeg
∂Ql

)
0

−

(
∂µαeg
∂Ql

)
0

µ0,β
eg

](
∂µγ

∂Ql

)
0

. (31)

Summarizing the results above, we conclude that the visible lineshape of vibration mode l

depends on the nature of the mode, on the polarization combination experimentally recorded

and on the nature of the substrate. All FC modes will share theDl(ωSFG) lineshape (Eq. 12).

For HT modes, the amplitudes follow the El(ωSFG) for ssp polarizations, as well as for

ppp polarizations on high refractive index materials. In other cases, including sps and pss

polarizations, the total lineshape is a mixture of Dl(ωSFG) and El(ωSFG) functions. This

difference between Dl and El for FC and HT modes, respectively, was already present in an

alternate form in Eq. (32b) and (37) of Ref. 52, or in Eq. (6) and (7) of Ref. 26. At this point

we have made no hypothesis on the symmetry of the molecule, whose existence may lead

to vanishing of some βαβγ terms (on the condition that (a,b,c) coincide with the symmetry

axes or planes), simplifying the equations and favouring either Dl or El contributions to the

visible lineshapes.

In Fig. 2, we plot the evolution of the amplitudes of the Dl(ω) and El(ω) lineshapes in

a hypothetical situation where function Φ is obtained from the absorption spectrum of a

rhodamine 123 solution. Inhomogeneous broadening is smaller than in a thin film and the
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main peak is rather well defined. As a result, both Dl(ω) and El(ω) show two interfering

peaks as is classically seen in such simulations.28 The differences relate essentially to the

interference pattern between the peaks. For El, destructive interference pushes the two

maxima far from each other, with a deep and steep valley in between. Conversely, the

constructive interference in Dl generates two close peaks with a very small valley between

them. Finally, the external tails extend further for function El than for Dl. We see that

these trends completely match the simulations of Fig. S1 in Ref. 45. In the simulated ssp

spectral evolution of the five high energy vibration modes, the two FC and three HT modes

(comparing for example the 1657 and 1621 cm−1 modes) show the characteristic features

described here. Of course, in the adsorbed monolayer case, Φ function is broadened by

inhomogeneous broadening in the films and shifted by aggregation.17

We compare in Fig. 3 the amplitude and phase of the same lineshapes calculated from

three distinct Φ functions: a single lorentzian peak (i.e. without any vibronic tail), the func-

tion extracted from the absorption spectrum of rhodamine 123 in solution as in Fig. 2, and

from a J–aggregated film of the same molecules deposited on glass from a 10−4M solution.17

Apart from the differences listed above, we recover the fact that the two peaks of the FC Dl

lineshape overlap and merge into one central broad peak when the width of the Φ function

grows as a consequence of inhomogeneous broadening. This is less obvious as far as El

is concerned, because of the destructive interference which keeps both maxima separated

although less visible. The other main difference lies in the phases of the functions. Both

excitation functions have a zero phase at low energy but, as energy increases, the phase

shifts for El-driven peaks result in a sign change after crossing the resonance (as is expected

from a resonant Lorentzian behaviour), whereas for Dl-driven ones the original vanishing

phase is recovered at high energy. This has important consequences on the fitting procedure

of the vibrational spectra because the FC and HT modes will not share a common phase

during curve fitting.50 This phase may be predicted for modes belonging to either the Dl

or El family, but is difficult to estimate beforehand for modes and experimental conditions

where Dl and El behaviours mix.

The simulations in Fig. 2 and 3 are very general and illustrate the trends that one expects

at the lowest order of perturbation48,49 for a generic vibration mode of a chromophore in

solution or in a thin film, as a monomer or in an aggregate, as long as there is only one

allowed electronic transition involved in the probed visible range. They show that the clear
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FIG. 3. Comparison of Dl (A–C) and El (B–D) lineshapes at vibration peak maximum, in ampli-

tude (A-B) and in phase (C-D), using Φ functions calculated from a single Lorentzian (red), the

absorption spectrum of a 10−4M rhodamine 123 solution (green) or the absorption spectrum of a

J–aggregated film17 (blue) and ωl = 1655 cm−1.

differences between El(ω) and Dl(ω) profiles allow indeed to discriminate the FC or HT

nature of a given mode by recording its experimental excitation profile. As an example,

we consider the vibration mode at 1621 cm−1 in the vibronic structure of rhodamine 6G

(R6G), which is known, together with the intense 1535 cm−1 mode, to have HT-activity.85,86

However, the experimental DR-SFG visible lineshape of this 1621 cm−1 mode, recorded on

glass using ssp polarisation combination, does not reproduce the expected El(ω) behavior of

a HT mode (the lineshape of the 1535 cm−1 mode is not provided).28 Instead, the published

excitation profiles are identical for all vibration modes in the DR-SFG spectrum and follow

from Dl functions characteristic of FC modes (the reason why there is only one peak showing

up instead of two has already been discussed17 and may be understood from the difference

20



between red and blue curves in Fig. 3). In addition, all modes appear to share a common

phase when spectra are fitted. This is coherent with the methodology supported by Fig. 1 for

FC modes, whereas HT modes should strongly differ as for their phases as shown in Fig. 3.

For all these reasons, we believe that all modes probed in the original publication28 are

indeed FC-active. An alternate explanation is provided in Ref. 45 by TD-DFT calculations

on R6G monomers, showing that a HT-activity of the 1621 cm−1 mode is still compatible

with the experimental DR-SFG data. We suggest that aggregation is the key parameter to

discriminate between both proposals.

As monomers, the vibronic structure of R6G is now well-known and the vibronic activities

of the modes originate in the Cs symmetry of the lowest energy conformation of the molecule,

which clearly separates vibration modes into totally symmetric and antisymmetric, from

which their FC and HT natures follow, respectively.86 However, contrary to the dilute phase

or to low density adsorbates, rhodamine molecules in absorbed monolayers interact to form

aggregates,17,87,88 in which the geometry, electronic structure and symmetry properties of

the molecules differ from the monomeric state. It has been shown that the orientation

angle of the electronic transition moment in H-aggregates of R6G films may vary from the

monomeric value by 30 to 40°.73 Specifically, the free rotation around the C–C bond between

the xanthene ring and the ethoxycarbonylphenyl group may lead to a tilt angle between these

moieties differing from the predicted 90◦, and accordingly to a C1-symmetry molecule. In

this case, all modes, including that at 1621 cm−1, which in the literature is attributed to

either the ethoxycarbonylphenyl group28,89 or the xanthene skeleton,45 exhibit FC activity

due to the absence of molecular symmetry. In addition, the symmetries of the electron

density of a multimer in the ground and excited states differ from the isolated molecule, and

so do the electronic levels involved in the electronic transition.87,88 This modification of the

symmetries, together with the change in the orientation of the electronic transition dipole

moment, will have a strong impact on the FC or HT nature of each vibration mode.33 In

Ref. 28, the shape, width and redshifted wavelength of the maximum in the film absorbance

spectrum favours the formation of J-aggregates, as expected from the concentration used to

prepare the films.88 Experimental data therefore suggest that all modes become FC-active

in this case as a consequence of aggregation. This would also account for the fact that the

1621 cm−1 mode shows a DR-SFG intensity in the same order of magnitude as the other

modes.
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IV. CONCLUSION

The experimental and theoretical complexity of DR-SFG experiments should not discour-

age experimenters to apply this powerful technique to their research, as a thorough data

analysis proves rewarding and provides original results. Following previous work, we have

shown in this article that it is indeed possible, proceeding step by step, to disentangle the

various parameters involved in DR-SFG spectra: vibrational curve fitting, lineshape in the

visible range, orientation of molecules in the sample, FC versus HT natures of the vibration

modes. The FC or HT natures of the modes follow from the experimental visible lineshapes.

Depending on the nature of the substrate, the evolution of the SFG signals as a function of

the visible wavelength either in ssp or ppp configuration is sufficient for this discrimination.

The overlap spectral function Φ, extracted from experimental data as explained before,17

serves as a basis for the following steps. For the main modes, of FC natures, a vibrational

curve fitting, performed in two steps, first with an average constant amplitude, then with

the full non-constant one, allows to correctly account for the wavelength-dependent parts of

the vibrational amplitudes and separate them from the geometrical parameters. Elementary

relations between the various susceptibility tensor components, directly following from the

double resonant nature, and pinned onto the axes of a molecular model along the electronic

and vibrational transition dipole moments, allow to perform an orientation analysis and

determine tilt and twist angles. Finally, additional experimental input, either from linear

optical absorption spectroscopies in the visible and the infrared ranges or from first principle

calculations on the molecular model, may lead to the separation between molecular infrared

and visible transition moments on one side, and FC activities on the other side, finalizing

the full data analysis.
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Appendix: FC and HT contributions to DR-SFG

In order to compare the FC and HT terms of the DR-SFG hyperpolarizability using a

common formalism, we briefly recall their origins. A harmonic vibration mode (l) is defined

by its resonant frequency ωl, width Γl, and normal coordinate Ql. The harmonic potential

energy curves along normal coordinate Ql for ground and excited (e) states are shifted by

∆l, so that Qe
l = Ql +∆l. The total SFG hyperpolarizability breaks down into excitations

of these vibration modes by the IR photon (ωIR), scaled by their IR activity
(
∂µγ

∂Ql

)
0
:48

βαβγ = 1/ℏ2
∑
l

(
∂µγ

∂Ql

)
0

√
ℏ

2ωl

ωIR − ωl + iΓl

∑
{u}

µαg0←eu µ
β
eu←gl

ωSFG − ωeug0 + iΓeg
, (A.1)

where µ is the dipole moment, {u}={j, uj} spans the vibronic modes, ℏω0
eg is the vibration-

less electronic transition energy, ℏωeug0 = ℏω0
eg+

∑
j

ujℏωj is the vibronic energy, µαg0←eu and

µβeu←gl represent the dipolar transition moments between ground (g, vibrational state l = 0

or l = 1) and excited electronic states (e, vibrational state u).

Expanding the energy denominators into complex exponential terms using

1

ωSFG − ωeug0 + iΓeg
=

1

i

∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∏
j

e−iujωjt (A.2)

leads to

βαβγ = 1/ℏ2
∑
l

(
∂µγ

∂Ql

)
0

ωIR − ωl + iΓl
Fαβ
l (ωSFG) (A.3)

with

Fαβ
l (ω) = (−i)

√
ℏ
2ωl

∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∑
{u}

µαg0←eu µ
β
eu←gl

∏
j

e−iujωjt, (A.4)

Assuming Born-Oppenheimer approximation allows separating the electronic and vibra-

tional parts of the wavefunctions ψ, and Eq. 5 leads to a straightforward integration along

the electronic wavefunctions. For the vibrational part, we have:
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µαg0←eu = µ0,α
eg

〈
ψvib,g0

∣∣∣ψvib,eu

〉
+
∑
a

(
∂µαeg
∂Qa

)
0

〈
ψvib,g0

∣∣∣Qa

∣∣∣ψvib,eu

〉
(A.5)

µβeu←gl = µ0,β
eg

〈
ψvib,eu

∣∣∣ψvib,gl

〉
+
∑
b

(
∂µβeg
∂Qb

)
0

〈
ψvib,eu

∣∣∣Qb

∣∣∣ψvib,gl

〉
(A.6)

Product µαg0←euµ
β
eu←gl therefore comprises four generic terms, each weighted by µ0,α

eg µ0,β
eg ,

µ0,α
eg

(
∂µβeg
∂Qb

)
0
,
(
∂µαeg
∂Qa

)
0
µ0,β
eg and

(
∂µαeg
∂Qa

)
0

(
∂µβeg
∂Qb

)
0
, giving rise to FC, HT1, HT2 and HT3 con-

tributions, respectively. HT1 and HT2 are sometimes referred to as FC-HT interference

terms43 whereas HT3 is a pure HT contribution. We recover here the amplitudes defined in

Eq. 6 to 9. The excitation spectra Dl and E1/2/3,l all have the same functional form:

(−i)
√

ℏ
2ωl

∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∑
{u}

〈
ψvib,g0

∣∣∣f(Qa)
∣∣∣ψvib,eu

〉〈
ψvib,eu

∣∣∣f(Qb)
∣∣∣ψvib,gl

〉∏
j

e−iujωjt

(A.7)

where f(Qj) equals 1 for j ̸= {a, b}, and either 1 or Qa/b for j = {a, b} to generate the four

contributions. The summation over the vibronic structure {u} may be explicitly performed

using the following procedure:

– transform the vibrational overlap into a product of two integrals over Qj and Q̃j by

introducing Hermite polynomials (Hp), in particular:

ψvib,eu =
∏
j

1√
2ujuj!

(ωj
ℏπ

)1/4
Huj

(√
ωj
ℏ
Qe
j

)
e−

ωj
2ℏ (Qej)

2

; (A.8)

with 〈
ψ1(Q)

∣∣∣f(Q)∣∣∣ψ2(Q)
〉
=

∞∫
−∞

ψ1(Q)ψ2(Q)f(Q)dQ (A.9)

– perform summation over {uj} by use of Mehler formula90 for Hermite polynomials

∞∑
uj=0

Huj(α)Huj (β)

uj!

(wj
2

)uj
=

1√
1− w2

j

exp

(
2αβwj − (α2 + β2)w2

j

1− w2
j

)
(A.10)

with wj = e−iωjt;

– after expanding the integral expressions over variables Qj and Q̃j and setting new

integration variables49 to xj = Qe
j + Q̃

e
j = Qj + Q̃j +2∆j and yj = Qe

j− Q̃e
j = Qj− Q̃j,
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all integrals simplify into

(−i)
∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∏
j

ωj
2πℏ

1√
1− w2

j

e−
ωj∆

2
j

ℏ Ixy (A.11)

with

Ixy =

∞∫
−∞

∞∫
−∞

dxjdyjf(Qj)f(Q̃j)Q̃le
−
ωj
2ℏ

(
y2j

1−wj
+

x2j
1+wj

+2xj∆j

)
(A.12)

– the integrals over xj and yj separate, and each of them is a linear combination of

Gaussian integrals In, where

In =

∞∫
−∞

une−βu
2+γu du (A.13)

where βx =
ωj
2ℏ

1
1+wj

and γx =
ωj∆j
ℏ for xj integrals, βy =

ωj
2ℏ

1
1−wj and γy = 0 for yj

integrals. The values of In are known, and we get In = ĨnI0, with

I0 =

√
π

β
e
γ2

4β ; Ĩ1 =
γ

2β
; Ĩ2 =

γ2 + 2β

4β2
; Ĩ3 =

γ3 + 6βγ

8β3
(A.14)

– setting I0(xj)I0(yj) =
2πℏ

√
1−w2

j

ωj
e
ωj∆

2
j

2ℏ (1+wj) as a common factor simplifies the expres-

sions for the excitation spectra into

(−i)
∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∏
j

gj(t)H(t) (A.15)

where H(t) is the product of linear combinations of factors Ĩ1, Ĩ2, Ĩ3 for mode l and,

if relevant, modes a and b; gj(t) = e−Sj(1−wj) and Sj =
ωj∆

2
j

2ℏ ;

– it becomes possible to recast the expressions in terms of function Φ(ω), considering

that

Φ(ω) = i

∞∫
0

dt eit(ω−ω
0
eg+iΓeg)

∏
j

gj(t) (A.16)

and that each wj term in H(t) shift the argument of Φ by −ωj.

With this procedure, all the terms are easily calculated by selecting the process (FC, HT1,

HT2 or HT3), replacing functions f(Qa) and f(Qb) by their values in Eq. A.7 and A.12,

transforming the integrand using x and y variables, separating the terms into In integrals,
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integrating them into function H(t) by use of Eq. A.14, and recasting the result in terms of

function Φ(ω) by expanding H(t) into increasing powers of wl, wa and wb.

As an example, we evaluate the FC term, for which f(Q)=1. The integrand is thus

Q̃l = 1/2(xl− yl)−∆l and gives, after integration, HFC(t) = 1/2Ĩ1(xl)−∆l = −∆l
2
(1−wl).

Plugging this result in Eq. A.15 allows to recover Eq. 12.

For the HT1 term, we get for the integrand Q̃lQ̃a. Care must be taken when integrating

to separate the cases a = l and a ̸= l. For the latter, integrals separate and, from the

FC calculation, we deduce immediately that integration leads to
(
−∆l

2

) (
−∆a

2

)
(1−wl)(1−

wa). For the situation a = l, integrand becomes
(
xl−yl

2
−∆l

)2
leading after integration to

1/4Ĩ2(xl)+ 1/4Ĩ2(yl)−∆lĨ1(xl)+ (∆l)
2 = ℏ

2ωl
+ (∆l)

2

4
(1−wl)

2. We obtain the same result as

for a ̸= l, with an additional self-coupling term ℏ
2ωl

specific to mode l. Collating all terms,

we find HHT1(t) =
(
−∆l

2

) (
−∆a

2

)
(1− wl)(1− wa) +

ℏ
2ωl
δal.

Calculation is almost identical for HT2, using integrand Q̃lQa. For a ̸= l, integrand

[1/2(xl − yl)−∆l] [1/2(xa + ya)−∆a] separates and gives the same result as for HT1 be-

cause Ĩ1(y) terms vanish. For a = l, integration leads to 1/4Ĩ2(xl)− 1/4Ĩ2(yl)−∆lĨ1(xl) +

(∆l)
2 = ℏ

2ωl
wl +

(∆l)
2

4
(1 − wl)

2. Again, the result is identical to HT1, except for the self-

coupling term, equal here to ℏ
2ωl
wl. We finally get HHT2(t) =

(
−∆l

2

) (
−∆a

2

)
(1−wl)(1−wa)+

ℏ
2ωl
wlδal. These results essentially match those in Ref. 45, which involve the dimensionless

shifts ∆j = ∆j

√
ωgj /ℏ.

Finally, for HT3, the integrand is Q̃lQaQ̃b. The calculation is led in the same way, except

that there are five cases to consider, namely {a ̸= b ̸= l}, {a = b ̸= l}, {a = l ̸= b},

{b = l ̸= a}, {a = b = l}. After collating all terms, we recover a generic contribution(
−∆l

2

) (
−∆a

2

) (
−∆b

2

)
(1 − wl)(1 − wa)(1 − wb) valid whatever a, b and l, together with ad-

ditional coupling and self-coupling terms −ℏ∆l
4ωa

(1 − wl)wa for a = b, −ℏ∆b
4ωl

(1 − wb)wl for

l = a, and −ℏ∆a
4ωl

(1 − wa) for l = b. We may express it in the following way: HHT3(t) =(
−∆l

2

) (
−∆a

2

) (
−∆b

2

)
(1−wl)(1−wa)(1−wb)− ℏ∆l

4ωa
(1−wl)waδba− ℏ∆b

4ωl
(1−wb)wlδal− ℏ∆a

4ωl
(1−

wa)δbl.
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