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The notion of "centre" has been introduced for many algebraic structures in mathematics. A notable example

is the centre of a monoid which always determines a commutative submonoid. Monads in category theory are

important algebraic structures that may be used to model computational effects in programming languages

and in this paper we show how the notion of centre may be extended to strong monads acting on symmetric

monoidal categories. We show that the centre of a strong monad T , if it exists, determines a commutative

submonad Z of T , such that the Kleisli category of Z is isomorphic to the premonoidal centre (in the

sense of Power and Robinson) of the Kleisli category of T . We provide three equivalent conditions which

characterise the existence of the centre of T and we show that every strong monad on many well-known

naturally occurring categories does admit a centre, thereby showing that this new notion is ubiquitous. We also

provide a computational interpretation of our ideas which consists in giving a refinement of Moggi’s monadic

metalanguage. The added benefit is that this allows us to immediately establish a large class of contextually

equivalent programs for computational effects that are described via monads that admit a non-trivial centre

by simply considering the richer syntactic structure provided by the refinement.

CCS Concepts: • Theory of computation→ Operational semantics; Denotational semantics.

Additional Key Words and Phrases: strong monads, commutative monads, computational effects, centre,

category theory, denotational semantics, operational semantics

1 INTRODUCTION
The importance of monads in programming semantics has been demonstrated in seminal work

by Moggi [Moggi 1989, 1991]. The main idea is that monads allow us to introduce computational

effects (e.g., state, input/output, recursion, probability, continuations) into pure type systems in

a controlled way. The mathematical development surrounding monads has been very successful

and it directly influenced modern programming language design through the introduction of

monads as a programming abstraction into languages such as Haskell, Scala and others (see

[Benton 2015]). The results reported in this paper follow the same spirit as the above developments.

We start with a simple and natural mathematical question about monads, then we develop the

required mathematical theory and provide the answer to our original question. Finally, we present

a computational interpretation of this idea and illustrate its usefulness.

The mathematical question that we ask is simple:

Is there a suitable notion of centre that may be formulated for monads? (1)

The answer is analogous to the same question that may be asked for monoids. Just as every monoid

𝑀 (on Set) has a centre, which is a commutative submonoid of𝑀 , so does every (canonically strong)

monad T on Set and the centre of T is a commutative submonad of T . Generalising away from

the category Set, the answer is a little bit more complicated, but still analogous to monoids: not

every monoid object𝑀 on a symmetric monoidal category C has a centre, and neither does every

(strong) monad on C. However, we show that under some basic reasonable assumptions, the answer

is "yes", and we show that for many categories of interest all strong monads are centralisable and

so the newly introduced notion of centre is ubiquitous. The computational significance of these

ideas is easy to understand: given a computational effect, such that not every pair of effectful

operations commute (i.e., the order of sequencing matters), identify only those effectful operations

which do commute with any other possible effectful operation. The effectful operations that satisfy

this property are called central. The computational interpretation of our ideas consists in giving a
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refinement of Moggi’s monadic metalanguage that makes it syntactically clear which are the central

effectful operations and organising them into a commutative submonad of the original one. This

allows us to easily establish large classes of contextually equivalent programs, simply by considering

the additional syntactic structure, and this in turn may be used for program optimisation.

1.1 The Centre of a Strong Monad: Computationally
In a seminal paper [Moggi 1991], Eugenio Moggi introduced a computational interpretation for

(strong) monads, which are algebraic structures previously discovered by mathematicians in the

field of category theory. In particular, Moggi showed that if one wishes to introduce computational

effects into a type system with terms that may have finitely many free variables (i.e., terms of the

form 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑀 : 𝐵), then this may be achieved via the structure of a strong monad
1
.

This allows us to introduce computational effects in a controlled and systematic way by using

monadic sequencing. For instance, in Haskell, this may be achieved via the familiar do notation
(see Listing 1).

1 do do
2 x <− op1 y <− op2
3 y <− op2 x <− op1
4 f x y f x y

Listing 1. Two examples of monadic sequencing in Haskell.

Depending on the choice of monad, the two code fragments in Listing 1 need not have the same

effect. However, when the monad in question is not only strong, but also commutative, then the

two code fragments in Listing 1 would always have the same effect. Thus, in a commutative monad,

we can safely incorporate program transformations that exchange the order of monadic sequencing

which can be useful for program optimisation. Therefore, the commutativity of the monad matters

from a computational perspective.

However, many monads that are computationally interesting in computer science are strong, but

not commutative. Examples include the continuations monad, state monad, list monad, the writer

monad for a monoid𝑀 (when the monoid is not commutative) and many others. Nevertheless, just

because a monad is strong, but not commutative, it does not mean that every monadic operation

does not satisfy the above commutative property with respect to any other monadic operation.

Even if the monad is not commutative, it might be the case that there are specific choices for the
monadic operations op1 and op2 where the above code fragments are equivalent. In fact, it is useful

to determine which monadic operations do satisfy this additional property, because then we can

partially recover some of the benefits of a commutative monad.

Our main idea is to approach this problem by taking inspiration from the algebraic notion of

"centre", which we show how to extend to strong monads. From a computational perspective,

the centre of the strong monad consists of all central monadic operations, i.e., those monadic

operations for which the commutativity property above holds against any other (non-central)

monadic operation. Thus, in Listing 1, if at least one of op1 or op2 is central, then the two code

fragments would have the same effect, even if the monad is not commutative. In fact, the central

monadic operations determine a commutative submonad of the original one, so we may utilise

them using a similar syntax.

The computational interpretation of our ideas consists in giving a refinement of Moggi’s monadic

metalanguage
2
and we provide an excerpt of it in Figure 1. In addition to the usual monadic

1
The monad strength is crucial for terms with more than one free variable; see [Moggi 1991] for more details.

2
The monadic syntax we chose is standard, but not identical to Moggi’s syntax.
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Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴→ 𝐵

Γ ⊢ 𝑀 : 𝐴

Γ ⊢ retZ 𝑀 : Z𝐴
Γ ⊢ 𝑀 : Z𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : Z𝐵

Γ ⊢ doZ 𝑥 ← 𝑀 ; 𝑁 : Z𝐵

Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀𝑁 : 𝐵

Γ ⊢ 𝑀 : Z𝐴
Γ ⊢ 𝜄𝑀 : T𝐴

Γ ⊢ 𝑀 : T𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : T𝐵
Γ ⊢ doT 𝑥 ← 𝑀 ; 𝑁 : T𝐵

Fig. 1. An excerpt of the refinement of Moggi’s monadic metalanguage.

types T𝐴, which represent effectful computations for the ambient T monad, we also introduce

the types Z𝐴, which represent central effectful computations. The monadic unit allows us to

see any pure term 𝑀 : 𝐴 as a central computation, represented by the term retZ 𝑀 : Z𝐴, and
any term 𝑀 : Z𝐴 may also be seen to be of type T𝐴, which is represented by the 𝜄𝑀 : T𝐴 term

(in the sequel, we use 𝜄 for the submonad inclusion 𝜄 : Z ⇒ T , which explains the choice of

notation). The monadic unit for the T monad corresponds to 𝜄 (retZ 𝑀), so there is no need to

include a specific term for it. We also add two terms, via the familiar do notation, for monadic

sequencing for both monads. This more refined syntax allows us to easily establish and keep track

of many contextually equivalent terms in a systematic way which is otherwise difficult to achieve

via standard methods when the monad T is not commutative. For example, we can prove that

JdoT 𝑥 ← 𝜄𝑀 ; doT 𝑦 ← 𝑁 ; 𝑃K = JdoT 𝑦 ← 𝑁 ; doT 𝑥 ← 𝜄𝑀 ; 𝑃K. The 𝜄𝑀 term is necessarily

central, whereas the term 𝑁 may not be. It follows that 𝜄𝑀 commutes with any other effectful

operation and thus we can safely reorder those code fragments guided by the syntax, without

carrying any further verifications involving the semantics. Other contextual equivalences may also

be established (e.g., central effectful operations are closed under composition), see §6.3.

1.2 Centres of Algebraic Structures
The notion of centre has been introduced for many algebraic structures in mathematics (e.g.,

monoids, groups, rings) and the definition is usually quite simple. For example, given a monoid

(𝑀, ·, 1), its centre, denoted 𝑍 (𝑀), is the set

𝑍 (𝑀) def= {𝑥 ∈ 𝑀 | ∀𝑦 ∈ 𝑀. 𝑥 · 𝑦 = 𝑦 · 𝑥}. (2)

In fact, the centre 𝑍 (𝑀), equipped with the same monoid structure as that of𝑀, is a commutative
submonoid of𝑀 . Similarly, the centre of a group 𝐺 is a commutative (i.e., abelian) subgroup of 𝐺

and the centre of a ring 𝑅 is a commutative subring of 𝑅. Indeed, taking the centre of an algebraic

structure is a well-known construction and a simple way to produce a commutative substructure

of the original one. This naturally leads to the main question that we posed above: what about

the centre of a monad? After all, monads are algebraic structures, and in fact, they are precisely

monoids in categories of endofunctors. How can we then construct the centre of a monad?

The answer to this question is more complicated compared to the simple construction of the

centre of a monoid. First, we have to recognise that in (2), there is an implicit symmetric monoidal

structure involved, which is just the obvious cartesian structure of the category Set. The equation
in (2) can be written in the following equivalent, but more convoluted, way:

(− · −) ◦ (𝑥 × 𝑦) = (− · −) ◦ (𝑦 × 𝑥), (3)

where we see the elements 𝑥,𝑦 as maps 𝑥,𝑦 : 1 → 𝑀 from the singleton set into 𝑀. However,

Equation (3) gives a more categorical way of representing the same idea, and makes it clear that the

definition of the centre of a monoid has to do with the interaction between the monoid operation

and the (symmetric) monoidal structure of the category Set. For the same reason, we see that the
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definition of the centre of a monad has to do with how the monad interacts with the monoidal

structure of its base category. Because of this, we have to consider strong monads [Kock 1970, 1971,

1972], which are monads that come equipped with additional structure that ensures the monad

satisfies appropriate coherence conditions with respect to the monoidal structure of the underlying

category. Furthermore, constructing the centre of a strong monad, as we present in this paper,

aligns perfectly with the computational view that we informally described above and which we

formally describe in the sequel. Indeed, in our opinion, there is no suitable notion of "centre" that

can be formulated for non-strong monads that appropriately represents the intended computational

intuition. Because of these reasons, we focus on strong monads throughout the rest of the paper

and we note that every monad on the category Set is canonically strong.

1.3 The Centre of a Strong Monad: Mathematically
As we just explained, we are interested in strong monads, which are also the monads that are

relevant for programming languages with support for higher-order functions. Given a strong

monad T : C → C on a symmetric monoidal category (C, ⊗, 𝐼 ), there are two obvious maps

dst, dst′ : T𝐴 ⊗ T𝐵 → T (𝐴 ⊗ 𝐵) with the indicated domain and codomain that may be defined.

However, these maps are not equal, in general. When the two maps do coincide, then we say

the monad T is commutative [Kock 1970, 1971, 1972]. The (lack of) commutativity of a monad is

important: in general, the Kleisli category CT of a strong monad T has a canonical premonoidal
structure [Power and Robinson 1997], which is slightly weaker than a monoidal one, as the name

suggests; moreover, this premonoidal structure is a monoidal one iff T is commutative [Power

and Robinson 1997]. What is also interesting, is that Power and Robinson introduced the notion

of centre of a premonoidal category which has an important role in the theory of premonoidal

categories. Given a premonoidal category C, its premonoidal centre 𝑍 (C) is always a monoidal
subcategory of C, but this subcategory does not induce a monad, in general. In the sequel, we show

that the centre of every strong monad T , whenever it exists, is strongly related to 𝑍 (CT), i.e., the
premonoidal centre of the Kleisli category of T .

Many monads of interest in mathematics and computer science are strong, but not commutative.

Thus, by identifying the centres of such monads, we can recover some of the benefits of commuta-

tivity. Every monad T : Set→ Set on the category Set is canonically strong and we can define its

centre in a straightforward way: given a set 𝑋 , the centre of T at 𝑋 , writtenZ𝑋 , is the set

Z𝑋 def

=
{
𝑡 ∈ T𝑋 | ∀𝑌 ∈ Ob(Set).∀𝑠 ∈ T𝑌 . dst𝑋,𝑌 (𝑡, 𝑠) = dst

′
𝑋,𝑌 (𝑡, 𝑠)

}
. (4)

In other words, the centre of T at 𝑋 contains only those monadic elements for which the commuta-

tivity requirement holds with respect to any other possible choice for the second monadic argument

of dst and dst
′
. With some additional mathematical effort, we can then prove the assignmentZ(−)

extends to a functor on Set and when equipped with the (co)restricted monad data of T , it follows
thatZ becomes a commutative monad on Set (Theorem 3.6). Furthermore, writing 𝜄𝑋 : Z𝑋 ⊆ T𝑋
for the indicated subset inclusion, it follows thatZ is a submonad of T with 𝜄 giving the submonad

monomorphism. We call the commutative submonadZ the central submonad of T which is justified

by the fact that there exists a canonical isomorphism SetZ � 𝑍 (SetT) between the Kleisli category

ofZ and the premonoidal centre [Power and Robinson 1997] of the Kleisli category of T . ThatZ is

the central submonad of T is even further justified by considering concrete algebraic examples:

• Given a monoid𝑀 , the free monad induced by𝑀 is the monad (− ×𝑀) : Set→ Set. This
monad is also known as the writer monad. Its central submonad is given by the monad

(− × 𝑍 (𝑀)) : Set→ Set, where 𝑍 (𝑀) is the centre (in the usual sense) of the monoid 𝑀 .

See Example 5.10 for more details.
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• Given a semiring 𝑆 , a monad T : Set→ Set can be similarly defined through formal sums

with scalars in 𝑆 . Its central submonad is obtained with the same formal sums, but where

the scalars are in 𝑍 (𝑆), the centre of 𝑆 in the usual sense. Details can be found in Example

5.12.

Generalising away from the category Set, our results stated above still hold, but establishing

this requires more effort. In order to do so, we introduce the notion of central cone (Definition
4.2) which generalises the simple definition presented in (4). Our main mathematical result is to

characterise the centre of a strong monad in three equivalent ways, as shown by Theorem 4.10.

Theorem 4.10 (Centralisability). Let C be a symmetric monoidal category and T a strong
monad on it. The following are equivalent:

(1) For any object 𝑋 of C, T admits a terminal central cone at 𝑋 ;
(2) There exists a commutative submonad Z of T such that the canonical embedding functor
I : CZ → CT corestricts to an isomorphism of categories CZ � 𝑍 (CT);

(3) The corestriction of the Kleisli left adjoint J : C→ CT to the premonoidal centre ˆJ : C→
𝑍 (CT) also is a left adjoint.

This theorem gives us three equivalent conditions for the existence of the centre of a specific
monad. In general, not every strong monad admits a centre and we show this by specifically

constructing a category and a strong monad on it for this purpose. However, we are not aware

of any other naturally occurring monad described in the literature that does not admit a centre.

Moreover, by using Theorem 4.10 it is easy to prove that every strong monad on many categories

of interest (e.g., Set,DCPO,Meas,Top,Vect) admits a centre (see §5.2). Because of this, we believe

the notion of centre for a strong monad is ubiquitous. We also provide further concrete examples of

monads of interest that admit interesting centres, e.g., the valuations monad on DCPO (see §5.3).

1.4 Monads as Monoids
It is well-known that monads on a category C are exactly the monoid objects3 on the category of

endofunctors of C [Mac Lane 1998, pp. 138]. Because of this, we might think of monoid objects as

being more general than monads. So, a natural question to ask is why not determine how to form

the centre of an arbitrary monoid object, and then, as a special case, recover the centre of a monad?

We thought about this possibility, but we decided against it for two reasons:

(1) As we already explained, it is the strong monads that are computationally relevant. However,

the "monads as monoids" correspondence does not allow us to recover the monadic strength.

We personally see no way to achieve this and we do not know how to relate strong monads

to special kinds of monoids.

(2) Commutative monoid objects are usually defined via a symmetric monoidal structure. But

in the "monads as monoids" correspondence, the monoidal structure of the category of

endofunctors on C is not symmetric in general. Even worse, restricting to endofunctors of

the form T𝑛
, a symmetry would then be a distributive law of T over itself which is known

to not always exists, an example being the power-set monad [Klin and Salamanca 2018],

which nevertheless is commutative in the usual sense.

Furthermore, we think that monads play a more important computational role, compared to

monoids, so we prefer to directly work with monads. A different notion of centre may be defined

in this direction but it seems not directly related to ours and not having any computational

interpretation.

3
A monoid object in Set is a monoid in the usual sense. Thus, monoid objects are a generalisation of the usual notion.
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1.5 Overview and Summary of Results
The paper is organised as follows. In §2 we recall background material on strong and commutative

monads and the premonoidal structure of their Kleisli categories. In §3 we show how to construct

the centre of any monad on Set. This construction provides the main intuition for the more general

and abstract results that follow. In §4 we state the main mathematical results of the paper: we

provide three equivalent characterisations of the centre of a strong monad acting on a symmetric

monoidal category. In §5 we illustrate our ideas with many examples. We show how to use our main

results to conclude that for many categories of interest, all strong monads are centralisable. We also

provide concrete examples of strongmonads, construct their centres and discuss their computational

significance. In §6 we provide a computational interpretation of our ideas by presenting a refinement

of Moggi’s monadic metalanguage. We also provide a categorical model together with a denotational

semantics for it. In §7 we illustrate how our computational interpretation may be used through a

case study involving a non-commutative writer monad for which we describe a sound and adequate

semantics and provide examples of easily established contextual equivalences through the richer

type system. In §8 we discuss related work. Finally, in §9 we provide concluding remarks and

discuss future work.

2 BACKGROUND
We start by introducing some background on strong and commutative monads and their pre-

monoidal structure. We also use this as an opportunity to fix notation. In this paper we assume

some knowledge of category theory and we implicitly assume throughout the paper that all

categories we are working with are locally small.

2.1 Strong and Commutative Monads
We begin by recalling the definition of a monad.

Definition 2.1 (Monad). A monad over a category C is an endofunctor T : C→ C equipped with

two natural transformations 𝜂 : Id⇒ T and 𝜇 : T 2 ⇒ T such that the following diagrams

T 3𝑋 T 2𝑋

T 2𝑋 T𝑋

T 𝜇𝑋

𝜇T𝑋

𝜇𝑋

𝜇𝑋

T𝑋 T 2𝑋

T 2𝑋 T𝑋

𝜂T𝑋

T𝜂𝑋

𝜇𝑋

𝜇𝑋

commute. We call 𝜂 the unit of T and we say that 𝜇 is the multiplication of T .

Next, we recall the definition of a strong monad, which is the main object of study in this paper.

As we already explained in the introduction, these monads are more computationally relevant

(compared to non-strong ones) for most use cases. The additional structure, called the monadic
strength, ensures the monad interacts appropriately with the monoidal structure of the base category.

Definition 2.2 (Strong Monad). A strong monad over a monoidal category (C, ⊗, 𝐼 , 𝛼, 𝜆, 𝜌) is a
monad (T , 𝜂, 𝜇) equipped with a natural transformation 𝜏𝑋,𝑌 : 𝑋 ⊗T𝑌 → T (𝑋 ⊗𝑌 ), called strength,
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such that the following diagrams commute:

𝐼 ⊗ T𝑋 T (𝐼 ⊗ 𝑋 )

T𝑋

𝜆T𝑋

𝜏𝐼 ,𝑋

T𝜆𝑋

(𝑊 ⊗ 𝑋 ) ⊗ T𝑌

𝑊 ⊗ (𝑋 ⊗ T𝑌 ) 𝑊 ⊗ T (𝑋 ⊗ 𝑌 ) T (𝑊 ⊗ (𝑋 ⊗ 𝑌 ))

T ((𝑊 ⊗ 𝑋 ) ⊗ 𝑌 )
𝜏𝑊 ⊗𝑋,𝑌

T𝛼𝑊,𝑋,𝑌

𝑊 ⊗ 𝜏𝑋,𝑌 𝜏𝑊,𝑋 ⊗𝑌

𝛼𝑊,𝑋,T𝑌

𝑋 ⊗ 𝑌 𝑋 ⊗ T𝑌

T (𝑋 ⊗ 𝑌 )

𝜂𝑋 ⊗𝑌

𝑋 ⊗ 𝜂𝑌

𝜏𝑋,𝑌

𝑋 ⊗ T 2𝑌 T (𝑋 ⊗ T𝑌 ) T 2 (𝑋 ⊗ 𝑌 )

𝑋 ⊗ T𝑌 T (𝑋 ⊗ 𝑌 )

𝑋 ⊗ 𝜇𝑌

𝜏𝑋,T𝑌 T𝜏𝑋,𝑌

𝜇𝑋 ⊗𝑌

𝜏𝑋,𝑌

We now recall the definition of a commutativemonad which is of central importance in this paper.

Compared to a strong monad, a commutative monad enjoys even stronger coherence properties

with respect to the monoidal structure of the base category (see also §2.2).

Definition 2.3 (Commutative Monad). Let (T , 𝜂, 𝜇, 𝜏) be a strong monad on a symmetric monoidal

category (C, ⊗, 𝐼 , 𝛾). The costrength 𝜏 ′
𝑋,𝑌

: T𝑋 ⊗ 𝑌 → T (𝑋 ⊗ 𝑌 ) of T is given by the assignment

𝜏 ′
𝑋,𝑌

def

= T (𝛾𝑌,𝑋 )◦𝜏𝑌,𝑋 ◦𝛾T𝑋,𝑌 . Then, T is said to be commutative if the following diagram commutes:

T𝑋 ⊗ T𝑌 T (T𝑋 ⊗ 𝑌 ) T 2 (𝑋 ⊗ 𝑌 )

T (𝑋 ⊗ T𝑌 ) T 2 (𝑋 ⊗ 𝑌 ) T (𝑋 ⊗ 𝑌 )

𝜏T𝑋,𝑌 T𝜏 ′
𝑋,𝑌

𝜇𝑋 ⊗𝑌𝜏 ′
𝑋,T𝑌

T𝜏𝑋,𝑌 𝜇𝑋 ⊗𝑌

The appropriate notion of morphism between two strong monads is given by our next definition.

Definition 2.4 (Morphism of StrongMonads [Jacobs 2016]). Given two strongmonads (T , 𝜂T , 𝜇T , 𝜏T)
and (P, 𝜂P, 𝜇P , 𝜏P) over a category C, then amorphism of strong monads is a natural transformation

𝜄 : T ⇒ P that makes the following diagrams commute:

𝑋

T𝑋 P𝑋

T 2𝑋 PT𝑋 P2𝑋

T𝑋 P𝑋

𝜂T
𝑋

𝜂P
𝑋

𝜄𝑋

𝜄T𝑋 P𝜄𝑋

𝜇T
𝑋

𝜇P
𝑋

𝜄𝑋

𝐴 ⊗ T𝐵

T (𝐴 ⊗ 𝐵)

𝐴 ⊗ P𝐵

P(𝐴 ⊗ 𝐵)

𝜏T
𝐴,𝐵

𝜏P
𝐴,𝐵

𝐴 ⊗ 𝜄𝐵

𝜄𝐴⊗𝐵

It is easy to see that strong monads over a (symmetric) monoidal category C and strong monad

morphisms between them form a category which we denote by writing StrMnd(C). In the situation
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of Definition 2.4, if 𝜄 is a monomorphism in StrMnd(C), then T is said to be a strong submonad of

P and 𝜄 is said to be a submonad morphism. The submonad relation induces an embedding between

the Kleisli categories of the corresponding monads that we recall next.

Definition 2.5 (Kleisli category). Given a monad (T , 𝜂, 𝜇) over a category C, the Kleisli category
CT of T is the category whose objects are the same as those of C, but whose morphisms are given

by CT [𝑋,𝑌 ] = C[𝑋,T𝑌 ]. Composition in CT is given by 𝑔 ⊙ 𝑓
def

= 𝜇𝑍 ◦ T𝑔 ◦ 𝑓 where 𝑓 : 𝑋 → T𝑌
and 𝑔 : 𝑌 → T𝑍 . The identity at 𝑋 is given by the monadic unit 𝜂𝑋 : 𝑋 → T𝑋 .

Proposition 2.6. If 𝜄 : T ⇒ P is a submonad morphism, then the functor I : CT → CP , which
is defined by I(𝑋 ) = 𝑋 on objects and on morphisms by I(𝑓 : 𝑋 → T𝑌 ) = 𝜄𝑌 ◦ 𝑓 : 𝑋 → P𝑌, is an
embedding of categories.

The functor I described in the above proposition is the canonical embedding of CT into CP
induced by the submonad morphism 𝜄 : T ⇒ P .

2.2 Premonoidal Structure of Strong Monads
Let T be a strong monad on a symmetric monoidal category (C, 𝐼 , ⊗). Then, its Kleisli category
CT does not necessarily have a canonical monoidal structure. However, it does have a canonical

premonoidal structure as shown by Power and Robinson [Power and Robinson 1997]. In fact, they

show that this premonoidal structure is monoidal iff the monad T is commutative. Next, we briefly

recall the premonoidal structure of T as outlined by Power and Robinson.

For every two objects 𝑋 and 𝑌 of CT , their tensor product 𝑋 ⊗ 𝑌 is also an object of CT . But,
the monoidal product ⊗ of C does not necessarily induce a monoidal functor on CT . However, by
using the strength and the costrength of T , we can define two families of functors as follows:

• for any object 𝑋 , a functor (− ⊗𝑙 𝑋 ) : CT → CT whose action on objects sends 𝑌 to 𝑌 ⊗ 𝑋 ,

and sends 𝑓 : 𝑌 → T𝑍 to 𝜏 ′
𝑍,𝑋
◦ (𝑓 ⊗ 𝑋 ) : 𝑌 ⊗ 𝑋 → T (𝑍 ⊗ 𝑋 );

• for any object 𝑋 , a functor (𝑋 ⊗𝑟 −) : CT → CT whose action on objects sends 𝑌 to 𝑋 ⊗ 𝑌 ,
and sends 𝑓 : 𝑌 → T𝑍 to 𝜏𝑋,𝑍 ◦ (𝑋 ⊗ 𝑓 ) : 𝑋 ⊗ 𝑌 → T (𝑋 ⊗ 𝑍 ).

This categorical data satisfies the axioms and coherence properties of premonoidal categories as
explained in [Power and Robinson 1997], but which we omit here because it is not important for the

development of our results. What is important, is to note that in a premonoidal category, 𝑓 ⊗𝑙 𝑋 ′
and 𝑋 ⊗𝑟 𝑔 do not always commute. This leads us to the next definition, which plays a crucial role

in the theory of premonoidal categories and which has important links to our development as well.

Definition 2.7 (Premonoidal Centre [Power and Robinson 1997]). Given a strong monad (T , 𝜂, 𝜇, 𝜏)
on a symmetric monoidal category (C, 𝐼 , ⊗), we say that a morphism 𝑓 : 𝑋 → 𝑌 in CT is central if
for any morphism 𝑓 ′ : 𝑋 ′→ 𝑌 ′ in CT , the diagram

𝑋 ⊗ 𝑋 ′

𝑋 ⊗ 𝑌 ′

𝑌 ⊗ 𝑋 ′

𝑌 ⊗ 𝑌 ′

𝑓 ⊗𝑙 𝑋 ′

𝑋 ⊗𝑟 𝑓 ′ 𝑌 ⊗𝑟 𝑓 ′

𝑓 ⊗𝑙 𝑌 ′
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commutes in CT ; or equivalently, the diagram

𝑋 ⊗ 𝑋 ′

T (𝑋 ⊗ 𝑌 ′)

T𝑌 ⊗ 𝑋 ′

T (T𝑌 ⊗ 𝑌 ′)

𝑓 ⊗ 𝑋 ′

𝑋 ⊗ 𝑓 ′

T (𝑌 ⊗ 𝑓 ′)

T (𝑓 ⊗ 𝑌 ′)

T (𝑌 ⊗ 𝑋 ′)
𝜏 ′
𝑌,𝑋 ′

𝑋 ⊗ T𝑌 ′ T 2 (𝑌 ⊗ 𝑌 ′)

T 2 (𝑌 ⊗ 𝑌 ′)

T𝜏𝑌,𝑌 ′

T𝜏 ′
𝑌,𝑌 ′

𝜏𝑋,𝑌 ′

T (𝑌 ⊗ T𝑌 ′)

𝜇𝑌 ⊗𝑌 ′

T (𝑌 ⊗ 𝑌 ′)
𝜇𝑌 ⊗𝑌 ′

commutes in C. The premonoidal centre of CT is the subcategory 𝑍 (CT) which has the same objects

as those of CT and whose morphisms are the central morphisms of CT .

In [Power and Robinson 1997], the authors prove that 𝑍 (CT), is a symmetric monoidal subcate-
gory of CT . In particular, this means that Kleisli composition and the tensor functors (− ⊗𝑙 𝑋 ) and
(𝑋 ⊗𝑟 −) preserve central morphisms. However, it does not necessarily hold that the subcategory

𝑍 (CT) determines a monad over C. Nevertheless, in this situation, the left adjoint of the Kleisli

adjunction J : C→ CT always corestricts to 𝑍 (CT) and we write ˆJ : C→ 𝑍 (CT) to indicate this
corestriction (which need not be a left adjoint).

Remark 2.8. In [Power and Robinson 1997], the subcategory 𝑍 (CT) is called the centre of CT .
However, we refer to it as the premonoidal centre of a premonoidal category in order to avoid confusion
with the new notion of centre of a monad that we introduce next. In the sequel, we show that the two
notions are very strongly related to each other (Theorem 4.10).

3 CENTRAL SUBMONADS ON THE CATEGORY SET
In this section we show how we can construct the centre of any strong monad acting on the

category Set. The results here are a special case of our more general results from §4, but we choose

to devote special attention to Set for illustrative purposes and because the construction of the

centre is the easiest to understand for this category (in our view). We note that every monad on Set
is canonically strong [Jakl et al. 2022, Remark 4.1] and therefore we show that every monad on Set
admits a centre.

Notation 3.1. Throughout the remainder of the section, we write (T , 𝜂, 𝜇, 𝜏) to indicate an arbitrary
strong monad on the category Set and we write 𝜏 ′ to indicate the costrength of T .

Definition 3.2 (Centre). Given a set 𝑋 , the centre of T at 𝑋 , writtenZ𝑋 , is defined to be the set

Z𝑋 def

= {𝑡 ∈ T𝑋 | ∀𝑌 ∈ Ob(Set).∀𝑠 ∈ T𝑌 . 𝜇 (T𝜏 ′(𝜏 (𝑡, 𝑠))) = 𝜇 (T𝜏 (𝜏 ′(𝑡, 𝑠)))} .
We write 𝜄𝑋 : Z𝑋 ⊆ T𝑋 for the indicated subset inclusion.

In other words, the centre of T at 𝑋 is the subset of T𝑋 which contains all monadic elements

for which (2.3) holds when the set 𝑋 is fixed.

Remark 3.3. Notice that Z𝑋 ⊇ 𝜂𝑋 (𝑋 ), i.e., the centre of T at 𝑋 always contains all monadic
elements which are in the image of the monadic unit. This follows easily from the axioms of strong
monads.
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In fact, the assignmentZ(−) extends to a commutative submonad of T . This is made precise by

the following lemmas and theorems.

Lemma 3.4. The assignmentZ(−) extends to a functorZ : Set→ Set when we define

Z 𝑓
def
= T 𝑓 |Z𝑋 : Z𝑋 →Z𝑌,

for any function 𝑓 : 𝑋 → 𝑌, where T 𝑓 |Z𝑋 indicates the restriction of T 𝑓 : T𝑋 → T𝑌 to the subset
Z𝑋 .

Proof. The validity of this definition is equivalent to showing that T 𝑓 (Z𝑋 ) ⊆ Z𝑌 . This
follows as a special case of Theorem 4.8. □

Lemma 3.5. For any two sets 𝑋 and 𝑌 , the monadic unit 𝜂𝑋 : 𝑋 → T𝑋 , the monadic multiplication
𝜇𝑋 : T 2𝑋 → T𝑋 , and the monadic strength 𝜏𝑋,𝑌 : 𝑋 × T𝑌 → T (𝑋 × 𝑌 ) (co)restrict respectively to
functions 𝜂Z

𝑋
: 𝑋 →Z𝑋 , 𝜇Z

𝑋
: Z2𝑋 →Z𝑋 and 𝜏Z

𝑋,𝑌
: 𝑋 ×Z𝑌 →Z(𝑋 × 𝑌 ).

Proof. Special case of Theorem 4.8. □

With a little bit more effort, it is possible to prove that the data we described above constitutes a

commutative submonad of T .

Theorem 3.6. The assignment Z(−) extends to a commutative submonad (Z, 𝜂Z, 𝜇Z, 𝜏Z) of
T with 𝜄𝑋 : Z𝑋 ⊆ T𝑋 the required submonad morphism. Furthermore, there exists a canonical
isomorphism SetZ � 𝑍 (SetT)4 .

Proof. Special case of Theorem 4.10. □

The final statement of the above theorem is very important. It shows that the Kleisli category

of Z is canonically isomorphic to the premonoidal centre of the Kleisli category of T . Because
of this, we are justified in saying thatZ is not just a commutative submonad of T , but rather it
is the central submonad of T , which is necessarily commutative (just like the centre of a monoid

is a commutative submonoid). In §5.3 we provide concrete examples of monads on Set and their

central submonads and we see that the construction of the centre aligns nicely with our intuition.

4 CENTRALISABLE MONADS
In this section we show how to define the central submonad of a strong monad on a symmetric

monoidal category. This submonad does not always exist (but it usually does) and we present three

equivalent conditions that characterise its existence. In Subsection 4.1 we present the first such

characterisation in terms of central cones. Then, in Subsection 4.2 we present the remaining ones

that allow us to establish a link to the theory of premonoidal categories of Power and Robinson.

4.1 Central cones
In this subsection we show how the construction of the central submonad can be generalised to

many categories other than Set.

Notation 4.1. Throughout the remainder of the section, we assume we are given a symmetric
monoidal category (C, ⊗, 𝐼 ). We also assume that (T , 𝜂, 𝜇, 𝜏) is an arbitrary strong monad on the
category C. We write 𝜏 ′ to indicate the costrength of T , which is induced by the strength 𝜏 and the
symmetry of C in the usual way. All theorems and definitions in this section are stated with respect to
this monad structure.
4
We explain later (see Theorem 4.10) in what sense this isomorphism is canonical.
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In Set, the centre is defined pointwise through subsets of T𝑋 which only contain elements that

satisfy the coherence condition for a commutative monad. However, C is an arbitrary symmetric

monoidal category, so we cannot easily form subojects in the required way. This leads us to the

definition of a central cone which allows us to overcome this problem.

Definition 4.2 (Central Cone). Let 𝑋 be an object of C. A central cone of T at 𝑋 is given by a pair

(𝑍, 𝜄) of an object 𝑍 and a morphism 𝜄 : 𝑍 → T𝑋, such that for any object 𝑌, the diagram

𝑍 ⊗ T𝑌 T𝑋 ⊗ T𝑌 T (𝑋 ⊗ T𝑌 )

T 2 (𝑋 ⊗ 𝑌 )

T (𝑋 ⊗ 𝑌 )

T𝑋 ⊗ T𝑌

T (T𝑋 ⊗ 𝑌 ) T 2 (𝑋 ⊗ 𝑌 )

𝜄 ⊗ T𝑌 𝜏 ′
𝑋,T𝑌

T𝜏𝑋,𝑌

𝜇𝑋 ⊗𝑌

𝜄 ⊗ T𝑌

𝜏T𝑋,𝑌

T𝜏 ′
𝑋,𝑌

𝜇𝑋 ⊗𝑌

commutes. If (𝑍, 𝜄) and (𝑍 ′, 𝜄 ′) are two central cones of T at 𝑋 , then a morphism of central cones
𝜑 : (𝑍 ′, 𝜄 ′) → (𝑍, 𝜄) is a morphism 𝜑 : 𝑍 ′→ 𝑍, such that 𝜄 ◦ 𝜑 = 𝜄 ′. A terminal central cone of T at

𝑋 is a central cone (𝑍, 𝜄) for T at 𝑋 , such that for any central cone (𝑍 ′, 𝜄 ′) of T at 𝑋 , there exists a

unique morphism of central cones 𝜑 : (𝑍 ′, 𝜄 ′) → (𝑍, 𝜄).

The names "central morphism" (in the premonoidal sense, see §2.2) and "central cone" (above)

also hint that there should be a relation between them. This is indeed the case and we show that

the two definitions are equivalent.

Proposition 4.3. Let 𝑓 : 𝑋 → T𝑌 be a morphism in C. The pair (𝑋, 𝑓 ) is a central cone of T at 𝑌
if and only if 𝑓 is central in CT in the premonoidal sense (see Def. 2.7).

Proof. The naturality of 𝜏 and 𝜏 ′ allow us to rewrite each definition into the other. See Appendix

A for more details. □

From now on, we rely heavily on the fact that central cones and central morphisms are equivalent

notions and we use Proposition 4.3 implicitly in the sequel. On the other hand, terminal central
cones are crucial for our development, but it is unclear how to introduce a similar notion of "terminal

central morphism" that is useful. For this reason, we have a preference to work with (terminal)

central cones in this paper.

Central cones (or central morphisms) have several nice properties. To begin, we show that central

cones are closed under certain compositions.

Lemma 4.4. If (𝑋, 𝑓 : 𝑋 → T𝑌 ) is a central cone of T at 𝑌, then for any 𝑔 : 𝑍 → 𝑋 , it follows that
(𝑍, 𝑓 ◦ 𝑔) is a central cone of T at 𝑌 .

Proof. This is obtained by precomposing the definition of central cone by 𝑔 ⊗ id. See Appendix

A for more details. □

Lemma 4.5. If (𝑋, 𝑓 : 𝑋 → T𝑌 ) is a central cone of T at 𝑌 then for any 𝑔 : 𝑌 → 𝑍 , it follows that
(𝑋,T𝑔 ◦ 𝑓 ) is a central cone of T at 𝑍 .
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Proof. The naturality of 𝜏 and 𝜇 allow us to push the application of 𝑔 to the last postcomposition,

in order to use the central property of 𝑓 . See Appendix A for more details. □

Next, a very important property for terminal central cones.

Lemma 4.6. If (𝑍, 𝜄) is a terminal central cone of T at 𝑋 , then 𝜄 is a monomorphism.

Proof. Let us consider 𝑓 , 𝑔 : 𝑌 → 𝑍 such that 𝜄 ◦ 𝑓 = 𝜄 ◦ 𝑔; this morphism is a central cone at 𝑋

(Lemma 4.4), and since (𝑍, 𝜄) is a terminal central cone, it factors uniquely through 𝜄. Thus 𝑓 = 𝑔

and therefore 𝜄 is monic. □

It is easy to see that if a terminal central cone for T at 𝑋 exists, then it is unique up to a unique

isomorphism of central cones. We also note that Lemma 4.6 is crucial for defining the centre of T
through terminal central cones, because the morphisms 𝜄 would be the components of a submonad

morphism. The main definition of this subsection follows next and gives the foundation for the

construction of the central submonad.

Definition 4.7 (Centralisable Monad). We say that the monad T is centralisable if for any object

𝑋 , a terminal central cone of T at 𝑋 exists. In this situation, we write (Z𝑋, 𝜄𝑋 ) for the terminal

central cone of T at 𝑋 .

In fact, for a centralisable monad T , its terminal central cones induce a commutative submonad

Z of T . This is the main theorem of this subsection, which is stated next, and its proof reveals

constructively how the monad structure arises from the terminal central cones.

Theorem 4.8. If the monad T is centralisable, then the assignmentZ(−) extends to a commutative
monad (Z, 𝜂Z, 𝜇Z, 𝜏Z) on C. Moreover, Z is a commutative submonad of T in the sense that the
morphisms 𝜄𝑋 : Z𝑋 → T𝑋 constitute a monomorphism of strong monads 𝜄 : Z ⇒ T .

Proof. First, we extend the assignment Z(−) to an endofunctor on C. Let 𝑓 : 𝑋 → 𝑌 be a

morphism in C. Recall thatZ maps every object 𝑋 to its terminal central cone at 𝑋 . We know that

T 𝑓 ◦ 𝜄𝑋 : Z𝑋 → T𝑌 is a central cone (Lemma 4.5), therefore, we defineZ 𝑓 as the unique map

such that the following diagram commutes:

Z𝑋 Z𝑌

T𝑋 T𝑌

𝜄𝑋 𝜄𝑌

T 𝑓

Z 𝑓

It follows directly thatZ(id𝑋 ) = idZ𝑋 and that 𝜄 : Z ⇒ T is a natural transformation. Moreover,

Z preserves composition, which follows after recognising that the diagram

Z𝐴

Z𝐵

T𝐴

T𝐵

𝜄𝐴

𝜄𝐵

T𝑔Z𝑔

Z𝐶

Z 𝑓

Z(𝑓 ◦ 𝑔)

T𝐶
𝜄𝐶

T 𝑓

T (𝑓 ◦ 𝑔)
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commutes. This shows that Z is indeed a functor. Next, we describe its monad structure. The

monadic unit 𝜂𝑋 is central, because it is the identity morphism in 𝑍 (CT), thus it factors uniquely
through 𝜄𝑋 to define 𝜂Z

𝑋
as in the following diagram:

𝑋

T𝑋

Z𝑋

𝜂𝑋 𝜄𝑋

𝜂Z
𝑋

Next, observe that, by definition, 𝜇𝑋 ◦ T 𝜄𝑋 ◦ 𝜄Z𝑋 = 𝜄𝑋 ⊙ 𝜄Z𝑋 , where (− ⊙ −) indicates Kleisli
composition. Since 𝜄 is central and Kleisli composition preserves central morphisms, it follows this

morphism factors uniquely through 𝜄𝑋 and we use this to define 𝜇Z
𝑋

as in the following diagram:

Z2𝑋

TZ𝑋 T 2𝑋 T𝑋

Z𝑋
𝜇Z
𝑋

T 𝜄𝑋 𝜇𝑋

𝜄Z𝑋 𝜄𝑋

Again, by definition, 𝜏𝐴,𝐵 ◦ (𝐴 ⊗ 𝜄𝐵) = 𝐴 ⊗𝑟 𝜄𝐵 . Central morphisms are preserved by the premonoidal

products (as we noted in Section 2) and therefore, this morphism factors uniquely through 𝜄𝐴⊗𝐵
which we use to define 𝜏Z

𝐴,𝐵
as in the following diagram:

𝐴 ⊗ Z𝐵 Z(𝐴 ⊗ 𝐵)

𝐴 ⊗ T𝐵 T (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝜄𝐵 𝜄𝐴⊗𝐵

𝜏Z
𝐴,𝐵

𝜏𝐴,𝐵

Note that the last three diagrams are exactly those of a morphism of strong monads (see Definition

2.4). This defines the monad structure ofZ. See Appendix A for the remainder of the proof. □

This theorem shows that centralisable monads always induce a canonical commutative submonad.

However, we still have not precisely explained in what sense this submonad is "central". We justify

this next. Note that, sinceZ is a submonad of T , we know that CZ canonically embeds into CT
(see Proposition 2.6). The next theorem shows that this embedding factors through the premonoidal

centre of CT , and moreover, the two categories are isomorphic.

Theorem 4.9. In the situation of Theorem 4.8, the canonical embedding functor I : CZ → CT
corestricts to an isomorphism of categories CZ � 𝑍 (CT).

Proof. That I corestricts as indicated follows easily: for any morphism 𝑓 : 𝑋 → Z𝑌 , we
have that I 𝑓 = 𝜄𝑌 ◦ 𝑓 which is central by Lemma 4.4. Let us write

ˆI for the corestriction of I to

𝑍 (CT). Next, to prove that
ˆI : CZ → 𝑍 (CT) is an isomorphism, we define the inverse functor

𝐺 : 𝑍 (CT) → CZ .
On objects, 𝐺 (𝑋 ) def= 𝑋 . To define its mapping on morphisms, observe that if 𝑓 : 𝑋 → T𝑌 is a

central morphism (in the premonoidal sense), then (𝑋, 𝑓 ) is a central cone of T at 𝑌 (Proposition
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4.3) and therefore there exists a unique morphism 𝑓 Z : 𝑋 →Z𝑌 such that 𝜄𝑌 ◦ 𝑓 Z = 𝑓 ; we define

𝐺𝑓
def

= 𝑓 Z . The proof that 𝐺 is a functor is direct considering that any 𝑓 Z is a morphism of central

cones and that all components of 𝜄 are monomorphisms.

To show that
ˆI and𝐺 are mutual inverses, let 𝑓 : 𝑋 → T𝑌 be a morphism of𝑍 (CT), i.e., a central

morphism. Then,
ˆI𝐺𝑓 = 𝜄𝑌 ◦ 𝑓 Z = 𝑓 by definition of morphism of central cones (see Definition 4.2).

For the other direction, let 𝑔 : 𝑋 →Z𝑌 be a morphism in C. Then, 𝜄𝑌 ◦𝐺 ˆI𝑔 = 𝜄𝑌 ◦ (𝜄𝑌 ◦𝑔)Z = 𝜄𝑌 ◦𝑔
by Definition 4.2 and thus 𝐺 ˆI𝑔 = 𝑔 since 𝜄𝑌 is a monomorphism (Lemma 4.6). □

It should now be clear that Theorem 4.8 and Theorem 4.9 show that we are justified in naming

the submonadZ as the central submonad of T .

4.2 Characterising the Centre of Strong Monads
In the previous subsection we showed that the existence of terminal central cones is sufficient to

construct the central submonad and we provided a constructive proof of this fact. Next, we show

that the existence of these central cones is also necessary for this. Furthermore, we provide another

equivalent characterisation in terms of the premonoidal structure of the monad. This is precisely

formulated in the main theorem of this paper which is presented next.

Theorem 4.10 (Centralisability). Let C be a symmetric monoidal category and T a strong
monad on it. The following are equivalent:

(1) For any object 𝑋 of C, T admits a terminal central cone at 𝑋 ;
(2) There exists a commutative submonad Z of T such that the canonical embedding functor
I : CZ → CT corestricts to an isomorphism of categories CZ � 𝑍 (CT);

(3) The corestriction of the Kleisli left adjoint J : C→ CT to the premonoidal centre ˆJ : C→
𝑍 (CT) also is a left adjoint.

Proof.

(1⇒ 2) : By Theorem 4.8 and Theorem 4.9.

(2 ⇒ 3) : Let us consider the Kleisli left adjoint JZ associated to the monad Z. All our

hypotheses can be summarised by the diagram

C CT

CZ 𝑍 (CT)�
ˆI

JZ

J

ˆJ

where
ˆI : CZ � 𝑍 (CT) is the corestriction of I. This diagram commutes, becauseZ is a submonad

of T (recall also that
ˆJ is the indicated corestriction of J , see §2.2). Since

ˆI is an isomorphism,

then
ˆJ = ˆI ◦ JZ is the composition of two left adjoints and it is therefore also a left adjoint.

(3⇒ 1) : Let R : 𝑍 (CT) → C be the right adjoint of
ˆJ and let 𝜀 be the counit of the adjunction.

We will show that the pair (R𝑋, 𝜀𝑋 ) is the terminal central cone of T at 𝑋 .

First, since 𝜀𝑋 is a morphism in 𝑍 (CT), it follows that it is central. Thus the pair (R𝑋, 𝜀𝑋 ) is a
central cone of T at 𝑋 . Next, let Φ : 𝑍 (CT) [ ˆJ𝑌,𝑋 ] � C[𝑌,R𝑋 ] be the natural bijection induced

by the adjunction. If 𝑓 : 𝑌 → T𝑋 is central, meaning a morphism of 𝑍 (CT), the diagram below



Central Submonads and Notions of Computation 15

left commutes in 𝑍 (CT), or equivalently, the diagram below right commutes in C:

ˆJ𝑌

ˆJR𝑋 𝑋

ˆJΦ(𝑓 )
𝑓

𝜀𝑋

𝑌

R𝑋 T𝑋

Φ(𝑓 )
𝑓

𝜀𝑋

Note that the pair (𝑌, 𝑓 ) is equivalently a central cone for T at 𝑋 (by Proposition 4.3). Thus 𝑓

uniquely factors through the counit 𝜀𝑋 : R𝑋 → T𝑋 and therefore (R𝑋, 𝜀𝑋 ) is the terminal central

cone of T at 𝑋 . □

This theorem shows that Definition 4.7 may be stated by choosing any one of the above equivalent

criteria. We note that the first condition is the easiest to verify in practice. The second condition

is the most useful for providing a computational interpretation, as we do in the sequel. The third

condition provides an important link to premonoidal categories.

5 EXAMPLES
In this section we show how we can make use of the mathematical results we already established

in order to reason about the centres of monads of interest.

5.1 A Non-centralisable Monad
In Set, we heavily relied on the notion of subset to define the central submonad. One may wonder

what happens if not every subset of a given set is an object of the category. The following example

describes such a situation, which gives rise to a non-centralisable strong monad.

Example 5.1. Consider the Dihedral group D4, which has 8 elements. Its centre 𝑍 (D4) is non-
trivial and has 2 elements. Let C be the full subcategory of Setwith objects that are finite products of
the setD4 with itself. This category has a cartesian structure and the terminal object is the singleton

set (which is the empty product). Notice that every object in this category has cardinality which is a

power of 8. Therefore the cardinality of every homset ofC is also a power of 8. SinceC has a cartesian

structure and since D4 is a monoid, we can consider the writer monadM def

= (D4 × −) : C→ C
induced by D4, which can be defined in exactly the same way as in Example 5.10 (see also §1.3).

It follows thatM is a strong monad on C. However, it is easy to show that this monad is not

centralisable. Let us assume, for the purpose of reaching a contradiction, that there is a monad

Z : C→ C such that CZ � 𝑍 (CM) (see Theorem 4.10). Next, observe that the homset𝑍 (CM) [1, 1]
has the same cardinality as the centre of the monoid D4, i.e., its cardinality is 2. However, CZ
cannot have such a homset since CZ [𝑋,𝑌 ] = C[𝑋,Z𝑌 ] which must have cardinality a power of 8.

Therefore there exists no such monadZ andM is not centralisable.

Besides this example and any further attempts at constructing non-centralisable monads for this

sole purpose, we do not know of any other strong monad in the literature that is not centralisable.

Throughout the remainder of the section, we present many examples of centralisable monads and

classes of centralisable monads which show that our results are widely applicable.

5.2 Categories whose Strong Monads are Centralisable
We saw earlier that every (strong) monad on Set is centralisable. In fact, this is also true for many

other naturally occurring categories. For example, in many categories of interest, the objects of the
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category have a suitable notion of subobject (e.g., subsets in Set, subspaces in Vect) and the centre

can then be constructed in a similar way than in Set.

Example 5.2. Every strong monad on the category DCPO (whose objects are directed-complete

partial orders and the morphisms are Scott-continuous maps between them) is centralisable. The

easiest way to see this is to use Theorem 4.10 (1). Writing T : DCPO→ DCPO for an arbitrary

strong monad on DCPO, the terminal central cone of T at 𝑋 is given by the subdcpoZ𝑋 ⊆ T𝑋
which has the underlying set

Z𝑋 def

= {𝑡 ∈ T𝑋 | ∀𝑌 ∈ Ob(DCPO).∀𝑠 ∈ T𝑌 . 𝜇 (T𝜏 ′(𝜏 (𝑡, 𝑠))) = 𝜇 (T𝜏 (𝜏 ′(𝑡, 𝑠)))} .
ThatZ𝑋 (with the inherited order) is a subdcpo of T𝑋 follows easily by using the fact that 𝜇, 𝜏, 𝜏 ′

and T are Scott-continuous. So, we see the construction is analogous to the one in Set, but with
some additional proof obligations.

Example 5.3. Every strong monad on the category Top (whose objects are topological spaces

and the morphisms are continuous maps between them) is centralisable. Using Theorem 4.10 (1)

and writing T : Top→ Top for an arbitrary strong monad on Top, the terminal central cone of T
at 𝑋 is given by the spaceZ𝑋 ⊆ T𝑋 which has the underlying set

Z𝑋 def

= {𝑡 ∈ T𝑋 | ∀𝑌 ∈ Ob(Top).∀𝑠 ∈ T𝑌 . 𝜇 (T𝜏 ′(𝜏 (𝑡, 𝑠))) = 𝜇 (T𝜏 (𝜏 ′(𝑡, 𝑠)))}
and whose topology is the subspace topology inherited from T𝑋 (recall that the subspace topology

is the coarsest topology that makes the subset inclusion map continuous).

Example 5.4. Every strong monad on the category Meas (whose objects are measurable spaces

and the morphisms are measurable maps between them) is centralisable. The construction is fully

analogous to the previous example, but instead of the subspace topology, we equip the underlying

set with the subspace 𝜎-algebra inherited from T𝑋 (which is the smallest 𝜎-algebra that makes the

subset inclusion map measurable).

Example 5.5. Every strong monad on the category Vect (whose objects are vector spaces and the

morphisms are linear maps between them) is centralisable. One simply defines the subsetZ𝑋 as in

the other examples and shows that this is a linear subspace of T𝑋 . That this is the terminal central

cone is then obvious (as in the other examples).

The above categories, together with the category Set, are not meant to provide an exhaustive list

of categories for which all strong monads are centralisable. Indeed, there are many more categories

for which we can carry on similar arguments. The purpose of these examples is to illustrate how

we may use Theorem 4.10 (1) to construct the centre of a strong monad. Next, we show how we

may use Theorem 4.10 (3) to show that a strong monad is centralisable. Our next proposition does

exactly this.

Proposition 5.6. Let C be a symmetric monoidal closed category that is total5. Then all strong
monads over C are centralisable.

Proof. For any strong monad T : C → C, we first prove that the corestriction of the Kleisli

inclusion J : C→ CT to the premonoidal centre
ˆJ : C→ 𝑍 (CT) also is cocontinuous. Then by

the adjoint functor theorem for total categories [Street and Walters 1978],
ˆJ is a left adjoint, and

by Theorem 4.10 (3) it follows that the corresponding strong monad is centralisable. See Appendix

A for more details. □

5
Recall that a locally small category is total if its Yoneda embedding has a left adjoint.
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As a special case of the above proposition, we get another proof of the fact that every monad on

Set and Vect is centralisable.

Example 5.7. Any category which is the Eilenberg-Moore category of a commutative monad

over Set is total [Kelly 1986]. Furthermore it is cocomplete [Hermelink 2019] and then symmetric

monoidal closed [Keigher 1978], thus all strong monads on it are centralisable, this includes:

• The category Set∗ of pointed sets and point preserving functions (algebras of the lift monad).

• The category CMon of commutative monoids and monoid homomorphisms (algebras of

the commutative monoid monad).

• The category Conv of convex sets and linear functions (algebras of the distribution monad).

• The category Sup of complete semilattices and sup-preserving functions (algebras of the

powerset monad).

Example 5.8. Any presheaf category SetC
𝑜𝑝

over a small category C is total [Kelly 1986] and

cartesian closed, thus all strong monads on it are centralisable, this includes:

• The category Set𝐴
𝑜𝑝

, where 𝐴 is the category with two objects and two parallel arrows,

which can be seen as the category of directed multi-graphs and graph homomorphisms.

• The category Set𝐺
𝑜𝑝

, where 𝐺 is a group seen as a category, which can be seen as the

category of 𝐺-sets (sets with an action of 𝐺) and equivariant maps.

• The topos of trees SetN
𝑜𝑝

.

More generally the conditions of Proposition 5.6 are also satisfied by any Grothendieck topos.

5.3 Specific Examples of Centralisable Monads
In this subsection, we consider specific monads and construct their centres.

Example 5.9. Let T be a commutative monad. Then its central submonad is T itself.

Example 5.10. Given a monoid (𝑀, 𝑒,𝑚), the free monad induced by𝑀 , also known as the writer
monad, is the monad T = (− ×𝑀) : Set→ Set whose monad data is given by:

• 𝜂𝑋 : 𝑋 → 𝑋 ×𝑀 :: 𝑥 ↦→ (𝑥, 𝑒);
• 𝜇𝑋 : (𝑋 ×𝑀) ×𝑀 → 𝑋 ×𝑀 :: ((𝑥, 𝑧), 𝑧 ′) ↦→ (𝑥,𝑚(𝑧, 𝑧 ′));
• 𝜏𝑋,𝑌 : 𝑋 × (𝑌 ×𝑀) → (𝑋 × 𝑌 ) ×𝑀 :: (𝑥, (𝑦, 𝑧)) ↦→ ((𝑥,𝑦), 𝑧).

The central submonadZ of T is given by the commutative monad (− × 𝑍 (𝑀)) : Set→ Set, where
𝑍 (𝑀) is the centre of the monoid𝑀 and where the monad data is given by the (co)restrictions of

the monad data of T . Note that T is a commutative monad iff𝑀 is a commutative monoid.

Example 5.11. Let 𝑆 be a set. The (well-known) continuation monad is given by the functor

T = [[−, 𝑆], 𝑆] : Set→ Set, equipped with the monad data:

• 𝜂𝑋 : 𝑋 → [[𝑋, 𝑆], 𝑆] :: 𝑥 ↦→ 𝜆𝑓 .𝑓 (𝑥);
• 𝜇𝑋 : [[[[𝑋, 𝑆], 𝑆], 𝑆], 𝑆] → [[𝑋, 𝑆], 𝑆] :: 𝐹 ↦→ 𝜆𝑔.𝐹 (𝜆ℎ.ℎ(𝑔));
• 𝜏𝑋,𝑌 : 𝑋 × [[𝑌, 𝑆], 𝑆] → [[𝑋 × 𝑌, 𝑆], 𝑆] :: (𝑥, 𝑓 ) ↦→ 𝜆𝑔.𝑓 (𝜆𝑦.𝑔(𝑥,𝑦)).

Note that, if 𝑆 is the empty set or a singleton set, then T is commutative, so we are in the situation

of Example 5.9. Otherwise, when 𝑆 is not trivial, one can prove (details omitted here) thatZ𝑋 =

𝜂𝑋 (𝑋 ) � 𝑋 . Therefore, the central submonad of T is trivial and it is naturally isomorphic to the

identity monad.

Example 5.11 shows that the centre of a monad may be trivial in the sense that it is precisely

the image of the monadic unit, and by Remark 3.3, this is the least it can be. Therefore, the central

submonad of such a monad is not very useful, because it does not contain any additional information
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about the nature of the specific monadic effect. At the other extreme, Example 5.9 shows that the

centre of a commutative monad coincides with itself (as one would expect) and therefore we also

do not get anything new. Therefore, the monads that have interesting central submonads are those

monads which are strong, but not commutative, and which have non-trivial centres, such as the

one in Example 5.10. Another interesting example of a strong monad with a non-trivial centre is

provided next.

Example 5.12. Every semiring (𝑆, +, 0, ·, 1) induces a monad T : Set→ Set [Jakl et al. 2022]. This
monad maps a set 𝑋 to the set of finite formal sums of the form

∑
𝑠𝑖𝑥𝑖 ∈ T𝑋 , where 𝑠𝑖 are elements

of 𝑆 and 𝑥𝑖 are elements of 𝑋 . The unit of the monad 𝜂𝑋 : 𝑋 → T𝑋 maps an element of 𝑋 to a

singleton sum. Themultiplication 𝜇𝑋 : T 2𝑋 → T𝑋 takes a sum of sums as an input and flattens it to

a single sum:

∑
𝑖 𝑠𝑖

(∑
𝑗𝑖
𝑠𝑖, 𝑗𝑥𝑖, 𝑗

)
↦→ ∑

𝑖, 𝑗 (𝑠𝑖 ·𝑠𝑖, 𝑗 )𝑥𝑖, 𝑗 . The strength 𝜏𝑋,𝑌 : 𝑋 ×T𝑌 → T (𝑋 ×𝑌 ) and the
costrength 𝜏 ′

𝑋,𝑌
: T𝑋⊗𝑌 → T (𝑋⊗𝑌 ) are respectively defined as follows: (𝑥,∑𝑖 𝑠𝑖𝑦𝑖 ) ↦→

∑
𝑖 𝑠𝑖 (𝑥,𝑦𝑖 )

and (∑𝑖 𝑠𝑖𝑥𝑖 , 𝑦) ↦→
∑

𝑖 𝑠𝑖 (𝑥𝑖 , 𝑦). The monad T is commutative if and only if 𝑆 is commutative. One

can prove that the central submonadZ of T is induced by the commutative semiring 𝑍 (𝑆), made

of elements of 𝑆 that commute with any other element of 𝑆 through its multiplication (− · −). Thus
for a given set 𝑋 , the central submonad isZ𝑋 = {∑𝑖≤𝑛 𝑠𝑖𝑥𝑖 | 𝑛 ∈ N, 𝑠 ∈ 𝑍 (𝑆)𝑛, 𝑥 ∈ 𝑋𝑛}.

Next, we consider an important example from domain theory [Gierz et al. 2012].

Example 5.13. The valuations monadV : DCPO→ DCPO [Jones 1990; Jones and Plotkin 1989]

is similar in spirit to the Giry monad on measurable spaces [Giry 1982]. It is used to combine

probability and recursion for dcpo’s. Given a dcpo𝑋 , the valuations monadV assigns the dcpoV𝑋

of all Scott-continuous valuations on 𝑋 , which are Scott-continuous functions 𝜈 : 𝜎 (𝑋 ) → [0, 1]
from the Scott-open sets of𝑋 into the unit interval that satisfy some additional properties that make

them suitable to model probability (details omitted here, see [Jones 1990] for more information).

The category DCPO is cartesian closed and the valuations monadV : DCPO→ DCPO is strong,

but its commutativity onDCPO has been an open problem since 1989 [Jones 1990; Jones and Plotkin

1989]. Multiple experts in the field believe that it is not commutative
6
. More recently, progress has

been made in identifying commutative submonads ofV on the category DCPO [Goubault-Larrecq

et al. 2021; Jia et al. 2021a,b]. The difficulty in (dis)proving the commutativity ofV boils down to

(dis)proving the following Fubini-style equation∫
𝑋

∫
𝑌

𝜒𝑈 (𝑥,𝑦)𝑑𝜈𝑑𝜉 =

∫
𝑌

∫
𝑋

𝜒𝑈 (𝑥,𝑦)𝑑𝜉𝑑𝜈

holds for any dcpo’s 𝑋 and 𝑌 , any Scott-open subset𝑈 ∈ 𝜎 (𝑋 ×𝑌 ) and any two valuations 𝜉 ∈ V𝑋

and 𝜈 ∈ V𝑌 . In the above equation, the notion of integration is given by the valuation integral
(see [Jones 1990] for more information). Several different submonads of V are constructed in

[Goubault-Larrecq et al. 2021; Jia et al. 2021a] by using topological methods that allow the authors

to restrict the space of valuations to particularly nice ones where the above Fubini-style equation

may be shown to hold.

However, the authors of [Jia et al. 2021b] take a different approach which is of a more algebraic

nature. The central valuations monad, as defined in [Jia et al. 2021b], is defined to be the monad

Z : DCPO → DCPO which maps a dcpo 𝑋 to the dcpo Z𝑋 which has all central valuations as

6
Personal Communication.
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elements. More precisely, their definition is equivalent to writing:

Z𝑋 def

=

{
𝜉 ∈ V(𝑋 ) | ∀𝑌 ∈ Ob(DCPO).∀𝑈 ∈ 𝜎 (𝑋 × 𝑌 ).∀𝜈 ∈ V(𝑌 ).∫

𝑋

∫
𝑌

𝜒𝑈 (𝑥,𝑦)𝑑𝜈𝑑𝜉 =

∫
𝑌

∫
𝑋

𝜒𝑈 (𝑥,𝑦)𝑑𝜉𝑑𝜈
}
.

But this is precisely the central submonad ofV , which can be seen using Theorem 4.10 (1) after

unpacking the definition of the monad data ofV . Therefore, we see that the main result of [Jia

et al. 2021b] is a special case of our more general categorical treatment. We wish to note, that the

central submonad ofV is not trivial, but it is actually quite large. It contains all three commutative

submonads identified in [Jia et al. 2021a], neither of which are trivial, and all of which may be used

to model lambda calculi with recursion and discrete probabilistic choice (see [Jia et al. 2021a,b]).

6 COMPUTATIONAL INTERPRETATION
In this section we provide a computational interpretation of our ideas by presenting a refinement

of Moggi’s metalanguage [Moggi 1991].

6.1 Syntax
We begin by describing the type system. The grammar of types (see Figure 2) are just the usual ones

with one addition – we extend the grammar by adding the family of typesZ𝐴. The types should
be understood in the following way: 1 is the unit type;𝐴×𝐵 represents pair types;𝐴 +𝐵 represents

sum types; 𝐴→ 𝐵 represents function types; T𝐴 represents the type of monadic computations for

our monad T that produce values of type 𝐴 (together with a potential side effect described by T );
Z𝐴 represent the type of central monadic computations for our monad T that produce values of

type 𝐴 (together with a potential central side effect that is necessarily inZ).

The grammar of terms for our system are described in Figure 2 and the formation rules for

well-formed terms are described in Figure 3. The first nine rules in Figure 3 are just the usual

formation rules for a simply-typed lambda calculus with pair types and sum types. We focus on the

terms for monadic computation.

The ret𝑀 term is used as an introduction rule for the monadic types and it allows us to see the

pure (i.e., non-effectful) computation described by the term𝑀 as a monadic one. Semantically, this

corresponds to the application of the monadic unit and it is written retZ because the monadic unit

is always central (and so is the pure computation described by the term𝑀). The term 𝜄𝑀 allows us

to view a central monadic computation as a monadic (not necessarily central) one. Semantically,

it corresponds to an application of the 𝜄 submonad inclusion. Because of this, we can introduce

some syntactic sugar and define the term retT 𝑀
def

= 𝜄 retZ 𝑀. Finally, we have two terms for

monadic sequencing that use the familiar do-notation. The monadic sequencing of two central

computations remains central, which is represented via the doZ terms; the doT terms are used for

monadic sequencing of (not necessarily central) computations, as usual.

For simplicity, and for brevity, we do not add any specific constants of monadic typesZ𝐴 and

T𝐴 to keep our presentation more manageable. Of course, it is clear, that in practice this has to

be done when a specific monad T is chosen and these constants will be application specific. We

provide such a use case via the writer monad in §7, where we formally present a suitable operational

semantics together with soundness and adequacy results.
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(Types) 𝐴, 𝐵 ::= 1 | 𝐴→ 𝐵 | 𝐴 × 𝐵 | 𝐴 + 𝐵 | Z𝐴 | T𝐴
(Terms) 𝑀, 𝑁 ::= 𝑥 | ∗ | 𝜆𝑥𝐴 .𝑀 | 𝑀𝑁 | ⟨𝑀, 𝑁 ⟩ | 𝜋𝑖𝑀 | left𝑀 | right𝑀

| case𝑀 of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′}
| retZ 𝑀 | 𝜄𝑀 | doZ 𝑥 ← 𝑀 ; 𝑁 | doT 𝑥 ← 𝑀 ; 𝑁

Fig. 2. Grammars for the types and terms of our system.

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 Γ ⊢ ∗ : 1
Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀𝑁 : 𝐵

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐵

Γ ⊢ ⟨𝑀, 𝑁 ⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑀 : 𝐴1 ×𝐴2

Γ ⊢ 𝜋𝑖𝑀 : 𝐴𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴→ 𝐵

Γ ⊢ 𝑀 : 𝐴

Γ ⊢ left𝑀 : 𝐴 + 𝐵
Γ ⊢ 𝑀 : 𝐵

Γ ⊢ right𝑀 : 𝐴 + 𝐵
Γ ⊢ 𝑀 : 𝐴 + 𝐵 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶 Γ, 𝑥 ′ : 𝐵 ⊢ 𝑁 ′ : 𝐶
case𝑀 of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′} : 𝐶

Γ ⊢ 𝑀 : 𝐴

Γ ⊢ retZ 𝑀 : Z𝐴
Γ ⊢ 𝑀 : Z𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : Z𝐵

Γ ⊢ doZ 𝑥 ← 𝑀 ; 𝑁 : Z𝐵

Γ ⊢ 𝑀 : Z𝐴
Γ ⊢ 𝜄𝑀 : T𝐴

Γ ⊢ 𝑀 : T𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : T𝐵
Γ ⊢ doT 𝑥 ← 𝑀 ; 𝑁 : T𝐵

Fig. 3. Formation rules for well-formed terms.

6.2 Denotational semantics
The categorical model that we use to interpret our type system consists of the following data: a

cartesian closed category C with coproducts and a centralisable strong monad T , whose central
submonad is denoted Z and whose submonad inclusion is given by 𝜄 : Z ⇒ T . We write 𝜋𝐴 to

indicate the projections for the cartesian product and we write 𝑖𝑛𝑖 for the coproduct injections. In

this situation, the cartesian product distributes over the coproduct, and we write the corresponding

isomorphism as 𝛿 : 𝐴 × (𝐵 +𝐶) � (𝐴 + 𝐵) × (𝐴 +𝐶). We write 𝜆 : C[𝑋 × 𝑌, 𝑍 ] � C[𝑋,𝑍𝑌 ] for the
currying natural isomorphism and we write 𝑒𝑣 for the corresponding evaluation map. The types

are interpreted as objects in C, as usual:

J1K = 1

J𝐴→ 𝐵K = J𝐵KJ𝐴K

J𝐴 + 𝐵K = J𝐴K + J𝐵K
J𝐴 × 𝐵K = J𝐴K × J𝐵K

JZ𝐴K = Z J𝐴K
JT𝐴K = T J𝐴K

Variable contexts Γ = 𝑥1 : 𝐴1 . . . 𝑥𝑛 : 𝐴𝑛 are interpreted as usual as JΓK def

= J𝐴1K × · · · × J𝐴𝑛K.
Terms are interpreted as morphisms JΓ ⊢ 𝑀 : 𝐴K : JΓK → J𝐴K of C. When the context and the

type of a term𝑀 are understood, then we simply write J𝑀K as a shorthand for JΓ ⊢ 𝑀 : 𝐴K. The
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interpretation of the terms is defined by induction on the typing derivation as follows:

JΓ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴K = 𝜋J𝐴K JΓ ⊢ 𝜋𝑖𝑀 : 𝐴K = 𝜋J𝐴K ◦ J𝑀K JΓ ⊢ ⟨𝑀, 𝑁 ⟩ : 𝐴 × 𝐵K = ⟨J𝑀K , J𝑁 K⟩

JΓ ⊢ 𝑀𝑁 : 𝐵K = 𝑒𝑣J𝐴K,J𝐵K ◦ ⟨J𝑀K , J𝑁 K⟩
q
Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴→ 𝐵

y
= 𝜆JΓK,J𝐴K,J𝐵K (J𝑀K)

JΓ ⊢ left𝑀 : 𝐴 + 𝐵K = 𝑖𝑛1 ◦ J𝑀K JΓ ⊢ right𝑀 : 𝐴 + 𝐵K = 𝑖𝑛2 ◦ J𝑀K

JΓ ⊢ case𝑀 of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′} : 𝐴K =
[
J𝑁 K , J𝑁 ′K

]
◦ 𝛿JΓK,J𝐴K,J𝐵K ◦ ⟨𝑖𝑑, J𝑀K⟩

JΓ ⊢ retZ 𝑀 : Z𝐴K = 𝜂ZJ𝐴K ◦ J𝑀K JΓ ⊢ 𝜄𝑀 : T𝐴K = 𝜄J𝐴K ◦ J𝑀K

JΓ ⊢ doZ 𝑥 ← 𝑀 ; 𝑁 : Z𝐵K = 𝜇ZJ𝐵K ◦ Z J𝑁 K ◦ 𝜏ZJΓK,J𝐴K ◦ ⟨𝑖𝑑, J𝑀K⟩

JΓ ⊢ doT 𝑥 ← 𝑀 ; 𝑁 : T𝐵K = 𝜇J𝐵K ◦ T J𝑁 K ◦ 𝜏JΓK,J𝐴K ◦ ⟨𝑖𝑑, J𝑀K⟩

6.3 Observational equivalence
Our system and our semantics can be used to validate some important equivalences.

Proposition 6.1. The following equalities:

J𝜄 (retZ 𝑀)K = JretT 𝑀K
JdoT 𝑥 ← 𝜄𝑀 ; 𝜄𝑁 K = J𝜄 (doZ 𝑥 ← 𝑀 ; 𝑁 )K

JdoT 𝑥 ← 𝜄𝑀 ; doT 𝑦 ← 𝑁 ; 𝑃K = JdoT 𝑦 ← 𝑁 ; doT 𝑥 ← 𝜄𝑀 ; 𝑃K

hold in our categorical model.

Proof. The first equation is obvious. The second one is a direct consequence of the coherence

properties between 𝜄 and 𝜇 and 𝜏 . The last equality follows directly by the naturality of 𝜏 and of

course, the fact that 𝜄 is central. □

We now explain the importance of the above proposition. Assuming that our system is equipped

with an operational semantics that is sound and adequate with respect to the denotational semantics

(which is the case for our case study in the next section), then standard arguments may be used to

show that the terms we identified above are contextually equivalent (or observationally equivalent).
This means that the corresponding terms cannot be distinguished from the point of view of an

observer who examines the result of the computation in any possible observable context. These

equivalences might therefore be used to perform program optimisation or program transformation

in a safe way.

A few more words on the operational significance of the second and third equations. The second

one shows that central computations may continue to be seen as central even when we use monadic

sequencing of the ambient monad T . The third equation is perhaps the one of highest interest. It

shows that central computations commute with any other (not necessarily central) computation.

Note that this holds even when the monad T is just strong, not necessarily commutative, and

this allows us to exploit this useful equivalence in a wider range of use cases. Furthermore, in

practice, this equivalence may be easily established by just looking at the more refined syntactic

structure (due to the 𝜄𝑀 terms) and without having to compute the semantic interpretation of the

corresponding terms.

Of course, the above equivalences are not meant to provide an exhaustive list, but only an

illustrative selection. For example, we may also prove that

Jcase𝑀 of { left 𝑥 → 𝜄𝑁 | | right 𝑥 ′→ 𝜄𝑁 ′}K = J𝜄 (case𝑀 of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′})K

any many others, but for brevity, we keep our selection concise.
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7 CASE STUDY: WRITER MONAD
In this section we illustrate our ideas by fixing a specific monad – the well-known writer monad

from Example 5.10 (also known as the action monad). We fix a monoid (ℳ, •, 𝑒), with a non-trivial

centre 𝑍 (ℳ). The elements of the monoid may be thought of as representing external actions on

some system. For generality, we do not specify here what these actions are.

The possible actions are introduced into our language via terms act(c) in the syntax where c
ranges over elements of ℳ. These actions are viewed as computational effects and can be cleanly

and systematically introduced into our system via the writer monad T def

= (− ×ℳ) : Set → Set
and its central submonadZ def

= (− × 𝑍 (ℳ)) : Set→ Set.

7.1 Syntax
The syntax is the same as in the previous section and we simply add a new term to represent the

possible actions. The grammar of terms is extended by adding

(Terms)𝑀, 𝑁 ::= · · · | act(𝑐)

where 𝑐 is an element ofℳ. The formation rules of the type system are the same as in the previous

section together with the following two additions for the newly added terms:

𝑐 ∈ℳ \ 𝑍 (ℳ)
Γ ⊢ act(𝑐) : T 1

𝑐 ∈ 𝑍 (ℳ)
Γ ⊢ act(𝑐) : Z1

The two formation rules distinguish between the central and non-central elements of ℳ. The

corresponding types are T 1 and Z1, because these terms do not return any values, they only

perform an action on the external system.

Notation 7.1. In what follows, much of the treatment is common to both monads T andZ. We
use the symbol X to refer to either one of the two monads.

In order to define an operational semantics for this (effectful) language, we have to consider

program configurations that represent the current state of execution. Program configurations are

pairs (𝑀,𝑐) of a term𝑀 and an element 𝑐 ∈ℳ. A configuration (𝑀,𝑐) is well-formed of type X𝐴,
written (𝑀,𝑐) : X𝐴, whenever · ⊢ 𝑀 : X𝐴, i.e., when𝑀 is a closed term of type X𝐴, which we also

write as ⊢ 𝑀 : X𝐴. Note that we only consider configurations of monadic type to be well-formed,

because those can potentially perform effectful actions, whereas configurations of non-monadic

types are pure and will never act on the external system via the monoid ℳ. Finally, we add some

syntactic sugar to help the reader, by setting ”doX act(𝑐) ; 𝑁 def

= doX 𝑥 ← act(𝑐) ; 𝑁 ”, where the

variable 𝑥 of type 1 should be chosen to be fresh such that it does not appear freely in the term 𝑁 .

Recall also that we use the syntactic sugar retT 𝑀
def

= 𝜄 retZ 𝑀.

7.2 Operational Semantics
The operational semantics has two different modes of reduction. The first one is on pure (non-

monadic) terms, which we call pure reduction, which is given by the usual reduction rules for a
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call-by-name lambda calculus:

(𝜆𝑥𝐴 .𝑀)𝑁 → 𝑀 [𝑁 /𝑥]
𝑀 → 𝑀 ′

𝜋𝑖𝑀 → 𝜋𝑖𝑀
′ 𝜋𝑖 ⟨𝑀1, 𝑀2⟩ → 𝑀𝑖

𝑀 → 𝑀 ′

𝑀𝑁 → 𝑀 ′𝑁

𝑀 → 𝑀 ′

case𝑀 of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′} → case𝑀 ′ of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′}

case (left𝑀) of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′} → 𝑁 [𝑀/𝑥]

case (right𝑀) of { left 𝑥 → 𝑁 | | right 𝑥 ′→ 𝑁 ′} → 𝑁 ′[𝑀/𝑥 ′]
The second mode of reduction is on configurations and thus it represents effectful computation.

𝑀 → 𝑀 ′

(𝑀,𝑐) { (𝑀 ′, 𝑐)
(𝑀,𝑐) { (𝑀 ′, 𝑐 ′)
(𝜄𝑀, 𝑐) { (𝜄𝑀 ′, 𝑐 ′) (act(𝑐), 𝑐 ′) { (retX ∗, 𝑐 ′ • 𝑐)

(𝑀,𝑐) { (𝑀 ′, 𝑐 ′)
(doX 𝑥 ← 𝑀 ; 𝑁, 𝑐) { (doX 𝑥 ← 𝑀 ′ ; 𝑁, 𝑐 ′) (doX 𝑥 ← retX 𝑀 ; 𝑁, 𝑐) { (𝑁 [𝑀/𝑥], 𝑐)

We also have to specify what are the normal forms for the two modes of reduction. The normal

forms for pure reduction are just the usual ones for the call-by-name lambda calculus together with

the newly added monadic terms (because those cannot be reduced in the pure reduction mode).

The normal forms for effectful reduction (on configurations) are determined by the retX 𝑀 terms.

(Pure reduction NF) 𝑉 ,𝑊 ::= ∗ | 𝜆𝑥𝐴 .𝑀 | ⟨𝑀, 𝑁 ⟩ | left𝑀 | right𝑀
| doX 𝑥 ← 𝑀 ; 𝑁 | act(𝑐) | retX 𝑀 | 𝜄𝑀

(Effectful reduction NF) V,W ::= (retX 𝑀,𝑐)
The next two lemmas show that our language is type-safe.

Lemma 7.2 (Type Preservation).

• If Γ ⊢ 𝑀 : 𝐴 and𝑀 → 𝑀 ′, then Γ ⊢ 𝑀 ′ : 𝐴.
• If (𝑀,𝑐) : X𝐴 and (𝑀,𝑐) { (𝑀 ′, 𝑐 ′), then (𝑀 ′, 𝑐 ′) : X𝐴.

Lemma 7.3 (Progress).

• If · ⊢ 𝑀 : 𝐴 is a closed term, then either there exists 𝑀 ′ such that 𝑀 → 𝑀 ′ or 𝑀 is a pure
reduction normal form.
• If (𝑀,𝑐) : X𝐴, then either there exists (𝑀 ′, 𝑐 ′) such that (𝑀,𝑐) { (𝑀 ′, 𝑐 ′) or (𝑀,𝑐) is an
effectful normal form.

The final lemma in this subsection also should not be surprising.

Lemma 7.4 (Strong Normalisation). Pure reductions and effectful reductions are strongly nor-
malising.

7.3 Denotational Semantics
The interpretation of types and terms is the same as in the previous section, where the category C is

now fixed to Set and the monads T andZ are fixed to the writer monad and its central submonad

specified at the beginning of this section. The newly added terms are interpreted as follows

JΓ ⊢ act(𝑐) : T 1K def

= 𝑐 : JΓK→ 1 ×ℳ :: 𝛾 ↦→ (∗, 𝑐)

JΓ ⊢ act(𝑐) : Z1K def

= 𝑐 : JΓK→ 1 × 𝑍 (ℳ) :: 𝛾 ↦→ (∗, 𝑐)
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where we abuse notation and write 𝑐 for both of the indicated constant maps. The denotation of a

well-formed configuration (𝑀,𝑐) is defined through the Kleisli composition of 𝑐 and J𝑀K as follows:

J(𝑀,𝑐) : T𝐴K = 𝜇𝐴 ◦ (J𝑀K × idℳ) ◦ 𝑐 J(𝑀,𝑐) : Z𝐴K = 𝜇Z
𝐴
◦ (J𝑀K × id𝑍 (ℳ) ) ◦ 𝑐.

Theorem 7.5 (Soundness). If Γ ⊢ 𝑀 : 𝐴 and 𝑀 → 𝑀 ′, then J𝑀K = J𝑀 ′K. Furthermore, if
(𝑀,𝑐) : X𝐴 and (𝑀,𝑐) { (𝑀 ′, 𝑐 ′), then J(𝑀,𝑐)K = J(𝑀 ′, 𝑐 ′)K.

Thanks to strong normalisation, we can now define the overall action of a term 𝑀 : X𝐴. By
writing{∗ for the reflexive and transitive closure of{, we may define

action(𝑀) def= 𝑐 , where 𝑐 is the unique monoid element, s.t. (𝑀, 𝑒) {∗ (retX 𝑀 ′, 𝑐).

Theorem 7.6 (Adeqacy). If · ⊢ 𝑀 : X1, then J𝑀K (∗) = (∗, action(𝑀)).

Since our semantics is sound and adequate, standard arguments may be used to show that the

observational equivalences suggested in §6 hold for this language. In particular, this means that

monadic actions that make use of the central elements may be freely interchanged with any other

(not necessarily central) monadic actions and this will not affect the observational behaviour of the

programs.

8 RELATEDWORK
The work which is closest to ours is [Power and Robinson 1997] which introduces premonoidal cate-

gories. We have already established important links between our development and the premonoidal

centre (Theorem 4.10). While premonoidal categories have been influential in our understand-

ing of effectful computation, it was less clear how to formulate an appropriate computational

interpretation of the premonoidal centre for higher-order languages. Our paper shows that under

some mild assumptions (which are easily satisfied see §5), the premonoidal centre of the Kleisli

category of a strong monad induces an adjunction into the base category (Theorem 4.10) and

this allows us to formulate a suitable computational interpretation by using monads, which are

already well-understood [Moggi 1989, 1991] and well-integrated into many programming languages

[Benton 2015].

Other related work includes [Staton and Levy 2013] where Staton and Levy introduce the novel

notion of premulticategories in order to axiomatise impure/effectful computation in programming

languages. What they achieve is to show how both monads and premonoidal categories arise in

terms of universal properties of premulticategories. The notion of centrality plays an important

role in the development of the theory there as well. Its computational interpretation aligns with the

expected one, i.e., certain terms always commute with other effectful/impure terms. However, they

do not focus, like us, on providing suitable programming abstractions that identify both central

and non-central computations (e.g., by separating them into different types like us) and from what

we can tell from our reading, there are no universal properties stated for the collection of central

morphisms. Indeed, this is one of the main results of our paper (see Theorem 4.10) and it would be

interesting to consider, as part of future work, whether similar results can be established in the

framework of premulticategories. Also, our results provide a computational interpretation in terms

of monads, which are standard and well-understood, so we think it is easier to incorporate them

into existing languages.

A notion of commutants for enriched algebraic theories has been defined in [Lucyshyn-Wright

2018] from which the author derives a notion of centre of an enriched algebraic theory. In the

cases of enriched monads, in other words, strong monads, arising from enriched algebraic theories,

his notion of commutant extends to monad morphisms. While not explicitly stated in the paper,

applying the commutant construction on the identity monad morphism from a monad to itself
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provides a notion of centre of a monad that appears to coincide with ours. The existence of

such commutants is also not automatic and depends on conditions similar to our centralisability

conditions given in Theorem 4.10. The main differences between that result and ours is that the

approach in [Lucyshyn-Wright 2018] relies on algebraic theories while our definition applies

directly to the monad formalism. Furthermore, Lucyshyn-Wright’s work does not provide any

computational interpretation and it does not provide any links with the premonoidal centre of

[Power and Robinson 1997], both of which are a major focus of our work. Another difference is

that we construct the centre in very different ways – in our case through central cones (which are

novel) or through the premonoidal centre, whereas [Lucyshyn-Wright 2018] uses other methods

based on algebraic theories.

Identifying commutative submonads of a given strong monad has been done elsewhere, e.g.,

[Goubault-Larrecq et al. 2021; Vákár et al. 2019]. The cited works do not produce the central

submonad of the ambient one, but rather a different commutative submonad. Compared to these

works, our method presented here works in a more general sense (due to the mild assumptions that

are required), as we have already shown, but we only construct the central submonad. Another

major difference, is that the cited works are concerned only with the constructed submonads for

applications, whereas in our development we use both the ambient monad and its central submonad.

Indeed, one of the main applications of our approach is to identify both the central and non-central

monadic operations and use both to our advantage.

9 CONCLUSION AND FUTUREWORK
In this paper we asked an interesting algebraic question: "Can the notion of centre be extended
to monads?" We showed that, under some mild assumptions, strong monads do indeed admit a

centre, which is a commutative submonad, and we provided three equivalent chracterisations for

the existence of this centre (Theorem 4.10) which also establish important links to the theory of

premonoidal categories. In particular, every (canonically strong) monad on Set is centralisable (§3)
and we showed that the same is true for many other categories of interest (§5.2) and we identified

specific monads with interesting centres (§5.3). We provided a computational interpretation of

our ideas (§6) which has the added benefit of allowing us to easily establish important contextual

equivalences (Proposition 6.1), where we may commute any central effectful operation with any

other (not necessarily central) effectful operation. We also illustrated our ideas through a case study

involving the writer monad that shows how to exploit the contextual equivalences we previously

identified (§7).

For future work, it would be interesting to identify more monads that have non-trivial centres

and to consider similar case studies for them as we did in §7. Another possible direction for future

work is to find additional sufficient conditions for a symmetric monoidal category C, such that

every strong monad on it is centralisable. This would complement Proposition 5.6. Yet another

possible direction is to consider how to develop a suitable theory of commutants of submonads (in

the spirit of [Lucyshyn-Wright 2018]) and their computational interpretation. This is challenging

mathematically, because it would be nice to identify under what conditions these commutants exist

and determine commutative submonads. It is also challenging from a computational perspective,

because the class of effectful operations described by a commutant does not necessarily commute

with all other effectful operations. Another opportunity for future work includes studying the

relationship between the centres of strong monads and distributive laws. In particular, given two

strong monads and a strong/commutative distributive law between them, can we show that the

distributive law also holds for their centres? If so, this would allow us to use the distributive law to

combine not just the original monads, but their centres as well.
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A PROOFS
Proof of Proposition 4.3. Let (𝑋, 𝑓 ) be a central cone and let 𝑓 ′ : 𝑋 ′→ T𝑌 ′ be a morphism.

The following diagram:

𝑋 ⊗ 𝑋 ′

T (𝑋 ⊗ 𝑌 ′)

T𝑌 ⊗ 𝑋 ′

T (T𝑌 ⊗ 𝑌 ′)

𝑓 ⊗ 𝑋 ′

𝑋 ⊗ 𝑓 ′

T (𝑌 ⊗ 𝑓 ′)

T (𝑓 ⊗ 𝑌 ′)

T (𝑌 ⊗ 𝑋 ′)
𝜏 ′
𝑌,𝑋 ′

𝑋 ⊗ T𝑌 ′ T 2 (𝑌 ⊗ 𝑌 ′)

T 2 (𝑌 ⊗ 𝑌 ′)

T𝜏𝑌,𝑌 ′

T𝜏 ′
𝑌,𝑌 ′

𝜏𝑋,𝑌 ′

T (𝑌 ⊗ T𝑌 ′)

𝜇𝑌 ⊗𝑌 ′

T (𝑌 ⊗ 𝑌 ′)
𝜇𝑌 ⊗𝑌 ′

T𝑌 ⊗ T𝑌 ′
𝑓 ⊗ T𝑌 ′

𝜏T𝑌,𝑌 ′

T𝑌 ⊗ 𝑓 ′

𝜏 ′
𝑌,T𝑌 ′

(1)

(2)

(3)

(4)

T𝑌 ⊗ T𝑌 ′𝑓 ⊗ T𝑌 ′

commutes because: (1) C is monoidal; (2) 𝜏 ′ is natural; (3) 𝜏 is natural; and (4) the pair (𝑋, 𝑓 ) is a
central cone. Therefore, the morphism 𝑓 is central in the premonoidal sense.

For the other direction, if 𝑓 is central in CT , the following diagram:

𝑍 ⊗ T𝑌 T𝑋 ⊗ T𝑌 T (𝑋 ⊗ T𝑌 )

T 2 (𝑋 ⊗ 𝑌 )

T (𝑋 ⊗ 𝑌 )

T𝑋 ⊗ T𝑌

T (T𝑋 ⊗ 𝑌 ) T 2 (𝑋 ⊗ 𝑌 )

𝑓 ⊗ T𝑌 𝜏 ′
𝑋,T𝑌

T𝜏𝑋,𝑌

𝜇𝑋 ⊗𝑌

𝑓 ⊗ T𝑌

𝜏T𝑋,𝑌

T𝜏 ′
𝑋,𝑌

𝜇𝑋 ⊗𝑌

𝑓 ⊗ T𝑌

T𝑋 ⊗ T𝑌 T (𝑋 ⊗ T𝑌 )
𝜏 ′
𝑋,T𝑌

T (𝑍 ⊗ 𝑌 )

𝜏𝑍,𝑌
(1)

𝑍 ⊗ T𝑌
𝑓 ⊗ T𝑌

T (𝑓 ⊗ 𝑌 )

(2)

commutes because: (1) 𝜏 is natural; (2) 𝑓 is a central morphism; all remaining subdiagrams commute

trivially. This shows the pair (𝑋, 𝑓 ) is a central cone. □
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Proof of Lemma 4.4.

𝑋 ⊗ T𝑋 ′ T𝑌 ⊗ T𝑋 ′ T (𝑌 ⊗ T𝑋 ′)

T 2 (𝑌 ⊗ 𝑋 ′)

T (𝑌 ⊗ 𝑋 ′)

T𝑌 ⊗ T𝑋 ′

T (T𝑌 ⊗ 𝑋 ′) T 2 (𝑌 ⊗ 𝑋 ′)

𝑓 ⊗ T𝑋 ′ 𝜏 ′
𝑌,T𝑋 ′

T𝜏𝑌,𝑋 ′

𝜇𝑌 ⊗𝑋 ′

𝑓 ⊗ T𝑋 ′

𝜏T𝑌,𝑋 ′

T𝜏 ′
𝑌,𝑋 ′ 𝜇𝑌 ⊗𝑋 ′

𝑍 ⊗ T𝑋 ′
𝑔 ⊗ T𝑋 ′

commutes directly from the definition of central cone for 𝑓 . □

Proof of Lemma 4.5. The following diagram:

𝑋 ⊗ T𝑋 ′ T𝑌 ⊗ T𝑋 ′ T𝑍 ⊗ T𝑋 ′

T 2 (𝑍 ⊗ 𝑋 ′)

T (𝑍 ⊗ 𝑋 ′)T𝑍 ⊗ T𝑋 ′ T (T𝑍 ⊗ 𝑋 ′) T 2 (𝑍 ⊗ 𝑋 ′)

𝑓 ⊗ T𝑋 ′

𝜏 ′
𝑍,T𝑋 ′

T𝜏𝑍,𝑋 ′

𝜇𝑍 ⊗𝑋 ′

𝑓 ⊗ T𝑋 ′

𝜏T𝑍,𝑋 ′ T𝜏 ′
𝑍,𝑋 ′ 𝜇𝑍 ⊗𝑋 ′

T (𝑍 ⊗ T𝑋 ′)

T𝑌 ⊗ T𝑋 ′

T𝑔 ⊗ T𝑋 ′

T𝑔 ⊗ T𝑋 ′

T (𝑌 ⊗ T𝑋 ′)

T 2 (𝑌 ⊗ 𝑋 ′)

T (𝑌 ⊗ 𝑋 ′)

𝜏 ′
𝑌,T𝑋 ′

T𝜏𝑌,𝑋 ′

𝜇𝑌 ⊗𝑋 ′

T (𝑔 ⊗ T𝑋 ′)

T 2 (𝑔 ⊗ 𝑋 ′)

T (𝑔 ⊗ 𝑋 ′)T (T𝑌 ⊗ 𝑋 ′) T 2 (𝑌 ⊗ 𝑋 ′)
𝜏T𝑌,𝑋 ′ T𝜏 ′

𝑌,𝑋 ′ 𝜇𝑌 ⊗𝑋 ′

T (T𝑔 ⊗ 𝑋 ′) T 2 (𝑔 ⊗ 𝑋 ′)

(1)

(2)

(3)

(4)

(5) (6) (7)

commutes, because: (1) 𝑓 is a central cone, (2) 𝜏 ′ is natural, (3) 𝜏 is natural, (4) 𝜇 is natural (5) 𝜏 is

natural, (6) 𝜏 ′ is natural, (7) 𝜇 is natural. □

Proof of Theorem 4.8. First let us describe the functorial structure ofZ. Recall thatZ maps

every object 𝑋 to its terminal central cone at 𝑋 . Let 𝑓 : 𝑋 → 𝑌 be a morphism. We know that

T 𝑓 ◦ 𝜄𝑋 : Z𝑋 → T𝑌 is a central cone according to Lemma 4.5. Therefore, we defineZ 𝑓 as the
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unique map such that the following diagram commutes:

Z𝑋 Z𝑌

T𝑋 T𝑌

𝜄𝑋 𝜄𝑌

T 𝑓

Z 𝑓

It follows directly thatZ maps the identity to the identity, and that 𝜄 is natural.Z also preserves

composition, which follows by the commutative diagram below.

Z𝐴

Z𝐵

T𝐴

T𝐵

𝜄𝐴

𝜄𝐵

T𝑔Z𝑔

Z𝐶

Z 𝑓

Z(𝑓 ◦ 𝑔)

T𝐶
𝜄𝐶

T 𝑓

T (𝑓 ◦ 𝑔)

This proves thatZ is a functor. Next, we describe its monad structure and after that we show that

it is commutative.

The monadic unit 𝜂𝑋 is central, because it is the identity morphism in𝑍 (CT), thus it factors through
𝜄𝑋 to define 𝜂Z

𝑋
.

𝑋

T𝑋

Z𝑋

𝜂𝑋 𝜄𝑋

𝜂Z
𝑋

Next, observe that, by definition, 𝜇𝑋 ◦ T 𝜄𝑋 ◦ 𝜄Z𝑋 = 𝜄𝑋 ⊙ 𝜄Z𝑋 , where (− ⊙ −) indicates Kleisli
composition. Since 𝜄 is central and Kleisli composition preserves central morphisms, it follows that

this morphism factors through 𝜄𝑋 and we use this to define 𝜇Z
𝑋

as in the diagram below.

Z2𝑋

TZ𝑋 T 2𝑋 T𝑋

Z𝑋
𝜇Z
𝑋

T 𝜄𝑋 𝜇𝑋

𝜄Z𝑋 𝜄𝑋

Again, by definition, 𝜏𝐴,𝐵 ◦ (𝐴 ⊗ 𝜄𝐵) = 𝐴 ⊗𝑟 𝜄𝐵 . Central morphisms are preserved by the premonoidal

products (as we noted in Section 2) and therefore, this morphism factors through 𝜄𝐴⊗𝐵 which we
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use to define 𝜏Z
𝐴,𝐵

as in the diagram below.

𝐴 ⊗ Z𝐵 Z(𝐴 ⊗ 𝐵)

𝐴 ⊗ T𝐵 T (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝜄𝐵 𝜄𝐴⊗𝐵

𝜏Z
𝐴,𝐵

𝜏𝐴,𝐵

Note that the last three diagrams are exactly those of a morphism of strong monads (see Definition

2.4).

Using the fact that 𝜄 is monic (see Lemma 4.6) we show that the following commutative diagram

shows that 𝜂Z is natural.

𝑋 Z𝑋

𝑌 T𝑌

Z𝑌

Z𝑌

T𝑋

𝜂Z
𝑋

𝑓

Z 𝑓

T 𝑓

𝜂𝑦

𝜂Z
𝑌

𝜄𝑌

𝜄𝑌

𝜂𝑋 𝜄𝑋

(1)

(2)

(3)

(4)

(1) definition of 𝜂Z , (2) 𝜄 is natural, (3) 𝜂 is natural and (4) definition of 𝜂Z . Thus we have proven
that for any 𝑓 : 𝑋 → 𝑌 , 𝜄𝑌 ◦ Z 𝑓 ◦ 𝜂Z

𝑋
= 𝜄𝑌 ◦ 𝜂Z𝑌 ◦ 𝑓 . Besides, 𝜄 is monic, thusZ 𝑓 ◦ 𝜂Z

𝑋
= 𝜂Z

𝑌
◦ 𝑓

which proves that 𝜂Z is natural. We will prove all the remaining diagrams will the same reasoning.

The following commutative diagram shows that 𝜇Z is natural.

Z2𝑋 Z𝑋

Z2𝑌 T𝑌Z𝑌

Z𝑌

T 2𝑋 T𝑋

T 2𝑌

Z2 𝑓

Z 𝑓

𝜄𝑌

𝜄𝑌

𝜇Z
𝑋

𝜄𝜄

𝜄𝜄

T 𝑓

𝜇𝑋

T 2 𝑓

𝜇𝑌

𝜇Z
𝑌

(1)

(2) (3)

(4)

(5)

𝜄
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(1) definition of 𝜇Z , (2) 𝜄 is natural, (3) 𝜇 is natural, (4) 𝜄 is natural and (5) definition of 𝜇Z .
The following commutative diagrams shows that 𝜏Z is natural.

𝐴 ⊗ Z𝐶 Z(𝐴 ⊗ 𝐶)

𝐵 ⊗ Z𝐶 T (𝐵 ⊗ 𝐶)Z(𝐵 ⊗ 𝐶)

Z(𝐵 ⊗ 𝐶)

𝐵 ⊗ T𝐶

𝐴 ⊗ T𝐶 T (𝐴 ⊗ 𝐶)

𝜏Z
𝐴,𝐶

𝜏𝐴,𝐶

𝜏Z
𝐵,𝐶

𝜄𝐵⊗𝐶

𝜄𝐵⊗𝐶
𝜏𝐵,𝐶

𝑓 ⊗ Z𝐶

𝐴 ⊗ 𝜄

𝐵 ⊗ 𝜄

Z(𝑓 ⊗ 𝐶)

T (𝑓 ⊗ 𝐶)

𝑓 ⊗ T𝐶

𝜄
(1)

(2) (3)
(4)

(5)

(1) definition of 𝜏Z , (2) 𝜄 is natural, (3) 𝜏 is natural, (4) 𝜄 is natural and (5) definition of 𝜏Z .

𝐴 ⊗ Z𝐵 Z(𝐴 ⊗ 𝐵)

𝐴 ⊗ Z𝐶 T (𝐴 ⊗ 𝐶)Z(𝐴 ⊗ 𝐶)

Z(𝐴 ⊗ 𝐶)

𝐴 ⊗ T𝐶

𝐴 ⊗ T𝐵 T (𝐴 ⊗ 𝐵)

𝜏Z
𝐴,𝐵

𝜏𝐴,𝐵

𝜏Z
𝐴,𝐶

𝜄𝐴⊗𝐶

𝜄𝐴⊗𝐶
𝜏𝐴,𝐶

𝐴 ⊗ Z 𝑓

𝐴 ⊗ 𝜄

𝐴 ⊗ 𝜄

Z(𝐴 ⊗ 𝑓 )

T (𝐴 ⊗ 𝑓 )

𝐴 ⊗ T 𝑓

𝜄
(1)

(2) (3)

(4)

(5)

(1) definition of 𝜏Z , (2) 𝜄 is natural, (3) 𝜏 is natural, (4) 𝜄 is natural and (5) definition of 𝜏Z .
The following commutative diagrams prove thatZ is a monad.

Z3𝑋 Z2𝑋

Z2𝑋 T𝑋

Z𝑋

Z𝑋

T 3𝑋

T 2𝑋

T 2𝑋

𝜇ZZ𝑋

𝜇Z
𝑋

𝜇Z
𝑋

𝜄𝑋

𝜄𝑋

Z𝜇Z
𝑋

T 𝜇𝑋
𝜇T𝑋

𝜇𝑋

𝜇𝑋

𝜄3 𝜄2

𝜄2

Z𝑋 Z2𝑋

Z2𝑋 T𝑋

Z𝑋

Z𝑋

T𝑋

T 2𝑋

T 2𝑋

𝜂ZZ𝑋

𝜇Z
𝑋

𝜇Z
𝑋

𝜄𝑋

𝜄𝑋

Z𝜂Z
𝑋

T𝜂𝑋
𝜂T𝑋

𝜇𝑋

𝜇𝑋

𝜄 𝜄2

𝜄2

(1)

(2)
(3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)

(1) and (2) involve the definition of 𝜇Z and the naturality of 𝜄 and 𝜇Z , (3) is Def. 2.1, (4) definition
of 𝜇Z and (5) also. (6) and (7) involve the definition of 𝜂Z and the naturality of 𝜄 and 𝜂Z , (8) is
Def. 2.1, (9) definition of 𝜇Z and (10) also.
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Z is proven strong with very similar diagrams. The commutative diagram:

Z𝐴 ⊗ Z𝐵 Z2 (𝐴 ⊗ 𝐵)

Z2 (𝐴 ⊗ 𝐵) T (𝐴 ⊗ 𝐵)

Z(Z𝐴 ⊗ 𝐵) Z(𝐴 ⊗ 𝐵)

Z(𝐴 ⊗ 𝐵)

Z(𝐴 ⊗ Z𝐵)
𝜏 ′Z
𝐴,Z𝐵

Z𝜏Z
𝐴,𝐵

𝜇Z
𝐴⊗𝐵

𝜇Z
𝐴⊗𝐵

Z𝜏 ′Z
𝐴,𝐵

𝜏ZZ𝐴,𝐵

ZT (𝐴 ⊗ 𝐵) T 2 (𝐴 ⊗ 𝐵)

ZT (𝐴 ⊗ 𝐵)

T 2 (𝐴 ⊗ 𝐵)Z(T𝐴 ⊗ 𝐵)

Z(𝐴 ⊗ T𝐵)

T (T𝐴 ⊗ 𝐵)

T (𝐴 ⊗ T𝐵)

T𝐴 ⊗ T𝐵T𝐴 ⊗ Z𝐵

Z𝐴 ⊗ T𝐵

𝜄

𝜄

𝜄

𝜄

𝜄

𝜄

𝜄

𝜏 ′Z
𝐴,T𝐵

𝜏ZT𝐴,𝐵

𝜄

Z𝜏 ′
𝐴,𝐵

𝜄

𝜏T𝐴,𝐵

𝜏 ′
𝐴,T𝐵

T𝜏 ′
𝐴,𝐵

T𝜏𝐴,𝐵

𝜄

𝜇𝐴⊗𝐵

𝜇𝐴⊗𝐵

𝜄

𝜄

Z𝜏𝐴,𝐵

𝜄𝐴⊗𝐵

𝜄𝐴⊗𝐵

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

T𝐴 ⊗ T𝐵

𝜄

proves thatZ is a commutative monad, with (1) 𝜏 ′Z is natural, (2) definition of 𝜏Z , (3) 𝜏Z is natural,

(4) C is monoidal, (5) definition of 𝜏 ′Z , (6) 𝜄 is natural, (7) definition of 𝜇Z , (8) definition of 𝜏Z , (9) 𝜄
is central, (10) definition of 𝜏 ′Z , (11) 𝜄 is natural and (12) definition of 𝜇Z . □

Proof of Proposition 5.6. Given any strong monad on C, we first show that the co-restriction

of the Kleisli inclusion is co-continuous. We consider an initial co-cone 𝜖 : Δ𝑐 ⇒ 𝐽 over a diagram

𝐽 : 𝐷 → C in C. Its image
ˆJ𝜖 : Δ𝑐 ⇒ ˆJ ◦ 𝐽 is a co-cone in 𝑍 (CT), we will show that it is initial. We

consider another co-cone 𝜖 ′ : Δ𝑐′ ⇒ ˆJ ◦ 𝐽 in 𝑍 (CT). Since J is a left adjoint, it is co-continuous

and then J𝜖 : Δ𝑐 ⇒ J ◦ 𝐽 is an initial co-cone in CT . So there is a unique arrow ℎ : 𝑐 → 𝑐 ′ in CT
such that ℎ ◦ J𝜖 = 𝜖 ′. The question is to show that ℎ is also in 𝑍 (CT), in other words, that the

following diagram commutes for all 𝑓 : 𝑋 → 𝑌 :

𝑐 ⊗ 𝑋

𝑐 ⊗ 𝑌

𝑐 ′ ⊗ 𝑋

𝑐 ′ ⊗ 𝑌

ℎ ⊗𝑙 𝑋

𝑐 ⊗𝑟 𝑓 𝑐 ′ ⊗𝑟 𝑓

ℎ ⊗𝑙 𝑌

𝜖 is an initial co-cone in C so, since the functors −⊗𝑋 are assumed to be co-continuous, J (𝜖 ⊗𝑋 )
is also an initial co-cone in CT . Its components are then jointly epic and checking the commutativity
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of the diagram below amounts to check the commutativity of the following diagrams for each

components:

𝑐 ⊗ 𝑋

𝑐 ⊗ 𝑌

𝑐 ′ ⊗ 𝑋

𝑐 ′ ⊗ 𝑌

ℎ ⊗𝑙 𝑋

𝑐 ⊗𝑟 𝑓 𝑐 ′ ⊗𝑟 𝑓

ℎ ⊗𝑙 𝑌

J (𝜖𝐴 ⊗ 𝑋 )
𝐴 ⊗ 𝑋

Since, the composition 𝑓 ◦J (𝑔) in CT corresponds to 𝑓 ◦𝑔 in C, this is equivalent to the following
diagram in C:

T (𝑐 ⊗ 𝑌 )

T𝑐 ′ ⊗ 𝑋

T (T𝑐 ′ ⊗ 𝑌 )

ℎ ⊗ 𝑋

T (𝑐 ′ ⊗ 𝑓 )

T (ℎ ⊗ 𝑌 )

T (𝑐 ′ ⊗ 𝑋 )
𝜏 ′
𝑐′,𝑋

T 2 (𝑐 ′ ⊗ 𝑌 )

T 2 (𝑐 ′ ⊗ 𝑌 )

T𝜏𝑐′,𝑌

T𝜏 ′
𝑐′,𝑌

𝑐 ⊗ 𝑓

T (𝑐 ′ ⊗ T𝑌 )

𝜇𝑐′⊗𝑌

𝐴 ⊗ 𝑋

T (𝑐 ′ ⊗ 𝑌 )

𝜏𝑐,𝑌

𝜇𝑐′⊗𝑌

𝜖𝐴 ⊗ 𝑋
𝑐 ⊗ 𝑋

𝑐 ⊗ 𝑋
𝜖𝐴 ⊗ 𝑋

𝑐 ⊗ T𝑌

𝜖 ′
𝐴
⊗ 𝑋

𝐴 ⊗ T𝑌

𝐴 ⊗ 𝑓

𝜖𝐴 ⊗ T𝑌

𝜏𝐴,𝑌

T (𝐴 ⊗ 𝑌 )
T (𝜖𝐴 ⊗ 𝑌 ) T (𝜖 ′

𝐴
⊗ 𝑌 )

(1)

(2)

(3)

(4)

(5)

Where: (1) is the definition of ℎ, (2) is the exchange law, (3) is the naturality of the strength, (4) is

again the definition of ℎ together with functoriality of T (− ⊗ 𝑌 ), and (5) is the fact that 𝜖 ′
𝐴
is by

definition central.

We can then conclude that ℎ is central and so that the co-restriction
ˆJ is co-continuous.

Then by the adjoint functor theorem for total categories [Street and Walters 1978],
ˆJ is a left

adjoint, and by Theorem 4.10 it follows that the corresponding strong monad is centralisable. □
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