
HAL Id: hal-03662565
https://hal.science/hal-03662565v2

Preprint submitted on 11 May 2022 (v2), last revised 10 Oct 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Central Submonads and Notions of Computation
Titouan Carette, Louis Lemonnier, Vladimir Zamdzhiev

To cite this version:
Titouan Carette, Louis Lemonnier, Vladimir Zamdzhiev. Central Submonads and Notions of Com-
putation. 2022. �hal-03662565v2�

https://hal.science/hal-03662565v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Central Submonads and Notions of Computation
Titouan Carette
Université Paris-Saclay, Inria, CNRS, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette,
France

Louis Lemonnier
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Vladimir Zamdzhiev
Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract
The notion of "centre" has been introduced for many algebraic structures in mathematics. A notable
example is the centre of a monoid which always determines a commutative submonoid. Monads (in
category theory) can be seen as generalisations of monoids and in this paper we show how the notion
of centre may be extended to strong monads acting on symmetric monoidal categories. We show
that the centre of a strong monad T , if it exists, determines a commutative submonad Z of T , such
that the Kleisli category of Z is isomorphic to the premonoidal centre (in the sense of Power and
Robinson) of the Kleisli category of T . We provide three equivalent conditions which characterise
the existence of the centre of T . While not every strong monad admits a centre, we show that every
strong monad on well-known naturally occurring categories does admit a centre, thereby showing
that this new notion is ubiquitous. We also provide a computational interpretation of our ideas
which consists in giving a refinement of Moggi’s monadic metalanguage. The added benefit is that
this allows us to immediately establish a large class of contextually equivalent terms for monads
that admit a non-trivial centre by simply looking at the richer syntactic structure provided by the
refinement.
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1 Introduction

The importance of monads in programming semantics has been demonstrated in seminal
work by Moggi [5, 6]. The main idea is that monads allow us to introduce computational
effects (e.g., state, input/output, recursion, probability, continuations) into pure type systems
in a controlled way. This idea has been very successful and monads have been incorporated
as a programming abstraction into the design of modern programming languages such as
Haskell and others (see [1]).

In most cases, especially when considering lambda calculi, we are interested in strong
monads, which are monads that satisfy additional coherence conditions with respect to the
monoidal structure of the base category. A subclass of these monads are the commutative
monads, which satisfy even stronger coherence conditions with respect to the monoidal
structure. In general, the Kleisli category of a strong monad has a canonical premonoidal
structure [7], which is slightly weaker than a monoidal one, as the name suggests. In fact,
this premonoidal structure is a monoidal one iff the monad in question is commutative
[7]. Furthermore, this difference has an important computational interpretation: given a
commutative monad that describes some computational effect, if two monadic operations may
be performed in any order, then the overall computational result will be the same regardless
of the order of monadic sequencing. However, this is not true, in general, for strong monads:
doing the monadic operation f followed by g is not generally the same as doing the monadic
operation g followed by f , even when both orders of applications are admissible. Indeed,
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many monads of interest in computer science are strong, but not commutative, so one must
be aware of this fact which prevents us from incorporating certain program transformations.

Nevertheless, just because a monad is strong, but not commutative, it does not mean that
every monadic operation does not satisfy the above commutative property with respect to
any other monadic operation. In fact, it is very useful to determine which monadic operations
do satisfy these additional commutative properties, because this allows us to establish a
greater class of contextually equivalent programs (even when the monad is not commutative)
and guarantee the safety of certain program transformations. In this paper, we approach
this problem by taking inspiration from the algebraic notion of "centre", which we extend to
strong monads.

Our Contributions. The notion of "centre" is a simple algebraic idea that has been
formulated for many algebraic structures in mathematics. For example, the centre of a
monoid is always a commutative submonoid of the original one. Strong monads in category
theory can be seen as a generalisation of monoids (on sets): if M is a monoid, then the
functorM def= (M ×−) : Set→ Set can be equipped with a canonical monad structure that
makes it the free monad induced by the monoid M . In fact,M is always a strong monad on
Set and it is commutative iff M is a commutative monoid. Therefore, a natural question to
ask is how to extend the notion of centre from monoids to strong monads1.

In this paper we show that for every monad on Set (which is necessarily strong), we can
form its central submonad which is always commutative and we show that this generalises
the centre of monoids. More generally, we introduce the notion of centre for strong monads
T acting on a symmetric monoidal category C. We provide three equivalent conditions for
the existence of this centre and we show that, if the centre exists, then this gives a canonical
commutative submonad Z of T . We say that Z is the central submonad of T , which we
justify by showing that the Kleisli category of Z is isomorphic (in a canonical sense) to the
premonoidal centre (in the sense of Power and Robinson [7]) of the Kleisli category of T .
The central submonad Z has interesting computational properties that address the problem
we described above: monadic operations that are identified by Z commute with any other
monadic operation of the larger monad T .

It is possible to describe a strong monad that does not admit a centre. We constructed
one such monad by defining a category specifically for this purpose. However, for most
naturally occurring categories that we are aware of, every strong monad acting on them does
admit a centre and we give many examples in this paper. Furthermore, we are not aware of
any other naturally occurring monad that has been described in the literature and that does
not admit a centre. Because of this, we believe the new notion is widely applicable.

We also provide a computational interpretation of our ideas. This consists in giving a
refinement of Moggi’s monadic metalanguage. The new system has an additional type that
keeps track of central terms. In particular, the unit of the monad is central, some of the
monadic constants may also be central (depending on the choice of monad), and central
terms are closed under monadic sequencing. We describe a mathematical semantics for this
system that we conjecture is sound and adequate (proofs are work-in-progress and will be
finished soon). This allows us to easily establish a large class of contextually equivalent terms
for monads that are strong and which admit a non-trivial centre. We give several examples
of such monads in this paper and we believe that it should be possible to discover more in
the future.

1 We do not see any satisfactory way to introduce the notion of centre to monads which are not strong
and for which we do not presuppose any monoidal structure on the base category.
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2 Background

We start by introducing some background on strong and commutative monads and their
premonoidal structure. We also use this as opportunity to fix notation.

2.1 Strong and Commutative Monads

I Definition 1 (Monad). A monad over a category C is an endofunctor T equipped with two
natural transformations η : Id⇒ T and µ : T 2 ⇒ T such that the following diagrams:

T 3X T 2X

T 2X T X

T µX

µTX

µX

µX

T X T 2X

T 2X T X

ηTX

T ηX

µX

µX

commute.

I Definition 2 (Strong Monad). A strong monad over a monoidal category (C,⊗, I, α, λ)
is a monad (T , η, µ) equipped with a natural transformation τX,Y : X ⊗ T Y → T (X ⊗ Y ),
called strength, such that the following diagrams:

I ⊗ T X T (I ⊗X)

T X

λTX

τI,X

T λX

(W ⊗X)⊗ T Y

W ⊗ (X ⊗ T Y ) W ⊗ T (X ⊗ Y ) T (W ⊗ (X ⊗ Y ))

T ((W ⊗X)⊗ Y )
τW⊗X,Y

T αW,X,Y

W ⊗ τX,Y τW,X⊗Y

αW,X,T Y

X ⊗ Y X ⊗ T Y

T (X ⊗ Y )

ηX⊗Y

X ⊗ ηY

τX,Y

X ⊗ T 2Y T (X ⊗ T Y ) T 2(X ⊗ Y )

X ⊗ T Y T (X ⊗ Y )

X ⊗ µY

τX,T Y T τX,Y

µX⊗Y

τX,Y

commute.

Next, we recall the definition of a commutative monad which is of central importance in
this paper.

I Definition 3 (Commutative Monad). Given a strong monad T on a symmetric monoidal
category, the costrength τ ′X,Y : T X⊗Y → T (X⊗Y ) is given by τ ′X,Y

def= T (γY,X)◦τY,X◦γTX,Y .
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Then, T is said to be commutative if the following diagram:

T X ⊗ T Y T (T X ⊗ Y ) T 2(X ⊗ Y )

T (X ⊗ T Y ) T 2(X ⊗ Y ) T (X ⊗ Y )

τTX,Y T τ ′X,Y

µX⊗Yτ ′X,T Y

T τX,Y µX⊗Y

(1)

commutes for every choice of objects X and Y .

The appropriate notion of morphism between two strong monads is given by our next
definition.

I Definition 4 (Morphism of Strong Monads [2]). Given two strong monads (T , ηT , µT , τT )
and (P, ηP , µP , τP) over a category C, we say that a morphism of strong monads is a natural
transformation ι : T ⇒ P that makes the following diagrams:

X

T X PX

T 2X PT X P2X

T X PX

ηTX ηPX

ιX

ιTX PιX

µTX µPX

ιX

A⊗ T B

A⊗ PB

T (A⊗B)

P(A⊗B)

τTA,B

τPA,B

A⊗ ιB ιA⊗B

commute.

It is easy to see that strong monads over a symmetric monoidal category C and strong
monad morphisms between them form a category which we denote by writing StrMnd(C).

I Definition 5 (Submonad). In the situation of Definition 4, if ι is a monomorphism in
StrMnd(C), then T is said to be a strong submonad of P and ι is said to be a submonad
morphism.

The submonad relation induces an embedding between the Kleisli categories of the
corresponding monads that we recall below.

I Definition 6 (Kleisli category). Given a monad (T , η, µ) over a category C, the Kleisli
category CT of T is the category whose objects are the same as those of C, but whose
morphisms are given by CT [X,Y ] = C[X, T Y ]. Composition in CT is given by g � f def=
µZ ◦ T g ◦ f where f : X → T Y and g : Y → T Z. The identity at X is given by the monadic
unit ηX : X → T X.

I Proposition 7. If ι : T ⇒ P is a submonad morphism, the functor I : CT → CP which is
defined by I(X) = X on objects and on morphisms by I(f : X → T Y ) = ιY ◦ f : X → PY
is an embedding of categories.

The functor I described in the above proposition is the canonical embedding of CT into
CP induced by the submonad morphism ι.
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2.2 Premonoidal Structure of Strong Monads
Let T be a strong monad on a symmetric monoidal category (C, I,⊗). Then, the Kleisli
category CT does not necessarily have a canonical monoidal structure. However, it does
have a canonical premonoidal structure as shown by Power and Robinson [7]. In fact, they
show that this premonoidal structure is monoidal iff the monad T is commutative. Next, we
briefly recall the premonoidal structure of T as outlined by Power and Robinson.

For every objects X and Y of CT , their tensor product X ⊗ Y is also an object of CT .
But, the monoidal product ⊗ of C does not necessarily induce a monoidal functor on CT .
However, by using the strength and the costrength of T , we can define two families of functors
as follows:

for any object X, a functor (− ⊗l X) : CT → CT whose action on objects sends Y to
Y ⊗X, and sends f : Y → T Z to τ ′Z,X ◦ (f ⊗X) : Y ⊗X → T (Z ⊗X);
for any object X, a functor (X ⊗r −) : CT → CT whose action on objects sends Y to
X ⊗ Y , and sends f : Y → T Z to τX,Z ◦ (X ⊗ f) : X ⊗ Y → T (X ⊗ Z).

This categorical data satisfies the axioms and coherence properties of premonoidal categories
as outlined by Power and Robinson [7], but which we omit here for brevity. We wish to note
that in a premonoidal category, f ⊗l X

′ and X ⊗r g do not always commute. This leads us
to the next definition, which plays a crucial role in the theory of premonoidal categories.

I Definition 8 (Central morphism [7]). Given a strong monad (T , η, µ, τ) on a symmetric
monoidal category (C, I,⊗), we say that a morphism f : X → Y in CT is central if for any
morphism f ′ : X ′ → Y ′ in CT , the following diagram:

X ⊗X ′

X ⊗ Y ′

Y ⊗X ′

Y ⊗ Y ′

f ⊗l X
′

X ⊗r f
′ Y ⊗r f

′

f ⊗l X
′

commutes in CT ; or equivalently, the following diagram:

X ⊗X ′

T (X ⊗ Y ′)

T Y ⊗X ′

T (T Y ⊗ Y ′)

f ⊗X ′

X ⊗ f ′

T (Y ⊗ f ′)

T (f ⊗ Y ′)

T (Y ⊗X ′)
τ ′Y,X′

X ⊗ T Y ′ T 2(Y ⊗ Y ′)

T 2(Y ⊗ Y ′)

T τY,Y ′

T τ ′Y,Y ′

τX,Y ′

T (Y ⊗ T Y ′)

µY⊗Y ′

T (Y ⊗ Y ′)
µY⊗Y ′

commutes in C.

In [7], Power and Robinson have proven that the wide subcategory of CT consisting
of the central morphisms, and denoted by Z(CT ), is a symmetric monoidal subcategory
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of CT . This subcategory is called the centre of CT . In particular, this means that Kleisli
composition and the tensor functors (− ⊗l X) and (X ⊗r −) preserve central morphisms.
However, it does not necessarily hold that the subcategory Z(CT ) determines a monad over
C. Nevertheless, in this situation, the left adjoint of the Kleisli adjunction J : C → CT
always corestricts to Z(CT ) and we write Ĵ : C→ Z(CT ) to indicate this corestriction.

We refer to this notion of centre, as introduced by Power and Robinson, as the premonoidal
centre of a premonoidal category. We do this in order to avoid confusion with the new notion
of centre of a monad that we introduce next.

3 Central Submonads on Set

The inspiration for the construction of the central submonad (if it exists) comes from the
category Set where it can always be defined for any monad acting on it. Next, we outline
how this works.

I Notation 9. Throughout the remainder of the section, we write (T , η, µ, τ) to indicate an
arbitrary strong monad on the category Set. We also write τ ′ to indicate the costrength of T ,
which is induced by the strength τ and the symmetry of Set in the usual way.

I Definition 10 (Centre). Given a set X, the centre of T at X, written ZX, is defined to
be the set

ZX def= {t ∈ T X | ∀Y ∈ Ob(Set).∀s ∈ T Y. µ(T τ ′(τ(t, s))) = µ(T τ(τ ′(t, s)))} .

We write ιX : ZX ⊆ T X for the indicated subset inclusion.

In other words, the centre of T at X is the subset of T X which contains all monadic
elements for which (1) holds.

I Remark 11. Notice that ZX ⊇ ηX(X), i.e., the centre of T at X always contains all
monadic elements which are in the image of the monadic unit. This follows easily from the
axioms of strong monads.

In fact, the assignment Z(−) extends to a commutative submonad of T . This is made
precise by the following lemmas and theorems.

I Lemma 12. The assignment Z(−) extends to a functor Z : Set→ Set when we define

Zf def= T f |ZX : ZX → ZY,

for any function f : X → Y, where T f |ZX indicates the restriction of T f : T X → T Y to
the subset ZX.

Proof. The validity of this definition is equivalent to showing that T f(ZX) ⊆ ZY. This
follows as a special case of Theorem 25. J

I Lemma 13. For every sets X,Y , the monadic unit ηX : X → T X, the monadic multiplic-
ation µX : T 2X → T X, and the monadic strength τX,Y : X × T Y → T (X × Y ) (co)restrict
respectively to functions ηZX : X → ZX, µZX : Z2X → ZX, τZX,Y : X ×ZY → Z(X × Y ).

Proof. Special case of Theorem 25. J

The above lemmas now immediately imply the main theorem of this section.
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I Theorem 14. The assignment Z(−) extends to a commutative submonad (Z, ηZ , µZ , τZ)
of T with ιX : ZX ⊆ T X the required submonad morphism. Furthermore, there exists a
canonical isomorphism SetZ ∼= Z(SetT )2.

Proof. Special case of Theorem 27. J

We refer to the commutative monad determined by this theorem as the central submonad
of T . This theorem, together with our next example, shows that we have successfully
generalised the notion of centre for monoids to monads on Set.

I Example 15. Given a monoid (M, e,m), the free monad induced by M is the monad T =
(M × −) : Set → Set with unit ηX :: x 7→ (e, x), monad multiplication µX :: (z, (z′, x)) 7→
(m(z, z′), x) and strength given by τX,Y :: (x, (t, y)) 7→ (t, (x, y)). Then, the central submonad
Z of T is given by the commutative monad (Z(M)×−) : Set → Set, where Z(M) is the
centre of the monoid M and where the monad data is given by the (co)restrictions of the
monad data of T .

I Example 16. Let T be a commutative monad. Then its central submonad is T itself.

I Example 17. Let S be a set. The continuation monad is T = [[−, S], S] : Set →
Set, equipped with ηX = x 7→ λf.f(x), µX : F 7→ λg.F (λh.h(g)) and τX,Y = (x, f) 7→
λg.f(λy.g(x, y)). Note that, if S is the empty set or a singleton set, then T is commutative,
so we are in the situation of Example 16. Otherwise, the central submonad of T maps X to
the set of ϕ ∈ T X, such that: ∀Y,∀ψ ∈ T Y, ∀g ∈ [X × Y, S]:

ψ(λy.ϕ(λx.g(x, y))) = ϕ(λx.ψ(λy.g(x, y)))

Suppose that Y = {∗}. Then ψ is a function S → S and the condition becomes:

ψ(ϕ(λx.g(x))) = ϕ(λx.ψ(g(x)))

If ϕ is constant, this does not hold for any ψ. ϕ is necessarily some λf.σ(f(z)) with σ : S → S

and z ∈ X, which has to verify ∀ψ : S → S,∀g : X → S:

ψ(σ(g(z))) = σ(ψ(g(z)))

σ can then only be the identity, so ϕ can only be ηX(z) = λf.f(z) for some z ∈ X. Besides,
those functions are solutions of the problem. Thus, when S is not trivial, ZX = ηX(X) ' X
and the central submonad of T is naturally isomorphic to the identity monad.

Example 17 shows that the centre of a monad may be trivial in the sense that it is
precisely the image of the monadic unit, and by Remark 11, this is the least it can be.
Therefore, the central submonad of such a monad is not very useful, because it does not
contain any additional information about the nature of the specific monadic effect. At the
other extreme, Example 16 shows that the centre of a commutative monad coincides with
itself (as one would expect) and therefore we also do not get anything new. Therefore, the
monads that have interesting central submonads are those monads which are strong, but not
commutative, and which have non-trivial centres, such as the one in Example 15.

2 We explain later (see Theorem 27) in what sense this isomorphism is canonical.
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4 Centralisable Monads

In this section we show how to define the central submonad of a strong monad on a symmetric
monoidal category. This submonad does not always exist (but it usually does) and we present
three equivalent conditions that characterise its existence. In Subsection 4.1 we present the
first such characterisation in terms of central cones. Then, in Subsection 4.2 we present the
remaining ones that allow us to establish a link to the theory of premonoidal categories of
Power and Robinson. In Subsection 4.3 we construct a category and a monad that does
not admit a centre. Despite this, in Subsection 4.4 we discuss some illustrative examples
of central submonads and we show that in most naturally occurring categories, all strong
monads have centres.

4.1 Central cones
In this subsection we show how the construction of the central submonad can be generalised
to many categories other than Set.

I Notation 18. Throughout the remainder of the section, we assume we are given a symmetric
monoidal category (C,⊗, I). We also assume that (T , η, µ, τ) is an arbitrary strong monad on
the category C. We write τ ′ to indicate the costrength of T , which is induced by the strength
τ and the symmetry of C in the usual way. All theorems and definitions in this section are
stated with respect to this monad structure.

In Set, the centre is defined pointwise through subsets of T X which only contain elements
that satisfy the coherence condition for a commutative monad. However, C is an arbitrary
symmetric monoidal category, so we cannot easily form subojects in the required way. This
leads us to the definition of a central cone which allows us to overcome this problem.

I Definition 19 (Central Cone). Let X be an object of C. A central cone of T at X is given
by a pair (Z, ι) of an object Z and a morphism ι : Z → T X, such that for any object Y, we
have that the diagram:

Z ⊗ T Y T X ⊗ T Y T (X ⊗ T Y )

T 2(X ⊗ Y )

T (X ⊗ Y )

T X ⊗ T Y

T (T X ⊗ Y ) T 2(X ⊗ Y )

ι⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

ι⊗ T Y

τTX,Y

T τ ′X,Y µX⊗Y

commutes. If (Z, ι) and (Z ′, ι′) are two central cones of T at X, then a morphism of central
cones ϕ : (Z ′, ι′)→ (Z, ι) is a morphism ϕ : Z ′ → Z, such that ι ◦ ϕ = ι′. A terminal central
cone of T at X is a central cone (Z, ι) for T at X, such that for any central cone (Z ′, ι′) of
T at X, there exists a unique morphism of central cones ϕ : (Z ′, ι′)→ (Z, ι).

The above diagram is very similar to the one in Definition 8. The names "central
morphism" and "central cone" also hint that there should be a relation between them. This
is indeed the case and we show that the two definitions are equivalent.
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I Proposition 20. Let f : X → T Y be a morphism in C. The pair (X, f) is a central cone
of T at Y if and only if f is central in CT in the premonoidal sense (see Def. 8).

Proof. Let (X, f) be a central cone and let f ′ : X ′ → T Y ′ be a morphism. The following
diagram:

X ⊗X ′

T (X ⊗ Y ′)

T Y ⊗X ′

T (T Y ⊗ Y ′)

f ⊗X ′

X ⊗ f ′

T (Y ⊗ f ′)

T (f ⊗ Y ′)

T (Y ⊗X ′)
τ ′Y,X′

X ⊗ T Y ′ T 2(Y ⊗ Y ′)

T 2(Y ⊗ Y ′)

T τY,Y ′

T τ ′Y,Y ′

τX,Y ′

T (Y ⊗ T Y ′)

µY⊗Y ′

T (Y ⊗ Y ′)
µY⊗Y ′

T Y ⊗ T Y ′
f ⊗ T Y ′

τT Y,Y ′

T Y ⊗ f ′

τ ′Y,T Y ′

(1)
(2)

(3)
(4)

T Y ⊗ T Y ′f ⊗ T Y ′

commutes because: (1) C is monoidal; (2) τ ′ is natural; (3) τ is natural; and (4) the pair
(X, f) is a central cone. Therefore, the morphism f is central in the premonoidal sense.
For the other direction, if f is central in CT , the following diagram:

Z ⊗ T Y T X ⊗ T Y T (X ⊗ T Y )

T 2(X ⊗ Y )

T (X ⊗ Y )

T X ⊗ T Y

T (T X ⊗ Y ) T 2(X ⊗ Y )

f ⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

f ⊗ T Y

τTX,Y

T τ ′X,Y µX⊗Y

f ⊗ T Y

T X ⊗ T Y T (X ⊗ T Y )
τ ′X,T Y

T (Z ⊗ Y )

τZ,Y(1)

Z ⊗ T Y
f ⊗ T Y

T (f ⊗ Y )

(2)

commutes because: (1) τ is natural; (2) f is a central morphism; all remaining subdiagrams
commute trivially. This shows the pair (X, f) is a central cone. J

From now on, we rely heavily on the fact that central cones and central morphisms are
equivalent notions and we use Proposition 20 implicitly in the sequel.

Central cones – or central morphisms – have several nice properties. We focus on the
ones necessary for our purposes. To begin, we show that central cones are stable by left and
right composition.
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I Lemma 21. If (X, f : X → T Y ) is a central cone of T at Y, then for any g : Z → X, it
follows that (Z, f ◦ g) is a central cone of T at Y .

Proof.

X ⊗ T X ′ T Y ⊗ T X ′ T (Y ⊗ T X ′)

T 2(Y ⊗X ′)

T (Y ⊗X ′)

T Y ⊗ T X ′

T (T Y ⊗X ′) T 2(Y ⊗X ′)

f ⊗ T X ′ τ ′Y,TX′

T τY,X′

µY⊗X′

f ⊗ T X ′

τT Y,X′

T τ ′Y,X′ µY⊗X′

Z ⊗ T X ′
g ⊗ T X ′

commutes directly from the definition of central cone for f . J

I Lemma 22. If (X, f : X → T Y ) is a central cone of T at Y then for any g : Y → Z, it
follows that (X, T g ◦ f) is a central cone of T at Z.

Proof. The following diagram:

X ⊗ T X ′ T Y ⊗ T X ′ T Z ⊗ T X ′

T 2(Z ⊗X ′)

T (Z ⊗X ′)T Z ⊗ T X ′ T (T Z ⊗X ′) T 2(Z ⊗X ′)

f ⊗ T X ′

τ ′Z,TX′

T τZ,X′

µZ⊗X′

f ⊗ T X ′

τT Z,X′ T τ ′Z,X′ µZ⊗X′

T (Z ⊗ T X ′)

T Y ⊗ T X ′

T g ⊗ T X ′

T g ⊗ T X ′

T (Y ⊗ T X ′)

T 2(Y ⊗X ′)

T (Y ⊗X ′)

τ ′Y,TX′

T τY,X′

µY⊗X′

T (g ⊗ T X ′)

T 2(g ⊗X ′)

T (g ⊗X ′)
T (T Y ⊗X ′) T 2(Y ⊗X ′)

τT Y,X′ T τ ′Y,X′ µY⊗X′

T (T g ⊗X ′) T 2(g ⊗X ′)

(1)

(2)

(3)

(4)

(5) (6) (7)

commutes, because: (1) f is a central cone, (2) τ ′ is natural, (3) τ is natural, (4) µ is natural
(5) τ is natural, (6) τ ′ is natural, (7) µ is natural. J

I Lemma 23. If (Z, ι) is a terminal central cone of T at X, then ι is a monomorphism.

Proof. Let us consider f, g : Y → Z such that ι ◦ f = ι ◦ g; this morphism is a central cone
at X (Lemma 21), and since (Z, ι) is a terminal central cone, it factors uniquely through ι.
Thus f = g and therefore ι is monic. J
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It is easy to see that if a terminal central cone for T at X exists, then it is unique
up to a unique isomorphism of central cones. We also note that Lemma 23 is crucial for
defining the centre of T through terminal central cones, because the morphisms ι would be
the components of a submonad morphism. The main definition of this subsection follows
next and gives the foundation for the construction of the central submonad.

I Definition 24 (Centralisable Monad). We say that the monad T is centralisable if for any
object X, a terminal central cone of T at X exists. In this situation, we write (ZX, ιX) for
the terminal central cone of T at X. If (Y, ϕ) is another central cone of T at X, we write
ϕZ : Y → ZX for the unique central cone morphism ϕZ : (Y, ϕ)→ (ZX, ιX).

In fact, for a centralisable monad T , its terminal central cones induce a commutative
submonad Z of T . This is the main theorem of this subsection, which is stated next, and its
proof reveals constructively how the monad structure arises from the terminal central cones.

I Theorem 25. If the monad T is centralisable, then the assignment Z(−) extends to a
commutative monad (Z, ηZ , µZ , τZ) on C. Moreover, Z is a commutative submonad of T in
the sense that the morphisms ιX : ZX → T X constitute a monomorphism of strong monads
ι : Z ⇒ T .

Proof. First let us describe the functorial structure of Z. Recall that Z maps every object
X to its terminal central cone at X. Let f : X → Y be a morphism. We know that
T f ◦ ιX : ZX → T Y is a central cone according to Lemma 22. Therefore, we define Zf as
the unique map such that the following diagram:

ZX ZY

T X T Y

ιX ιY

T f

Zf

commutes. It follows directly that Z maps the identity to the identity, and that ι is natural.
Z also preserves composition, which follows by the commutative diagram below.

ZA ZB

T A T B

ιA ιB

T g

Zg
ZC

Zf

Z(f ◦ g)

T C

ιC

T f

T (f ◦ g)

This proves that Z is a functor. Next, we describe its monad structure and after that we
show that it is commutative.
The monadic unit ηX is central, because it is the identity morphism in Z(CT ), thus it factors
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through ιX to define ηZX .

X T X

ZX

ηX

ιXηZX

Next, observe that, by definition, µX ◦ T ιX ◦ ιZX = ιX � ιZX , where (− � −) indicates
Kleisli composition. Since ι is central and Kleisli composition preserves central morphisms,
it follows that this morphism factors through ιX and we use this to define µZX as in the
diagram below.

Z2X

T ZX T 2X T X

ZX
µZX

T ιX µX

ιZX ιX

Again, by definition, τA,B ◦ (A⊗ ιB) = A⊗r ιB. Central morphisms are preserved by the
premonoidal products (as we noted in Section 2) and therefore, this morphism factors through
ιA⊗B which we use to define τZA,B as in the diagram below.

A⊗ZB Z(A⊗B)

A⊗ T B T (A⊗B)

A⊗ ιB ιA⊗B

τZA,B

τA,B

Note that the last three diagrams are exactly those of a morphism of strong monads (see
Definition 4).
Using the fact that ι is monic (see Lemma 23) we show that the following commutative
diagram shows that ηZ is natural.

X ZX

Y T Y

ZY

ZY

T X

ηZX

f

Zf

T f

ηy

ηZY ιY

ιY

ηX ιX

(1)

(2)
(3)

(4)

(1) definition of ηZ , (2) ι is natural, (3) η is natural and (4) definition of ηZ . Thus we
have proven that for any f : X → Y , ιY ◦ Zf ◦ ηZX = ιY ◦ ηZY ◦ f . Besides, ι is monic, thus



T. Carette, L. Lemonnier and V. Zamdzhiev 13

Zf ◦ ηZX = ηZY ◦ f which proves that ηZ is natural. We will prove all the remaining diagrams
will the same reasoning.
The following commutative diagram shows that µZ is natural.

Z2X ZX

Z2Y T YZY

ZY

T 2X T X

T 2Y

Z2f

Zf

ιY

ιY

µZX

ιι

ιι

T f

µX

T 2f

µY

µZY

(1)

(2) (3)
(4)

(5)

ι

(1) definition of µZ , (2) ι is natural, (3) µ is natural, (4) ι is natural and (5) definition of µZ .
The following commutative diagrams shows that τZ is natural.

A⊗ZC Z(A⊗ C)

B ⊗ZC T (B ⊗ C)Z(B ⊗ C)

Z(B ⊗ C)

B ⊗ T C

A⊗ T C T (A⊗ C)

τZA,C

τA,C

τZB,C
ιB⊗C

ιB⊗C

τB,C

f ⊗ZC

A⊗ ι

B ⊗ ι

Z(f ⊗ C)

T (f ⊗ C)

f ⊗ T C

ι
(1)

(2) (3) (4)

(5)

(1) definition of τZ , (2) ι is natural, (3) τ is natural, (4) ι is natural and (5) definition of τZ .

A⊗ZB Z(A⊗B)

A⊗ZC T (A⊗ C)Z(A⊗ C)

Z(A⊗ C)

A⊗ T C

A⊗ T B T (A⊗B)

τZA,B

τA,B

τZA,C
ιA⊗C

ιA⊗C

τA,C

A⊗Zf

A⊗ ι

A⊗ ι

Z(A⊗ f)

T (A⊗ f)

A⊗ T f

ι
(1)

(2) (3)
(4)

(5)
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(1) definition of τZ , (2) ι is natural, (3) τ is natural, (4) ι is natural and (5) definition of τZ .
The following commutative diagrams prove that Z is a monad.

Z3X Z2X

Z2X T X

ZX

ZX

T 3X

T 2X

T 2X

µZZX

µZX

µZX

ιX

ιX

ZµZX
T µX

µTX

µX

µX

ι3 ι2

ι2

ZX Z2X

Z2X T X

ZX

ZX

T X

T 2X

T 2X

ηZZX

µZX

µZX

ιX

ιX

ZηZX
T ηX

ηTX

µX

µX

ι ι2

ι2

(1)

(2) (3)
(4)

(5)

(6)

(7) (8)
(9)

(10)

(1) and (2) involve the definition of µZ and the naturality of ι and µZ , (3) is Def. 1, (4)
definition of µZ and (5) also. (6) and (7) involve the definition of ηZ and the naturality of ι
and ηZ , (8) is Def. 1, (9) definition of µZ and (10) also.
Z is proven strong with very similar diagrams. The commutative diagram:

ZA⊗ZB Z2(A⊗B)

Z2(A⊗B) T (A⊗B)

Z(ZA⊗B) Z(A⊗B)

Z(A⊗B)

Z(A⊗ZB)
τ ′ZA,ZB ZτZA,B

µZA⊗B

µZA⊗B

Zτ ′ZA,B

τZZA,B

ZT (A⊗B) T 2(A⊗B)

ZT (A⊗B)

T 2(A⊗B)Z(T A⊗B)

Z(A⊗ T B)

T (T A⊗B)

T (A⊗ T B)

T A⊗ T B
T A⊗ZB

ZA⊗ T B

ι

ι

ι

ι

ι

ι

ι

τ ′ZA,T B

τZT A,B

ι

Zτ ′A,B

ι

τT A,B

τ ′A,T B

T τ ′A,B

T τA,B

ι

µA⊗B

µA⊗B

ι

ι

ZτA,B

ιA⊗B

ιA⊗B

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

proves that Z is a commutative monad, with (1) τ ′Z is natural, (2) definition of τZ , (3) τZ
is natural, (4) C is monoidal, (5) definition of τ ′Z , (6) ι is natural, (7) definition of µZ , (8)
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definition of τZ , (9) ι is central, (10) definition of τ ′Z , (11) ι is natural and (12) definition of
µZ . J

This theorem shows that centralisable monads always induce a canonical commutative
submonad. However, we still have not precisely explained in what sense this submonad
is "central". We justify this next. Note that, since Z is a commutative monad, its Kleisli
category CZ has a canonical symmetric monoidal structure. Furthermore, since Z is a
submonad of T , we know that CZ canonically embeds into CT . The next theorem shows
that this embedding factors through the premonoidal centre of CT , and moreover, the two
categories are isomorphic.

I Theorem 26. In the situation of Theorem 25, the canonical embedding functor I : CZ →
CT corestricts to an isomorphism of categories CZ ∼= Z(CT ).

Proof.
Let us note the corestriction Î. For any f , Lemma 21 ensures that Îf is central.
We define the inverse functor G : Z(CT )→ CZ .
G maps objects to themselves. If f : X → T Y is a central morphism in the premonoidal
sense, (X, f) is a central cone of T at Y ; then there exists a unique fZ : X → ZY such
that ιY ◦ fZ = f . We define Gf = fZ .
The proof that it is a functor is direct considering that any fZ is a morphism of central
cones and that components of ι are monic.
Let f : X → T Y be a morphism of Z(CT ), i.e. a central morphism. ÎGf = ιY ◦ fZ = f

by definition of morphism of central cones (see Def. 19). Let g : X → ZY in C.
ιY ◦GÎg = ιY ◦ (ιY ◦ g)Z = ιY ◦ g by Definition 19 and thus GÎg = g since ιY is monic.

J

Because of the previous two theorems, we are justified in naming the submonad Z as the
central submonad of T .

4.2 Characterising the Centre of Strong Monads
In the previous subsection we showed that the existence of terminal central cones is sufficient
to construct the central submonad and we provided a constructive proof of this fact. Next,
we show that the existence of these central cones is also necessary for this. Furthermore,
we provide another equivalent characterisation in terms of the premonoidal structure of the
monad. This is precisely formulated in the main theorem of this paper which is presented
next.

I Theorem 27 (Centralisability). Let C be a symmetric monoidal category and T a strong
monad on it. The following are equivalent:
1. For any object X of C, T admits a terminal central cone at X;
2. There exists a commutative submonad Z of T such that the canonical embedding functor
I : CZ → CT corestricts to an isomorphism of categories CZ ∼= Z(CT );

3. The corestriction of the Kleisli left adjoint J : C → CT to the premonoidal centre
Ĵ : C→ Z(CT ) also is a left adjoint.

Proof.
(1⇒ 2) By Theorem 25 and Theorem 26.
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(2⇒ 3) Let us consider the Kleisli left adjoint J Z associated to the monad Z. All our
hypotheses can be summarised in the following commutative diagram, because Z is a
submonad of T :

C CT

CZ Z(CT )∼
Î

J Z

J

Ĵ

Since Î is an isomorphism, Ĵ = ÎJ Z is also a left adjoint.
(3 ⇒ 1) Let R : Z(CT ) → C be the right adjoint of Ĵ and let ε be the counit of the
adjunction. We will show that the pair (RX, εX) is the terminal central cone of T at X.
First, since εX is a morphism in Z(CT ), it follows that it is central. Thus the pair
(RX, εX) is a central cone of T at X. Next, let Φ: Z(CT )[Ĵ Y,X] ∼= C(Y,RX) be
the natural bijection induced by the adjunction. If f : Y → T X is central, meaning a
morphism of Z(CT ), the following diagram:

Ĵ Y

Ĵ RX X

ĴΦ(f)
f

εX

commutes in Z(CT ). Equivalently, the following diagram in C:

Y

RX T X

Φ(f)
f

εX

commutes. Note that the pair (Y, f) is equivalently a central cone for T at X (by
Proposition 20). Thus f uniquely factors through the counit εX : RX → T X and
therefore (RX, εX) is the terminal central cone of T at X.

J

This theorem shows that Definition 24 may be stated by choosing any one of the above
equivalent criteria. We note that the first condition is the easiest to verify in practice. The
second condition is the most useful for providing a computational interpretation, as we
discuss in the sequel. The third condition is the easiest to state categorically and provides
an important link to premonoidal categories.

4.3 A non Centralisable Monad
In Set, we heavily relied on the notion of subset to define the central submonad. One may
wonder what happens if not all subsets are objects in the category. The following example
decribes such a situation, which gives rise to a non-centralisable strong monad.
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I Example 28. Consider the Dihedral group D4 which has 8 elements. Its center is non-trivial
and has 2 elements.
Let C be the full subcategory of Set with objects that are finite products of the set D4 with
itself. This category has a cartesian structure and the terminal object is the singleton set
(which is the empty product). Notice that every object in this category has cardinality which
is a power of 8. Therefore the cardinality of every homset of C is also a power of 8.
Since C has a cartesian structure and since D4 is a monoid, we can consider the action
monadM on C induced by D4, which can be defined in exactly the same way as in Example
15. It follows thatM is a strong monad on C. However, it is easy to show that this monad
is not centralisable.
Let us assume, for the purpose of reaching a contradiction, that there is a monad T : C→ C
such that CT ∼= Z(CM). Next, observe that the homset Z(CM)[1, 1] has the same cardinality
as the centre of the monoid D4, i.e., its cardinality is 2. However, CT cannot have such a
homset since CT [X,Y ] = C[X, T Y ] which must have cardinality a power of 8. Therefore
there exists no such monad T andM is not centralisable.

4.4 Examples of Centralisable Monads
Despite the fact that not every monad is centralisable, in most naturally occurring categories
every strong monad is indeed centralisable. For example, in many categories of interest, the
objects of the category have a suitable notion of subobject (e.g., subsets in Set, subspaces in
Vect) and for such categories it is not hard to show that every monad is centralisable.

I Example 29. Any strong monad on Set is centralisable (see Section 3). The same is true
for any strong monad on the categories DCPO,Meas,Top,Hilb,Vect and many others.

I Example 30. The valuations monad V : DCPO→ DCPO is strong, but its commutativity
is an open problem [4]. The central submonad of V is precisely the "central valuations monad"
described in [3]. In fact, the latter work inspired the present paper, which may be seen as a
categorical generalisation of the ideas presented in [3].

I Example 31. The unbounded Giry monad G : Meas → Meas, which assigns the space
of all (possibly unbounded) measures to a measurable space, is a strong monad which is
not commutative. This monad is centralisable and its central submonad Z is such that ZX
contains all discrete measures on the measurable space X (and possibly others).

5 Computational interpretation (Work in Progress)

5.1 Syntax
Finally, we provide a computational interpretation of our ideas by presenting a refinement of
Moggi’s metalanguage [6]. The types are extended by simply adding the Z unary connective
that represents the central submonad of T :

(Types) a, b ::= 1 | a→ b | a× b | Za | T a
(Terms) M,N ::= x | ∗ | λxa.M | MN | retZ M | ιM

| do x←Z M ; N | do x←T M ; N

The typing rules are the following:
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Γ, x : a ` x : a Γ ` ∗ : 1
Γ `M : a→ b Γ ` N : a

Γ `MN : b
Γ `M : a Γ ` N : b

Γ ` 〈M,N〉 : a× b

Γ `M : a1 × a2
Γ ` πiM : ai

Γ `M : a
Γ ` retZ M : Za

Γ `M : Za Γ, x : a ` N : Zb
Γ ` do x←Z M ; N : Zb

Γ, x : a `M : b
Γ ` λxa.M : a→ b

Γ `M : Za
Γ ` ιM : T a

Γ `M : T a Γ, x : a ` N : T b
Γ ` do x←T M ; N : T b

As part of future work, we will describe a sound and adequate semantics of this system
(which is fairly straightforward) and we will also consider the issue of full abstraction for
specific monads with non-trivial centres.

5.2 Operational semantics
The operational semantics is defined as follows:

M  M ′

do x←Z M ; N  do x←Z M ′ ; N
M  M ′

do x←T M ; N  do x←T M ′ ; N

M  M ′

retZ M  retZ M ′
M  M ′

ιM  ιM ′ do x←Z retZ M ; N  N [M/x]

do x←T ι(retZ M) ; N  N [M/x] (λxa.M)N  M [N/x]

M  M ′

πiM  πiM
′

M  M ′

〈M,N〉 〈M ′, N〉
M  M ′

〈N,M〉 〈N,M ′〉

5.3 Denotational semantics
Let us consider a cartesian closed category C equipped with a centralisable monad T , whose
central submonad is noted Z. The types are denoted as objects in C, as following:

J1K = I

Ja→ bK = [JaK→ JbK]
JZaK = Z JaK

JT aK = T JaK

When Γ = x1 : a1 . . . xn : an, JΓK = JaK1 × · · · × JaKn. We use morphisms of C for terms. ev
is the evaluation map and φ is the natural isomorphism C[X × Y,Z] ∼= C[X,ZY ]. Their
semantics is defined recursively on the typing derivation:

JΓ, x : a ` x : aK = πa

JΓ ` πiM : aK = πi ◦ JΓ `M : a× bK
JΓ ` 〈M,N〉 : a× bK = 〈JΓ `M : aK , JΓ ` N : bK〉

JΓ `MN : bK = evJaK,JbK ◦ 〈JΓ `M : a→ bK , JΓ ` N : aK〉
JΓ ` λxa.M : a→ bK = φJΓK,JaK,JbK(JΓ, x : a `M : bK)
JΓ ` retZ M : ZaK = ηZa ◦ JΓ `M : aK

JΓ ` ιM : T aK = ιJaK ◦ JΓ `M : ZaK
JΓ ` do x←Z M ; N : ZbK = µZJbK ◦ Z JNK ◦ τZJΓK,JaK ◦ (JΓK× JMK) ◦∆

JΓ ` do x←T M ; N : T bK = µJbK ◦ T JNK ◦ τJΓK,JaK ◦ (JΓK× JMK) ◦∆



T. Carette, L. Lemonnier and V. Zamdzhiev 19

5.4 Properties
I Conjecture 32 (Soundness). If M  M ′, then JMK = JM ′K.

I Conjecture 33 (Adequacy). If η is a monomorphism, then JMK = JM ′K implies that there
exists a value V such that M  ∗ V and M ′  ∗ V .

I Conjecture 34.

Jdo x←T ιM ; do y ←T N ; P K = Jdo y ←T N ; do x←T ιM ; P K
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