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THE SHORT PULSE EQUATION

BY A RIEMANN–HILBERT APPROACH

ANNE BOUTET DE MONVEL∗, DMITRY SHEPELSKY†, AND LECH ZIELINSKI‡

Abstract. We develop a Riemann–Hilbert approach to the inverse scattering transform method
for the short pulse (SP) equation

uxt = u+ 1
6
(u3)xx

with zero boundary conditions (as |x| → ∞). This approach is directly applied to a Lax pair for
the SP equation. It allows us to give a parametric representation of the solution to the Cauchy
problem. This representation is then used for studying the long-time behavior of the solution
as well as for retrieving the soliton solutions. Finally, the analysis of the long-time behavior
allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.

1. Introduction

It is well-known that for describing the slow modulation of the amplitude of a weakly nonlin-
ear wave packet in a moving medium, the nonlinear Schrödinger (NLS) equation is one of the
universal nonlinear integrable models. It has been used with great success in nonlinear optics
to describe the propagation of sufficiently broad pulses, or slowly varying wave trains whose
spectra are narrowly localized around the carrier frequency. However, high-speed fiber-optic
communication demands ultra-short pulses. With this respect, certain technological progress for
creating them has been achieved; but it is important that in these conditions, the description of
the evolution of these pulses lies beyond the usual approximations leading to the NLS equation.

The short pulse (SP) equation

uxt = u+
1

6
(u3)xx (1.1)

was proposed by Schäfer and Wayne [32, 12] as an alternative (to the NLS equation) model for
approximating the evolution of ultra-short intense infrared pulses in silica optics. It was shown
in [12] by numerical simulations that the SP equation can be successfully used for describing
pulses with broad spectrum.

The short pulse equation is formally integrable: it is the compatibility condition for a pair of
linear equations (the Lax pair), see [30]:

Φx = UΦ (1.2a)

Φt = V Φ, (1.2b)

where U and V are 2× 2 matrices dependent on the spectral parameter λ:

U =

(
λ λux
λux −λ

)
, (1.3a)

V =




λ
2u

2 + 1
4λ

λ
2u

2ux − 1
2u

λ
2u

2ux +
1
2u −λ

2u
2 − 1

4λ


 . (1.3b)

The variants of application of the inverse scattering transform (IST) method to the SP equa-
tion, known in the literature, rely on establishing end exploiting the relationship between the
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SP equation and other integrable equations (like the sine-Gordon equation, see [31]). But such
relations turn out to be rather complicated and implicit, which, in particular, makes it difficult
to apply them for studying initial value problems with general initial data.

In the present paper we propose a direct approach to the problem of integration of the SP
equation, which is based on applying the inverse scattering transform method, in the form of
an associated Riemann–Hilbert (RH) problem. This means that the construction of this RH
problem is made in terms of dedicated solutions of the Lax pair equations associated directly to
the SP equation.

It is interesting to notice that the short pulse equation can be viewed as the short wave
approximation to another integrable equation

mt +
(
(u2 − u2x)m

)
x
+ ux = 0, m := u− uxx, (1.4)

usually referred to as the “modified Camassa–Holm equation”, and also known as the “Fuchssteiner–
Olver–Rosenau–Qiao” equation [17, 18, 27, 29]. Indeed, introducing the new variables

x′ =
x

ε
, t′ = tε, u′ =

u

ε2
,

passing to the limit ε→ 0 and retaining the main terms reduce (1.4) to (1.1). With this respect
we notice that the same short-wave limit applied to the Camassa–Holm (CH) equation

ut − utxx + 2ux + 3uux = 2uxuxx + uuxxx (1.5)

leads to the so-called short wave (SW) equation

utxx − 2ux + 2uxuxx + uuxxx = 0. (1.6)

The RH approach to the inverse scattering method for the CH equation and the SW equation
were presented in [3, 5] and in [8], respectively. In what follows we will see that the development
of this approach for the SP equation, on one hand, shares many common features with that for
the SW equation, but on the other hand, has important differences.

Various aspects of the SP equation have been addressed in the literature, including the con-
struction of solitary wave solutions [19, 24, 31] and periodic solutions [25]. Well-posedness of the
Cauchy problem has been studied in [13, 28, 32]. Certain sufficient conditions for wave breaking
have been found in [23]. An integrable hierarchy of equations associated with the SP equation
is discussed in [9]. The bi-Hamiltonian structure of the SP equation is presented in [10].

In this paper we present a RH problem formalism for the inverse scattering approach to the
initial value problem for the SP equation:

uxt = u+
1

6
(u3)xx, t > 0, −∞ < x < +∞, (1.7a)

u(x, 0) = u0(x), −∞ < x < +∞. (1.7b)

We assume that u0(x) decays to 0 sufficiently fast:

u0(x) → 0, x→ ±∞,

and we seek a solution u(x, t) decaying to 0 for all t > 0:

u(x, t) → 0, x→ ±∞.

In Section 2 we present appropriate Lax pairs associated with the SP equation, whose dedi-
cated solutions are used in Section 3 for formulating a matrix Riemann–Hilbert problem suitable
for solving the Cauchy problem (1.7). Then we give (Theorem 3.4) a representation of the so-
lution u(x, t) of the problem (1.7) in terms of the solution of this RH problem evaluated at a
distinguished point of the complex plane of the spectral parameter. In Section 4 we discuss the
construction of soliton solutions using the formalism of the RH problem. In Section 5 we study
the long time asymptotics of the solution of the Cauchy problem (1.7). This study is then used
in Section 5 to provide a sufficient condition for wave breaking of the solution of the Cauchy
problem at a finite time.
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2. Lax pairs and eigenfunctions

The RH formalism for integrable nonlinear equations makes use of the fact that it is possible
to construct dedicated solutions of the linear equations from the associated Lax pair, which,
being considered all together, are well-controlled, as functions of the spectral parameter, in the
whole extended complex plane. These solutions are differently defined for different domains in
the complex plane, and are related to each other at the boundaries between these domains. The
latter fact is then interpreted as the “analyticity defect” for a (matrix-valued) function of the
spectral parameter viewed as a function in the whole complex plane, and the inverse problem
of the IST method for solving the Cauchy problem for the nonlinear equation in question is
realized as a Riemann–Hilbert-type problem of reconstructing a piece-wise analytic function
from the known “analyticity defects” of this function, in the form of jump conditions across
certain contours supplemented by residue conditions (if any) at certain points in the complex
plane of the spectral parameter.

An efficient approach to constructing such solution of the differential equations from the Lax
pair is to pass to integral equations, whose solutions are particular solutions to the Lax pair
equations. For this purpose, it is convenient to transform the Lax pair equations to a certain
form, which is standard for establishing analytic properties of solutions near the singular points
(w.r.t. the spectral parameter) of the Lax pair equations.

Notice that the coefficient matrices U and V are traceless, which provides that the determinant
of a matrix solution to (1.2) composed from two vector solutions is independent of x and t.

In order to make the presentation close to that in the cases of other CH-type equations (see
[3, 5, 8, 6]), it is convenient to introduce the spectral parameter k := iλ.

Now notice that U and V have singularities (in the extended complex k-plane) at k = 0 and
at k = ∞. In order to control the behavior of solutions to (1.2) as functions of the spectral
parameter k, we follow a strategy similar to that adopted for the CH equation [3, 5].

Namely, in order to control the large k behavior of solutions of (1.2), we will transform this
Lax pair to the following form (see [1, 3, 5]):

Φ̂x +QxΦ̂ = Û Φ̂, (2.1a)

Φ̂t +QtΦ̂ = V̂ Φ̂, (2.1b)

whose coefficients Q(x, t, k), Û(x, t, k), and V̂ (x, t, k) have the following properties:

(i) Q is diagonal and is unbounded as k → ∞.

(ii) Û = O(1) and V̂ = O(1) as k → ∞.

(iii) The diagonal parts of Û and V̂ decay as k → ∞.

(iv) Û → 0 and V̂ → 0 as x→ ±∞.

Since the coefficient matrix U in (1.3a) is the product of the spectral parameter and a matrix
independent of the spectral parameter, in order to obtain Q, one has to diagonalize the latter
matrix, i.e., to determine P (x, t) such that

PUP−1 = −Q.
The freedom in determining such P can be used in order to satisfy item (iii) above, or, more

precisely, to make the diagonal part of Û identically 0.
Indeed, introducing

w := ux; q :=
√

1 + w2, (2.2)

setting

P :=

√
1 + q

2q

(
1 w

1+q

− w
1+q 1

)
(2.3)

so that P−1 =
√

1+q
2q

(
1 − w

1+q
w

1+q
1

)
, and introducing

Φ̂ := PΦ
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reduces (1.2a) to (2.1a) with

Qx(x, t, k) = ikq(x, t)

(
1 0
0 −1

)
≡ ikq(x, t)σ3 (2.4)

and

Û = Û(x, t) =
uxx
2q2

(
0 1
−1 0

)
. (2.5)

Accordingly, the t-equation (1.2b) of the Lax pair is transformed into

Φ̂t = V̌ Φ, (2.6)

where

V̌ = − iku2q

2
σ3 −

1

4ikq

(
1 −w

−w −1

)
+
u2uxx
4q2

(
0 1
−1 0

)
. (2.7)

Noticing that V̌ → − 1
4ikσ3 as x→ ±∞, we write V̌ as

V̌ =

(
− iku2q

2
− 1

4ik

)
σ3 −

1

4ikq

(
1− q −w
−w −1 + q

)
+
u2uxx
4q2

(
0 1
−1 0

)

=

(
− iku2q

2
− 1

4ik

)
σ3 + V̂ ,

where

V̂ := − 1

4ikq

(
1− q −w
−w −1 + q

)
+
u2uxx
4q2

(
0 1
−1 0

)
,

and thus (2.6) takes the form (2.1b) provided Q is defined in such a way that

Qt =

(
iku2q

2
+

1

4ik

)
σ3. (2.8)

Now notice that (2.4) and (2.8) are compatible since the compatibility condition Qxt = Qtx reads

qt =
1

2
(u2q)x, (2.9)

which is the “conservation law” form of the short pulse equation (1.1) (notice that the “conserva-
tion law” form of the SW equation (1.6) has a very similar form: qt =

1
2(uq)x, but in that case,

q =
√
1− uxx). Thus Q can be correctly defined by

Q(x, t, k) =

(
ikx̂(x, t) +

t

4ik

)
σ3, (2.10)

where

x̂(x, t) := x−
∫ ∞

x
(q(y, t)− 1)dy. (2.11)

Introduce

Φ̃ = Φ̂eQ (2.12)

and think about Φ̃ as a 2× 2 matrix. Then (2.1) can be rewritten as

Φ̃x + [Qx, Φ̃] = Û Φ̃, (2.13a)

Φ̃t + [Qt, Φ̃] = V̂ Φ̃, (2.13b)

where [ · , · ] denotes the matrix commutator.

Now determine the particular (Jost) solutions Φ̃±(x, t) of (2.13) as the 2 × 2 matrix-valued
solutions of the associated Volterra integral equations:

Φ̃±(x, t, k) = I +

∫ x

±∞
eQ(y,t,k)−Q(x,t,k)Û(y, t, k)Φ̃±(y, t, k)e

Q(x,t,k)−Q(y,t,k)dy, (2.14)
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or, taking into account the definition of Q,

Φ̃+(x, t, k) = I −
∫ ∞

x
eik

∫ y

x
q(ξ,t)dξ σ3Û(y, t, k)Φ̃+(y, t, k)e

−ik
∫ y

x
q(ξ,t)dξ σ3dy,

Φ̃−(x, t, k) = I +

∫ x

−∞
e−ik

∫ x

y
q(ξ,t)dξ σ3 Û(y, t, k)Φ̃−(y, t, k)e

ik
∫ x

y
q(ξ,t)dξ σ3dy,

(2.15)

where I is the identity matrix.
We denote by µ(1) and µ(2) the columns of a 2 × 2 matrix µ =

(
µ(1) µ(2)

)
. Then it follows

from (2.14) that for all (x, t):

(i) det Φ̃± ≡ 1.

(ii) Φ̃
(1)
− and Φ̃

(2)
+ are analytic in {k | Im k > 0 and continuous in {k | Im k ≥ 0, k 6= 0}.

(iii) Φ̃
(1)
+ and Φ̃

(2)
− are analytic in {k | Im k < 0 and continuous in {k | Im k ≤ 0, k 6= 0}.

(iv)
(
Φ̃
(1)
− Φ̃

(2)
+

)
→ I as k → ∞ in {k | Im k ≥ 0}.

(v)
(
Φ̃
(1)
+ Φ̃

(2)
−

)
→ I as k → ∞ in {k | Im k ≤ 0}.

(vi) Symmetries:

Φ̃±( · , · , k̄) = Φ̃±( · , · ,−k) =
(

0 1
−1 0

)
Φ̃±( · , · , k)

(
0 −1
1 0

)
. (2.16)

Overline means complex conjugation for all k for which the functions above are defined.

The latter property is due to the symmetries of the coefficient matrix Ǔ := Û − iqσ3

Ǔ( · , · , k̄) = Ǔ( · , · ,−k) =
(

0 1
−1 0

)
Ǔ( · , · , k)

(
0 −1
1 0

)
. (2.17)

Remark 2.1. Introducing the new variable x̂ as in (2.11) and taking into account the bijectivity
of the map x 7→ x̂ for any t ≥ 0 (which is due to the fact that q > 0), equation (2.1a) reduces to

the (non-self-adjoint) Dirac equation for
ˆ̂
Φ(x̂, t, k) := Φ̂(x(x̂, t), t, k):

ˆ̂
Φx̂ + ikσ3

ˆ̂
Φ =

ˆ̂
U
ˆ̂
Φ, (2.18)

where
ˆ̂
U =

uxx
2q3

(
0 1
−1 0

)
, (2.19)

which is the spatial equation from the Lax pair associated with the focusing nonlinear Schrödinger
(f NLS) equation; see, e.g., [16]. Therefore, the analytical properties of Φ̃± stated above are the
same as in the case of the f NLS equation.

Remark 2.2. In the case of the SW equation (1.6), the spatial equation from the Lax pair is also

the Dirac equation (like (2.18)), but with a self-adjoint potential
ˆ̂
U , see [8].

The scattering matrix s(k) (independent of (x, t)) is introduced by

Φ̃+(x, t, k) = Φ̃−(x, t, k)e
−Q(x,t,k)σ3s(k)eQ(x,t,k)σ3 , k ∈ R (2.20)

with Q defined by (2.10), which, due to the symmetries (2.17), can be written in terms of two
scalar spectral functions, a(k) and b(k):

s(k) =

(
a(k) b(k)

−b(k) a(k)

)
, k ∈ R, (2.21)

such that a(k) = a(−k) and b(k) = b(−k). In view of Remark 2.1, the spectral functions have
properties similar to those in the case of the focusing NLS equation [16]:

a) a(k) and b(k) are determined by u(x, 0) through the solutions Φ̃±(x, 0) of equations (2.15),

where Û = Û(x, 0) is defined by (2.5) with u replaced by u0(x) (and similarly for q).
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b) a(k) is analytic in {k | Im k > 0} and continuous in {k | Im k ≥ 0}; moreover, a(k) → 1 as
k → ∞.

c) b(k) is continuous for k ∈ R, and b(k) → 0 as |k| → ∞.
d) |a(k)|2 + |b(k)|2 = 1 for k ∈ R.
e) Let {kj}N1 be the set of zeros of a(k). We make the genericity assumption that these zeros are

finite in number, simple, and no zero is real. Then Φ̃
(1)
− (x, t, kj) and Φ̃

(2)
+ (x, t, kj) are linearly

dependent; moreover,

Φ̃
(1)
− (x, t, kj) = e

2i(kj x̂−
t

4kj
)
Φ̃
(2)
+ (x, t, kj)χj (2.22)

with some constants χj .

3. The Riemann–Hilbert problem

3.1. A RH problem constructed from dedicated eigenfunctions. The analytic properties

of Φ̃± stated above allow rewriting the scattering relation (2.20) as a jump relation for a piece-
wise meromorphic (w.r.t. k), 2×2-valued function (depending on x and t as parameters). Indeed,
define M(x, t, k) by

M(x, t, k) =





(
Φ̃

(1)
− (x,t,k)

a(k) Φ̃
(2)
+ (x, t, k)

)
, Im k > 0,

(
Φ̃
(1)
+ (x, t, k)

Φ̃
(2)
− (x,t,k)

a(k)

)
, Im k < 0.

(3.1)

Define

r(k) := − b(k)
a(k)

for k ∈ R. (3.2)

Then the limiting values M±(x, t, k), k ∈ R of M as k is approached from the domains ± Im k > 0
are related as follows:

M+(x, t, k) =M−(x, t, k)e
−Q(x,t,k)σ3J0(k)e

Q(x,t,k)σ3 , k ∈ R, (3.3)

where

J0(k) =

(
1 + |r(k)|2 r(k)

r(k) 1

)
. (3.4)

Taking into account the properties of Φ̃± and s(k), M(x, t, k) satisfies the following properties:

(i) detM ≡ 1.
(ii) Normalization: M( · , · , k) → I as k → ∞.
(iii) Symmetries:

M( · , · , k̄) =M( · , · ,−k) =
(

0 1
−1 0

)
M( · , · , k)

(
0 −1
1 0

)
. (3.5)

(iv) M (1) has poles at the zeros kj of a(k) (in {k | Im k > 0}), whereas M (2) has poles at the

conjugates kj (in {k | Im k < 0}), j = 1, 2, . . . , N , and the following residue conditions are
satisfied:

Resk=kj M
(1)(x, t, k) = iγje

2i
(
kj ˆx(x,t)− t

4kj

)
M (2)(x, t, kj),

Resk=k̄j
M (2)(x, t, k) = iγ̄je

2i
(
k̄j x̂(x,t)−

t

4k̄j

)
M (1)(x, t, k̄j)

(3.6)

with some constants γj .

The idea of the Riemann–Hilbert problem approach in the inverse scattering method consists
in considering the jump relation (3.3) complemented by the normalization condition M → I as
k → ∞, and by the residue conditions (3.6), as the factorization problem of finding M(x, t, k)
(and, consequently, u(x, t)) from the jump matrix in (3.3) and the residue conditions (3.6) at the
singularities of M . As in the case of any Camassa–Holm-type equation, when realizing this idea,
one faces the problem that the determination of the jump matrix, which is e−QJ0(k)e

Q, involves
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not only objects uniquely determined by the initial data u(x, 0) (the functions a(k) and b(k)
involved in J0(k) and the constants involved in the residue conditions), but also Q = Q(x, t, k),
which is obviously not determined by u(x, 0) (it involves u(x, t) for t ≥ 0). This problem can be
resolved by considering a RH problem depending, instead of (x, t), on the parameters x̂ and t.
Then the jump matrix and the residue conditions become explicit in the new variables x̂ and t.
Indeed, introducing

M̂(x̂, t, k) :=M(x(x̂, t), t, k),

the jump condition takes the form

M̂+(x̂, t, k) = M̂−(x̂, t, k)J(x̂, t, k), k ∈ R, (3.7)

where

J(x̂, t, k) := e−Q̂(x̂,t,k)J0(k)e
Q̂(x̂,t,k) (3.8)

with J0(k) as in (3.4) and

Q̂(x̂, t, k) :=

(
ikx̂+

t

4ik

)
σ3, (3.9)

Accordingly, the residue conditions (3.6) take the form

Resk=kj M̂
(1)(x̂, t, k) = iγje

2i
(
kj x̂−

t
4kj

)
M̂ (2)(x̂, t, kj),

Resk=k̄j
M̂ (2)(x̂, t, k) = iγ̄je

−2i
(
k̄j x̂−

t

4k̄j

)
M̂ (1)(x̂, t, k̄j).

(3.10)

Recall that the jump and residue conditions for M̂(x̂, t, k) were obtained above assuming
that there exists a solution u(x, t) of the SP equation decaying to 0 as x → ±∞ for any fixed
t > 0. On the other hand, the conditions (3.7)–(3.10) can be viewed as a factorization problem
of Riemann–Hilbert (RH) type:

RH problem. Given {r(k), k ∈ R; {kj , γj}N1 }, find a piece-wise (w.r.t. R) meromorphic function

M̂ (x̂, t, k) satisfying the conditions (3.7)–(3.10) complemented by the normalization condition

M̂(x̂, t, k) → I as k → ∞. (3.11)

Remark 3.1 (symmetries). Since the jump matrix J satisfies the symmetry conditions described

in (3.5), it follows from the uniqueness of the solution M̂ of the RH problem that this solution
satisfies (3.5) as well.

Remark 3.2 (unique solvability). The structure of the jump matrix and the residue conditions
are the same as in the case of the focusing NLS equation (only the dependence on x̂ and t, which
are just the parameters for the RH problem, is different), which implies that for all x̂ and t, there
exists a unique solution of the RH problem (3.7)–(3.11) provided that r(k) can be represented
as r(k) =

∫∞
−∞ r̂(s)eiksds with some r̂(s) ∈ L1(−∞,∞), see [16].

3.2. Recovering the solution of the Cauchy problem from the associated RH problem.

Now our goal is to show that u(x, t) can be recovered in terms of M̂(x̂, t, k), which is considered as
the solution of the Riemann–Hilbert problem (3.7)–(3.11) (notice that the data for this problem
are uniquely determined by u(x, 0)), evaluated at k = 0. Indeed this value of k is specific for
(1.2a), since the coefficient matrix U in (1.2a) vanish identically at k = 0.

In order to have a good control of the behavior of M̂(x̂, t, k) as k → 0, it is convenient to
rewrite the Lax pair (1.2) in the form

Φx + ikσ3Φ = U0Φ (3.12a)

Φt +
1

4ik
σ3Φ = V0Φ, (3.12b)
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where

U0 = −ikw

(
0 1
1 0

)
, (3.13a)

V0 = − iku2

2

(
1 w
w −1

)
+
u

2

(
0 −1
1 0

)
. (3.13b)

Notice that U0 → 0 and V0 → 0 as |x| → ∞. Besides, it is important that U0(x, t, 0) ≡ 0.
Introduce

Q0(x, t, k) :=

(
ikx+

t

4ik

)
σ3 (3.14)

and
Φ̃0 = ΦeQ0 . (3.15)

Then (3.12) can be rewritten as

Φ̃0x + [Q0x, Φ̃0] = U0Φ̃0, (3.16a)

Φ̃0t + [Q0t, Φ̃0] = V0Φ̃0. (3.16b)

The Jost solutions Φ̃0±(x, t, k) of (3.16) are determined, similarly to above, as the solutions of
associated Volterra integral equations:

Φ̃0±(x, t, k) = I +

∫ x

±∞
eik(y−x)U0(y, t, k)Φ̃0±(y, t, k)e

ik(x−y)dy. (3.17)

Now, since U0(x, t, 0) ≡ 0, we have the following important property:

Φ̃0± (x, t, 0) ≡ I (3.18)

for all x and t. Moreover, directly using (3.17) one obtains

Proposition 3.3. As k → 0,

Φ̃0±(x, t, k) = I − iku(x, t)

(
0 1
1 0

)
+O(k2).

Further, we notice that Φ̃± and Φ̃0±, being related to the same system of equations (1.2), are
related as

Φ̃±(x, t, k) = P (x, t)Φ̃0±(x, t, k)e
−Q0(x,t,k)C±(k)e

Q(x,t,k), (3.19)

where C±(k) are some matrices independent of x and t. Passing to the limits x→ ±∞ determines
C±(k):

C+(k) = I, C−(k) = eikασ3,

where α =
∫∞
−∞(q(y, t)− 1)dy; notice that in view of (2.9), α is constant (does not depend on t).

Combining Proposition 3.3 with (3.19) one gets

Φ̃+(x, t, k) = P (x, t)

(
I − ik

(
u(x, t)σ1 +

∫ ∞

x
(q(y, t)− 1)dy σ3

)
+O(k2)

)
,

Φ̃−(x, t, k) = P (x, t)

(
I − ik

(
u(x, t)σ1 −

∫ x

−∞
(q(y, t) − 1)dy σ3

)
+O(k2)

) (3.20)

as k → 0. Using these expansions in (2.20) we expand s(k) at k = 0, then by (2.21) we obtain

a(k) = 1 + ikα+O(k2), b(k) = O(k2), k → 0. (3.21)

Finally, substituting (3.20) and (3.21) into (3.1) gives

M(x, t, k) = P (x, t)

(
I − ik

(
u(x, t)σ1 +

∫ ∞

x
(q(y, t)− 1)dy σ3

)
+O(k2)

)
, k → 0, (3.22)

which, in view of (2.11), reads

M(x, t, k) = P (x, t)

(
I − ik

(
x− x̂ u
u x̂− x

)
+O(k2)

)
, k → 0. (3.23)
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This relation (3.23) leads to the following result.

Theorem 3.4 (representation result). Assume that the Cauchy problem (1.7) for the SP equation
has a solution u(x, t)s. Let {r(k), k ∈ R; {kj , γj}N1 } be the spectral data determined by u0(x),

and let M̂(x̂, t, k) be the solution of the associated RH problem (3.7)–(3.11). Then, evaluating

M̂ as k → 0, we get a parametric representation for the solution u(x, t) of the Cauchy problem
(1.7):

u(x, t) = û(x̂(x, t), t) (3.24a)

with

x(x̂, t) = x̂+ f1(x̂, t), (3.24b)

û(x̂, t) = f2(x̂, t), (3.24c)

where (
f1 f2
f2 −f1

)
(x̂, t) := lim

k→0

i

k

(
M̂−1(x̂, t, 0)M̂ (x̂, t, k)− I

)
. (3.24d)

Remark 3.5. The representation result of Theorem 3.4 can be interpreted in two ways:

i) If there is a global (in time) classical solution u(x, t) of the Cauchy problem (1.7), then
(3.24) gives a parametric representation of this solution for all t.

ii) If wave breaking occurs at a finite time, then the bijectivity of the map x̂ 7→ x described by
(3.24b) is broken for certain values of t. Then (3.24b) and (3.24c) present a continuation
of the solution of the Cauchy problem (1.7) after the wave breaking. Particularly, if the
bijectivity of the map x̂ 7→ x is restored for all times t greater than a certain T , (3.24b) and
(3.24c) present a solution that, after undergoing a sequence of wave breakings, retrieves the
form of a classical solution to the SP equation (1.7a).

Remark 3.6. We emphasize that the wave breaking mechanism for the SP equation is exclusively
related to the break of bijectivity in (3.24b) while the solution on the variables (x̂, t) always
exists globally, see Remark 3.2. This is quite different comparing with other Camassa–Holm-
type equations; particularly, this is different from the case of the SW equation (1.6), whose
RH formalism is very close to that for the SP equation, including the dependence of the RH
problem on the parameters x̂ and t, see [8]. The reason is that for all equations mentioned
above, the RH formalism relies on the so-called sign condition to be satisfied by the initial data.
This condition, on one hand, provides the existence of a global in time solution to the Cauchy
problem, and on the other hand, plays a crucial role in introducing the new spatial variable x̂,
see [3, 5, 6, 8]. For instance, this condition reads −u0xx + 1 > 0 in the case of the SW equation
(1.6), or u0 − u0xx + 1 > 0 in the case of the CH equation (1.5). In the case of the SP equation,
the analogous condition would read 1+u20x > 0, see the definition of q in (2.2), which is obviously
automatically satisfied.

3.3. From the RH problem to a solution of the SP equation. The representation result
of Theorem 3.4 has been actually obtained under assumption of existence of a solution u(x, t) to
the Cauchy problem (1.7). On the other hand, an important element of the inverse scattering
approach to nonlinear equations is the possibility to check directly that a solution of the RH
problem with any appropriate r(k) (ensuring the unique solvability of the RH problem) gives
rise to a solution of the nonlinear equation in question. The idea consists in direct checking that
the solution of the RH problem, properly normalized, satisfies a system of differential equations
(w.r.t. the outer parameters x (or x̂) and t), which can be interpreted as the Lax pair for the
nonlinear equation. For example, see [16] for the nonlinear Schrödinger equation. For equations
of the Camassa–Holm type (and their short wave limits), the procedure is more involved; see,
e.g., [7] for the case of the short wave limit of the Degasperis–Procesi equation. For the SP
equation, the following theorem holds.
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Theorem 3.7. Let {r(k), k ∈ R; {kj , γj}N1 } be a data set such that the RH problem (3.7)–(3.11)

it determines has a unique solution M̂(x̂, t, k). Define f1, f2 by (3.24d). Introduce x(x̂, t) and
û(x̂, t) as in (3.24b)–(3.24c), and

q̂(x̂, t) :=
1

α2(x̂, t)− β2(x̂, t)
, ŵ(x̂, t) :=

2α(x̂, t)β(x̂, t)

α2(x̂, t)− β2(x̂, t)
, (3.25)

where (
α(x̂, t) β(x̂, t)
−β(x̂, t) α(x̂, t)

)
:= M̂(x̂, t, 0). (3.26)

Then the following equations (between functions of (x̂, t)) hold:

(a) xx̂ =
1

q̂
;

(b) ûx̂ =
ŵ

q̂
;

(c) q̂t = ûq̂ŵ.

Remark 3.8. We have already noted (Remark 3.1) that M̂ satisfies the symmetries (3.5). The
specific forms of the l.h.s. of (3.24d) and (3.26) follow from these symmetries, and the functions
f1(x̂, t), f2(x̂, t), x(x̂, t), û(x̂, t), α(x̂, t), and β(x̂, t) are all real-valued for the same reasons.

Moreover, q̂ > 1 because α2 + β2 = det M̂(0) = 1.

Proof of Theorem 3.7. The proof of (a)-(c) is based on calculations of Ψx̂Ψ
−1 and ΨtΨ

−1 where

Ψ(x̂, t, k) := M̂(x̂, t; k)e(−ikx̂− t
4ik

)σ3 .

Proof of (a)-(b). We consider Ψx̂Ψ
−1. Starting from the expansion

M̂(x̂, t, k) = I +M1/ik +O(k−2), k → ∞
and denoting W := −[M1, σ3], we get

(Ψx̂Ψ
−1)(x̂, t, k) = −ikσ3 +W (x̂, t) + O(k−1), k → ∞.

Moreover, (Ψx̂Ψ
−1)(x̂, t, k) + ikσ3 has neither jumps no singularities and is bounded in k ∈ C;

hence, by Liouville’s theorem,

(Ψx̂Ψ
−1)(x̂, t, k) = −ikσ3 +W (x̂, t). (3.27)

On the other hand, starting from the expansion

Ψ(x̂, t, k) = G0(x̂, t)
(
I − ikG1(x̂, t) + O(k2)

)
e(−ikx̂− t

4ik
)σ3 , k → 0,

where, by (3.24d) and (3.26))

G0 :=

(
α β
−β α

)
, G1 :=

(
f1 f2
f2 −f1

)
,

we obtain

Ψx̂Ψ
−1 = G0x̂G

−1
0 − ikG0(G1x̂ + σ3)G

−1
0 +O(k2), k → 0.

Comparing this with (3.27), it follows that

G1x̂ = −σ3 +G−1
0 σ3G0 =

(
α2 − β2 − 1 2αβ

2αβ α2 − β2 − 1

)
,

which, in terms of f1, f2, ŵ, and q̂, reads

f1x̂ =
1

q̂
− 1, f2x̂ =

ŵ

q̂
(3.28)

and thus (a) and (b) hold. By (3.24b) and (3.24c) we indeed have xx̂ = 1 + f1x̂ and ûx̂ = f2x̂.
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Proof of (c). Now we consider ΨtΨ
−1. On one hand,

ΨtΨ
−1 = O(k−1), k → ∞.

On the other hand,

ΨtΨ
−1 = − 1

4ik
G0σ3G

−1
0 +

{
G0t +

1

4
G0[G1, σ3]

}
G−1

0 , k → 0.

Thus, by Liouville’s theorem,

G0t = −1

4
G0[G1, σ3] = −1

2

(
βf2 −αf2
αf2 βf2

)
,

which, in terms of û, ŵ and q̂, reads q̂t = ûq̂ŵ and thus item (c) of Theorem 3.7 holds. �

Corollary 3.9. With the same assumptions and notations as in Theorem 3.7 we introduce

u(x, t) := û(x̂(x, t), t), q(x, t) := q̂(x̂(x, t), t).

Then the three equations (a)–(c) from Theorem 3.7 reduce to

qt =
1

2
(u2q)x, (3.29a)

q =
√

1 + u2x, (3.29b)

which is the SP equation in the conservation law form.

Proof. First, it follows from (a) that x̂x(x, t) = q(x, t) and from (b) that ûx̂(x̂(x, t), t) =
w
q (x, t),

where w(x, t) := ŵ(x̂(x, t), t). Hence, the identity ux(x, t) = ûx̂(x̂(x, t), t)x̂x(x, t) gives

w = ux. (3.30)

Thus, (3.29b) reads q =
√
1 + w2, or q̂ =

√
1 + ŵ2, which follows from the definitions (3.25) of q̂

and ŵ.
In order to derive (3.29a), we first notice that (c) can be written in the conservation law form

(
1

q̂

)

t

= −1

2

(
û2
)
x̂
. (3.31)

Indeed, (
1

q̂

)

t

= − q̂t
q̂2

= − ûŵ
q̂

= −ûûx̂ = −1

2

(
û2
)
x̂
,

where (c) and then (b) have been used. Now, we calculate xt(x̂, t) starting from (a), then using
(3.31):

xt(x̂, t) = − ∂

∂t

(∫ ∞

x̂

dξ

q̂(ξ, t)

)
=

1

2

∫ ∞

x̂

(
û2
)
ξ
(ξ, t)dξ = −1

2
û2(x̂, t).

Substituting this into the identity q̂t = qxxt+ qt (between functions of (x̂, t)) and using (c) gives
qt = ûq̂ŵ + 1

2qxû
2, which reads qt = uqw + 1

2qxu
2 in terms of functions of (x, t). Using (3.30)

yields (3.29a):

qt = uqux +
1

2
qxu

2 =
1

2
(u2q)x. �

4. Solitons

In the general case, solving a Riemann–Hilbert problem reduces to solving a coupled system of
integral equations (generated by the jump condition) and algebraic equations (generated by the
residue conditions). In this framework, pure soliton solutions arise in the case where the jump
condition is trivial (J ≡ I) and thus the solution of the RH problem, being a rational function
of the spectral parameter, reduces to solving a system of linear algebraic equations only. The
dimension of this system is determined by the number of poles.

In the case of the SP equation, it is natural to distinguish between the solutions associated
with pure imaginary zeros of a(k) and those associated with zeros kj with a nonzero real part.
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4.1. First, consider the case, where a(k) has a single, pure imaginary zero at k = iν, ν > 0. Then

M̂ has two simple poles: one at k = iν and the second one at k = −iν. From the normalization
condition it follows that M̂ has the form

M̂ =

(
k−B11
k−iν

B12
k+iν

B21
k−iν

k−B22
k+iν

)
,

where Bij are functions of x̂ and t to be determined from the residue conditions.

Using the symmetry condition M̂ (−k) = M̂(k) we conclude that Bij = −Bij , i, j ∈ {1, 2}
whereas the symmetry M̂(−k) =

(
0 1
−1 0

)
M̂(k)

(
0 −1
1 0

)
implies B11 = −B22 and B12 = B21.

Introducing the real-valued functions b1 and b2 by B11 = −B22 = ib1 and B12 = B21 = ib2, M
can be written as

M̂ =

(
k−ib1
k−iν

ib2
k+iν

ib2
k−iν

k+ib1
k+iν

)
. (4.1)

Denoting e1 := e−2νx̂− t
2ν

+log|γ| and taking into account that in this case γ ∈ R, the residue
conditions (3.10) take the form

Resk=iν M̂
(1) = i sign(γ)e1M̂

(2)(iν). (4.2)

Taking into account (4.1), these conditions lead to the system of equations for b1 and b2:{
iν − ib1 = i sign(γ)e1

b2
2ν

ib2 = i sign(γ)e1
ν+b1
2ν

from which b1 and b2 can be determined as follows:

b1 =
ν(4ν2 − e21)

4ν2 + e21
, b2 =

4ν2 sign(γ)e1
4ν2 + e21

. (4.3)

Thus we have solved the RH problem. In accordance with Theorem 3.4, the expansion of
M̂( · , · , k) at k = 0 gives

M̂(k) =

(
b1
ν + ik ν−b1

ν2
b2
ν + ik b2

ν2

− b2
ν + ik b2

ν2
b1
ν + ik b1−ν

ν2

)
+O(k2).

Particularly,

M̂(0) =

(
b1
ν

b2
ν

−b2
ν

b1
ν

)

and thus

M̂ (0)
−1
M̂(k) = I − ik




1
ν − b1

b21+b22
− b2

b21+b22

− b2
b21+b22

b1
b21+b22

− 1
ν


+O(k2).

Finally, using (3.24), we arrive at

Theorem 4.1 (one-soliton). One-soliton solutions u(x, t) of the SP equation (1.1) can be ex-
pressed, in parametric form, as follows:

u(x, t) = û(x̂(x, t), t),

where

û(x̂, t) = −4 sign(γ)e1(x̂, t)

4ν2 + e21(x̂, t)
,

x(x̂, t) = x̂+
2

ν

e21(x̂, t)

4ν2 + e21(x̂, t)
,

(4.4)

with
e1(x̂, t) := e−2νx̂− t

2ν
+log|γ|.
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Here, ν > 0 and γ ∈ R are the soliton parameters.

Introducing

φ(x̂, t) = 2ν

(
x̂+

t

4ν2
− y0

)
, y0 =

1

2ν
log

|γ|
2ν

,

the soliton formulas (4.4) can be written as

û(x̂, t) = −signγ

ν

1

coshφ(x̂, t)
,

x(x̂, t) = x̂+
1

ν
(1− tanhφ(x̂, t)) .

(4.5)

We notice that the one-soliton solution described above is always a multivalued function having
the form of a loop. Indeed, ∂x

∂x̂ = 2 tanh2 φ − 1, which changes sign twice as φ is varying from
−∞ to +∞.

For ν = 1
2 and γ = −1, (4.5) reads

û(x̂, t) =
2

cosh(x̂+ t)
,

x(x̂, t) = x̂− 2 tanh(x̂+ t) + 2,
(4.6)

and thus we retrieve the formulas for the soliton solution presented in [31] (comparing with [31],
the additional constant in (4.6) provides that x− x̂→ 0 as x̂→ +∞, cf. (2.11)), where they were
obtained using the connection between the short pulse equation and the sine-Gordon equation.

4.2. Now consider the case, where a(k) has a pair of zeros: a(k0) = 0 = a(−k̄0) with

k0 = µ+ iν, µ > 0, ν > 0.

In this case, the symmetries (3.5) and the normalization condition lead to

M̂ =
1

2




k−b1
k−k0

+ k+b̄1
k+k̄0

b2
k−k̄0

− b̄2
k+k0

− b̄2
k−k0

+ b2
k+k̄0

k−b̄1
k−k̄0

+ k+b1
k+k0


 (4.7)

(cf. (4.1)), where b1(x̂, t) and b2(x̂, t) can be found solving the system of linear equations resulting
from the residue conditions (3.10) at k = k0:

Resk=k0 M̂
(1)(x̂, t, k) = iγ0e

2i
(
k0x̂−

t
4k0

)
M̂ (2)(x̂, t, k0) (4.8)

(the other residue conditions at −k̄0, −k0, and k̄0 then follow from the symmetry condition).

Introducing γ = |γ|ei arg γ and writing γ0e
2i
(
k0x̂−

t
4k0

)
in (4.8) as

γ0e
2i
(
k0x̂−

t
4k0

)
= e

− ν
|k0|

(
2|k0|x̂+

t
2|k0|

−
|k0| log|γ|

ν

)

e
iµ

|k0|

(
2|k0|x̂−

t
2|k0|

+
|k0| arg γ

µ

)

suggest introducing

φ =
ν√

ν2 + µ2

(
2|k0|x̂+

t

2|k0|
− |k0| log|γ|

ν

)
,

ψ =
µ√

ν2 + µ2

(
2|k0|x̂− t

2|k0|
+

|k0| arg γ
µ

)
,

in terms of which the solution of the SP equation (after solving (4.7), (4.8) for b1 and b2) is given
by (see [23, 31])

û(x̂, t) =
2µν

ν2 + µ2
ν sinψ sinhφ+ µ cosψ coshφ

ν2 sin2 ψ + µ2 cosh2 φ
, (4.9a)

x(x̂, t) = x̂+
µν

ν2 + µ2

(
ν sin(2ψ) − µ sinh(2φ)

ν2 sin2 ψ + µ2 cosh2 φ
+

2

µ

)
. (4.9b)
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Observing that (see [23])

∂x

∂x̂
= 1− 8µ2ν2 sin2 ψ cosh2 φ

(ν2 + µ2)(ν2 sin2 ψ + µ2 cosh2 φ)2
= cos

(
4 arctan

ν sinψ

µ coshφ

)
,

we see that if
∣∣∣ νµ
∣∣∣ < tan π

8 , then ∂x
∂x̂ > 0 for all x, and thus (4.9) represents a smooth solution

– the breather. On the other hand, if
∣∣∣ νµ
∣∣∣ > tan π

8 , then ∂x
∂x̂ is not sign-definite, and thus (4.9)

represents a multivalued solution.

5. Long-time asymptotics

A major advantage of the representation of the solution u to the Cauchy problem for a non-
linear integrable equation in terms of the solution of an associated Riemann–Hilbert problem
is that it can be efficiently used for studying in details the long-time behavior of the former
problem via the long-time analysis of the latter, applying the nonlinear steepest descent method
introduced by Deift and Zhou [15]. For Camassa–Holm-type equations, this approach has been
presented in [2, 4, 6, 7]. A key feature of this method is the deformation of the original RH

problem according to the “signature table” for the phase function θ in the jump matrix Ĵ written
in the form (cf. (3.8), (3.9))

Ĵ(x̂, t; k) = e−itθ(ζ̂ ,k)σ3J0(k)e
itθ(ζ̂ ,k)σ3 , (5.1)

where

θ(ζ̂, k) = ζ̂k − 1

4k
, (5.2)

ζ̂ :=
x̂

t
. (5.3)

The signature table is the distribution of signs of Im θ(ζ̂, k) in the k-plane, depending on the

values of ζ̂. In the case of the SP equation,

Im θ(ζ̂, k) = Im k ·
(
ζ̂ +

1

4|k|2
)
.

Now we notice that Ĵ(x̂, t; k) in the present case looks very similar to the case of the SW

equation, see [8], including the matrix structure of Ĵ0(k) and the form of θ(ζ̂, k). Namely, the

latter in the case of the SW equation has the form θ(ζ̂, k) = ζ̂k − 1
2k and thus the distribution

of signs of Im θ(ζ̂, k) is the same modulo the scaling factor 1
2 . As for the structure of Ĵ0(k), the

difference with the case of the SW equation is that r̄ is to be replaced by −r̄ while keeping r the
same. A direct consequence of this is that the long time analysis in the case of the SP equation
repeats the steps made in the case of the SW equation. As for the differences, we notice the
following.

1) The basic difference is that in the case of the SP equation, the RH problem involves, in general,
residue conditions (absent in the case of the SW equation). Here there is a complete analogy
with the NLS equation [16], where the defocusing NLS equation corresponds to the SW
equation whereas the focusing NLS equation corresponds to the SP equation. Consequently,
if a(k) has zeros, then the solitons associated with the residue conditions dominate the long
time behavior of the solution of the Cauchy problem.

2) In the solitonless case (a(k) 6= 0 for all k with Im k ≥ 0), the main asymptotic term is
expressed in terms of the solution of the model RH problem, which is different from that in
the SW case. More precisely, the model problem for the SW equation is exactly as in [22,
Appendix B] whereas in the case of the SP equation, the jump matrix of the model problem
is as in [22, (B.1)], with q̄ replaced by −q̄ (keeping q the same). Accordingly, the large-z
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expansion of the solution of the model problem, which is

mX(q, k̂) = I +
i

k̂

(
0 −βX(q)

βX(q) 0

)
+O(k̂−2), k̂ → ∞

from [22, (B.2)], is to be replaced by

mX(q, k̂) = I +
i

k̂

(
0 −βX(q)

−βX(q) 0

)
+O(k̂−2), k̂ → ∞ (5.4)

in the case of the SP equation, with

βX(q) =
√
−h(q) ei

(
π
4
−arg q+arg Γ(iν(q))

)
(5.5)

(notice that h(q) < 0 in this case), where Γ is the Euler Gamma function.

Now we are going to give a sketch of the asymptotic analysis in the solitonless case and present
an exact asymptotic result. Since the distribution of signs of Im θ(ζ̂, k) is as in the case of the
SW equation, the long time behavior of u is qualitatively different in the same two ranges of
values of

ζ :=
x

t
. (5.6)

5.1. Range ζ > ε. In this case the set {k | Im θ(ζ̂, k) = 0} coincides with the real axis Im k = 0
and ± Im θ > 0 for ± Im k > 0. This suggests the use of the following factorization of the jump
matrix for all k ∈ R:

Ĵ =

(
1 r̄(k̄)e−2itθ

0 1

)(
1 0

r(k)e2itθ 1

)
. (5.7)

Indeed, the triangular factors in (5.7) can be absorbed into a new RH problem for M̂ (1)(x̂, t, k)
in the same way as in the case of the SW equation [8]:

M̂ (1) =





M̂

(
1 0

−r(k)e2itθ 1

)
, 0 < Im k < ε,

M̂

(
1 r̄(k̄)e−2itθ

0 1

)
, −ε < Im k < 0,

M̂ , otherwise.

This reduces the RH problem to a RH problem with a jump matrix that decays exponentially (in
t) to the identity matrix. Since this RH problem is holomorphic (there is no residue condition),
its solution decays fast to I and consequently û(x̂, t) decays fast to 0 while x̂ approaches fast x,

and thus the domains ζ̂ > ε and ζ > ε coincide asymptotically.

5.2. Range ζ < −ε. Similarly to [8], in a domain of the form ζ̂ < −ε for any ε > 0, the signature
table dictates the use of two factorizations. Let ±κ̂ be the points where the distribution of signs
is changing:

κ̂ =
1

2

√
|ζ̂|

. (5.8)

i) For k ∈ (−κ̂, κ̂) we consider again the factorization (5.7)

Ĵ =

(
1 r̄(k̄)e−2itθ

0 1

)(
1 0

r(k)e2itθ 1

)
.

ii) For k ∈ (−∞,−κ̂) ∪ (κ̂,∞) we consider a factorization with triangular factors in reverse
order:

Ĵ =

(
1 0

r(k)
1−|r(k)|2 e

2itθ 1

)(
1− |r(k)|2 0

0 1
1−|r(k)|2

)(
1 r̄(k̄)

1−|r(k)|2 e
−2itθ

0 1

)
(5.9)



16 A. BOUTET DE MONVEL, D. SHEPELSKY, AND L. ZIELINSKI

Similarly to the previous case, an appropriate sequence of deformations of the RH problem is
the same as in the case of the SW equation, so we will follow it giving details mainly for items
specific to the considered equation.

The deformations involve the removal of the diagonal factor in (5.9) and the consequent
absorption of the triangular factors, leading, after an appropriate rescaling, to a model RH
problem on a contour consisting of two crosses centered at k = ±κ̂, see [2, 4], which finally leads

to the asymptotics in the form of modulated decaying (of the order O(t−1/2)) oscillations. The

diagonal term is removed introducing M̂ (1) = M̂δ−σ3 , where

δ(k; ζ̂) = exp

{
1

2πi

(∫ −κ̂

−∞
+

∫ ∞

κ̂

)
log(1 + |r(s)|2) ds

s− k

}
. (5.10)

solves the scalar RH problem whose jump condition is

δ+ = δ−(1 + |r(k)|2)
across the contour (−∞,−κ̂) ∪ (κ̂,∞).

The triangular factors are absorbed into the RH problem for M̂ (2):

M̂ (2) =





M̂ (1)

(
1 0

−rδ−2e2itθ 1

)
, Im k > 0, k near (−κ̂, κ̂),

M̂ (1)

(
1 − r̄

1−|r|2
δ2+e

−2itθ

0 1

)
, Im k > 0, k near R \ [−κ̂, κ̂],

M̂ (1)

(
1 r̄δ2e−2itθ

0 1

)
, Im k < 0, k near (−κ̂, κ̂),

M̂ (1)

(
1 0

r
1−|r|2

δ−2
− e2itθ 1

)
, Im k < 0, k near R \ [−κ̂, κ̂].

(5.11)

Now, in order to reduce the RH problem for M̂ (2), as t → ∞, to a model problem whose
solution can be given explicitly in terms of parabolic cylinder functions, see [15, 4, 22, 21], the

leading term of the factor δ(k)e−itθ(k) as k → ±κ̂ is to be evaluated. One has

δ(k) =

(
κ̂− k

κ̂+ k

)−ih

eχ(k) (5.12)

with

h ≡ h(κ̂) = − 1

2π
log
(
1 + |r(κ̂)|2

)
, (5.13)

χ(k) =
1

2πi

∫

R\[−κ̂,κ̂]

log(1 + |r(s)|2)
log(1 + |r(κ̂)|2)

ds

s− k
. (5.14)

As k → −κ̂,
θ(k) =

1

2κ̂
+

1

4κ̂3
(k + κ̂)2 +O((k + κ̂)3). (5.15)

Therefore, introducing the scaled spectral variable k̂ by

k + κ̂ =
k̂√
κ̂−3t

, (5.16)

the factor δ2(k)e−2itθ(k) can be approximated as

δ2(k)e−2itθ(k) ≈ δ̃2k̂2ihe−ik̂2/2, (5.17)

where

δ̃2 =

(
4t

κ̂

)−ih

e−
it
κ̂ e−2χ(κ̂). (5.18)

Similarly for k near κ̂.
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Following [22], the solution of the RH problem for M̂ (2) formulated on two crosses centered

at k = ±κ̂ with the jump matrix Ĵ (2) = (M̂
(2)
− )−1M̂

(2)
+ that follows from (5.11), can be approxi-

mated, for large t, in terms of the solution mX of the model problem formulated in the k̂-plane
on a cross centered at k̂ = 0 and evaluated for large k̂. In our case, the evaluation of the model
problem is given by (5.4), (5.5) with q = r(−k̂) and h as in (5.13). Taking into account that we

are interested in the expansion of M̂ (2)(k) as k → 0, a reasoning similar to [22, Eqs (2.36)–(2-39)]

leads to an approximation for M̂ (2)(k) in terms of mX :

M̂ (2)(k) = I +
1

π
Im

∫

|k+κ̂|=ρ
(m−1

0 (s)− I)
ds

s

+
k

iπ
Re

∫

|k+κ̂|=ρ
(m−1

0 (s)− I)
ds

s2
+O(k2t−1/2−ε) (5.19)

with some ρ > 0 and ε > 0, where

m0(k) = δ̃σ3mX

(
ζ̂ ,

√
t

κ̂3
(k + κ̂)

)
δ̃−σ3 .

In view of (5.4) and (5.16), and for large t,

m0(k) = I +
i
√
κ̂3√

t(k + κ̂)

(
0 −βX δ̃2

−β̄X δ̃−2 0

)
+O(t−1/2−ε). (5.20)

Now recall that M̂ = M̂ (1)δσ3 and that M̂ (1) is related to M̂ (2) by (5.11), where r(k) = O(k2).

Evaluating δ(k; ζ̂) as k → 0 gives

δ(k; ζ̂) = 1− ikQ+O(k2),

where

Q =
1

π

∫ ∞

κ̂

log(1 + |r(s)|2)
s2

ds.

Taking this into account and substituting (5.20) into (5.19), one obtains

M̂(k) = I +
c1√
t

(
0 1
−1 0

)
+ ik

(
−Qσ3 +

Qc1 + c2√
t

(
0 1
1 0

))
+O(k2t−1/2−ε),

where

c1 = 2
√
κ̂ Im{βX δ̃2}, c2 =

2√
κ̂
Re{βX δ̃2}.

Finally, using (3.24b)–(3.24d) one arrives at the asymptotic formulas

û =
c2√
t
(1 + o(1)), x− x̂ = Q(1 + o(1)), t→ ∞,

which imply the asymptotics for u in the original variables:

u(x, t) = 2

√
|h(κ)|
κ t

cos

{
t

κ
+ h(κ) log t+ φ0(κ)

}
, (5.21)

where

κ =
1

2

√
t

|x| (5.22)

and

φ0(κ) = −π
4
− arg(r(κ))− arg Γ(ih(κ)) +

1

π

∫

R\[−κ,κ]
log |k − s|d log(1 + |r(s)|2)

+
2κ

π

∫ ∞

κ

log(1 + |r(s)|2)
s2

ds+ h(κ) log
4

κ
. (5.23)



18 A. BOUTET DE MONVEL, D. SHEPELSKY, AND L. ZIELINSKI

Theorem 5.1 (solitonless asymptotics). Let u(x, t) be the solution of the Cauchy problem (1.7).
Assume that the spectral function a(k) constructed from u0(x) has no zeros in the upper half-
plane. Then the behavior of u as t → ∞ is described as follows. Let ε be any small positive
number.

(i) In the domain ζ ≡ x/t > ε, u(x, t) tends to 0 with fast decay.

(ii) In the domain ζ ≡ x/t < −ε, u(x, t) exhibits decaying (of the order O(t−1/2)) modulated

oscillations given by (5.21), where h(κ) and φ0(κ) are functions of κ = 1/(2
√

|ζ|) given
in terms of the associated reflection coefficient r(k); in particular, by (5.13) and (5.23)

h(κ) = − 1

2π
log
(
1 + |r(κ)|2

)
. (5.24)

For completeness, we present also the asymptotics in the soliton case.

Theorem 5.2 (soliton asymptotics). Assume that a(k) has N = 2n +m simple zeros

{kj}n1 ∪ {−k̄j}n1 ∪ {iνj}m1 ,
where µj := Re kj > 0, νj := Im kj > 0. Assume also that if µ2j + ν2j 6= µ2l + ν2l if j 6= l. Then:

(i) For ε > 0 sufficiently small, the asymptotics of u in each sector

∣∣∣∣
x
t +

1
4(µ2

j+ν2j )

∣∣∣∣ < ε is given

by

u(x, t) = uj(x, t) + O(t−1/2),

where uj is given, parametrically, as follows:
a) If µj = 0, then uj is given by (4.5) with ν replaced by νj and φ replaced by

φj = 2νj x̂+
t

2νj
+ φ0j .

If µj 6= 0, then uj is given by (4.9), with µ, ν, φ, and ψ replaced respectively by µj , νj,

φj = 2νjx̂+
νjt

2(µ2j + ν2j )
+ φ0j , ψj = 2µjx̂− µjt

2(µ2j + ν2j )
+ ψ0

j .

Here φ0j and ψ0
j are constants determined by the scattering data {r(k), k ∈ R; {kj , γj}N1 }.

(ii) Outside these sectors, u(x, t) = O(t−1/2).

Remark 5.3. The asymptotic results presented above imply the following.

a) In the solitonless case as well as in the case when all the zeros kj of a(k) are located outside the

sector
∣∣∣ Im kj
Re kj

∣∣∣ ≥ tan π
8 , there exists T > 0 such that for all t > T , the solution of the Cauchy

problem (1.7) is a smooth classical solution (possibly after passing through wave breakings).

b) A sufficient condition for wave breaking: If a(k) has a zero k∗ in the sector
∣∣ Im k∗

Re k∗

∣∣ ≥ tan π
8 ,

then wave breaking occurs at a certain finite time.
Notice that another sufficient condition for finite time wave breaking has been obtained in

[23] using the method of characteristics and conserved quantities.

Remark 5.4. The asymptotic formula presented in Theorem 5.1 improves the asymptotics ob-
tained in [20] and [26] by using different methods (not relying on the integrability of the SP
equation).
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