An Energy Efficient Multi-Rail Architecture for Stochastic Computing: A Bayesian Sensor Fusion Case Study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

An Energy Efficient Multi-Rail Architecture for Stochastic Computing: A Bayesian Sensor Fusion Case Study

Abdelkarim Cherkaoui
  • Fonction : Auteur
  • PersonId : 919817
  • IdRef : 186378637
Raphael Laurent
  • Fonction : Auteur

Résumé

Recently, Stochastic Computing has sparked interest in Bayesian inference resolution for its promising efficiency in area and power consumption. This representation encodes values by the rate of bits at '1’ in a bit-stream. Still, in a sequential  architecture, most of the energy cost is due to the long computation time required for achieving a  satisfying accuracy. In this paper, we propose a multi-rail architecture for Bayesian sensor fusion problems based on a Shift Register Isolator and permutations in order to reduce the computation time and thus, the energy consumption, without a significant increase in area. Indeed, with this resource sharing strategy, we are able to reduce the energy consumption by up to 73% in return for an area overhead of 24%, while  maintaining the computation accuracy.

Fichier principal
Vignette du fichier
ICECS2021-modif.pdf (236.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03662362 , version 1 (09-05-2022)

Licence

Identifiants

Citer

Jérémy Belot, Abdelkarim Cherkaoui, Raphael Laurent, Laurent Fesquet. An Energy Efficient Multi-Rail Architecture for Stochastic Computing: A Bayesian Sensor Fusion Case Study. 28th IEEE International Conference on Electronics Circuits and Systems (ICECS 2021), Nov 2021, Dubai, United Arab Emirates. ⟨10.1109/ICECS53924.2021.9665535⟩. ⟨hal-03662362⟩

Collections

UGA CNRS TIMA
29 Consultations
52 Téléchargements

Altmetric

Partager

More