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ABSTRACT
In this workwe aim to design a steganographic scheme undetectable
by the Reverse JPEG Compatibility Attack (RJCA). The RJCA, while
only effective for JPEG images compressed with quality factors 99
and 100, was shown to work mainly due to change in variance of
the rounding errors after decompression of the DCT coefficients,
which is induced by embedding changes incompatible with the
JPEG format. One remedy to preserve the aforementioned format is
utilizing during the embedding the rounding errors created during
the JPEG compression, but no steganographic method is known to
be resilient to RJCAwithout this knowledge. Inspecting the effect of
embedding changes on both variance and mean of decompression
rounding errors, we propose a steganographic method allowing
resistance against RJCA without any side-information. To reach
this goal, we propose a distortion metric making all embedding
changes within a DCT block dependent, resulting in a lattice-based
embedding. Then it turns out it is enough to cleverly pick the side of
the (binary) embedding changes through inspection of their effect
on the variance of decompression rounding errors and simply use
constant costs in order to enforce their sparsity across DCT blocks.
To increase security against detectors in the spatial (pixel) domain,
we show an easy way of combining the proposed methodology
with steganography designed for spatial domain security, further
improving the undetectability for quality factor 99. The improve-
ments over existing non-informed steganography are up to 40% in
terms of detector’s accuracy.
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1 INTRODUCTION
Steganalysis, the art of detecting hidden information in digital
images, has been in the past dominated with machine learning
classifiers. Because of the high dimensionality images provide, high
dimensional features are typically computed from the images and
these features are then fed into the classifiers. Such features in-
clude JRM [24], DCTR [20], and GFR [28] in the JPEG domain, and
SRM [17] in the spatial domain. With the increase of deep learning
over the last decade, the steganalysis is lately mainly performed
with Convolutional Neural Networks (CNNs) because of their in-
credible performance in the pixel (spatial) domain. Some of the
early CNNs specifically designed for steganalysis of images include
YeNet [31], XuNet [30], Yedroudj-Net [32], and SRNet [5]. However,
during the recent ALASKA steganalysis competitions, it was shown
that CNNs designed for different computer vision tasks can also be
very successful in detecting steganography [9, 11, 12, 33, 34].

Another, more statistical approach to steganalysis aims to build a
robust stochastic model for cover or stego image elements. Steganal-
ysis is then performed by observing changes to these underlying
models. One of the latest findings of statistical JPEG steganalysis,
the so-called Reverse JPEG Compatibility Attack (RJCA) [6, 10],
uses rounding errors of decompressed pixels for detecting even
very slight modifications. It was shown that these rounding errors
can be approximated by a Gaussian distribution wrapped between
values −1/2 and 1/2 with zero mean and some variance, while the
variance grows rapidly by doing any modification on the original
DCT coefficients. This increase of variance can be thus used for
a reliable detection. Unfortunately, the variance also depends on
the quantization matrix used for the JPEG compression, therefore
the attack is limited only to the highest quality factors, where the
quantization matrices still contain mainly ones. Nevertheless, the
attack is extremely accurate and can detect with accuracy above
99% even very short secret messages. While the detection can be
somewhat avoided for small payloads with the knowledge of side-
information in form of the DCT rounding errors, to the best of our
knowledge there is not a steganographic method effective against
RJCA that does not use side-information.

In this paper, we design an embedding scheme that preserves
the variance of spatial domain rounding errors and through exper-
imentation we verify that this indeed leads to a more successful
deception of the RJCA. However, since the embedding costs of this
method do not consider distortion created in the pixel domain, the
detection of this method at quality factor 99 can be more reliable
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Figure 1: Probability density function of the Wrapped Gauss-
ian distribution N𝑊 (0, 𝑠) for different values of 𝑠.

by steganalyzing in the spatial domain. We show that this can be
limited by combining the proposed costs with other steganographic
costs designed for undetectability in the pixel domain.

The rest of the paper is organized as follows: Section 2 introduces
the notation, typical optimization problems of steganography and
the Reverse JPEG Compatibility Attack. In Section 3, we describe
the dataset and two types of detectors used to benchmark security.
The description of the proposed method follows in Section 4, which
is then evaluated in the rounding error domain as well as in spatial
domain. Finally, the paper is concluded in Section 5.

2 PRELIMINARIES
Boldface symbols are reserved formatrices and vectorswith element-
wise multiplication and division denoted ⊙ and ⊘. Rounding 𝑥 to
the closest integer is denoted [𝑥]. The set of all integers will be
denoted Z. For better readability, we strictly use 𝑖, 𝑗 to index pixels
and 𝑘, 𝑙 to index DCT coefficients. Denoting by 𝑥𝑖 𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 7, an
8×8 block of pixels, they are transformed during JPEG compression
to DCT coefficients

𝑑𝑘𝑙 = DCT𝑘𝑙 (x) =
7∑︁

𝑖, 𝑗=0
𝑓
𝑖 𝑗

𝑘𝑙
𝑥𝑖 𝑗 , 0 ≤ 𝑘, 𝑙 ≤ 7,

and then quantized 𝑐𝑘𝑙 = [𝑑𝑘𝑙/𝑞𝑘𝑙 ], 𝑐𝑘𝑙 ∈ {−1024, . . . , 1023}, where
𝑞𝑘𝑙 are quantization steps in a luminance quantization matrix, and

𝑓
𝑖 𝑗

𝑘𝑙
= 𝑤𝑘𝑤𝑙/4 cos𝜋𝑘 (2𝑖 + 1)/16 cos𝜋𝑙 (2 𝑗 + 1)/16,

𝑤0 = 1/
√
2,𝑤𝑘 = 1, 0 < 𝑘 ≤ 7, are the discrete cosines.

During decompression, the above steps are reversed. For a block
of quantized DCTs 𝑐𝑘𝑙 , the corresponding block of non-rounded
pixels after decompression is

𝑦𝑖 𝑗 = DCT−1𝑖 𝑗 (c ⊙ q) ≜
7∑︁

𝑘,𝑙=0
𝑓
𝑖 𝑗

𝑘𝑙
𝑞𝑘𝑙𝑐𝑘𝑙 , 𝑦𝑖 𝑗 ∈ R.

To obtain the final decompressed image, 𝑦𝑖 𝑗 are rounded to integers
𝑥𝑖 𝑗 = [𝑦𝑖 𝑗 ]. The spatial domain rounding errors, which are the main
focus of this work, are 𝑒𝑖 𝑗 = 𝑦𝑖 𝑗 − 𝑥𝑖 𝑗 and we will often refer to this
representation as the error domain.

2.1 Embedding Strategies
In today’s content-adaptive steganography, two main approaches
for determining optimal change rates are used. First, the most pop-
ular strategy tries to minimize an expected distortion∑︁

𝑖

𝛽+𝑖 𝜌
+
𝑖 + 𝛽−𝑖 𝜌

−
𝑖 , (1)

such that we communicate the desired relative payload 𝛼 in
bpnzac (bits per non-zero AC DCT coefficient):∑︁

𝑖

𝐻3 (𝛽+𝑖 , 𝛽
−
𝑖 ) = 𝛼, (2)

where 𝐻3 (𝛽+, 𝛽−) is the ternary entropy function,

𝐻3 (𝛽+, 𝛽−) = −(1−𝛽+−𝛽−) log(1−𝛽+−𝛽−)−𝛽+ log 𝛽+−𝛽− log 𝛽−,

𝛽±
𝑖
and 𝜌±

𝑖
are change rates and embedding costs of changing the

𝑖-th pixel/DCT coefficient by ±1. Such optimization problem is used
inmany popular steganographic schemes, such as J-UNIWARD [21],
UERD [19], in JPEG domain, and HILL [25], S-UNIWARD [21] in
spatial domain. Note that typically these steganographic algorithms
yield symmetric costs, 𝜌+

𝑖
= 𝜌−

𝑖
, which inherently leads to sym-

metric change rates 𝛽+
𝑖
= 𝛽−

𝑖
. This is a potential drawback of such

schemes, because it was shown many times that asymmetric costs
can produce better security [2–4, 29].

Interestingly, Ker et al. [23] argued that the embedder should
minimize an alternative distortion∑︁

𝑖

𝛽2𝑖 𝜌𝑖 , (3)

where 𝛽𝑖 is a (symmetric) probability of changing the 𝑖-th cover
element by +1 or -1. However they showed that minimizing this
quantity with heuristically designed costs is more detectable than
using the linear distortion (1). In [7], it was claimed that this un-
expected behavior is most likely due to the fact that the distortion
costs are closely related to statistical detectability only for some
fixed ’design’ payload.

The other possible method of embedding is minimizing a quan-
tity related to statistical detectability, which usually boils down
to minimizing a deflection coefficient 𝛿 =

∑
𝑖 𝛽

2
𝑖
𝐼𝑖 ,where 𝐼𝑖 is the

steganographic Fisher information [15, 22], while using the same
payload constraint (2). Such optimization can be found for example
in MiPOD [27] or its JPEG version J-MiPOD [13].

This, obviously, can be thought of as using the Fisher information
as a cost in (3). Since we aim in this work at avoiding RJCA by
changing some basic statistical features of the images, we consider
both distortion functions (1), (3) when designing a steganographic
scheme in Section 4, as there is a reason to believe the distortion
we are going to measure is closely linked to statistical detectability.

Note that to quickly minimize equation (3) for binary embedding
with the payload constraint∑︁

𝑖

𝐻2 (𝛽𝑖 ) = 𝛼,

where 𝐻2 (𝛽) = 𝐻3 (𝛽𝑖 , 0) is the binary entropy function, a solution
is found using the method of Lagrange multipliers. That requires
solving for every DCT coefficient

𝛽𝑖𝜌𝑖 = 𝜆 log
1 − 𝛽𝑖

𝛽𝑖
∀𝑖 .
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Figure 2: Profiles of the tested cost functions.

This we can solve numerically with a look-up table and a binary
search over the Lagrange multiplier 𝜆 > 0. Details of this optimiza-
tion can be found in [18], where the optimization is done for ternary
embedding. Note that the only difference compared to the ternary
optimization proposed in [18] (Section 4), is tabulating the inverse
function to 𝑦 = 𝑥 log(𝑥 − 1) instead of 𝑦 = 𝑥 log(𝑥 − 2).

2.2 RJCA
Since the main goal of this paper is countering the power of the
RJCA, we first recall in here the statistical models in the error
domain that were derived in the original publication. For 𝑋 ∼
N(𝜇, 𝑠) with 𝜇 ∈ Z, the rounding error 𝑋 − [𝑋 ] follows a Wrapped
Gaussian distribution 𝑋 − [𝑋 ] ∼ N𝑊 (0, 𝑠), where the probability
density function (pdf) 𝜈 (𝑥 ; 𝑠) of the Wrapped Gaussian is given by

𝜈 (𝑥 ; 𝑠) = 1
√
2𝜋𝑠

∑︁
𝑛∈Z

exp
(
− (𝑥 + 𝑛)2

2𝑠

)
, (4)

with −1/2 ≤ 𝑥 < 1/2. We would like to point out that the variance
𝑠 is variance of the underlying Gaussian distribution before folding
into interval [−1/2, 1/2). If one was to compute the variance of the
Wrapped Gaussian distribution, it would be smaller than the origi-
nal variance 𝑠 , due to the folding. For simplicity, in the following
equations we only use the variance of the Gaussian before folding,
as it is easier to use in the pdf (4).

It was shown [6] that the rounding errors 𝑒𝑖 𝑗 of a cover image
follow a Wrapped Gaussian distribution

𝑒𝑖 𝑗 ∼ N𝑊 (0, 𝑠𝑖 𝑗 ),
with variance of the Gaussian ditribution before folding

𝑠𝑖 𝑗 =
1
12

7∑︁
𝑘,𝑙=0

(𝑓 𝑖 𝑗
𝑘𝑙
)2𝑞2

𝑘𝑙
.

It is straightforward to verify that for standard quantization
matrix at QF 99, these variances range between 0.105 and 0.204,
while for QF 100, the variances are exactly 1/12 for every 𝑖, 𝑗 =

0, . . . 7, because the DCT transform is an orthonormal basis and all
the quantization steps are equal to 1. We can see the impact of the
variance of on Wrapped Gaussian distribution in Figure 1, where
we show its probability density function for different variances. We

see a clear evolution towards uniform distribution with increasing
variances. This is important, because it was also shown that the
rounding errors 𝑒 (𝑆)

𝑖 𝑗
of stego images follow the Wrapped Gaussian

distribution with increased variance

𝑒
(𝑆)
𝑖 𝑗

∼ N𝑊 (0, 𝑠𝑖 𝑗 + 𝑟𝑖 𝑗 ),
where the increase of variance depends on the size of the secret

message:

𝑟𝑖 𝑗 =

7∑︁
𝑘,𝑙=0

(𝑓 𝑖 𝑗
𝑘𝑙
)2𝑞2

𝑘𝑙
(𝛽+

𝑘𝑙
+ 𝛽−

𝑘𝑙
).

To derive these models, two main assumptions were made. First,
the rounding errors in the DCT domain are mutually independent
and follow uniform distribution between −1/2 and 1/2, which is
in many cases a reasonable assumption. Second, it was assumed
that the embedding changes are mutually independent and also
independent of the DCT rounding errors. While we cannot do
anything about the first assumptions, since from a given JPEG
image, we cannot reconstruct the DCT rounding errors, we can
violate the second assumption in order to make the impact on
variance smaller. This we target in Section 4.1.1.

3 BENCHMARKING SETUP
This section describes the datasets as well as the detectors used
for evaluating security. These datasets are used in Section 4 to
progressively adjust the embedding costs with a feedback from the
deep learning detectors.

3.1 Dataset
To experimentally verify our results, we chose the popular BOSS-
base 1.01 [1] dataset, consisting of 10, 000 uncompressed, grayscale
images of size 512 × 512. The dataset is then randomly split into
training, validation, and testing sets of sizes 7, 000, 1, 000, and 2, 000
respectively. Finally, all the images are JPEG compressed using
Python3 library PIL with quality factors (QFs) 99 and 100. We then
embedded the images with various payloads using J-UNIWARD,
SI-UNIWARD [21], and the proposed method called SVP (Spatial
Variance Preserving), described in Section 4. The results of SI-
UNIWARD are only included as the steganographer’s best scenario
and should not be directly compared to non-informed SVP. Note
that in order to compute the side-information for SI-UNIWARD, we
cannot compress the images with PIL, so instead we compressed
the images manually with Scipy package. 1

3.2 Detectors
For evaluation of the steganographic security, we use two types of
detectors. First is EfficientNet-B0 [26], initialized with weights pre-
trained on the ImageNet dataset [14]. This detector is then trained in
the error domain 𝑒𝑖 𝑗 , and is thus denoted as e-B0, similarly as in [6].
The second detector we use, in order to verify that our method
does not introduce detectable artifacts in the pixel domain, is the
JIN-SRNet [8] - SRNet [5] pre-trained on ImageNet embedded with
J-UNIWARD. Since pre-training of both detectors is executed on
1The compression and SVP embedding scripts are available at
https://janbutora.github.io/downloads/

https://janbutora.github.io/downloads/
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Binary Ternary Quadratic
SVP (10) 0.9913 0.9995 0.9825
SVP (10)-L 0.9995 0.9998 0.9793
SVP (11) 0.8770 0.9870 0.8993
SVP (11)-L 0.8726 0.9695 0.8631
SVP (12)-L 0.9305 0.9395 0.9125
SVP (13)-L 0.8673 0.9595 0.8780
SVP (14)-L 0.8733 0.9448 0.8891
Constant-L 0.8431 0.9885 0.8431

JUNI N/A 0.9980 N/A
SI-UNI 0.6887 0.6859 N/A

Table 1: Accuracy with e-B0 at 0.05 bpnzac. L means that
lattices were used for embedding.

color images, they expect three-channel inputs. Thus, we simply
replicated the grayscale representation in all three 𝑅𝐺𝐵 channels
before feeding the images into the networks. Both detectors were
using mixed precision training with 32 images in every mini-batch
and OneCycle learning rate (LR) scheduler with maximum LR 10−3
at epoch 3. The JIN-SRNet was trained for 50 epochs, while e-B0
only for 15 epochs. Rest of the hyperparameters was kept as in [8],
Section 3.2.1. Because the detectability in spatial domain is typically
much smaller than in the error domain, we use larger payloads for
the spatial domain detector.

4 SPATIAL VARIANCE PRESERVING
We have seen in Section 2.2 that typical steganography increases
variance of the Wrapped Gaussian distribution which the rounding
errors 𝑒𝑖 𝑗 follow. Figure 1 shows that increasing the variance by
even very small amounts rapidly changes the distribution towards
uniform. On the other hand, it is easy to realize that decreasing
the variance would lead to much narrower distribution, basically
Gaussian distribution with small variance (almost not affected by
folding). The proposed method which we call Spatial Variance Pre-
serving (SVP) therefore aims, as the name suggests, at preserving
the variance of (spatial) rounding errors 𝑒𝑖 𝑗 in every 8 × 8 block.

Let 1𝑘𝑙 denote an 8 × 8 block of zeros, where there is a 1 in the
DCT mode (𝑘, 𝑙) and z𝑘𝑙 the pixel block (after decompression) of a
stego image embedded with 𝜼𝑘𝑙

z(𝜼𝑘𝑙 ) = DCT−1 ((c + 𝜼𝑘𝑙 ) ⊙ q), (5)

where 𝜼𝑘𝑙 ∈ {−1𝑘𝑙 , 1𝑘𝑙 }. Having e - the block of rounding errors
of the cover image, denote e(𝜼𝑘𝑙 ) - the block of rounding errors
after embedding 𝜼𝑘𝑙 into the DCT coefficients:

e = y − [y], (6)
e(𝜼𝑘𝑙 ) = z(𝜼𝑘𝑙 ) − [z(𝜼𝑘𝑙 )] . (7)

The variance of cover and stego spatial rounding errors will be
denoted as 𝜎 = Var[e] and 𝜎 (𝜼𝑘𝑙 ) = Var[e(𝜼𝑘𝑙 )]. Let

Δ𝑘𝑙 (𝜂) = |𝜎 − 𝜎 (𝜼𝑘𝑙 ) |, (8)
denote the change in variance of a block of rounding errors

when changing the DCT coefficient in mode (𝑘, 𝑙) by 𝜂 ∈ {−1, +1}.
After inspecting Δ𝑘𝑙 (𝜂) for every value of 𝜂, we fix the embedding

polarity in order to preserve the cover variance as closely as possible,
by only allowing a change

Δ𝑘𝑙 = min𝜂Δ𝑘𝑙 (𝜂). (9)
Based on (9), we argue that in order to preserve the variance as

much as possible, we should avoid making the embedding changes
in the opposite direction. While we do not necessarily need to
binarize the embedding scheme, allowing ternary embedding results
in making embedding changes that modify the variance too much
and we can see in Section 4.1 that this leads to severe security
deterioration. The ternary embedding that we use for this method
implicitly uses asymmetric costs driven by distortions Δ𝑘𝑙 (−1) and
Δ𝑘𝑙 (+1).

4.1 Error Domain Distortion
Having some basic measure of the embedding distortion (9), we
investigated several non-linear transformations of it, as there is
no theoretical evidence that our distortion metric is optimal. We
considered five transformations as the final embedding costs:

𝜌
(1)
𝑘𝑙

= Δ𝑘𝑙 , (10)

𝜌
(2)
𝑘𝑙

= exp(Δ𝑘𝑙 ), (11)

= 𝑛
√︁
Δ𝑘𝑙 , (12)

= exp( 𝑛
√︁
Δ𝑘𝑙 ), (13)

= exp
(

−1
log10 Δ𝑘𝑙

)
. (14)

Note that for ternary embedding, we would use Δ𝑘𝑙 (±1) instead of
Δ𝑘𝑙 . These cost functions are visualized in Figure 2. Notice that the
x-axis is in log-scale and only goes to 0.1, because the distortion
we can introduce is upper bounded by the value 1/12, since this is
the variance of a uniform noise, which is the limiting case for the
wrapped Gaussian distribution [6]. During our security evaluation,
we found that 𝑛 = 16 was performing the best and for this reason,
it was kept at this value.

As mentioned in Section 2.1, we implemented three versions
for every cost function under investigation. We minimized the
linear distortion (1) with ternary and binary embedding, where
the binary case only allows embedding changes given by Δ𝑘𝑙 . The
third approach we tested minimizes the quadratic distortion (3)
with the binary embedding only. These three embedding strategies
will be referred to as binary, ternary, and quadratic. To establish
which embedding policy performs the best, we conduct following
tests only for images compressed with QF 100 embedded with fixed
payload 0.05 bpnzac.

4.1.1 Dependence of Embedding Changes. Because changing one
DCT coefficient in an 8× 8 block affects every pixel in the block, we
cannot simply compute every embedding cost from the cover image,
because the distortions (8) created by the embedding changes are
not independent. To verify this, we computed all the costs from the
cover images at once, embedded the images in our database with
payload 0.05 bpnzac, and trained EfficientNet-B0 as explained in
Section 3.2. As expected, even the most secure embedding approach
was still very detectable, with accuracy 0.9825, see first row in
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compressed with QF 100. Only embedded blocks are considered. The number of bins is very small due to their sparsity. Kullback-
Leibler divergence 𝐷KL between cover and stego distributions is shown below every figure.

0.00 0.02 0.04 0.06 0.08 0.10
DKL=0.00174

0

2500

5000

7500

10000

12500

15000 SVP (10)
Cover

0.00 0.02 0.04 0.06 0.08 0.10
DKL=0.01896

0

2000

4000

6000

8000

10000

12000 SVP (11)
Cover

0.00 0.02 0.04 0.06 0.08 0.10
DKL=0.01876

0

2000

4000

6000

8000

10000

12000 Constant
Cover

0.00 0.02 0.04 0.06 0.08 0.10
DKL=0.33236

0

2000

4000

6000

8000

10000
J-UNI
Cover

0.00 0.02 0.04 0.06 0.08 0.10
DKL=0.00086

0

5000

10000

15000

20000

25000 SI-UNI
Cover

Figure 4: Histogram of per-block variances of errors Var[e] of different methods embedded at 0.05 bpnzac across 500 images
compressed with QF 100. Only embedded blocks are considered. Kullback-Leibler divergence 𝐷KL between cover and stego
distributions is shown below every figure.

Table 1. Instead, we implemented a lattice approach, in which we
divide the image into 64 non-overlapping lattices (one lattice per
DCT mode) and perform the embedding sequentially on randomly
selected lattice. Note that this is violating one of the assumptions
made in RJCA, as advertised in Section 2.2.

There is one potential issue with such an approach - how much
payload do we allocate to every lattice? To keep things simple,
we decided to test uniform payload across latices. Note that the

embedding can be implemented quite efficiently with parallel com-
putations, since the costs are computed on every block separately.
For every block, we only need to perform 2× 64 decompressions to
test all possible embedding configurations.2

Unfortunately, using lattices did not bring much of an improve-
ment to the security (see second row of Table 1). We hypothesize
that the costs are bad to begin with. We thus repeated these two

2During embedding of every lattice, only 2 possible embedding changes are considered.
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experiments with the exponential cost function (11). As can be seen
from Table 1, not only does taking the exponential of the value
Δ𝑘𝑙 increase the security by ∼ 10%, but using lattices during the
embedding brings additional noticeable improvement.

To verify that embedding the same payload into every lattice does
not increase detectability, we implemented the quadratic version of
the exponential costs (11), but this time we allocated the payload
based on J-UNIWARD change rates - for a given image, we would
compute optimal J-UNIWARD’s change rates 𝛽𝑖 and note down how
much payload gets embedded into every mode. The accuracy of this
method was 0.9008, which is 4% higher than with uniform payload
across lattices. This might be somewhat counter-intuitive, but it
should not be too surprising since the steganalysis is not performed
in the spatial domain (spatial domain steganalysis is investigated
in Section 4.2). To this end, we keep the uniform payload for the
rest of our experiments.

Now we are finally ready to compare different cost functions,
defined in equations (10)-(14), in terms of immunity against the
RJCA. In Table 1, we show the accuracy of correct classification,
when embedding different algorithms at 0.05 bpnzac. On one hand,
J-UNIWARD does not take the error domain into account at all,
hence it is detectable with almost 100% accuracy. On the other
hand, the side-informed SI-UNIWARD taking advantage of the
DCT rounding errors during embedding (breaking another RJCA’s
assumption), provides the best security. We can also distinctly see
that using ternary embedding makes the steganography muchmore
detectable, even though it decreases the amount of embedding
changes. This was also expectable, since ternary embedding allows
much bigger distortion of the rounding error variance. The most
naive way of using the impact on the rounding error variance (10)
is very detectable, but we can clearly observe that transforming
Δ𝑘𝑙 brings decent benefit in terms of security. Additionally, we
have already mentioned that using 64 non-overlapping lattices for
embedding, which introduces dependencies between embedding
changes, is providing better security.

4.1.2 Sparsity. In the end, the most secure among the tested func-
tions is the exponential (11). We believe that this is due to the
uniform profile of the cost function for very small values of Δ𝑘𝑙
(up to 10−2), which creates sparsity in the embedding changes,
meaning the embedding prefers making very few changes in every
DCT block. We would like to remind the reader that using constant
costs enforces sparsity, because minimizing (1) is equivalent to min-
imizing expected 𝐿1 distortion between the cover and stego image.
We think that embedding overly adaptive to the error variances
negatively impacts the mean of the block’s rounding errors, which
could lead to increased detectability. This makes intuitive sense,
because for RJCA, embedding changes were modeled as zero-mean
random variables, allowing us to detect steganography by inspect-
ing changes in variance, but obviously the zero-mean assumption
is wrong for a binary embedding performing many changes within
the same block. This is experimentally confirmed in Figures 3,4,
where we show histograms of empirical block means E[e] and vari-
ances Var[e]. As discussed, we see that the SVP methods preserve
the variances very nicely, but the means are modified much more
for the linear cost function (10). Of course this contributes to the
detectability, since CNNs focus on changes in both, variance and
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Figure 5: Accuracy with e-B0 (error domain) at payloads be-
tween 0.01 and 0.1 bpnzac. Top: QF 100, bottom: QF 99.

mean. Another interesting observation is that J-UNIWARD, the only
algorithm not dealing with any rounding errors, disrupts both mean
and variance. Lastly, even though SI-UNIWARD makes the most
embedding changes among the tested steganographic schemes3,
it perfectly preserves mean and variance in the error domain 𝑒𝑖 𝑗 ,
which we believe is the main reason of its superior security.

4.1.3 Pick your side. To verify that sparsity of embedding changes
(keeping the mean distortion low), as discussed in the previous
section, is more important than perfect variance preservation, we
implement one last cost function, namely the constant cost function

𝜌𝐶𝑖 = 𝑐, 𝑐 > 0. (15)
With these costs, we only have to pick the right side for the bi-

nary embedding changes, otherwise the embedding scheme would
of course be terribly detectable. As for all the previous methods,
we pick the side having smaller impact on the rounding error vari-
ance based on (9), while using the sequential embedding over the
64 lattices. Notice that minimizing the linear (1) and quadratic (3)
distortions with constant costs yields the same embedding proba-
bilities, so in this sense, the two embedding strategies are the same.
To verify that this embedding method preserves both mean and
variance of the rounding errors, we include it in Figures 4,3. Visually
and using the reported KL divergence in the figures, we can observe
that this method has a very similar impact on the histograms of
3This can be seen from the y-axis scale in Figures 3,4.
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Figure 6: Accuracy with JIN-SRNet (spatial domain) at pay-
loads between 0.05 and 0.4 bpnzac. Top: QF 100, bottom: QF
99.

rounding error mean and variance as the cost function (11). How-
ever, Table 1 show us that the constant costs are 2% more secure
against the RJCA, making it the most secure non-informed algo-
rithm available. One last interesting observation from Table 1 can
be made, the ternary version of this embedding method (having
symmetric costs) is detectable with almost 99% accuracy, verifying
that constant costs by themself are not a good idea, but picking the
right embedding polarity in a sequential way makes a huge impact
on security.

For the rest of the experiments, we only consider the constant
cost function (15) with embedding change polarities decided by (9),
as it provides the best security. For simplicity, we refer to this
method in the rest of this work simply as SVP. The results for QFs
100 and 99 with e-B0 are visualized in Figure 5. We can see large
security improvement compared to J-UNIWARD ranging between
6 − 40% for QF 100 and between 24 − 40% for QF 99 in terms of
accuracy. However, as advertised earlier, we have not considered
distortion in the spatial domain yet, thus we investigate this in the
following section.

4.2 Spatial Domain Distortion
To verify that the embedding changes of the proposed SVP scheme
do not create easily detectable artifacts in the spatial domain, we
train the JIN-pre-trained SRNet as explained in Section 3.2 across

various payloads. We can observe from Figure 6 that even though
the SVP method is only slightly more detectable at QF 100 than
J-UNIWARD, it is substantially more detectable at QF 99. Note this
does not imply that the SVP scheme would be overall less secure
than J-UNIWARD, because the spatial domain experiments were
performed on much larger payloads (for detector convergence rea-
sons). The very high detectability on QF 99 could be explained by
the fact that higher frequency DCT modes, having larger quan-
tization steps, introduce much more detectable distortion if the
embedding changes are not performed carefully. And this was in
fact not considered in the SVP method.

To fix this, we propose one of many possible remedies. Since
J-UNIWARD’s costs are well designed for the spatial domain dis-
tortion, we simply combined the SVP and J-UNIWARD’s costs. Let
𝜌𝑈
𝑘𝑙

be an embedding cost of SVP scheme and 𝜌 𝐽
𝑘𝑙

be corresponding
(symmetric) cost coming from J-UNIWARD. Then the resulting cost
𝜌
𝑈 ,𝐽

𝑘𝑙
can be computed as

𝜌
𝐶,𝐽

𝑘𝑙
= 𝜌𝐶

𝑘𝑙
· 𝜌 𝐽

𝑘𝑙
. (16)

Note that since 𝜌𝐶
𝑘𝑙

are all equal for every DCT coefficient, but only
allowing embedding changes causing the smaller distortion (9),
therefore we can view them as ternary costs of changing the DCT
coefficients by +1 or -1, where one of the costs is infinite (wet
cost [16]). Combining the costs in (16) thus leads to binarization of
the J-UNIWARD algorithm, since one of the costs stays unchanged,
while the cost of opposite direction gets updated to infinity. In
other words, we preserve the costs of J-UNIWARD, while only
allowing the changes in direction which better preserves the error
variance (9). Importantly, the embedding polarities are updated
after considering each lattice, while the costs 𝜌 𝐽

𝑘𝑙
are computed once

from the cover image, since recomputing J-UNIWARD costs for
every lattice would be extremely slow. Even though the linear and
quadratic embedding strategies are the same for SVP method, they
are not the same anymore in this situation. In our experiments we
tested both embedding strategies with the quadratic one performing
better, therefore it was used in the reported experiments. We will
refer to this embedding method as SVP-UNI. As can be seen from
Figure 6, modifying the costs in the proposed way does improve
security in the spatial domain. However, as a result, the scheme is
slightly more detectable in the error domain (see Figure 5).

4.3 Multi-Domain Steganalysis
For the last experiment we conduct in this paper, we would like to
remind the reader of what was observed in [6], specifically using
a 2-channel inputs for the network detector performs the best: 1
channel for the spatial rounding errors and the other channel for
decompressed pixels. Therefore we also tested this strategy in our
setting. We trained EfficientNet-B0 as explained in Section 3.2, but
we provide 2-channel input as we just described. This version of
the detector is denoted as eY-B0. To have the channels on a similar
scale, we divide the pixel channel by 255. Also, to make this com-
patible with the existing EfficientNet structure, we included a 1 × 1
convolution layer mapping 2 input dimensions into 3 dimensions
as a preprocessing step before entering the network. Because it
seems it is difficult for the network to figure out the relationship
between the two input channels for small payloads (network would
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Figure 7: Accuracy with eY-B0 (error+spatial domain) at pay-
loads between 0.01 and 0.4 bpnzac. Top: QF 100, bottom: QF
99.

not converge), we first train the eY-B0 on payload 0.2 bpnzac for
20 epochs and use curriculum training from the best checkpoint to
every other tested payload, while the curriculum training is stopped
after 15 epochs. As expected, this detector provides the best overall
results for all tested schemes and payloads, with the exception of
detecting SVP(-UNI) methods embedded with payloads below 0.05
bpnzac at QF 100, where the e-B0 provides higher detection. We
strongly believe that this is due to the preprocessing step we added
to the eY-B0 structure, which needs to be tuned longer from initial
random weights, and that longer training would make the eY-B0 at
least as efficient as the e-B0, but we do not include such experiments
due to limited time.

Surprisingly, the SVP method at QF 100 is for payloads above
0.05 bpnzac more secure than the side-informed SI-UNIWARD. This
phenomenon probably happens, because the embedding changes of
SI-UNIWARD are more correlated with spatial domain distortion,
thus making it more detectable in the error domain. To verify this,
we can observe the steep increase of detectability of SI-UNIWARD
at payload 0.1 bpnzac, QF 100 in Figure 5.

5 CONCLUSIONS
In this paper, we developed a steganographic method SVP (Spatial
Variance Preserving) able to resist the Reverse JPEG Compatibility
Attack (RJCA). We designed a distortion metric, which measures

disturbance in variance of spatial domain rounding errors caused
by embedding changes in the DCT domain. With such distortion
metric, we showed that allowing only binary instead of ternary em-
bedding changes lead to better security, because ternary embedding
can disturb the variances too much. Next, we gained even better se-
curity through allowing interactions between embedding changes.
This was achieved by splitting the image into 64 non-overlapping
lattices (one lattice per every DCT mode) and sequentially updating
the proposed distortion in every lattice. Then we have observed
that if we try to be overly adaptive to the error variance, we disturb
the mean of the errors, resulting in increased detectability. While
this can potentially be also addressed in the distortion metric, it
would require muchmore experimentation and is thus left for future
work. Instead we point out, that by imposing sparsity of embedding
changes, we can better preserve the mean of the rounding errors.
Based on this, constant costs were shown to provide best security,
as long as we pick the embedding change polarity with feedback
from the proposed distortion metric.

While the proposed method works reasonably well only at very
small payloads, such as 0.05 bpnzac, it is currently the best a
steganographer can do without side-informed steganography, but
we have seen that even with the side-information, security is greatly
limited by the payload size. The improvements over existing non-
informed steganography in terms of resistance against RJCA range
between 6-40% for quality factors 99 and 100. In spatial domain,
the proposed method is very detectable for quality factor 99. To
further improve the security in spatial domain, we show that bina-
rizing an existing embedding scheme with the feedback from the
proposed distortion metric achieves better security, even though it
results in slightly higher detectability in the error domain. Finally,
a multi-domain detector was tested, which suggests that keeping
the constant costs is more secure than combining with existing
steganography.

In our future work, we plan to investigate a statistical approach
for preserving the model of the rounding errors and its effect on
steganographic security. Since the side-informed steganography
provided the best security and kept the most accurate model of
the errors, we believe that knowledge of the side-information is
necessary while deriving the underlying model.
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