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Abstract

We present a lateral coupling method between one-dimensional (1D) and two-dimensional (2D)
shallow-water solvers dedicated to numerical simulation of river overflows. Both 1D and 2D models,
respectively in the river channel and in the floodplains, can be solved with implicit scheme in order
to limit computational cost. The 1D-2D exchange terms for mass and momentum between the river
and the floodplains are computed with an explicit solver of Riemann problem over a local area that
extends over the coupling interface. A distinctive feature of the approach is its flexibility in reusing
available computation codes of 1D and 2D shallow-water models as black-boxes. The proposed
method has been implemented with the integrated suite of solvers Telemac-Mascaret together with
the dynamical coupling software OpenPALM. Numerical validations with respect to an analytical
solution and experimental data as well as a first application for the historical 1981 flood event over
the Garonne River are presented. The results showed that the overflow discharge is well estimated
by the coupled model while it tends to underestimate the water height near the lateral boundaries.
For the real application case, reasonable agreement was found between the full 2D simulation and
the coupled model.

Keywords: shallow-water equations, lateral coupling, inundation simulation, river channel,
floodplain, finite volume, finite element, Telemac-Mascaret, OpenPALM

1. Introduction

Shallow-water models are widely used in the field of rivers and maritime hydraulics. These equa-
tions are derived from the Navier-Stokes equations for shallow-flows assuming hydrostatic pressure
and low variation in bathymetry. In the context of hydrodynamic modeling, the use of full two-
dimensional (2D) shallow-water equations is well adapted in areas where the behavior of flows is no
longer mono-dimensional, such as in confluence zones or floodplains. Nevertheless extensive use of
full 2D model for operational flood forecasting may be limited due to the lack of bathymetry data,
numerical difficulties in the case of steep slopes (e.g. by dyke system) and also due to computational
cost constraints.

Multi-dimensional coupling offers an appropriate solution with one-dimensional (1D) model
where the flow is nearly uni-directional and with local 2D models where needed. This solution
makes the most of the benefits of 1D models and allows for relevant representation of complex
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processes with 2D models. The computational cost of such coupling solution is significantly smaller
than that of a full 2D simulation, while maintaining better simulated hydraulic state than that of
the full 1D model, see. e.g. [3, 20, 16].

When the river overflows into its surrounding plains or, inversely, when the plains empty into
the river, lateral exchanges between the river and its floodplains occur. This situation can be
modeled either by a full 2D model or by a lateral coupling between 1D section-averaged shallow-
water equations in the river channel and 2D equations for the flow in the floodplain. This last
strategy allows to keep the advantages of each model in its respective sub-domain, and to optimize
the computation cost. Furthermore, it avoids the need of local 2D mesh refinement where strong
gradients in bathymetry occur; for instance dikes can be included within the 1D sub-domain.

Different coupling strategies adapted to overflowing simulations are reported in the literature
and can be classified into two main categories: overlapping and non-overlapping coupling. Pioneer
works by [9, 10, 17] present an overlapping strategy for which the 2D model is also solved in the river
channel. Such a coupling strategy remains subject to previously listed difficulties (dry zones, strong
gradient in bathymetry). In the non-overlapping coupling approach, 1D and 2D models are solved
separately over their respective sub-domain; the coupling is achieved via a prescription of boundary
fluxes for the 2D model, while injecting exchange terms of mass and momentum into the 1D model
as source terms. The estimation of these coupling quantities is based on the resolution of a 2D
Riemann problem at the lateral interfaces. This later coupling strategy succeeds in preserving some
required characteristics of a coupled solvers such as conservativity, positivity and well-balancing; it
is thus widely used [6, 13, 18, 19, 20, 7].

The proposed coupling algorithm follows non-overlapping approach and presents two major
advantages. First, it is non-intrusive to both 1D and 2D solvers. In the present work, the open
source integrated suite of solvers Telemac-Mascaret1 is used to solve the shallow-water equations
in 1D and 2D sub-domains; the 1D solver is based on a finite volume scheme and the 2D solver is
based on a linear finite element scheme [15]. Second, it is compatible with large-timestep often used
by implicit scheme of 2D solver. It means that no additional constraint on the Courant-Friedrichs-
Lewy (CFL) criteria is required by the coupling. Following the work from [13], an explicit solver of
2D local Riemann problem is used to compute the exchange terms between 1D and 2D sub-domains.
This procedure is confined to a local area covering the coupling interface – further called buffer zone.

The paper is organized as follows: Section 2 briefly recalls the 1D and 2D shallow-water equations
in order to formulate of the lateral coupling source terms in the framework of finite volume or finite
element schemes. Section 3 details the construction of the buffer zone and how it has been used in
the coupling algorithm. Implementation of the lateral coupling strategy for an academic test case,
is presented in Section 4. Validation and application of the proposed coupling to the historical 1981
flood event over the Garonne River are presented in Section 5. Conclusions and perspectives for
further improvements of the method are given in Section 6.

2. Overview on lateral coupling for shallow-water models

Let’s consider a free surface shallow-flows on a bathymetry featuring a river channel and its
surrounding floodplains, as represented in Fig. 1a. The river is delimited by left and right banks
represented with regular curves l(ξ) and r(ξ) where ξ is the hydraulic axis. More precisely, there
exists a curvilinear coordinates couple (ξ, ζ)(x, y) such that the center of the river corresponds to
the line ζ = 0, the left bank to the line ζ = l(ξ) and the right bank to the line ζ = r(ξ).

1http://www.opentelemac.org
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Figure 1: (a) Plan view for lateral coupling between the river and surrounding floodplains; (ξ, ζ) represents the system
of coordinates for the river. (b) Illustration of given data for the Riemann problem at the bank b(ξ).

Denoting Ω1D and Ω2D the sub-domains corresponding to the river (1D) and the floodplains
(2D), we define Γl,r the outward normal vectors to the left and right river banks of Ω1D:

Γl := Jξζ

( ∂l
∂ξ

−1

)
and Γr := Jξζ

(−∂r
∂ξ

1

)
with Jξζ :=

(
∂ξ
∂x

∂ζ
∂x

∂ξ
∂y

∂ζ
∂y

)
.

The 1D and 2D shallow-water models together with the principles of non-overlapping lateral coupling
are presented in the following.

2.1. 1D and 2D governing equations

Shallow-water equations are commonly used to describe the governing of shallow-flows on bathymetry
with small slopes. This system of equations can be derived by depth-integrating the Navier-Stokes
equations under the assumption of hydrostatic pressure. The conservative form of the 2D numerical
model reads:

∂V

∂t
+
∂Fx

∂x
+
∂Fy

∂y
= Sb + Sf (2.1)

where V(t, x) is the conservative variable and Fx(V) = (F ix)i=1,3, Fy(V) = (F iy)i=1,3 are the fluxes
defined as :

V :=

 h
hu
hv

 , Fx(V) :=

 hu

hu2 + gh2

2
huv

 , Fy(V) :=

 hv
huv

hv2 + gh2

2

 .

Here, h(t, x, y) stands for the water height, u(t, x, y) = (u, v) stands for the depth-averaged horizon-
tal velocity of the flow and g is the gravity constant. The source terms Sb and Sf on the right-hand
side of (2.1) describe the variation in bathymetry and the bed friction as

Sb(V, zb) :=

 0

−gh∂zb∂x
−gh∂zb∂y

 , Sf (V) :=

 0

−ghn2|u|u
h4/3

−ghn2|u|v
h4/3

 ,

where zb(x, y) represents the river bed elevation and n is the Manning friction coefficient.
Shallow-flow on floodplains is generally two-dimensional while the flow in the river channel is

rather uni-directional. Consequently, 1D modelling is relevant to describe the dynamics of river
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flows. Furthermore, a 1D model requires less geometry data and offers remarkable gains on compu-
tational resources compared with a full 2D simulation. Integrating the 2D equations (2.1) along a
cross-section, from left bank l(ξ) to right bank r(ξ), formulates the 1D shallow-water model along
the 1D hydraulic axis of the river – the curvilinear-axis ξ following the main direction of the flow.
More details on model derivation are found in [9, 10, 17]. The 1D equations read

∂W

∂t
+
∂G

∂ξ
= B−

∑
b={l,r}

Ob , (2.2)

where W(t, ξ) := (S,Q)> and G(ξ,W) are the state variables and the flux respectively. The
wetted area S of cross-section (also called hydraulic section [12]), the discharge Q in the river
channel direction nξ = ( ∂ξ∂x ,

∂ξ
∂y )> and the flux G are defined by

S :=

∫ r(ξ)

l(ξ)
h1D dζ, Q :=

∫ r(ξ)

l(ξ)
h1Du · nξ dζ, G(ξ,W) :=

(
Q

Q2

S + P (ξ, S)

)

with P (ξ, S) :=
g

2

∫ r(ξ)

l(ξ)
(h1D)2 dζ and h1D(ξ, ζ, S) := max (0, η(ξ, S)− z̃b(ξ, ζ)) .

The bathymetry is projected onto the local (ξ, ζ) space as z̃b(ξ, ζ) = zb

(
J−1ξζ

(
ξ
ζ

))
. The water

level η in the river is assumed to be constant over a cross-section; it is hence computed solving the
following inverse problem that involves the hydraulic section in the non-linear problem:

Find η(ξ, S) ∈ R such that

∫ r(ξ)

l(ξ)
max(0, η − z̃b) dζ = S.

In practice, the water level η and the pressure P are tabulated during an initialization step in order
to reduce the computational time.

The source term B reads

B(ξ,W) =

 0

−gSJ − g
∫ r(ξ)

l(ξ)
h1D

∂z̃b
∂ξ

dζ


and represents both the friction and the variation in the cross-sections. The expression of the 2D
friction law in the section-averaged framework leads to the source term

J(W) =
n2Q2

S2R
4/3
h

,

where Rh is the hydraulic radius, i.e. the ratio of hydraulic section and wetted perimeter of the
cross-section.

The remaining source terms Ob ∈ R2 of (2.2) stands for the lateral mass and momentum
exchanges between river and floodplains due to overflows as long as the water heights at the banks
are non-zero. In other words, it is the projection of 2D fluxes in the outward normal direction Γb
to the bank b, then oriented following the river. As stated in [13], Ob reformulates as

Ob =
(
Rξ

(
F(Vb)Γb

))1,2
, b ∈ {l, r} (2.3)
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where the notation (A)1,2 ∈ R2 stands for the two first components of the vector A ∈ R3. Here, Vb

is the 2D state variable evaluated at the river bank additionally, the rotation matrix Rξ towards
the river channel direction nξ and the flux F(V) are given by:

Rξ =

1 0 0

0 ∂ξ
∂x

∂ξ
∂y

0 − ∂ξ
∂y

∂ξ
∂x

 , F(V) =

F
1
x F 1

y

F 2
x F 2

y

F 3
x F 3

y

 .

2.2. Formulation of the conservative lateral coupling

With regard to the 2D model, the lateral coupling relies on the computation of the boundary
condition at the lateral 1D-2D interface, more precisely the 2D fluxes at the river banks. Solving the
2D Riemann problem along the 1D-2D interface is an adequate and natural way to do so, since this
approach directly inherits the conservation property of the finite volume method.In this context,
the overflow source term used in the 1D model is deduced from the 2D fluxes at the river banks.

The 2D Riemann problem depends on the 2D states (V1D
b , z1Db ) and (V2D

b , z2Db ) on each side
of the river bank, as illustrated on Fig. 1b. Consider a bank b ∈ {l, r}, one can directly define
(V2D

b , z2Db ) := (V, zb)(t, x, y) with (x, y) ∈ Ω2D ∩ b, i.e. the 2D hydraulic state and the bathymetry
of floodplain closing to the bank. Unfortunately, the state on the side of the river is not yet
clearly determined. The 1D hydraulic state is commonly set to z1Db (ξ) = z̃b(ξ, b(ξ)), i.e. the river
bathymethy at the bank and a reconstruction (ξ,W) 7→ V1D

b . Following [13], it reads

V1D
b (ξ,W) = R−1ξ h1Db

 1
Q
S
0

 (2.4)

where h1Db := h1D(ξ, b(ξ), S) is the water height at the bank. This simple transformation neglects
the local behaviors of flow near the bank the water level and the velocity at the bank are assumed
to be close to that of the cross section and the velocity at the bank is assumed to be oriented along
the hydraulic axis ξ of the river. More advanced transformation may be used, as proposed in [13]
based on the successive resolution of Riemann problems at the bank.

Next, the following inhomogeneous Riemann problem is solved to identify the solution Vb at
the interface b(ξ): 

∂V

∂t
+
∂Fx(V)

∂x
+
∂Fy(V)

∂y
= Sb(V, zb),

(V, zb)(0, x, y) =

{
(V1D

b , z1Db ) if |ζ(x, y)| < |b(ξ)|,
(V2D

b , z2Db ) otherwise.

(2.5)

Note that in (2.5), the friction source term from the full 2D system (2.1) was dropped, since it
does not contribute to the mass and momentum fluxes across the bank. Overflow source terms are
then computed using equation (2.3).

Nevertheless, the direct resolution for (2.5) is known to be costly; it is more practical to replace
the exact solution Vb by an approximate one usually called simple solver. In turn, exchanged mass
and momentum across the bank are estimated using an appropriate non-conservative numerical flux.
Several well-known numerical fluxes for 2D shallow-water model are used for practical applications.
We refer to [1] for a more detailed discussion. In the present work, the overflow source terms are
estimated using the homogeneous HLLC flux Fb, [26], augmented by a hydrostatic source term Sb,
[2]. Accordingly, the overflow source term Ob is estimated as:

Ob =
(
Rξ

(
Fb(V1D

b ,V2D
b ; Γb) + Sb(V2D

b ,V2D
b ; Γb)

))1,2
, (2.6)
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where the states V1D
b and V2D

b are computed from the hydrostatic reconstruction, Sb is derived by
balancing the flux gradient with the bathymetry term for hydrostatic equilibrium (see [2] for more
details)

V1D
b = (h, hu, hv)1Db with h1Db = max(0, h1Db + z1Db −max(z1Db , z2Db )),

V2D
b = (h, hu, hv)2Db with h2Db = max(0, h2Db + z2Db −max(z1Db , z2Db )),

Sb(V2D
b ,V2D

b ; Γb) =
(

0,−g
2

(h2 − h2)2Db Γb

)
. (2.7)

2.3. Finite volume discretization of the coupled 1D and 2D models

Estimating overflow source terms, which relies on solving Riemann problems, naturally leads to
the use of finite volume solvers for both 1D and 2D models. This kind of coupling method has been
widely adopted in recent works, see e.g. [6, 9, 18, 13]. For clarification purposes, let us briefly recall
the finite volume discretization of the coupled model.

Cj

Ω2D

Ω1D

l(ξ)

Γl

x
y

0

ξi+1/2 ξi+3/2ξi−3/2 ξi−1/2 ξ

Ωb

Ci

Figure 2: Sketch of river channel Ω1D and its left floodplain Ω2D discretized by 1D and 2D meshes respectively. The
shadow sub-domain Ωb ⊂ Ω2D stands for the buffer zone along the lateral boundary l(ξ) that will be used for our
coupling method.

The domain decomposition into Ω1D and Ω2D is presented in Fig. 2. T 1D denotes the 1D mesh
of the river channel, as a sequence of control volumes Ii = [ξi−1/2, ξi+1/2] with ξi+1/2 = ξi+ξi+1

2 for

i ∈ T 1D and ξi an increasing sequence of points along the curvilinear-axis. For each Ii, a function
pi(ζ), with l(ξi) ≤ ζ ≤ r(ξi), is used to represent the associated cross-section bathymetry of the
river. The floodplain is discretized over a 2D mesh, T 2D, constituted of polygonal control volumes
Cj for j ∈ T 2D. The resolution of the 2D mesh is usually much finer than that of the 1D in order to
solve more complex flow dynamics. As a consequence, a 1D cell Ii is most likely adjacent to several
2D cells Cj . Inversely, it could happen that a 2D cell might be adjacent to more than one cell
of the 1D mesh because the meshing procedures on the sub-domains Ω1D and Ω2D are performed
independently from each others.

Next, let us introduce a timestep, ∆t, assumed to be constant for simplicity purpose. Time
discretization is defined by providing an increasing time sequence tn ∈ R+. Volume-averaged
quantities of the solutions of 1D and 2D models at a time tn are respectively defined by

Wn
i =

1

|Ii|

∫
Ii

W(tn, ξ) dξ, Vn
j =

1

|Cj |

∫
Cj

V(tn, x, y) dx dy.
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Finite volume schemes aim to compute the updated states Wn+1
i and Vn+1

j at time tn+1 = tn + ∆t
from the given states Wn

i and Vn
j . Such a method is derived by integrating governing systems

(2.1) and (2.2) on the corresponding control volumes within the time interval [tn, tn+1]. In order
to preserve some relevant steady solutions of shallow-water equations (such a scheme is said well-
balanced), it would be preferred to perform the discretization of both flux and some well-chosen
source terms at cell’s interfaces [4, 14, 12, 2].

For the 1D model, the resulting finite volume scheme writes

Wn+1
i = Wn

i −
∆t

|Ii|
(
GLi+1/2 − GRi−1/2

)
− ∆t

|Ii|
∑
j∈L2Db,i

|bij |Oij (2.8)

where GRi−1/2 = GR(Wn
i−1,W

n
i ; pi−1, pi) and GLi+1/2 = GL(Wn

i ,W
n
i+1; pi, pi+1) approximate the flux

G(ξ,W) together with the contribution of the source term B(ξ,W) at the right- and left-sides of
the cell’s interfaces respectively, i.e. the quantities of mass and momentum entering and leaving the
control volume Ii during a timestep ∆t. See e.g. [12] for such an example of well-balanced scheme.
Lateral coupling between river and floodplains is accounted for by the last term in equation (2.8).
For each 1D control volume Ii, we denote by L2Db,i ⊂ T 2D the set 2D cells adjacent to Ii, |bij | the
length of corresponding lateral boundary. Finally, Oij stands for the lateral exchanges in mass and
momentum fluxes computed by (2.6) after solving the Riemann problem at the bank.

Performing in similar way, one can write the resulting finite volume scheme for 2D model as

Vn+1
j = Vn

j −
∆t

|Cj |
∑
i∈Ej
|eji|F(Vn

j ,V
n
i , zj , zi; nji) + ∆t Sf (Vn

j ,V
n+1
j )

+
∆t

|Cj |
∑
i∈L1Db,j

|bij |
(
Fb(V1D

i ,Vn
j ; Γb) + Sb(Vn

j ,V
n
j ; Γb)

)
,

(2.9)

where Ej denotes the set of internal and all non-lateral boundary edges of Cj ; the shorthand nota-
tion F(Vn

j ,V
n
i , zj , zi; nji) stands for a non conservative numerical flux (which includes bathymetry

source terms) leaving the control volume Cj through the face eji = Cj ∩ Ci and in outward direc-
tion nij . Friction term Sf (Vn

j ,V
n+1
j ) is usually approximated by a (semi-)implicit discretization in

order to avoid additional restriction on the timestep. It should be noted that the second right hand
term in (2.9) expresses the boundary condition between the 2D cell Cj and all neighboring 1D cells
denoted L1Db,j ⊂ T 1D. Let us notice that we find again the numerical flux Fb and the source term Sb
of equation (2.6) which formulate exactly Oij in (2.8), and therefore allows to couple the 1D and
2D models.

3. Lateral coupling strategy including buffer zone

Although lateral coupling methods employing (2.6), (2.8) and (2.9) are known to be straight-
forward and accurate, they suffer from two main limitations:

• first, both 1D and 2D schemes are derived in the framework of explicit finite volume methods.
This limits the ability to use solvers with finite different or finite element solvers. Furthermore,
implicit schemes are often used in engineering software for stability and performance purposes;

• second, the overall coupling procedure is restricted under a same timestep, ∆t, which could
become very severe due to the CFL condition imposed by the finite volume scheme. That is

∆t vmax
∆x2D

≤ 1, (3.1)
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where ∆x2D stands for the typical resolution of the 2D mesh, vmax expresses the largest wave
speed of Riemann problems at cell faces in the floodplains. As a consequence, fast overbank
flooding over complex bathymetry could lead to very small timestep, see e.g. [21].

In the following, a new coupling strategy will be presented that allows to overcome the afore-
mentioned difficulties. The present method relies on the definition of a buffer zone – a local domain
along the river banks – over which an explicit finite volume scheme is applied.

3.1. Buffer zone and exchange source terms

Along the lateral boundary b ∈ {l, r} between the river Ω1D and a floodplain Ω2D, we consider
a sub-domain Ωb ⊂ Ω2D called buffer zone. The key idea consists in only applying an explicit
scheme, such that (2.9), over Ωb in order to accurately estimate the overflow source terms by (2.6)
while maintaining the 1D and 2D models as black-box with their own numerical solvers. Numerical
procedure implemented for the buffer zone is called the bank model. Even though the coupling
strategy could be applied to any existing 1D and 2D solvers, it is here implemented with the
Telemac-Mascaret suite of numerical codes, that imply the explicit finite volume scheme (2.8) for
the 1D model and an implicit linear finite element scheme for the 2D model.

As such, the 2D state Vn is defined by prescribing its values at the vertices of triangle mesh
T 2D. Furthermore, these two solvers are well-balanced as they preserve at least the steady states
of lake-at-rest, also called the C-property [2].

On the buffer zone, a vertex-centered finite volume discretization is used in order to be compatible
with the finite element solver of the 2D model. It means that Ωb is partitioned into dual cells
{Cj}j∈Vb , where Vb denotes the set of vertices of T 2D belonging to Ωb; each dual cell Cj is built
by joining the gravity centers and the midpoint of edges of the triangles surrounding vertex j (see
again Fig. 2).

Let us give more detail on the coupling procedure. First of all, one can notice that the resolution
of the 1D mesh is in practice much coarser than that of the 2D mesh, typically a hundred meters in
river channel compared with several meters for floodplain. As a consequence, relevant 1D timestep
∆t1D is about one or two orders of magnitude compared to 2D timestep ∆t2D. Furthermore, the
coupling timestep ∆t (used for the bank model) might be even smaller than ∆t2D due to CFL
condition (3.1). Therefore, one can consider the following simplified setting:

∆t1D = M∆t2D = M(K∆t) (3.2)

with some M,K ∈ N. It means that one timeloop of 1D scheme corresponds to M timeloops of 2D
scheme and M ×K sub-timeloops on the buffer zone.

Assume that at time tn = n∆t1D, the states Wn and Vn are known in Ω1D and Ω2D respectively.
To carry out a cycle of the coupling procedure, i.e. to advance forward from tn to the next time
tn+1, the 2D simulation should perform M timeloops from starting value Vn,0 = Vn.

Consider now a time tn,m = tn + m∆t2D, 0 ≤ m ≤ M − 1, at which the 2D state Vn,m is
available. The coupling procedure is sketched in Fig. 3. It starts by performing K sub-timeloops,
0 ≤ k ≤ K − 1, of explicit finite volume scheme (2.9) on the buffer zone in order to construct
(h, q)n,m+1

j the water height and the discharge per width unit at the lateral boundary. Next, the

2D simulation computes the updated states Vn,m+1.
Once all M timeloops are achieved, in one hand one can obtain the updated 2D state Vn+1 =

Vn,M and in the other hand we compute the updated 1D states Wn+1 by performing 1D simulation
provided the source term O1D

b constructed by the bank model during its M ×K sub-timeloops.
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Figure 3: Schematic of the proposed lateral coupling procedure.

Due to the setting (3.2), the bank model must perform K sub-timeloops at the times tn,m,k =
tn,m + k∆t, 0 ≤ k ≤ K − 1, from tn,m to tn,m+1 starting with initial condition

Vn,m,0
j = Vn,m

j , ∀j ∈ Vb.

Since the main objective of these sub-timeloops is to estimate the exchange source terms, the
friction term can be neglected when solving Riemann problems on the buffer zone. Therefore, finite
volume scheme (2.9) used by these sub-timeloops becomes

Vn,m,k+1
j = Vn,m,k

j − ∆t

|Cj |
∑
i∈Ej
|eji|F(Vn,m,k

j ,Vn,m,k
i , zj , zi; nji)

+
∆t

|Cj |
∑
i∈L1Db,j

|bij |On,m,kij .
(3.3)

Recall that on the buffer zone, one can choose to approximate the flux and the source terms with
Fb – a homogeneous HLLC flux augmented by the hydrostatic source term Sb (2.7). Accordingly,

F(Vn,m,k
j ,Vn,m,k

i , zj , zi; nji) = Fb(Vn,m,k
j ,Vn,m,k

i ; nji) + Sb(Vn,m,k
j ,Vn,m,k

j ; nji), (3.4)

On,m,kij = Fb(V1D(Wn
i ),Vn,m,k

j ; Γb) + Sb(Vn,m,k
j ,Vn,m,k

j ; Γb). (3.5)

Let us notice that the reconstructed states Vn,m,k
i for all i ∈ Eextj – the set of vertices of T 2D

neighboring to Cj and located outside of the buffer zone Ωb – remain not yet determined. Indeed, the
2D states Vn,m

i , for i ∈ Eextj , have not been updated during these sub-timeloops; the reconstructed

states Vn,m,k
i do play the role of (artificial) boundary condition between the buffer zone and the

floodplain. This kind of condition will be discussed in section 3.2.

9



At the end of K sub-timeloops, we define (h, q)n,m+1
j the 2D water height and discharge per

unit width at the lateral boundary vertices j ∈ Vb as following:

hn,m+1
j = hn,m,Kj , qn,m+1

j

∑
i∈L1Db,j

|bij | =
1

K

K−1∑
k=0

∑
i∈L1Db,j

|bij |O(1),n,m,k
ij , (3.6)

in which O(1),n,m,k
ij stands for the first component of On,m,kij . These values will be used as lateral

boundary condition for the black-box (implicit) 2D solver, e.g. Telemac, whose the scheme can be
formally written as

Vn,m+1
i = Vn,m

i + ∆t2DM2D
imp

(
Vn,m
i ,Vn,m+1

i ; (h, q)n,m+1
j∈Vb

)
, (3.7)

where M2D
imp denotes formally the (implicit) discretization used by the 2D solver. It is well-known

that for the shallow-water model, either water height or discharge has to be given if the 2D flow
near the bank is sub-critical while both (h, q)n,m+1

j need to be imposed for incoming super-critical
flow. In these two cases, Telemac requires also to prescribe the 2D flow direction, namely velocity
profile, at the boundary. For this end, one can impose un,m,K

j∈Vb , i.e. the 2D flow direction in the
buffer zone at the end of these sub-timeloops. Finally for the case of out-leaving super-critical flow,
neither water height nor discharge at the boundary is needed.

For the river, finite volume scheme (2.8) can be recast under the form

Wn+1
i = W̃n+1

i − ∆t1D

|Ii|
∑
b=l,r

(O1D
b )ni , (3.8)

where W̃n+1
i is the (uncoupled) updated state given by the black-box 1D solver, e.g. Mascaret,

(O1D
b )ni is the rate of overflow at the cell Ii and over the lateral boundary b ∈ {l, r}. It is given by

(O1D
b )ni

∑
j∈L2Db,i

|bij | =
1

MK

M−1∑
m=0

K−1∑
k=0

∑
j∈L2Db,i

|bij |O(1,2),n,m,k
ij . (3.9)

3.2. A simple transparent boundary condition

To complete the proposed lateral coupling algorithm, a last technical question remains: how
wide is the buffer zone? Intuitively, the width of Ωb is related to the traveling distance of water
waves, from the lateral boundary into the floodplain Ω2D, during a 2D timestep ∆t2D in order
to avoid the wave reflecting within the buffer zone. Nevertheless, it is difficult to quantify such
distance since, in general, the wave speed depends on time and on the direction of the flow. A more
practical strategy proposed here consists in setting an arbitrary width for Ωb, and implementing a
reasonable non-reflecting (transparent) boundary condition along the internal (artificial) boundary

between Ωb and Ω2D. This later is nothing but providing the reconstructed states Vn,m,k
i , i ∈ Eextj

in (3.4) when computing the numerical flux for the bank model. To address such an issue, one can
use the Riemann invariants associated to the outgoing characteristics as described in the following.

In the present work, the smallest buffer zone is used which consists to define that Vb is the set
of 2D vertices lying on the lateral boundary b ∈ {l, r}. Let us consider now a face eji, i ∈ Eextj ,
i.e. which lies on the artificial boundary between the buffer zone and the floodplain as sketched out
in Fig. 4. Regarding numerical flux in (3.4), this comes down to prescribe the reconstructed state
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Cj

nji

eji

l(ξ)

Ci

Figure 4: Zoom on the artificial boundary, i.e the boundary of buffer zone Ωb (shadow sub-domain) located inside the
floodplain Ω2D. The red dashed lines stand for the dual mesh on which a vertex-centered finite volume discretization
has been used.

Vn,m,k
j,i , or precisely its projections VL,R on the outward normal direction nji = (nx, ny) of eji, in

order to compute the homogeneous numerical flux Fb. Indeed, by denoting the projected states

VL,R = RnVn,m,k
j,i with Rn =

1 0 0
0 nx ny
0 −ny nx

 ,

the 2D numerical flux Fb is given by

Fb(Vn,m,k
j ,Vn,m,k

i ; nji) = R−1n F1D
b (VL,VR)

with F1D
b the well-known HLLC flux [26] in one dimension.

Thanks to the simplicity of the hydrostatic reconstruction (2.7), the left-side reconstructed

state Vn,m,k
j can be built by only providing the topography step zj − zi, so VL is well computed.

Consequently, it remains now to derive the right-side reconstructed state VR. At the first sub-
timeloop, the available 2D state is set to

Vn,m,0
i = Vn,m

i , i ∈ Eextj , (3.10)

so one can easily deduce VR for k = 0. For k ≥ 1, i.e. when the bank model needs more than one
sub-timeloop, and in order to let the waves freely propagate through the face, we seek a right-side
state as some small perturbation of the left-side one. As such, we propose to use the Riemann
invariants of the shallow-water equations linearized locally around VL := (h, hu, hv)L. In turn, we
consider the following system for the first-order perturbation variable (h̃, ũ, ṽ):

∂t

h̃ũ
ṽ

+

uL hL 0
g uL 0
0 0 uL

 ∂x

h̃ũ
ṽ

 = 0,

completed with a (partial) initial condition for the associated Riemann problem

(h̃, ũ, ṽ)(t = 0, x < 0) = 0. (3.11)

The characteristics dx
dt = λ1,2,3 along which Riemann invariants w1,2,3 write [23]

λ1,2 = uL ∓
√
ghL, λ3 = uL,

w1,2 = ũ∓ h̃
√
g/hL, w3 = ṽ.
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Figure 5: Riemann problems of the linearized shallow-water equations.

The reconstruction of VR is formulated as a function of the characteristic wave speed λ1,2, as
illustrated in Fig. 5 :

• Case 1: λ1 ≤ λ2 ≤ 0, i.e. all characteristics enter the buffer zone. The right-side state needs
to be fully prescribed. To this end, we impose the same state as the one imposed at the first
sub-timeloop as in (3.10)

VR = RnVn,m,0
i .

• Case 2: 0 ≤ λ1 ≤ λ2, i.e. all characteristics leave the buffer zone. The right-side state has no
incidence on the wave propagation. In order to be consistent with the linearized equations,
one can set

VR = VL.

• Case 3: λ1 ≤ 0 ≤ λ2, i.e. the second characteristic leaves the buffer zone while the first one
enters the buffer zone. From the initial condition (3.11), one has

ũ+ h̃
√
g/hL = 0 along

dx

dt
= λ2. (3.12)

Therefore VR needs only to be prescribed partially with water height or velocity. We note
also that, on one hand, there might have two faces between Cj and Ci due to the construction
of vertex-centered method cells, on the other hand, the water height remains unchanged when
projecting Vn,m,k

i on these faces. So, let us privilege the water height by defining hR such as

hR = hn,m,0i , h̃R = hR − hL,
uR = uL + ũR = uL − h̃R

√
g/hL,

(3.13)

which respects (3.12) along the outgoing characteristic. Moreover, it will show in section 3.3
that such definition of hR allows the coupling method to be well-balanced and to preserve the
overall positivity of the water height. Finally, the transverse velocity vR is defined depending
on the third characteristic

vR =

{
vL if uL ≥ 0,

vτ otherwise
(3.14)

where vτ stands for the transverse velocity of the projected state RnVn,m,0
i .

3.3. Properties of the proposed method

Now let us conclude the present bank model by stating its main properties since they directly
result from the construction of the method:
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Proposition 1. The proposed lateral coupling method using buffer zone by schemes (3.3), (3.7),
(3.8) together with exchange source terms (3.5), (3.6) and (3.9)

(i) is mass-conservative;

(ii) is well-balanced and preserves the positivity of water height;

(iii) allows large time step with ability to reuse existing 1D and 2D shallow-water solvers.

Proof. The last statement (iii) is evident from setting (3.2) on the timesteps, the generic formalism
(3.7)-(3.8) of 1D and 2D models, and thank to the designed transparent boundary condition between
the buffer zone and the floodplain.

Let us show (i) after which the coupling is conservative. Indeed, from definition (3.9) the
quantity of mass and momentum leaving a 1D control volume Ii during one timestep ∆t1D through
the lateral boundary b ∈ {l, r} reads

∆t1D(O1D
b )ni |Ii| = (MK∆t)(O1D

b )ni
∑
j∈L2Db,i

|bij |

=
M−1∑
m=0

∆t2D

 1

K

K−1∑
k=0

∑
j∈L2Db,i

|bij |O(1,2),n,m,k
ij

 .

Considering the case of sub-critical or incoming supercritical 2D flow and regarding lateral
boundary condition (3.6), it could be easy to check that the first component in last equation is
nothing but the total discharge that the bank model has injected into the floodplain during M
timesteps ∆t2D. For the case of supercritical out-leaving flow, 2D model needs no prescribed
value at the boundary; the resulting overflow quantities are directly computed from the 2D states
Vn,m
j , j ∈ L2Db,i . But interestingly, this is also what has been done by finite volume scheme (3.3) of

the bank model when computing numerical flux and so the exchange source term On,m,kij according

to (3.5). We notice that for sub-critical flow, exchanged momentum (second component of On,m,kij )
might not be exactly conserved due to the fact that only discharge has been imposed in this case.

Now we turn to show (ii) which concerns the well-balanced property for lake-at-rest. It is
sufficient to show that such steady state is preserved by the bank model. In other words, assume
that at time tn,m,k the given data at the bank Vn,m,k

j , Vn,m
i∈Ej and Vn

i∈L1Db,j
= V1D(Wn

i ) are steady-

state solutions (see again Fig. 3), we have to show that Vn,m,k+1
j = Vn,m,k

j . By definition (2.7), the
reconstructed states satisfy

u = v = 0, hni = hn,m,kj = hn,mi = h.

In addition, the reconstructed state VR (Fig. 5) made at artificial boundary is also steady-state
solution. Indeed, since the given data corresponds to sub-critical flow, (3.13)–(3.14) lead to

hR = h ⇒ h̃R = 0 ⇒ uR = vR = 0.

Thanks to the consistency of numerical flux Fb, finite volume scheme (3.3) reduces to

Vn,m,k+1
j = Vn,m,k

j − ∆t

|Cj |
∑
i∈Ej
|eji|

(
0

g
2h

2nji

)
+

∆t

|Cj |
∑
i∈L1Db,j

|bij |
(

0
g
2h

2Γb

)
= Vn,m,k

j ,
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using the trivial equality ∑
i∈Ej
|eji|nji +

∑
i∈L1Db,j

|bij |(−Γb) = 0,

where we recall that, by convention, normal vector Γb points out into the buffer zone.
Finally, one could easily check that the positivity of water height is guaranteed because the water

heights involved in finite volume scheme (3.5) are all positive and the fact that numerical flux, e.g.
the expected HLLC, is assumed to be positivity preserving. The proof is thus achieved.

4. Application to the Telemac-Mascaret system

4.1. Dynamical coupling with OpenPALM

OpenPALM2 is an open-source, flexible, and powerful dynamic code coupler that has been de-
veloped jointly by CERFACS (Centre Européen de Recherche et Formation Avancée en Calcul
Scientifique) and ONERA (Office National d’Études et de Recherches Aérospatiales) since 1998, see
[8]. It was originally designed for Data assimilation (DA) algorithms in operational oceanography
forecasting; it has now reached a high degree of maturity and stability, with applications rang-
ing from operational DA (oceanography, atmospheric chemistry, hydrology) to industrially-oriented
multi-physics modeling (fluid-structure interactions, combustion-acoustics interactions). OpenPALM

allows for the concurrent execution of and the intercommunication between programs coded in var-
ious programming languages such as Fortran, C++ and Python. It is defined as dynamic for its
ability to deal with situations where the component execution scheduling and the data exchange
patterns cannot be entirely defined before execution. OpenPALM provides a straightforward parallel
environment based on high-performance implementation of the Message Passing Interface (MPI)
standard (i.e. MPICH, OpenMPI, LAM/MPI). This interface can perform both data parallelism
(i.e. simultaneous execution on multiple cores of the same code for a unique data set with domain
decomposition) and task parallelism (i.e. simultaneous execution on multiples cores of multiple
tasks for the same or different datasets). OpenPALM applications are implemented via a graphical
user interface called PrePALM where the programmer defines the coupled components as units that
are arranged along branches, the communications between these components as well as the general
coupling framework including loops, conditional executions, resources management and memory
management. Given this layout, OpenPALM builds an executable that is launched with an MPI com-
mand on dedicated resources. The PrePALM layout for the lateral coupling algorithm is presented
in Fig. 6 and detailed in the following.

4.2. Description of the practical implementation

Fig. 6 shows the practical implementation within the OpenPALM framework of the lateral coupling
strategy. It is composed of two branches that are executed in parallel when running the coupled
simulation (task parallelism). Each branch is dedicated to one of the model: the green one is
dedicated to the 1D model Mascaret, while the red one is dedicated to the 2D model Telemac. The
routines handling the coupling are integrated within the branch MASCARET. The branches are
executed from the top to the base and the units along them (the rectangles on Fig. 6) are executed
sequentially. Each unit represents a subroutine and they can themselves be executed in parallel
(data parallelism) allowing for running several 2D models in parallel. This is the case of the units
of the branch TELEMAC where the OpenPALM variable NB MODELES 2D stands for the number

2http://www.cerfacs.fr/globc/PALM_WEB/
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 b1
 b2

TELEMAC

Start ON

end

MASCARET

Start ON

end

NB_MODELES_2D

p_homere_telemac2d_init

Initialisation TELEMAC

100

NB_MODELES_2D

p_telemac2d_results

Results TELEMAC

100

mascaret_init

Initialisation MASCARET

100

NB_MODELES_2D

p_telemac2d_iter

Time Loop TELEMAC

100

mascaret_iter

Time Loop MASCARET

100

mascaret_results

Results MASCARET

100

make_opt

Results MASCARET

100

mascaret_final

Finalisation MASCARET

100

NB_MODELES_2D

p_homere_telemac2d_final

Finalisation TELEMAC

100

Figure 6: Illustration of the implementation of the coupling strategy with the OpenPALM software.

of 2D sub-models used in this study (one for each lateral floodplain). The dashed lines between the
units represent OpenPALM communications, i.e. data exchange between units. The green and red
shaded areas represent OpenPALM block structures where units within the structure shared specific
variables. In particular, at each coupling iteration the 1D and the 2D states are saved within their
respective block structure so that it is not necessary to save and read them from a file which ensures
the cost-effectiveness of the strategy.

The coupling strategy consists in three steps:

• The initialization consists in reading the user-defined parameters the model parameters, and
the 1D and 2D geometries (units ” init” in Fig. 6). These variables are allocated and stored
in the OpenPALM block structure shared memory;

• The time loop consists in the parallel integration of the 1D and 2D models (units ” iter”
in Fig. 6). At each coupling step, 1D and 2D data are shared with the coupling module
(embedded within the branch MASCARET) which in turns provides the lateral input for the
1D model and the boundary conditions of the 2D sub-models. The data exchanges between
the two branches are achieved with OpenPALM communications.
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• The finalization step consists in deallocating the variables, closing the output files, saving the
1D and 2D hydraulic states.

The task parallelism as well as using the OpenPALM block structure to manage the variables en-
sures the numerical efficiency of the implementation of the coupling strategy. The time of execution
of the simulation (or wall-clock time) is then approximately that of the largest 2D model.

5. Validation and first application

Numerical validations aim at highlighting the merits and limitations of the proposed coupling
algorithm. This end being devoted to flooding simulation, the validation focuses on the flow in the
floodplain and on the lateral discharge between the river channel and the floodplain. The 1D-2D
coupled solution is compared to a reference that is either a full 2D solution [13, 18, 19, 20] or an
analytical solution when available. Experimental results can also be taken as a reference. In the
two latter cases, the validation also takes into account the error related to the numerical modeling
choices, on top of the coupling errors.

Here, the coupling algorithm is first validated on a dam-break test case with respect to an
analytical solution and to a full 2D solution. It is then validated on a dyke-break test case with
respect to experimental results [22] and to a full 2D solution. It is finally validated with respect to
the full Telemac2D solution for the historical 1981 flood event over the Garonne River (France).

5.1. Dam-break flows in transverse direction

A rectangular channel of 1m width cross-section connects laterally with a rectangular floodplain
of 3.5×4.0m2 as illustrated in Fig. 7. The 1D-2D coupling interface is parallel to the channel center
line (−2 ≤ x ≤ 2, y = 0). The x and the y axis are set respectively parallel and perpendicular to
the hydraulic axis ξ, and centered at the middle of the lateral floodplain.

1m

3.5m

4m

y

h = 0.5mu = v = 0 m/s
x0

Figure 7: Domain setup for dam-break test case: the dam is located along the red dashed line which is also the 1D-2D
coupling interface.

Both channel and floodplain are frictionless and have the same bottom elevation zb = 0m. At
the initial condition, the velocity of the flow in the channel is null and the water height is h0 = 0.5m
while the floodplain is empty. Furthermore, open boundary condition are prescribed on the channel.
The numerical simulations are carried out over a short period so that the dam-break waves do not
reach the left and right boundaries of the channel. Consequently, the prescribed boundary conditions
in the flood plain have no influence on the solutions.

The 1D and 2D numerical solutions depend on the following numerical settings. A coarse
mesh with uniform resolution ∆x1D = 0.1m is used for the channel, while the floodplain and the
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full 2D simulation are represented with a finer unstructured triangular mesh of mean resolution
∆x2D = 0.02m. As such, a 1D cell is adjacent to about five 2D cells at the lateral boundary. The
trans-critical kernel [11] of Mascaret is used to solve the dynamics of the flow in the channel with
an explicit finite volume scheme with Roe-type numerical flux to solve (3.8). The timesteps are
set to ∆t1D = ∆t2D = 0.01s which ensures the CFL condition for the 1D scheme, while preserving
the stability of the 2D implicit solver (3.7) of Telemac. It has been observed that the bank model
performs about 10 sub-timeloops of the finite volume scheme (3.3) for each timestep; meaning that
M = 1 and K ' 10.

As long as the 2D waves, propagating from the lower corners of the 1D-2D interface, have not
yet reached the middle of the floodplain, exact solution for the water height and the velocity along
y-axis remains purely 1D and are self-similar (in y/t). It is in agreement with the Stokes solution
for the rarefaction wave propagated backward in the channel and downward in the floodplain. For
−√gh0 ≤ y/t ≤ 2

√
gh0, the solution writes:

h(0, y, t) =
1

9g

(
2
√
gh0 −

y

t

)2
, v(0, y, t) =

2

3

(√
gh0 +

y

t

)
. (5.1)

In particular, the solution at y = 0 remains constant in time. Therefore, the lateral discharge per
width unit (unit-discharge) reaches:

hv(0, 0, t) =
8

27

√
gh30 ' 0.328 m2/s. (5.2)
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Figure 8: Results of dam-break test case: analytical solution (black lines), full 2D (red curves) and 1D-2D coupling
(blue curves). The initial water height is plotted with a dotted curve.

Fig. 8 displays the water height along the y-axis in the 1D and 2D domain at t = 0.4s on the
left panel and the lateral unit-discharge along time on the right panel. In Fig. 8a, there is a good
agreement between the the water heights computed over the 2D domain, from the 1D-2D coupled
model, the full 2D model and the Stokes solution (5.1-5.2). Same conclusions are drawn from Fig. 8b
for the lateral discharge. The oscillations observed at early stage of the simulation for the full 2D
as well as the coupled model are likely to come from the linear approximation of the solutions in
Telemac.

We recall that the 1D model (2.2) considers a constant water level over the cross-section, as one
can observe in Fig. 8a. It is why the 1D water level can not be taken as a relevant approximation of
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the water level at the bank. In other words, using the 1D solution to directly prescribe the boundary
condition for the 2D shallow-water equations is not a valid strategy. A proper alternative, proposed
here, is to impose the mass flux while maintaining Riemann invariant over the lateral boundary.
Finally, it should be noted that the water height near the lateral boundary given by the coupled
model remains lower than that of the full 2D solution. This results from the approximation of the
transverse velocity close to the bank in the reconstructed 2D state (2.4) which is set to zero, thus
leading to the underestimation of the mass flux through the bank parallel to the river.

5.2. Dyke-break induced flood wave propagation

This test case is based on a physical model proposed in [22]. It is similar to that presented
in 5.1, with a smaller lateral boundary (0.7m) between the 1D and 2D domains, as illustrated in
Fig. 9, in order to represent a dike failure.

1m

3.5m

4m

P1
P2

P3

0.7m
h = 0.5m

Q = 0.3 m3/s
u = 0.6 m/s

Figure 9: Physical model setup for dike-break test case: the length of dyke failure is 0.7m centered at (x = 0, y = 0).
Validation points in the flood plain are located at x = 0 and y(P1) = 0.8, y(P2) = 1.3, y(P3) = 2.3.

The 1D model boundary conditions are: Q(t) = 0.3m3/s at the inlet of the channel and h(t) = 0.5
at the outlet that represents a weir. The 1D initial hydraulic state in the channel is prescribed from
the steady state imposed by these boundary conditions (u = 0.6m/s) and the floodplain is supposed
to be empty at initial time. The friction coefficient is set to n = 0.015s/m1/3 for both 1D and 2D
domains.

In the dyke-break configuration, the wave front in the floodplain features some deflection from
the main y-axis, that was not observed in the dam-break test case. This feature is observed with
both the numerical and the physical model. However, it has been showed that the deflection is in
general overestimated by the numerical simulation, either full 2D model or higher dimension models
including complex turbulent description [22, 24, 25]. This test case is challenging one for 1D-2D
coupling validation as it features a complex flow dynamics. The validation is carried out for water
height at three locations in the flood plain denoted by P1, P2, P3 in Fig. 9.

Fig. 10 shows the water height and the stream traces at time t = 1s. Full 2D and 1D-2D
coupling results are in good agreement and both represent the flow deflection in the floodplain.
It should be noted that the deflection is more important in the 1D-2D coupling result. This is
consistent with coupling hypothesis made on transverse velocity at the bank. Indeed, the deflection
is mainly controlled by transverse velocity along the lateral boundary that is, however, neglected
in the 2D reconstruction as written in Eq. (2.4). Furthermore, the full 2D water height varies more
significantly in the vicinity of the lateral boundary than that of the 1D-2D coupled solution. This
is due to the fact that the local behaviour suffers from 1D approximation that prescribes constant
water levels along cross sections of the channel.
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Figure 10: Water heights and stream traces for dyke-break test case at t = 1s given by the full 2D simulation (left
plot, channel and floodplain) and the 1D-2D coupling (right plot, only floodplain). The bank model carried out about
10 sub-timeloops for each timestep ∆t1D = ∆t2D = 0.01s.

Fig. 11a displays the water heights over time for experimental results, full 2D and 1D-2D
coupling at validation points P1, P2 and P3 located in the flood plain. As already observed and
discussed in other works, e.g. [22], the accuracy of the full 2D model is not perfect and the turbulent
and/or non-hydrostatic pressure models may need further improvement. The 1D-2D coupling results
are closer to the experimental results at P2 and P3, further from the lateral coupling interface than
P1 where the water height is significantly under-estimated by the coupling model. Details on the
resulting RMSE are reported in Fig. 11b. These conclusions are in agreement with that of the
dam-break test case and highlight again the expected limitations due to the transverse velocity
reconstruction.

5.3. Real applicative case : 1981 Garonne flood event

The 1D-2D lateral coupling is applied to a reach of the Garonne river during the flood event in
December 1981 (December 12th to December 21st). This event is ranked among the 10 major flood
events since 1875 and was established as a benchmark for hydrodynamic models validation. This
case presents with complex bathymetry over 50 km of river between Tonneins (upstream) and La
Réole (downstream), as shown in Fig. 12a. A system of longitudinal dykes along the main channel
was progressively constructed since the historical flood of 1875 to protect the floodplains, organize
submersion and flood retention areas.

Both a 1D Mascaret and a full 2D Telemac models were developed and calibrated over the
watershed [5]. In the 1D model, the geometry of the river channel consists in 83 cross-section profiles
while the floodplains were simplified by a system of separated storage areas. In this configuration,
overflowing from the river to the floodplains and vice-versa are described following with exchange
laws. For the 2D model, a triangular unstructured mesh is used, with an increased resolution near
the dykes, as shown in Fig. 12b. In the river channel, the mesh is directional, the 2D bathymethy was
linearly extrapolated from the 1D cross-section profiles over this mesh. Related studies highlighted
that the simulation results depend essentially on a good representation of the longitudinal banks
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Figure 11: (a) Water heights over time at P1, P2 and P3: experiment (black lines with dot symbols), full 2D (red
curves) and 1D-2D coupling (blue curves). (b) RMSE of full 2D and 1D-2D coupling models verus experiment

and dykes for both the 1D and the 2D models. We refer to [5] for further details on the model
settings and an in-depth discussion.

In the present study with 1D-2D lateral coupling model, the previously 1D and 2D models were
modified in order to include the longitudinal dykes in the 1D model geometry and thus reduce the
computational cost of the 2D simulation. The geometry of the 1D model was linearly extrapolated
from the 83 cross-section profiles in Mascaret to the 2D geometry. The floodplain is divided into 8
sub-domains as shown in Fig. 12c denoted as LFP[1:5] on the left bank of the river and RFP[1:3]
on the right bank of the river. A constant resolution ∆x1D = 100m has been used for the 1D
mesh while it has been changed for the 2D model: the mesh size for the main channel does not
exceed 80m, that of the dykes is 40m and that of the floodplain is 150m [5]. A common timestep
∆t1D = ∆t2D = 10s is used for both 1D (this guarantees the stability of the 1D explicit finite
volume solver) and 2D (implicit finite element solver) numerical models.

Numerical simulations over the 10-day flood event in 1981 were performed with the full 2D
and the 1D-2D coupled models using common initial and boundary conditions. An observed rating
curve is used to describe the downstream boundary conditions at La Réole observing station. An
hydrogram is prescribed at the upstream boundary condition at Tonneins; it results from the use
of observed water height translated by the observed rating-curve at the Tonneins observing station.
Initial conditions for both 1D and 2D equations, in water height and velocities, were established
from the non-flooding permanent flow corresponding to the initial discharge Q = 1830m3/s of the
upstream forcing. The initial water height at the river center line is displayed in Fig. 13a with a
blue line for the 1D model and with a red line for the full 2D model. It should thus be noted that
the flood plain is dry at the beginning of the simulation. The upstream forcing shown in Fig. 13b
reaches main river bed overflow discharge (Q = 2500m3/s) at the very beginning of the event, and
the bank overflow discharge (Q = 3600m3/s) at Day 1. The water flow then occupies the flood plain
to reach the flood peak at Day 5 with (Q ≈ 6000m3/s) when the recession starts (for approximately
3 days).

The full 2D and the 1D-2D coupling instantaneous water height fields are displayed in Fig. 14a,
Fig. 14b and Fig. 14c at Day 2, Day 6 and Day 10 respectively from top to bottom. For each date,
the top panel is the full 2D result and the bottom panel is the 1D-2D coupled model result. This
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(a) 50-km reach of the Garonne river from Tonneins (upstream) to La Réole (downstream).

(b) Illustration of the full 2D mesh near Sainte Bazeille. Cross-section profiles for 1D model
are defined along black lines.

(c) 2D domain decomposition into river bed (blue) and surrounding floodplain divided in 8
sub-domains (grey shadowing) denoted by RFP and LPF (Right/Left FloodPlain) used for
the lateral coupled model. A validation point is indicated with a red circle near Marmande
and Coussin in LFP3 is the location.

Figure 12: Domain setup for simulations of the 1981 Garonne flood event.

illustration shows a good agreement on the floodplain filling dynamics over the flood event, for both
filling and emptying stages.

A quantitative assessment is provided in Fig. 15a that displays water height time series for full
2D model and the coupled model at the validation point in LFP3 (see again Fig. 12c). The solutions
are in very good agreement during the filling phase. The coupled solution tends to overestimate
the flood peak and empties significantly slower than the full 2D. The RMSE over the entire event
is ' 0.197m. A possible reason for the poor 1D-2D coupled solution may be the approximated
bathymetry resulting from the linear interpolation of zb at the 83 cross-section profiles, along 50
km of the river banks. This seems to be a very sensible input data of the coupling model. More
investigations are needed for forthcoming work.

Finally, it is interesting to study the performance, in term of computational time, of the coupling
model for a real case application. It should be noted that the implementation of the coupled solution
could be further improved in terms of parallelism; making this solution even more attractive with
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Figure 13: (a) Initial water level along the main channel resulting from permanent flow established with Q = 1830 m3/s
in both 1D (blue line) and full 2D (red line) models. The 1D bathymetry is plotted with a black line. (b) Observed
discharge at Tonneins; main channel overflowing is reached at Q = 2500 m3/s, overbank flow and intra-dykes overflow
is reached at Q = 3600 m3/s.

respect to the full 2D model. For that reason, we here focus on the number of sub-timeloops
performed by the bank model during the simulation which can give some idea on the performance
of the coupling strategy. Fig. 15b, displays the number of sub-timeloops performed by the bank
model over the filling and emptying stages of the flood event. One can find that more than 100
sub-timeloops have been performed during the filling and emptying stages. This can understand
that a timestep ∆t ≤ 0.1s has been used when executing the explicit finite volume solver on the
buffer zones. Nevertheless, the part of computing time corresponding to the bank model must not
be important because the buffer zones have very small size compared to the overall floodplains.
Therefore, the proposed approach takes advantage of both the finite volume solver, for estimating
the overflow source term, and the implicit solver used on the 2D domain of the floodplains.

6. Discussion and perspectives

We have proposed in this paper an approach for the lateral coupling of 1D and 2D shallow-water
equations dedicated to the modeling of overbank flows between a river channel and its surrounding
floodplains. The main novelty of the method consists in setting up for each lateral interface a bank
model, i.e. a small part of 2D domain along lateral boundary, namely buffer zone, on which explicit
volume solver has been used in order to accurately estimate the exchange source terms of mass and
momentum. Performing sub-timeloops only on these (small) buffer zones allows to relax the CFL
restriction on the global (large) timesteps imposed by the 1D and 2D models. Furthermore, the
present coupling strategy offers the possibility to make use of existing 1D and 2D shallow-water
solvers as black-box. The propose approach has been implemented for the open-source industrial
hydro-informatic suite Mascaret-Telemac, and the dynamic code-coupler OpenPALM has been used
in order to manage data exchanges between the 1D, 2D and the bank models.

The coupling algorithms was first validated over simple configurations such as dam-break and
dyke-break flows with respect to analytical solution and experimental data. Numerical results
showed that the overflow discharges is well estimated by the coupled model, as expected, while
it tends to underestimate the water height near lateral boundaries. Better reconstruction of the
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(a) Day 2

(b) Day 6

(c) Day 10

Figure 14: Water height for full 2D (top panels, channel and floodplains) and 1D-2D coupled model (bottom panels,
only floodplains).
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Figure 15: (a) Water height time series for full 2D model and coupled model at the validation point in LFP3. (b)
Lateral discharge and corresponding sub-time loops realized by the bank model during the flood event.

transverse velocity might improve the results. Finally, a real application with a 10-days simulation
for the 1981 flood event on the Garonne River was presented. Reasonable agreement between the
full 2D simulation and the result of the coupled model has been found. In particular, excellent result
can be observed for the filling stage, i.e. when the river overflows into floodplain. For the emptying
stage, better accurate 1D bathymetry at the river bank might be needed. More investigation and
calibration on the coupled model are needed in forthcoming work.

The implementation of the coupling strategy has proven to be cost-effective and thanks to the
task parallelism provided by the OpenPALM software, the time of execution of the whole simulation
is approximately that of the largest of the 2D model. The wall-clock time could further be reduced
by running each 2D model on several processors if they are large enough. If the 2D models are
smaller than the optimal sub-domain size when running Telemac in parallel (which is roughly 1000
grid points according to Telemac users’ feedback, see also [3]), it is of no use to run them in parallel
(which is the case here). Additionally, in the current implementation, all the 2D models are run
whether they are wet or not. The total cpu-time could also be reduced by running the 2D models
only when they are wet. In this configuration, with no overflowing the computational cost would
reduce to that of the 1D model.
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[3] Barthélémy, S., Ricci, S., Morel, T., Goutal, N., Le Pape, E., and Zaoui, F.
On operational flood forecasting system involving 1d/2d coupled hydraulic model and data
assimilation. Journal of Hydrology 562 (2018), 623–634.

[4] Bermudez, A., and Vazquez, M. E. Upwind methods for hyperbolic conservation laws with
source terms. Computers & Fluids 23, 8 (1994), 1049–1071.
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