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However for a given ρ, 0 ≤ ρ ≤ 1, the usual proofs based on convexity-extreme points arguments [START_REF] Halmos | The range of a vector measure[END_REF][START_REF] Olech | The Lyapunov theorem: its extensions and applications[END_REF] do not give any information about the existence of a "nice" set E such that

µ(E) = b a ρ dµ.
Consider for instance the two-dimensional vector measure µ(A) = (|A|, |A| + 2|A ∩ B|) where B is a borelian subset of [a, b] and | | denotes the Lebesgue measure. For each set E, the equality µ(E) = µ(B) implies B = E. When the measure µ admits a density f , Halkin [START_REF] Halkin | On a generalization of a theorem of Lyapounov[END_REF] showed that if for each vector p ∈ R n the set t ∈ [a, b] : p • f (t) > 0 (where • is the usual scalar product) is a finite (respectively countable) union of intervals then there exists a set E which is a finite (resp. countable) union of intervals. In our paper [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF] we introduced the stronger orientation condition ∆: we say that n real functions f 1 , • • • , f n verify condition ∆ on an interval [a, b] if for each k in {1, • • • , n}, the determinant

f 1 (x 1 ) f 1 (x 2 ) • • • f 1 (x k ) f 2 (x 1 ) f 2 (x 2 ) • • • f 2 (x k ) . . . . . . . . . . . . f k (x 1 ) f k (x 2 ) • • • f k (x k )
is not equal to zero whenever the x i 's in [a, b] are distinct and its sign is constant on the k-tuples (x 1 ,

• • • , x k ) such that a ≤ x 1 < x 2 < • • • < x k ≤ b.
We showed that if a measure µ admits a density function whose components are continuous and satisfy the orientation condition ∆ then the set E may be built in such a way that its characteristic function has at most n discontinuity points. Moreover, if 0 < ρ < 1 there exist two such sets E 1 and E 2 whose characteristic functions χ E 1 and χ E 2 have exactly n discontinuity points (one set is a neighbourhood of a whereas the other is not). Our proofs relied upon the fact that the map

(α 1 , • • • , α n ) -→ α 2 α 1 f (x) dx + α 4 α 3 f (x) dx + • • •
is differentiable and has an invertible Jacobian whenever a < α 1 < • • • < α n < b.

We also showed that whenever a function x satisfies x(0) = • • • = x (n-2) (0) = 0 and x (n-1) (0) = 1 then the n functions (x (n-1) , • • • , x , x) verify ∆ on a neighbourhood of 0.

We applied these results to the study of reachable sets of constrained bang-bang solutions and to non-convex problems of the calculus of variations.

In this paper we deal with measures which are not necessarily absolutely continuous with respect to the Lebesgue measure.

Oriented measure. If A 1 , • • • , A k are k measurable sets of [a, b], by A 1 < • • • < A k we mean that for all k-tuple (x 1 , • • • , x k ) of A 1 × • • • × A k we have x 1 < • • • < x k . A measure µ = (µ 1 , • • • , µ n ) is said to be oriented if for each k-tuple of measurable sets A 1 , • • • , A k such that A 1 < • • • < A k the determinant µ 1 (A 1 ) • • • µ 1 (A k ) . . . . . . . . . µ k (A 1 ) • • • µ k (A k ) is positive.
In this more general framework we give a new proof of the results stated in [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF].

We carry out a deep study of the range R of the measure:

• for each point q of its interior R • there exist exactly two distinct "dual" sets E 1 , E 2 whose characteristic functions have n discontinuity points such that µ(E 1 ) = q = µ(E 2 );

• the set R • coincides with b a ρ dµ : 0 < ρ < 1 so that the above set is open;

• the set R is strictly convex;

• a point µ(E) belongs to the boundary ∂R of R if and only if the characteristic function of E has less than n -1 discontinuity points;

• finally we give a recursive decomposition of the boundary ∂R.

Oriented measures

Throughout the paper we will work with an interval [a, b] equipped with the Lebesgue σfield L. Measurable will mean measurable with respect to this σ-field. A negligible set is a measurable set of Lebesgue measure zero. A vector measure on [a, b] is a countably additive set function defined on the Lebesgue σ-field with values in R n for some integer n.

Notation. If A 1 , • • • , A k are k measurable sets of [a, b], by A 1 < • • • < A k we mean that A 1 , • • • , A k have non-zero Lebesgue measure and for all k-tuple (x 1 , • • • , x k ) of A 1 ו • •×A k we have x 1 < • • • < x k . Let µ = (µ 1 , • • • , µ k ) be a vector measure. If ρ belongs to L 1 µ ([a, b]), we note µ i (ρ) = b a ρ dµ i , µ(ρ) = b a ρ dµ = µ 1 (ρ), • • • , µ k (ρ) . Definition 2.1. A vector measure µ = (µ 1 , • • • , µ n ) on [a, b] is said to be oriented on [a, b] if it is non-atomic and if for each k in {1, • • • , n} and for each k-tuple of measurable sets A 1 , • • • , A k such that A 1 < • • • < A k the determinant µ 1 (A 1 ) • • • µ 1 (A k ) . . . . . . . . . µ k (A 1 ) • • • µ k (A k ) is positive.
Remark. If µ is oriented then µ 1 is a positive measure which assigns positive values to sets of positive Lebesgue measure. In particular, if I is a non-trivial interval, then µ(I) is non-zero.

Remark. If µ is oriented and

I 1 , • • • , I n are n disjoint non-trivial intervals, then the vectors µ(I 1 ), • • • , µ(I n ) form a basis of R n .
A very important fact concerning oriented measures is that their characteristic property carries on from sets to positive functions.

Notation. If ρ is a function its support is the set supp ρ = { x : ρ(x) = 0 }.

Theorem 2.2. Let µ = (µ 1 , • • • , µ n ) be an oriented measure. If ρ 1 , • • • , ρ n are n µ integrable non-negative functions such that supp ρ 1 < • • • < supp ρ n then the determinant µ 1 (ρ 1 ) • • • µ 1 (ρ n ) . . . . . . . . . µ n (ρ 1 ) • • • µ n (ρ n ) is positive.
Let us first state a preparatory lemma.

Lemma 2.3. Let µ = (µ 1 , • • • , µ n ) be a vector measure and ρ 1 , • • • , ρ n be n measurable µintegrable functions. The determinant

ρ 1 dµ 1 • • • ρ n dµ 1 . . . . . . . . . ρ 1 dµ n • • • ρ n dµ n is equal to • • • ρ 1 (s 1 ) • • • ρ n (s n ) d σ∈S n (σ)µ σ(1) ⊗ • • • ⊗ µ σ(n) (s 1 , • • • , s n ).
Proof of the lemma. The identity is obviously true whenever ρ 1 , • • • , ρ n are characteristic functions. The monotone class theorem yields the result.

Proof of theorem 2.2. We apply the lemma. The domain of integration of the n-fold integral is reduced to supp

ρ 1 × • • • × supp ρ n .
We first prove that the measure μ =

σ∈Σ n (σ)µ σ(1) ⊗ • • • ⊗ µ σ(n) is positive on the product space (supp ρ 1 , L)ו • •×(supp ρ n , L)
equipped with the product σ-field (where L denotes the one-dimensional Lebesgue σ-field). Notice that the product σ-field L ⊗n does not coincide in general with the n-dimensional Lebesgue σ-field (i.e. the completion of the n-dimensional Borel σ-field). Consider first the case of a subset of supp

ρ 1 × • • • × supp ρ n which is a product set A 1 × • • • × A n (where the A i 's are measurable). Necessarily, each A i is a subset of supp ρ i . If none of the A i 's is negligible, then we have A 1 < • • • < A n and μ(A 1 × • • • × A n ) = det[µ(A 1 ), • • • , µ(A n )]
is positive by definition. Suppose now some of the A i 's are negligible. For each index i, 1 ≤ i ≤ n, there exists a decreasing sequence (B i m ) m∈N of non-negligible measurable subsets of supp ρ i having an empty intersection (this is a consequence of the fact that supp ρ i is not negligible). Now for each m we have

A 1 ∪ B 1 m < • • • < A n ∪ B n m whence μ(A 1 ∪ B 1 m × • • • × A n ∪ B n m ) is positive. By the continuity of the measure µ we have μ(A 1 × • • • × A n ) = lim m→∞ μ(A 1 ∪ B 1 m × • • • × A n ∪ B n m ) so that μ(A 1 • • • A n ) is non-negative.
It follows that μ is non-negative on the boolean algebra of the finite (disjoint) union of product sets: its unique extension to the σ-field L ⊗n generated by these products is also non-negative.

The function (s

1 , • • • , s n ) → ρ 1 (s 1 ) • • • ρ n (s n
) is positive everywhere on this set and is measurable with respect to the σ-field L ⊗n : thus the integral ρ 1 (s 1 )

• • • ρ n (s n ) dμ(s 1 , • • • , s n ) is positive.
Remark. If µ is absolutely continuous with respect to the Lebesgue measure then Lyapunov theorem yields an alternative proof of theorem 2.2. In fact

∀k ∈ {1, • • • , n} ∃E k ⊂ supp ρ k µ(ρ k ) = µ(E k ).
Necessarily µ(E k ) is non-zero for each k (see remark after definition 2.1) and the absolute continuity hypothesis on µ implies that the E k 's are not negligible.

It follows that E 1 < • • • < E n and det[µ(ρ 1 ), • • • , µ(ρ n )] = det[µ(E 1 ), • • • , µ(E n )] > 0.
We shall denote by Γ k the subset

Γ k = { (x 1 , • • • , x k ) ∈ R k : a ≤ x 1 ≤ • • • ≤ x k ≤ b }.
Definition 2.4. The measure µ is said to be locally oriented if for each n-tuple x of Γ n there exists a neighbourhood

V = V 1 × • • • × V n of x such that for each k-tuple of measurable sets A 1 < • • • < A k satisfying A 1 × • • • × A k ⊂ V 1 × • • • × V k , the determinant µ 1 (A 1 ) • • • µ 1 (A k ) . . . . . . . . . µ k (A 1 ) • • • µ k (A k ) is positive.
As a curiosity, we prove the following Proof. Let µ be a locally oriented measure. The compact set Γ n can be covered by a finite family of open sets (V i ) i∈Υ where

V i = I i 1 × • • • × I i n and (I i k ) i∈Υ 1≤k≤n are subintervals of [a, b] in such a way that for each k-tuple of measurable sets A 1 < • • • < A k satisfying A 1 × • • • × A k ⊂ V i for some i ∈ Υ, the determinant formed with the first k components of the vectors µ(A 1 ), • • • , µ(A k ) is positive.
Let (J l ) l∈Σ be the finite family of the atoms of the algebra generated by the sets (

I i k , i ∈ Υ, 1 ≤ k ≤ n) (thus the J l 's are exactly the sets of the form i,k:x∈I i k I i k for some x ∈ [a, b]). Let us remark that for each (l 1 , • • • , l k ) in Σ k , the product J l 1 × • • • × J l k is contained in some product I i 0 1 × • • • × I i 0 k . In fact J l 1 × • • • × J l k ⊂ i∈Υ I i 1 × • • • × I i k so that there exits i 0 such that J l 1 × • • • × J l k ∩ I i 0 1 × • • • × I i 0 k is not empty. It follows that J l 1 ∩ I i 0 1 = ∅,• • • , J l k ∩ I i 0 k = ∅
and by the very construction of the sets J l 's we obtain

J l 1 ⊂ I i 0 1 , • • • , J l k ⊂ I i 0 k . We denote by μk the measure μk = σ∈Σ k (σ)µ σ(1) ⊗ • • • ⊗ µ σ(k) . Let (A 1 , • • • , A k ) be a k-tuple of measurable sets such that A 1 < • • • < A k . The product A 1 ו • •×A k is the disjoint union of the sets (A 1 ו • •×A k )∩(J l 1 ו • •×J l k ) when (l 1 , • • • , l k ) varies in Σ k . Let now (l 1 , • • • , l k ) belong to Σ k . Either (A 1 × • • • × A k ) ∩ (J l 1 × • • • × J l k
) is empty (and thus has a zero μk measure) or it is not empty and necessarily,

J l 1 < • • • < J l k .
Proceeding as in the proof of theorem 2.2, we show that μk is a positive measure on the set (J

l 1 × • • • × J l k ) whence μk ((A 1 × • • • × A k ) ∩ (J l 1 × • • • × J l k )) is non-negative. Since the set A 1 × • • • × A k is not negligible, at least one of these sets is not negligible. Let (A 1 × • • • × A k ) ∩ (J l 1 × • • • × J l k ) be such a set. It's a subset of one of the V i 's and moreover (A 1 ∩ J l 1 ) < • • • < (A k ∩ J l k ) whence μk ((A 1 ∩ J l 1 ) × • • • × (A k ∩ J l k )) is positive. Thus μk (A 1 × • • • × A k ) is positive.

Oriented measures with densities

Orientation condition ∆. We say that n real functions

f 1 , • • • , f n verify condition ∆ on an interval [a, b] if for each k in {1, • • • , n}, the determinant f 1 (x 1 ) • • • f 1 (x k ) f 2 (x 1 ) • • • f 2 (x k ) . . . . . . . . . f k (x 1 ) • • • f k (x k ) is positive whenever the x i 's in [a, b] are such that a ≤ x 1 < x 2 < • • • < x k ≤ b.
Remark. In our previous paper [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF], we didn't impose the sign of the above determinant to be positive. When dealing with continuous functions, a connectedness argument shows immediately that the sign is constant on the set Γ k . In our present framework (at the measure level), we find it convenient to work with this slightly more restrictive condition.

Examples. For n = 1, condition ∆ states that the function f 1 is positive; for n = 2, the functions f 1 , f 2 satisfy ∆ if and only if f 1 is positive and f 2 /f 1 is strictly increasing. The functions f i (t) = t i-1 (i ≥ 1) satisfy condition ∆ on R (the corresponding determinants are Vandermonde determinants). 

= (µ 1 , • • • , µ n ) is oriented. Proof. Let A 1 < • • • < A k be k measurable sets of [a, b].
Since the determinant is a multilinear continuous form, we can write

A 1 f 1 • • • A k f 1 . . . . . . . . . A 1 f k • • • A k f k = • • • A 1 ו••×A k f 1 (s 1 ) • • • f 1 (s k ) f 2 (s 1 ) • • • f 2 (s k ) . . . . . . . . . f k (s 1 ) • • • f k (s k ) ds 1 • • • ds k .
By condition ∆, the integrand is positive on

A 1 × • • • × A k . If f 1 , • • • , f k are of class C k-1 on [a, b] we will denote their Wronskian by W (f 1 , • • • , f k ).
The following operational criterion for the fulfilment of the orientation condition ∆ has been used in [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF].

Proposition 3.2. Let f 1 , • • • , f n ∈ C n-1 ([a, b]) be such that ∀t ∈ [a, b] W (f 1 )(t) > 0, • • • , W (f 1 , • • • , f n )(t) > 0.
Then

f 1 , • • • , f n satisfy the orientation condition ∆ on [a, b].

Notations and preliminary lemmas

Let us introduce some notations.

If u 1 , • • • , u n are vectors of R n , their determinant is sometimes denoted by det [u 1 , • • • , u n ].
Let A be a n × n matrix with real coefficients; by det A or |A| we denote its determinant.

For each i, j ∈ {1, • • • , n}, by A ij we mean the (n -1) × (n -1) matrix obtained by removing the i-th row and the j-th column from A. Surprisingly, the following simple algebraic trick will play an essential role in the existence part of the proof of theorem 1.

Lemma 4.1. Let A = (a ij ) 1≤i,j≤n be an n×n matrix with real coefficients. Let

x 1 , • • • , x n be such that        a 1,1 x 1 + • • • + a 1,n-1 x n-1 + a 1,n x n = 0 a 2,1 x 1 + • • • + a 2,n-1 x n-1 + a 2,n x n = 0 . . . . . . . . . . . . a n-1,1 x 1 + • • • +a n-1,n-1 x n-1 +a n-1,n x n = 0 If det A nn = 0 then a n1 x 1 + • • • + a nn x n = |A| |A nn | x n .
Proof. Cramer rule applied to the above system yields

∀i ∈ {1, • • • , n -1} x i = (-1) n+i |A ni | |A nn | x n so that a n1 x 1 + • • • + a nn x n = n i=1 (-1) n+i a ni |A ni | |A nn | x n = |A| |A nn | x n since n i=1 (-1) n+i a ni |A ni | is the development of the determinant |A| along the first row.
The next lemmas involve strongly the notion of oriented measure. 

F = l i=1 I i , G = m j=1 J j and let µ = (µ 1 , • • • , µ n ) be an oriented measure. Assume µ(F ) = µ(G). Then n < l + m; moreover if ∂F ∩ ∂G = ∅ then n < l + m -1.
Proof. Let us first remark that the symmetric difference

(I 1 ∪ • • • ∪ I l ) ∆ (J 1 ∪ • • • ∪ J m ) = i,j (I i ∪ J j ) \ i,j (I i ∩ J j )
is the union of at most l + m non-trivial intervals and that whenever at least two intervals have a common boundary point then this number is smaller than l + m -1. Since the intervals I 1 , • • • , I l are disjoint, as well as J 1 , • • • , J m , we have

(I 1 ∪• • •∪I l )∪(J 1 ∪• • •∪J m )\(I 1 ∩J 1 ) = (I 1 ∪J 1 )\(I 1 ∩J 1 )∪(I 2 ∪• • •∪I l )∪(J 2 ∪• • •∪J m ). Now, the set (I 2 ∪ • • • ∪ I l ) ∪ (J 2 ∪ • • • ∪ J m ) is a union of at most l + m -2 disjoint intervals.
Either I 1 ∩J 1 = ∅ or I 1 ∩J 1 = ∅ and (I 1 ∪J 1 ) is an interval. In both cases (I 1 ∪J 1 )\(I 1 ∩J 1 ) is the union of at most two intervals (at most one if I 1 and J 1 have a boundary point in common). A straightforward induction gives the result. Since the sets F and G are distinct, F ∆G is not empty. Let A 1 < • • • < A p be the connected components of F ∆G. For k in {1, • • • , p} we have

A k = (A k ∩ F ) ∪ (A k ∩ G) , (A k ∩ F ) ∩ (A k ∩ G) ⊂ A k ∩ (F ∩ G) ⊂ (F ∆G) ∩ (F ∩ G) = ∅ ; the set A k being connected, either A k ⊂ F \ G or A k ⊂ G \ F . Put λ k = +1 if A k ⊂ F \ G -1 if A k ⊂ G \ F
so that the equality µ(F ) = µ(G) can be rewritten as

     λ 1 µ 1 (A 1 )+ • • • +λ p µ 1 (A p )= 0 . . . . . . . . . λ 1 µ n (A 1 )+ • • • +λ p µ n (A p )= 0
Suppose n ≥ p; the first p equations imply that the determinant

µ 1 (A 1 ) • • • µ 1 (A p ) . . . . . . . . . µ p (A 1 ) • • • µ p (A p )
vanishes, which contradicts the fact that µ is oriented.

The following notations will be used throughout the paper.

Notations 4.3. We shall denote by Γ k the set

Γ k = { (γ 1 , • • • , γ k ) ∈ R k : a ≤ γ 1 ≤ • • • ≤ γ k ≤ b }.
To each k-tuple γ = (γ 1 , • • • , γ k ) belonging to Γ k we associate the two sets

E - γ = 0≤i≤k i odd [γ i , γ i+1 ] , E + γ = 0≤i≤k i even [γ i , γ i+1 ]
where by convention γ 0 = a, γ k+1 = b. 

= (γ 1 , • • • , γ n ) and δ = (δ 1 , • • • , δ n ) of Γ n satisfy µ(E - γ ) = µ(E - δ ) (respectively µ(E + γ ) = µ(E + δ )). Then E - γ = E - δ (resp. E + γ = E + δ ).
Proof. Assume E - γ , E - δ are distinct and µ(E - γ ) = µ(E - δ ). Now, two possible cases may occur according to the parity of n.

• If n = 2r the sets E - γ and E - δ are the union of at most r intervals. Lemma 4.2 implies n < r + r which is absurd.

• If n = 2r + 1 the sets E - γ and E - δ are the union of at most r + 1 intervals. However b is a common boundary point. Lemma 4.2 implies n < (r + 1) + (r + 1) -1 which is absurd. The dual case µ(E + γ ) = µ(E + δ ) can be treated similarly. The following essential lemma will be used repeatedly. Proof. Consider the n × n linear system

λ 0 µ(I 0 ) -λ 1 µ(I 1 ) + • • • + (-1) n-1 λ n-1 µ(I n-1 ) = (-1) n-1 λ n µ(I n ).
where λ n is a parameter. The determinant of the system is

ω n = (-1) n(n-1) 2 det [µ(I 0 ), • • • , µ(I n-1 )].
The measure µ being oriented, ω n is not zero. Moreover, for each i in {0, • • • , n -1},

ω i = µ 1 (I 0 ) • • • (-1) i-2 µ 1 (I i-2 ) (-1) n-1 µ 1 (I n ) (-1) i µ 1 (I i ) • • • (-1) n-1 µ 1 (I n-1 ) µ 2 (I 0 ) • • • (-1) i-2 µ 2 (I i-2 ) (-1) n-1 µ 2 (I n ) (-1) i µ 2 (I i ) • • • (-1) n-1 µ 2 (I n-1 ) . . . . . . . . . . . . . . . . . . . . . µ n (I 0 ) • • • (-1) i-2 µ n (I i-2 ) (-1) n-1 µ n (I n ) (-1) i µ n (I i ) • • • (-1) n-1 µ n (I n-1 )
i.e. ω i = (-1)

n(n-1) 2 det [µ(I 0 ), • • • , µ(I i-2 ), µ(I i ), • • • , µ(I n )].
By Cramer formula, λ i equals λ n ω i /ω n . The measure µ being oriented ω i and ω n have the same sign so that λ i is positive whenever λ n is positive. Choosing λ n such that

0 < λ n < min( ω n ω 0 , • • • , ω n ω n-1 , )
we obtain an (n + 1)-tuple which solves the problem.

Main result

The statement of the main result involves the notations 4.3. 

= (α 1 , • • • , α n ) and β = (β 1 , • • • , β n ) in Γ n such that µ(E - α ) = b a ρ dµ = µ(E + β ). ( * )
If in addition 0 < ρ < 1 then α and β in Γ n satisfying ( * ) are unique and verify

a < α 1 < • • • < α n < b , a < β 1 < • • • < β n < b.
Remark. The measure µ being non-atomic we don't care about boundary points of intervals and we might write µ(α, β) for the measure of the interval µ([α, β]).

Proof. We consider first the case 0 < ρ < 1 and we prove the result by induction on n. 

µ([α 1 , b]) = b a ρ dµ = µ([a, β 1 ]).
• Assume the result is true at rank n -1. We deal only with the n-tuple β: existence of the n-tuple α corresponding to ρ at rank n follows from the fact that it coincides with the n-tuple β corresponding to 1 -ρ. 

Define for each k in {1, • • • , n} µ k (ρ) =
a < ᾱ1 < • • • < ᾱn-1 < b , a < β1 < • • • < βn-1 < b and for each k in {1, • • • , n -1} θ k (a, ᾱ1 , • • • , ᾱn-1 ) = 0≤i≤n-1 i odd µ k (ᾱ i , ᾱi+1 ) = µ k (ρ) , θ k ( β1 , • • • , βn-1 , b) = 0≤i≤n-1 i even µ k ( βi , βi+1 ) = µ k (ρ) . ( * * ) Put S = β = (β 1 , • • • , β n ) ∈ Γ n : β 1 ≤ β1 , ∀k ∈ {1, • • • , n -1} θ k (β) = µ k (ρ) . Since ( β1 , • • • , βn-1 , b
) and (a, ᾱ1 , • • • , ᾱn-1 ) belong to S, the set S is not empty.

We show now that

either θ n ( β1 , • • • , βn-1 , b) < µ n (ρ) < θ n (a, ᾱ1 , • • • , ᾱn-1 ) or θ n (a, ᾱ1 , • • • , ᾱn-1 ) < µ n (ρ) < θ n ( β1 , • • • , βn-1 , b).
The equalities ( * * ) yield for each

k in {1, • • • , n -1} 0≤i≤n-1 i even βi+1 βi (1 -ρ) dµ k - 0≤i≤n-1 i odd βi+1 βi ρ dµ k = 0. Put for k, j in {1, • • • , n} x β j = (-1) j+1 , a β kj = βj βj-1 ρ β j dµ k , A β = a β kj 1≤k,j≤n
where

ρ β j = ρ if j is even, 1 -ρ if j is odd.
With these notations the above equalities become

∀k ∈ {1, • • • , n -1} n j=1 a β kj x β j = 0.
Since the measure µ is oriented then the determinant |A β nn | does not vanish by theorem 2.2. We are thus in the position to apply lemma 4.1:

θ n ( β1 , • • • , βn-1 , b) -µ n (ρ) = n j=1 a β nj x β j = |A β | |A β nn | (-1) n+1 .
Similarly if we define for k, j in {1, • • • , n}

x α j = (-1) j , a α kj = ᾱj ᾱj-1 ρ α j dµ k , A α = a α kj 1≤k,j≤n
where

ρ α j = ρ if j is odd, 1 -ρ if j is even, we have θ n (a, ᾱ1 , • • • , ᾱn-1 ) -µ n (ρ) = |A α | |A α nn | (-1) n .
The 

, • • • , β n ) satisfying for each k in {1, • • • , n -1} µ k (a, β 1 ) + 2≤i≤n i even µ k (β i , β i+1 ) = µ k (ρ) = µ k (a, β1 ) + 2≤i≤n-1 i even µ k ( βi , βi+1 ) or equivalently ∀k ∈ {1, • • • , n -1} 2≤i≤n i even µ k (β i , β i+1 ) = µ k (β 1 , β1 ) + 2≤i≤n-1 i even µ k ( βi , βi+1 )
Suppose first β 1 = β1 . The above equations become

∀k ∈ {1, • • • , n -1} 2≤i≤n i even µ k (β i , β i+1 ) = 2≤i≤n-1 i even µ k ( βi , βi+1 ). We put β = (β 2 , • • • , β n-1 , β n ) and β = ( β2 , • • • , βn-1 , b).
If n is odd then

E - β = [β 2 , β 3 ] ∪ • • • ∪ [β n-1 , β n ], E - β = [ β2 , β3 ] ∪ • • • ∪ [ βn-1 , b];
if n is even then

E - β = [β 2 , β 3 ] ∪ • • • ∪ [β n , b], E - β = [ β2 , β3 ] ∪ • • • ∪ [ βn-2 , βn-1 ].
In both cases the preceding formulae can be rewritten as

∀k ∈ {1, • • • , n -1} µ k (E - β ) = µ k (E - β ); lemma 4.4 implies that E - β = E - β . Since in addition β2 < • • • < βn-1 < b then necessarily β 2 = β2 , • • • , β n-1 = βn-1 , β n = b. Suppose now β < β1 . Since β 1 < β1 < • • • < βn-1 < b then lemma 4.5 yields the existence of n real numbers λ 1 , • • • , λ n in ]0, 1/2[ such that for each k in {1, • • • , n -1} -λ 1 µ k (β 1 , β1 ) + 1≤i≤n-1 (-1) i+1 λ i+1 µ k ( βi , βi+1 ) = 0. The function ρ = (1 -λ 1 )χ [β 1 , β1 ] + 1≤i≤n-1 i odd λ i+1 χ [ βi , βi+1 ] + 2≤i≤n-1 i even (1 -λ i+1 )χ [ βi , βi+1 ] satisfies 0 < ρ < 1 on [β 1 , b] and for each k in {1, • • • , n -1} b β 1 ρ dµ k = µ k (β 1 , β1 ) + 2≤i≤n-1 i even µ k ( βi , βi+1 ).
We are thus led to find a (n -1)-tuple (

β 2 , • • • , β n ) such that (β 1 ≤)β 2 ≤ • • • ≤ β n (≤ b) and for each k in {1, • • • , n -1} 2≤i≤n i even µ k (β i , β i+1 ) = b β 1 ρ dµ k , or equivalently, if we put β = (β 2 , • • • , β n ), ∀k ∈ {1, • • • , n -1} µ k (E - β ) = b β 1 ρ dµ k .
Existence and uniqueness of β follow from the inductive assumption at rank n -1.

In addition, since 0

< ρ < 1 on [β 1 , b], we have β 1 < β 2 < • • • < β n < b.
We can thus define a map ψ :

[a, β1 ] → R n-1 such that for all n-tuple (β 1 , • • • , β n ) in Γ n (β 1 , • • • , β n ) ∈ S ⇐⇒ (β 2 , • • • , β n ) = ψ(β 1 ).
Thus S is the graph of ψ. By the continuity of the measure µ, the maps θ k , 1 ≤ k ≤ n -1, are continuous so that the set S is closed; moreover, the function ψ takes its values in the compact set [a, b] n-1 . It follows that ψ is continuous. Henceforth S is connected. As a consequence, the map θ n , being continuous on S, reaches all the values between θ n ( β1 , • • • , βn-1 , b) and θ n (a, ᾱ1 , • • • , ᾱn-1 ). In particular, there exists a n-tuple β in S such that θ n (β) = µ n (ρ). This n-tuple β solves the problem. Since θ n (a, ᾱ1 ,

• • • , ᾱn-1 ) = µ n (ρ) and θ n ( β1 , • • • , βn-1 , b) = µ n (ρ) then a < β 1 < β1 so that a < β 1 < β 2 < • • • < β n < b.
Uniqueness of β follows from lemma 4.4.

Consider now the case 0 ≤ ρ ≤ 1. Let (ρ m ) m∈N be a sequence of measurable functions such that 0 < ρ m < 1 and ρ m converges to ρ in L 1 µ ([a, b]). For each function ρ m there exists a unique n-tuple β m such that

µ(E + β m ) = b a ρ m dµ.
By compactness, we may assume that β m converges to some n-tuple β of Γ n . Passing to the limit, we obtain µ(E + β ) = µ(ρ). Finally we show that the map θ is proper (i.e. that the inverse image of a compact subset is compact). Let K be a compact subset of F and (γ m ) m∈N be a sequence in θ -1 (K) such that θ(γ m ) converges to µ(ρ) for some ρ, 0 < ρ < 1. Since the sequence (γ m ) m∈N is contained in Γ n , by compactness, we may assume that γ m converges to γ in Γ n . By the continuity of θ, we have

θ(γ) = µ(E - γ ) = b a ρ dµ.
Uniqueness part of theorem 5.1 implies that γ belongs to Γ • n . The map θ is proper and thus closed. It follows that its inverse θ -1 is continuous. The equality θ(∂Γ n ) = ∂R is a consequence of the inclusion θ(Γ

• n ) ⊂ R
• and the fact that θ is one to one.

We refer to [START_REF] Valentine | Convex sets[END_REF] for the definitions of classical notions associated with convex sets. We have the following Theorem 6.5. The range R of an oriented measure is strictly convex.

Proof. Let µ(E), µ(F ) be two distinct points of R. By theorem 5.1 we may assume that the sets E and F are finite unions of closed intervals. Let λ ∈]0, 1[ and put ρ = λχ E +(1-λ)χ F . Assume for instance E \ F = ∅. Then there exists a non-trivial interval I such that ∀x ∈ I ρ(x) = λχ E (x) + (1 -λ)χ F (x) = λ.

Put = min(λ, 1 -λ). Lemma 6.1 applied to ρ, I, shows that µ(ρ) belongs to R • .

  Lyapunov states that the range R of a non-atomic vector measure µ on [a, b] R = { µ(A) : A measurable subset of [a, b] } coincides with the convex set b a ρ dµ : 0 ≤ ρ ≤ 1 .

Proposition 2 . 5 .

 25 A locally oriented measure on [a, b] is oriented on [a, b].

Proposition 3 . 1 .

 31 Let f 1 , • • • , f n be n functions in L 1 ([a, b]) satisfying the orientation condition ∆ on [a, b]. Let µ i be the measure on [a, b] whose density with respect to the Lebesgue measure is f i . Then the measure µ

Lemma 4 . 2 .

 42 Let F and G be two distinct subsets of [a, b] which are the union of l and m disjoint closed intervals

Lemma 4 . 4 (

 44 Uniqueness). Let µ be a n-dimensional oriented measure on [a, b]. Assume the n-tuples γ

Lemma 4 . 5 .(- 1 )

 451 Let µ = (µ 1 , • • • , µ n ) be an oriented measure on the interval [a, b] and I 0 < I 1 < • • • < I n be n + 1 subintervals of [a, b]. Then, given a positive , there exist n + 1 positive real numbers λ 0 , • • • , λ n such that ∀l ∈ {0, • • • , n} 0 < λ l < and n l=0 l λ l µ(I l ) = 0.

Theorem 5 . 1 .

 51 Let µ be an oriented measure on [a, b] and let ρ be a measurable function defined on [a, b] with values in [0, 1]. There exist two n-tuples α

  • n=1. The measure µ being oriented on [a, b], the maps α → µ([α, b]) and β → µ([a, β]) are continuous and strictly monotonic on [a, b]. It follows that there exist unique real numbers α 1 and β 1 such that

  and for each n-tuple β in Γ n θ k (β) = µ k (E + β ). The inductive assumption yields the existence of two (n -1)-tuples ᾱ = (ᾱ 1 , • • • , ᾱn-1 ) and β = ( β1 , • • • , βn-1 ) such that

6 .

 6 The range of an oriented measure Let µ be an oriented measure on [a, b]. We denote by R the range of µ i.e. R = { µ(A) : A measurable subset of [a, b] }. Lemma 6.1. Let ρ be a measurable function on [a, b], 0 ≤ ρ ≤ 1. Suppose there exist a non-trivial interval I of [a, b] and a positive real number such that ≤ ρ ≤ 1 -on I. Then the set b a ρ dµ : ρ= νχ I + ρ, ν ∈ L 1 µ (I), |ν| < is a neighbourhood of b a ρ dµ in R n . Proof. Let I 1 < • • • < I n be n non-trivial subintervals of I. The measure µ being oriented, the vectors µ(I 1 ), • • • , µ(I n ) form a basis of R n . The map Λ : (λ 1 , • • • , λ n ) ∈ R n -→ 1≤i≤n λ i µ(I i ) ∈ R n is a linear isomorphism and is thus open. Let V = { (λ 1 , • • • , λ n ) : max 1≤i≤n |λ i | < }.Since Λ(V ) is a neighbourhood of the origin and is contained in the setI ν dµ : ν ∈ L 1 µ (I), |ν| < ,piecewise constant function ρ such that 0 < ρ < 1 and µ(ρ) = θ(γ). Clearly there exist a positive and a subinterval I of [a, b] on which ≤ ρ ≤ 1 -. PutV I, ρ = { νχ I + ρ : ν ∈ L 1 µ (I), |ν| < }.Lemma 6.1 implies that the setµ(V I, ρ ) = b a ρ dµ : ρ ∈ V I, ρ is a neighbourhood of µ(ρ) in R n . Since each element ρ of V I, ρ satisfies 0 < ρ < 1 then µ(V I, ρ ) is entirely contained in F . Moreover F coincides with θ(Γ • n ) and thus θ(Γ • n ) is a neighbourhood of θ(γ).Now each open convex set in R n is the interior of its closure; by lemma 6.3, the set θ(Γ • n ) is convex and its closure is R, whence θ(Γ• n ) = R • .

  measure µ being oriented, the determinants |A α | and |A β | have the same sign, as do |A α nn | and |A β nn |. It follows that θ n ( β1 , • • • , βn-1 , b)-µ n (ρ) and θ n (a, ᾱ1 , • • • , ᾱn-1 )-µ n (ρ) have opposite signs.At this stage, we prove that the set S is the graph of a continuous function, this will imply that S is connected. Let β 1 belong to [a, β1 ]. We are looking for a (n -1)-tuple (β 2
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then the conclusion follows.

Remark. The hypothesis ≤ ρ ≤ 1 -implies that µ(ρ) belongs to the interior of R.

Remark. The conclusion of lemma 6.1 does not hold for an arbitrary vector measure: consider for instance the n-dimensional Lebesgue measure.

Let θ : Γ n → R be the function defined by θ(γ) = µ(E - γ ). The interior of Γ n is the set Γ

• n ; applying lemma 4.5 to µ, γ and < 1/2, we obtain a (n + 1)-tuple (λ 0 ,

.

By construction we have 0 < ρ < 1 and

so that θ(γ) belongs to F .

We have the following Theorem 6.4. The range of θ coincides with R; the map θ induces an homeomorphism from Γ • n onto R • and maps ∂Γ n onto ∂R.

Proof. The surjectivity of θ follows directly from theorem 5.1. Injectivity of the restriction of θ to Γ • n is a consequence of the uniqueness part of theorem 5.1 together with lemma 6.3. We claim that θ(Γ Proof. We first remark that the family of the sets which are a finite union of intervals and whose characteristic function has less than n -1 discontinuity points coincides with the family { E - γ : γ ∈ ∂Γ n }. Theorem 6.4 shows that µ(F ) belongs to ∂R whenever F = E - γ for some γ ∈ ∂Γ n . Conversely let E be such that µ(E) belongs to ∂R. Theorem 6.4 yields the existence of a n-tuple γ belonging to ∂Γ n such that µ(E - γ ) = µ(E); a consequence of theorem 6.5 is that µ(E) is an extreme point of R. Olech Theorem [5, Th. 1] implies that E∆E - γ is µ-negligible.

Our approach discloses the recursive structure of the boundary of the range of an oriented measure. For k belonging to {0, • • • , n} let

Proof. Injectivity follows directly from corollary 6.6. The rest of the proof uses the techniques of the proof of theorem 6.4.

These results yield the following Proposition 6.8. The boundary of the range R of an oriented n-dimensional measure admits the decomposition

Let T be the symmetry with respect to µ(a, b)/2 (so that for each measurable subset A of [a, b], T (µ(A)) = µ([a, b] \ A)). Then for each k belonging to {0, • • • , n} we have