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Chebyshev measures

Introduction

We are concerned with the problem of representing the values of a vector measure through its restriction to a nice family of sets. This problem has been handled for a vector measure defined on an interval and admitting a continuous density function forming a Chebyshev system (a function f : [START_REF] Karlin -W | Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics[END_REF][START_REF] Kreȋn -A | The Markov moment problems and extremal problems[END_REF]. In this case, to each interior point of the range correspond exactly two dual canonical finite unions of intervals. The proof relies on geometrical considerations and on the fact that a linear combination of the components of a n-dimensional vector function which is a T -system has at most n zeroes. T -systems have been traditionally applied to approximation theory and to moment problems in statistics [START_REF] Karlin -W | Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics[END_REF][START_REF] Kreȋn -A | The Markov moment problems and extremal problems[END_REF]; here we consider them from the point of view of Measure Theory. In dealing with Lyapunov theorem on the range of vector measures and a bang-bang control problem [START_REF] Cerf | On bang-bang constrained solutions of a control system[END_REF][START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF], we were led incidentally to prove a weaker version of the aforementioned theorem. We thank warmly Fabrice Gamboa for introducing us to the field of Chebyshev systems, especially because their relationship with Lyapunov theorem does not appear at all in control theory literature. Our proofs differed strongly from the previous ones. In the case of continuous densities [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF], they were based on the differentiability of the measure and on a global inversion argument. We generalized the result to unnecessarily absolutely continuous measures, but still with n determinant conditions (oriented measures) [START_REF] Cerf | Oriented measures[END_REF] which allowed us to prove inductively the representation theorem with the help of an elementary topological argument. The knowledge of the previous works on T -systems suggested us that our result should hold with only one determinant condition. Here we introduce Chebyshev measures: they form a broad class of vector measures (unnecessarily defined on an interval) admitting a representation property through canonical sets and whose range is strictly convex. Our new argument is direct and uses the invariance domain theorem.

[0, 1] → R n is a T -system if det[f (x 1 ), • • • , f (x n )] > 0 when x 1 < • • • < x n )

General framework

Throughout the paper, we deal with the following objects: • a measurable space (X, A), • a non-trivial positive measure ν defined on A, • a vector measure µ

= (µ 1 , • • • , µ n ) defined on A with values in R n , • an increasing family of measurable sets (M i ) i∈[0,1] such that M 0 = ∅, M 1 = X. We suppose that the M i 's are distinct modulo ν i.e. ∀i, j ∈ [0, 1] i < j =⇒ ν(M i ) < ν(M j ).
The total variation |µ| is the scalar measure

|µ| = |µ 1 | + • • • + |µ n |
where the |µ i | are the usual total variations of the scalar measures µ i . We make the following assumption.

Assumption. The measures ν and µ are non-atomic with respect to the family (M i ) i.e.

∀E ∈ A ν(E) = 0 =⇒ ∃ i ∈[0, 1] 0 < ν(E ∩ M i ) < ν(E), ∀E ∈ A |µ|(E) = 0 =⇒ ∃ i ∈[0, 1] 0 < |µ|(E ∩ M i ) < |µ|(E).
Remark. This assumption guarantees that the maps i → ν(M i ) and i → µ(M i ) are continuous. Moreover the measures ν and µ are non-atomic.

Example 2.1. (linear intervals) This general framework stems from the case where X is the interval [0, 1] of R, A is the Lebesgue σ-field, ν is the Lebesgue measure, the M i 's are the intervals [0, i] and µ is a non-atomic vector measure on [0, 1]. In this situation, the previous assumption on µ turns out to be equivalent to the non-atomicity of µ.

Example 2.2. (circular annulus) Let X = B m be the unit ball of R m equipped with the Lebesgue measure (ν, A). We take M i to be the ball of radius i. Finally let µ be any vector measure which is absolutely continuous with respect to ν. The assumption on µ is here equivalent to the fact that the spheres have a zero |µ|-measure.

Chebyshev measures

We denote by S n the symmetric group of order n and, for σ in S n , by (σ) its sign. To the vector measure µ we associate a determinant measure det µ.

Definition 3.1. (determinant measure)

The measure det µ is the measure defined on the product space (X n , A ⊗n ) by

det µ = σ∈S n (σ) µ σ(1) ⊗ • • • ⊗ µ σ(n) .

This is the only measure whose restrictions to the product sets

A 1 × • • • × A n satisfy det µ(A 1 × • • • × A n ) = det[µ(A 1 ), • • • , µ(A n )].
The definition of a Chebyshev measure will involve the following subset of X n :

P = 0≤i 1 ≤•••≤i n-1 ≤1 M i 1 × (M i 2 \ M i 1 ) × • • • × (M i n-1 \ M i n-2 ) × (X \ M i n-1 ).
Obviously P belongs to the product σ-field A ⊗n .

Examples. In the case of the linear intervals (example 2.1) we have

P = { (x 1 , • • • , x n ) ∈ [0, 1] n : 0 ≤ x 1 ≤ • • • ≤ x n ≤ 1 }.
In the case of the circular annulus (example 2.2) we have

P = { (x 1 , • • • , x n ) ∈ (B m ) n : 0 ≤ |x 1 | ≤ • • • ≤ |x n | ≤ 1 }. Definition 3.2. (Chebyshev measure)
The vector measure µ is a T ν -measure if the measure det µ satisfies

∀A ∈ A ⊗n , A ⊂ P, ν ⊗n (A) > 0 =⇒ det µ(A) > 0.
The symbol T ν stands for Chebyshev measure.

Remark. Any non-atomic positive scalar measure µ is a Chebyshev measure with respect to itself. In fact, Lyapunov theorem yields the existence of an increasing family (M i ) such that µ(M i ) = iµ(X) for i in [0, 1]. Using the Hahn decomposition, any non-atomic scalar signed measure is the difference of two Chebyshev measures with respect to its total variation.

If µ is absolutely continuous with respect to ν, this definition might be translated in terms of the density function.

Definition 3.3. Let f = (f 1 , • • • , f n ) be a measurable vector-valued function defined on X. We say that f = (f 1 , • • • , f n ) is a T ν -system if the determinant det[f (x 1 ), • • • , f (x n )] is positive for ν ⊗n almost all (x 1 , • • • , x n ) in P .
This definition is a slight generalization of the classical one which deals only with functions defined on an interval. Theorem 3.4. Suppose µ is absolutely continuous with respect to ν.

Let f = (f 1 , • • • , f n ) be its density function. Then µ is a T ν -measure if and only if f is a T ν -system.
Proof. Remark first that for any measurable set A of X n we have

det µ(A) = A σ∈S n (σ) f σ(1) (x 1 ) • • • f σ(n) (x n ) dν ⊗n (x 1 , • • • , x n ) = A det[f (x 1 ), • • • , f (x n )] dν ⊗n (x 1 , • • • , x n ).
Suppose that f is a T ν -system. Let A be a measurable subset of P of positive ν ⊗n measure. The domain of integration has a positive measure and the integrand is positive ν ⊗n almost everywhere on this domain. It follows that det µ(A) is positive. Conversely, assume that µ is T ν -measure and set

A = { (x 1 , • • • , x n ) ∈ P : det[f (x 1 ), • • • , f (x n )] ≤ 0 }. Clearly A det[f (x 1 ), • • • , f (x n )] dν ⊗n (x 1 , • • • , x n ) ≤ 0. Assume that ν ⊗n (A) > 0.
By the very definition of a T ν -measure, we have det µ(A) > 0. However the initial formula yields

det µ(A) = A det[f (x 1 ), • • • , f (x n )] dν ⊗n (x 1 , • • • , x n ) ≤ 0 , which is absurd. Thus ν ⊗n (A) = 0.
There is a huge literature concerning Chebyshev systems of continuous functions defined on an interval. They were originally introduced in interpolation theory. Their general properties (in the case of continuous functions) have been thoroughly studied [START_REF] Karlin -W | Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics[END_REF][START_REF] Kreȋn -A | The Markov moment problems and extremal problems[END_REF].

Example 3.5. (circular annulus) Let f = (f 1 , • • • , f n ) : [0, 1] → R n
be a T -system with respect to the Lebesgue measure on [0, 1] and the family of intervals [0, i]. Then the function g(x) = f (|x|) defined on the unit ball B m is a T -system with respect to the elements defined in example 2.2.

Fundamental properties

Notation. For a k-tuple of measurable sets

A 1 , • • • , A k by A 1 < • • • < A k
we mean that the A i 's are non negligible for ν and that there exists

i 0 < • • • < i k such that A 1 ⊂ M i 1 \ M i 0 , • • • , A k ⊂ M i k \ M i k-1 .
The non-atomicity assumption on ν implies the following result. Proposition 4.1. For each non-negligible set E and for each integer m there exist measurable sets

E 1 , • • • , E m such that E = E 1 ∪ • • • ∪ E m and E 1 < • • • < E m .
In particular P is not ν ⊗n negligible.

Proof. Let E be a set of positive ν measure. The map i ∈ [0, 1] → ν(M i ∩ E) being continuous and increasing, there exist 0

< i 1 < • • • < i m-1 ≤ 1 such that ν(M i l ∩ E) = (l/m) ν(E) for l in {1 • • • m -1}. Then the sets E l = (M i l \ M i l-1 ) ∩ E for l ∈ {1 • • • m -1}, E m = E\M i m-1
, satisfy the required conditions. Applying this result to E = X and m = n, we obtain a subset of P of positive ν ⊗n measure.

If ρ is a measurable function on X, its support is the set supp ρ = { x : ρ(x) = 0 }. If ρ belongs to L 1 µ (X), by µ(ρ) we denote the column vector

µ(ρ) = X ρ dµ = t X ρ dµ 1 , • • • , X ρ dµ n .
A direct consequence of the definitions is that if

A 1 < • • • < A n then the determinant det[µ(A 1 ), • • • , µ(A n )] is positive.
A more important fact concerning T ν -measures is that this characteristic property carries on from sets to positive functions.

Theorem 4.2. Suppose µ is a T ν -measure. If ρ 1 , • • • , ρ n are n µ-integrable non-negative functions such that supp ρ 1 < • • • < supp ρ n then the determinant det[µ(ρ 1 ), • • • , µ(ρ n )] is positive.
Let us first state a preparatory lemma.

Lemma 4.6. (perturbation lemma) Suppose µ is a T ν -measure and let

A 0 < A 1 < • • • < A n be n + 1 measurable sets. Given a positive ε, there exist n + 1 real numbers λ 0 , • • • , λ n such that ∀l ∈ { 0, • • • , n } 0 < λ l < ε and n l=0 (-1) l λ l µ(A l ) = 0.
Proof. Consider the n × n linear system

λ 0 µ(A 0 ) -λ 1 µ(A 1 ) + • • • + (-1) n-1 λ n-1 µ(A n-1 ) = (-1) n-1 λ n µ(A n ).
where λ n is a parameter. The determinant of the system is

ω n = (-1) n(n-1) 2 det [µ(A 0 ), • • • , µ(A n-1 )]. Since µ is a T ν -measure, ω n is not zero. For each i in { 0, • • • , n -1 }, let ω i be µ 1 (A 0 ) • • • (-1) i-2 µ 1 (A i-2 ) (-1) n-1 µ 1 (A n ) (-1) i µ 1 (A i ) • • • (-1) n-1 µ 1 (A n-1 ) µ 2 (A 0 ) • • • (-1) i-2 µ 2 (A i-2 ) (-1) n-1 µ 2 (A n ) (-1) i µ 2 (A i ) • • • (-1) n-1 µ 2 (A n-1 ) . . . . . . . . . . . . . . . . . . . . . µ n (A 0 ) • • • (-1) i-2 µ n (A i-2 ) (-1) n-1 µ n (A n ) (-1) i µ n (A i ) • • • (-1) n-1 µ n (A n-1 ) i.e. ω i = (-1) n(n-1) 2 det [µ(A 0 ), • • • , µ(A i-2 ), µ(A i ), • • • , µ(A n )].
By Cramer formula, λ i equals λ n ω i /ω n . The measure µ being is a T ν -measure, ω i and ω n have the same sign so that λ i is positive whenever λ n is positive. Choosing λ n such that 0 < λ n < min(εω n /ω 0 , • • • , εω n /ω n-1 , ε) we obtain an (n + 1)-tuple which solves the problem.

The representation theorem

We are about to state the main result which allows us to represent the values of a T ν -measure through canonical sets, that we define now.

Notation. (canonical sets) The set Γ is the subset of [0, 1] n defined by

Γ = { (γ 1 , • • • , γ n ) ∈ R n : 0 ≤ γ 1 ≤ • • • ≤ γ n ≤ 1 }. The interior of Γ is int Γ = { (γ 1 , • • • , γ n ) ∈ R n : 0 < γ 1 < • • • < γ n < 1 }. For γ = (γ 1 , • • • , γ n ) in Γ, we use the convention γ 0 = 0, γ n+1 = 1. For each γ = (γ 1 , • • • , γ n ) in Γ, we set E γ = 0≤i≤n i odd M γ i+1 \ M γ i .
Theorem 5.1 below was obtained in [START_REF] Cerf | Oriented measures[END_REF][START_REF] Karlin -W | Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics[END_REF] in the case where µ is defined on [0, 1] and ν is the Lebesgue measure under some stronger assumptions: in [START_REF] Karlin -W | Tchebycheff systems: with applications in analysis and statistics, Pure and applied mathematics[END_REF], for classical T -systems, µ is assumed to have a continuous density with respect to ν whereas in [START_REF] Cerf | Oriented measures[END_REF] µ satisfies n determinant conditions (instead of one).

Theorem 5.1. (representation theorem) Suppose µ is a T ν -measure and let ρ be a measurable function such that 0 < ρ < 1 ν-a.e. There exist unique α and β in Γ satisfying

µ(E α ) = X ρ dµ = µ(X \ E β ).
Moreover these α and β belong to the interior of Γ.

Remark. The set X \ E β is dual to the set E β . In fact

X \ E β = 0≤i≤n i even M β i+1 \ M β i .
Proof of theorem 5.1. Assume that the claim concerning the existence and uniqueness of the set E α has been proved. We apply it to the function 1 -ρ. This yields a set E β such that µ(E β ) = µ(1 -ρ), which may be rewritten as µ(X \ E β ) = µ(ρ). We will thus only deal with the sets of the form E α .

Strict inequalities. Let α be a point of Γ such that µ(E α ) = µ(ρ). We show that α belongs to the interior of Γ. We rewrite µ(E α ) = µ(ρ) as

0≤i≤n i odd M α i+1 \M α i (1 -ρ) dµ - 0≤i≤n i even M α i+1 \M α i ρ dµ = 0. If we set λ i = (-1) i+1 , ρ i = ρχ M α i+1 \M α i if i is odd (1 -ρ)χ M α i+1 \M α i if i is even the equation becomes λ 0 X ρ 0 dµ + • • • + λ n X ρ n dµ = 0. Let I = { i : 0 ≤ i ≤ n, α i < α i+1 }; remark that for i in I the function ρ i is strictly positive on M α i+1 \ M α i .
Assume that the n-tuple α does not belong to the interior of Γ. Then |I| ≤ n; if we write Assume for instance that δ 1 ≤ γ 1 ; then E δ ∩ M δ 1 = E γ ∩ M δ 1 so that the equality µ(E δ ) = µ(E γ ) becomes

I = { i 1 , • • • , i p }, where i 1 < • • • < i p , we have 1 ≤ p ≤ n, p j=1 λ i j X ρ i j dµ = 0, supp ρ i 1 < • • • < supp ρ i p , λ i j ∈ {-1, 1}.
X\M δ 1 (χ E δ -χ E γ ) dµ = 0.
The sets (M δ i+1 \M δ i ) 1≤i≤n cover X \M δ 1 ; moreover on M δ i+1 \M δ i we recall that χ E δ = 1 if i is odd and χ E δ = 0 if i is even. The above equality then yields

0≤i≤n i odd M δ i+1 \M δ i (1 -χ E γ ) dµ - 2≤i≤n i even M δ i+1 \M δ i χ E γ dµ = 0
which may be rewritten Now each ρ i is non-negative. If δ = γ there exists j such that ρ j is positive on a nonnegligible set. By corollary 4.5, µ(ρ j ) is non-zero so that the set J = { i : µ(ρ i ) = 0 } is not empty. Writing J = { i 1 , • • • , i p }, where i 1 < • • • < i p , we have 

1 ≤ p ≤ n, p k=1 λ i k X ρ i k dµ = 0, supp ρ i 1 < • • • < supp ρ i p , λ i k ∈ {-1, 1}.

Corollary 4 .

 4 4 yields a contradiction. It follows that 0< α 1 < • • • < α n < 1. Uniqueness. Let δ = (δ 1 , • • • , δ n ) and γ = (γ 1 , • • • , γ n ) be two elements of Γ such that µ(E δ ) = µ(ρ) = µ(E γ ). The first part of the proof (strict inequalities) shows that 0 < δ 1 < • • • < δ n < 1 and 0 < γ 1 < • • • < γ n < 1.

ρ

  i dµ = 0 whereλ i = (-1) i+1 , ρ i = |χ E δ -χ E γ |χ M δ i+1 \M δ i .

Corollary 4 .

 4 4 yields a contradiction. It follows that δ = γ.

The second author (C.M.) was supported by a Grant of the Consiglio Nazionale delle Ricerche (Grant 203.01.62).

Lemma 4.3. Let ρ 1 , • • • , ρ n be n µ-integrable functions. Then

Proof of the lemma. The identity is obviously true whenever ρ 1 , • • • , ρ n are characteristic functions. The monotone class theorem yields the result. Another scheme of proof is to develop the determinant and to transform each product of integrals into an n-dimensional integral with respect to a judicious product measure.

Proof of theorem 4.2. We apply the lemma. The domain of integration of the n-fold integral is reduced to supp ρ 1 × • • • × supp ρ n on which the determinant measure det µ is positive (by the definition of a T ν -measure). Hence the n-fold integral is positive.

we have n k=1 λk µ(ρ k ) = 0. Moreover supp ρ1 < • • • < supp ρn ; we are thus led to the previous case and the conclusion follows.

Funny corollary 4.5. Suppose µ is a T ν -measure and let ρ be a non-negative µintegrable function whose support is not negligible. Then µ(ρ) is non-zero. In particular, µ(E) is non-zero whenever ν(E) is non-zero.

Proof. We apply corollary 4.4 with p = 1, λ 1 = 1.

Remark. This assertion sounds trivial; however the point is that µ is a vector measure whose components are scalar signed measures. This makes life more difficult. Instead, in the case of oriented measures, this fact is a direct consequence of the definition (since µ 1 is then positive). A consequence of the funny corollary is that if µ is a T ν -measure, then ν is absolutely continuous with respect to the total variation of µ! Existence. Let θ : Γ → R n be the map defined by θ(α) = µ(E α ). The non-atomicity of µ with respect to the M i 's implies that this map is continuous. Moreover the second part of the proof (uniqueness) shows that the map θ is injective on int Γ. The invariance domain theorem [START_REF] Lloyd | Degree theory[END_REF] 

By construction we have 0 < ρ < 1 and µ(ρ) = θ(α) so that θ(α) belongs to C. Now the second part of the proof (uniqueness) shows that θ(Γ) Γ) is open and closed in C. Thus it coincides with the whole set C.

Remark. The map θ was first introduced in [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF] to prove theorem 5.1 under the stronger assumptions that µ is defined on [0, 1] and admits a continuous density with respect to the Lebesgue measure. In [START_REF] Cerf | Oriented measures with continuous densities and the bang-bang principle[END_REF] however θ is differentiable and a local homeomorphism: Caccioppoli's global inversion theorem yields the injectivity of θ on int Γ and the fact that θ(int Γ) is open; instead here we first prove directly the injectivity of θ (without being differentiable) and then we apply the open mapping theorem.

A simple classical approximation argument yields the following corollary.

Corollary 5.2. Suppose µ is a T ν -measure. Let ρ be a measurable function such that 0 ≤ ρ ≤ 1. There exist α and β in Γ satisfying

We denote by R the range of µ i.e. R = { µ(E) : E ∈ A }.

Remark. The proof of Theorem 5.1 shows that θ(int Γ) is open and convex; by Corollary 5.2 its closure coincides with R. Then by [7, Th. 6.3] we obtain that int R = θ(int Γ). 10

Corollary 5.3. Suppose µ is a T ν -measure. Let ρ be a measurable function such that 0 ≤ ρ ≤ 1 and 0 < ρ < 1 on a ν-non negligible set. Then µ(ρ) belongs to the interior of R; in particular there exist unique α and β in the interior of Γ satisfying

Proof. There exist a ν-non negligible set F and ε > 0 such that ε ≤ ρ ≤ 1 -ε on F . The non-atomicity assumption yields the existence of 0 < δ 1 < • • • < δ n < 1 = δ n+1 such that if for every i we set

The following results have been stated in a less general context in [START_REF] Cerf | Oriented measures[END_REF] but they are still valid in the present framework; Chebyshev measures provide a broad class of measures whose range is strictly convex.

Theorem 5.3. The range R of a T ν -measure is strictly convex. The boundary points of R admit a unique representation modulo µ. Moreover a point µ(E) belongs to the boundary of R if and only if there exists γ in the boundary of Γ such that µ(E∆E γ ) = 0.

Finally, we remark that the same results would hold under a weaker assumption on the measure. Namely, it is enough that for each n-tuple of measurable sets A 1 , • • • , A n such that A 1 < • • • < A n , the determinant det[µ(A 1 ), • • • , µ(A n )] is positive. The delicate point concerns theorem 4.2 which is the key for proving the representation theorem. In this situation, the proof should be done along the lines of theorem 2.2 of [START_REF] Cerf | Oriented measures[END_REF].