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Introduction

We consider the family of bidimensional linear control systems (P ) described by a generic second order equation subject to a scalar control:

x + a 1 (t)x + a 0 (t)x ∈ Φ(t) = [φ 1 (t), φ 2 (t)] a.e., (x(0), x (0), x(T ), x (T )) = (x 0 , v 0 , x 1 , v 1 ) where φ 1 ≤ φ 2 ∈ L 1 ([0, T ]) and a 1 , a 0 ∈ C([0, T ]), x 0 , v 0 , x 1 , v 1 ∈ R, x ∈ W 2,1 ([0, T ]). The function y is said to be a bang-bang solution to (P ) if it solves (P ) and moreover y + a 1 (t)y + a 0 (t)y ∈ extr Φ(t) = {φ 1 (t), φ 2 (t)} a.e.

(

) 1 
Existence of bang-bang solutions has been proved for instance by Cesari [START_REF] Cesari | Optimization-theory and applications[END_REF]Theorem 16.3]. The purpose of this paper is to prove that given an arbitrary solution x to (P ), there exists a bang-bang solution y such that

∀t ∈ [0, T ] y(t) ≤ x(t) (2) 
and in addition y + a 1 y + a 0 y steers from φ 1 to φ 2 only a finite number of times. Motivation of such a problem was to study the reachable set Y c T = {(y(T ), y (T )) : y ≤ c, y + a 1 (t)y + a 0 (t)y ∈ extr Φ(t) a.e., (y(0), y (0)) = (x 0 , v 0 )} where c is an arbitrary function. A consequence of Theorem 3.1 is that Y c T coincides with X c T = {(y(T ), y (T )) : y ≤ c, y + a 1 (t)y + a 0 (t)y ∈ Φ(t) a.e., (y(0), y (0)) = (x 0 , v 0 )}. Notice that X c T is convex so that the above assumption implies that Y c T is convex too. Another motivation arises from non-convex problems of the calculus of variations (see [START_REF] Amar-A | On passing to the limit for non convex variational problems[END_REF]).

A possible approach in order to find bang-bang solutions is to use Lyapunov Theorem on the range of a vector measure [4, §16.1].

Here, the solution of x + a 1 (t)x + a 0 (t)x = ρ(t), x(0) = x (0) = 0 is given by x(t) = t 0 h(t, s)ρ(s) ds where h ∈ C 1 ([0, T ] × [0, T ]) and for each s ∈ [0, T ] the function h s (.) = h(., s) ∈ C 2 ([0, T ]) is the solution to the associated homogeneous differential equation satisfying the initial conditions h s (s) = 0, h s (s) = 1; Lyapunov Theorem yields the existence of a measurable subset E of [0, T ] such that

T 0 h(T, s)ρ(s) ds = T 0 h(T, s)(φ 1 (s)χ E (s) + φ 2 (s)χ [0,T ]\E (s)) ds, (3) 
T 0 ∂h ∂t (T, s)ρ(s) ds = T 0 ∂h ∂t (T, s)(φ 1 (s)χ E (s) + φ 2 (s)χ [0,T ]\E (s)) ds. (4) 2 
Clearly, by differentiating under the integral sign, the function y defined by

y(t) = t 0 h(t, s)(φ 1 (s)χ E (s) + φ 2 (s)χ [0,T ]\E (s)) ds (5) 
is a bang-bang solution. However, this approach does not give any information on the behaviour of y with respect to x on [0, T ].

Here we prove a new Lyapunov's type theorem concerning the range of a two-dimensional vector measure whose densities are such that their quotient is monotone: in this case, the set E can be chosen in the form [α, β]. Remark that this is not true in general; for instance there are no α, β ∈ [0, 3π] satisfying

β α sin t dt = 3π 0 sin tχ [0,π]∪[2π,3π] (t) dt β α 1 dt = 3π 0 1χ [0,π]∪[2π,3π] (t) dt.
In our application the equalities h(s, s) = 0 and ∂h ∂t (s, s) = 1 imply that the monotonicity condition is locally fulfilled; this allows us to build a set E satisfying (3)-( 4) as a finite union of intervals and, in the case where φ 1 < ρ < φ 2 are continuous, to choose E in such a way that neither 0 nor T belong to its closure. These facts, together with a decomposition of the kernel h(t, s) into a linear combination of linearly independent functions are the main tools that we use in order to show that the bang-bang solution y defined by ( 5) satisfies the inequality y ≤ x.

As an application we consider the problem of minimizing the integral functionals

I(x, u) = T 0 f (t, x(t), u(t)) dt where x : [0, T ] → R 2 is such that x(0), x (0), x(T ), x (T ) are fixed and u is a control belonging to U (t, x) ⊂ R 2 .
The classical approach to obtain existence of a minimum is to impose conditions in order to have the lower semicontinuity of I with respect to u (for instance convexity of u → f (t, x, u)).

Recently in an effort to provide existence criteria other than convexity in u some sufficient conditions have been given: for problems of the calculus of variations (x = u in the above setting) and for maps of the form f (t, x, x ) = g(t, x) + h(t, x ), existence of solutions has been obtained by requiring that the real map x → g(t, x) be monotone [START_REF] Marcellini | Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessitá[END_REF] or, for x in R n , that the same function be concave [START_REF] Cellina | On a classical problem of the calculus of variations without convexity assumptions[END_REF]. Optimal control problems escaping to convexity conditions have been handled in [START_REF] Raymond | Existence theorems in optimal control problems without convexity assumptions[END_REF]. It has been proved further in [START_REF] Cellina | The existence question in the calculus of variations: a density result[END_REF] that there exists a dense subset D of C(R) such that, for g in it, the problem minimize

T 0 g(x(t)) dt + T 0 h(x (t)) dt : x(0) = x 0 , x(T ) = x 1
admits a solution for every lower semicontinuous h satisfying growth conditions. Our theorem gives a straightforward generalization of the above result.

Assumptions and Preliminary Results

Let φ 1 , φ 2 ∈ L 1 [0, T ], φ 1 ≤ φ 2 and put Φ(t) = [φ 1 (t), φ 2 (t)] ⊂ R. We are interested in the solutions of the following control problem.

Problem P. a 1 , a 0 ∈ C([0, T ]), x 0 , x 1 , v 0 , v 1 ∈ R, x ∈ W 2,1 [0, T ]
x + a 1 (t)x + a 0 (t)x ∈ Φ(t) a.e.

(P)

x(0) = x 0 , x (0) = v 0 , x(T ) = x 1 , x (T ) = v 1 .
By extr Φ we mean the extreme points of Φ i.e. extr Φ(t) = {φ 1 (t), φ 2 (t)}.

Definition 2.1. A function y ∈ W 2,1 [0, T ] is said to be a bang-bang solution to (P) if y solves (P) and, moreover,

y + a 1 (t)y + a 0 (t)y ∈ extr Φ(t) a.e.
The following representation formula of the solutions to (P) will be used later.

Proposition 2.1. There exists a function h ∈ C 1 ([0, T ] × [0, T ]) satisfying Property (S) below such that, for each function ρ ∈ L 1 ([0, T ]), the solution of

x + a 1 (t)x + a 0 (t)x = ρ(t), x(0) = x (0) = 0 (P ρ )
is given by the formula

x(t) = t 0 h(t, s)ρ(s) ds . (2.1) 
Moreover for each s ∈ [0, T ] the function h(., s) is of class C 2 ([0, T ]).

Property S.

1) There exist

w 1 , w 2 ∈ C 2 ([0, T ]) , z 1 , z 2 ∈ C 1 ([0, T ]) such that ∀s, t ∈ [0, T ] h(t, s) = w 1 (t)z 1 (s) + w 2 (t)z 2 (s) (2.2) and W (w 1 , w 2 , t) = det w 1 (t) w 2 (t) w 1 (t) w 2 (t) = 0.
For each t 0 in [0, T ] there exists δ > 0 such that if we set

I δ = [t 0 -δ, t 0 + δ] ∩ [0, T ] then: 2) ∀s, t ∈ I δ h(t, s) > 0 if s < t, h(t, s) < 0 if t < s (whence h(s, s) = 0); 3) ∀s, t ∈ I δ ∂h ∂t (t, s) > 0; 4) ∀t ∈ I δ s → h(t, s)/ ∂h ∂t (t, s) is decreasing on I δ . Proof of Proposition 2.1. For each s ∈ [0, T ], let h s (.) = h(., s) ∈ C 2 ([0, T ]) be the solution to h s (t) + a 1 (t)h s (t) + a 0 (t)h s (t) = 0 h s (s) = 0, h s (s) = 1.
Set z(t) = t 0 h(t, s)ρ(s) ds. Differentiation under the integral sign shows that z is a solution to (P ρ ) whence, by uniqueness, z = x. In order to prove the second part of the claim, let w 1 , w 2 ∈ C 2 ([0, T ]) be two solutions of the differential equation

x + a 1 (t)x + a 0 (t)x = 0 (2.3) such that their wronskian

W (w 1 , w 2 , t) = det w 1 (t) w 2 (t) w 1 (t) w 2 (t)
is non zero for every t. Such functions exist since the set of the solutions of a second order linear differential equation is a two-dimensional vector space. Since for each s ∈ [0, T ], the function h s is a solution to (2.3) then there exist z 1 , z 2 defined on [0, T ] such that

∀s, t ∈ [0, T ] h s (t) = w 1 (t)z 1 (s) + w 2 (t)z 2 (s). ( 2 

.4)

Conditions on h s at s and equation (2.4) yield

h s (s) = 0 = w 1 (s)z 1 (s) + w 2 (s)z 2 (s) h s (s) = 1 = w 1 (s)z 1 (s) + w 2 (s)z 2 (s)
Since W (w 1 , w 2 , s) = 0 for each s, we find

z 1 (s) = - w 2 (s) W (w 1 , w 2 , s) , z 2 (s) = w 1 (s) W (w 1 , w 2 , s) so that z 1 , z 2 ∈ C 1 ([0, T ]) hence h(t, s) = h s (t) belongs to C 1 ([0, T ] × [0, T ]). By construction ∀s ∈ [0, T ] h(s, s) = 0 and ∂h ∂t (s, s) = 1 implying ∀s ∈ [0, T ] d ds h(s, s) = 0 ⇔ ∀s ∈ [0, T ] ∂h ∂t (s, s) + ∂h ∂s (s, s) = 0 ⇔ ∀s ∈ [0, T ] ∂h ∂s (s, s) = -1. As a consequence ∀s ∈ [0, T ] ∂ ∂s h ∂h ∂t (s, s) = -1.
By continuity for a fixed t 0 in [0, T ], there exists δ > 0 such that

∀s, t ∈ [t 0 -δ, t 0 + δ] ∩ [0, T ] ∂h ∂t (t, s) > 0 and ∂ ∂s h ∂h ∂t (t, s) < 0;
for this δ properties S 2)3)4) are satisfied.

Assume for instance Φ(t) = [0, φ(t)] and let ρ ∈ L 1 [0, T ] be such that 0 ≤ ρ ≤ φ. For a solution x to (P ρ ) formula (2.1) yields, in particular,

x(T ) = T 0 h(T, s)ρ(s) ds , (2.5 
)

x (T ) = T 0 ∂h ∂t (T, s)ρ(s) ds. (2.6)
Let us point out that the classical Lyapunov Theorem on the range of a vector measure [4, §16.1] allows to find a bang-bang solution. In fact its application yields the existence of a measurable subset E of [0, T ] such that

T 0 h(T, s)ρ(s) ds = T 0 h(T, s)φ(s)χ E (s) ds , (2.7) 
T 0 ∂h ∂t (T, s)ρ(s) ds = T 0 ∂h ∂t (T, s)φ(s)χ E (s) ds , (2.8) 
so that the function x defined by

x(t) = t 0 h(t, s)φ(s)χ E (s) ds
is, by Proposition 2.1, a bang-bang solution to (P) (with φ 1 = 0, φ 2 = φ, x 0 = v 0 = 0). However, for 0 < t < T , the Lyapunov Theorem does not give any information on the relative positions of x and the original solution x. The purpose of Proposition 2.2 below is to show that if s → h/ ∂h ∂t (t, s) is monotone on [0, T ] then the measurable subset E can be chosen to be an interval [α, β] with 0 ≤ α ≤ β ≤ T . This will allow us, taking into account property S 4), to define in §3 a bang-bang solution y satisfying y(t) ≤ x(t) for each t.

In what follows [a, b] is an interval of R, ρ and φ are two functions belonging to L 1 ([a, b]) satisfying 0 ≤ ρ ≤ φ. We say that r ∈ R is positive (resp. negative) if r ≥ 0 (resp. r ≤ 0). We consider the following hypothesis.

Hypothesis H. The functions f, g belong to L ∞ ([a, b]) and are positive almost everywhere. Moreover there exists a strictly monotone positive function k such that

g(t) = k(t)f (t) a.e.
We have the following Lyapunov's type result. Proposition 2.2. Let f, g satisfy hypothesis H. Then there exist α, β ∈ R such that, if we put E = [α, β], we have:

b a ρ(s)f (s) ds = β α φ(s)f (s) ds = b a φ(s)f (s)χ E (s) ds ; (2.9) b a ρ(s)g(s) ds = β α φ(s)g(s) ds = b a φ(s)g(s)χ E (s) ds .
(2.10)

Moreover, α and β are unique if ρ, φ, f, g are continuous, and 0 < ρ < φ, f > 0, g > 0.

In order to prove Proposition 2.2, we need the following fundamental Lemma. Proof of Lemma 2.1. Assume for instance that k is increasing. To prove (2.14) let f φ , f ρ be the monotone functions defined by

f φ (t) = t a φ(s)f (s) ds f ρ (t) = t a ρ(s)f (s) ds.
The Lebesgue-Stieltjes formula for integration by parts yields

b a ρ(s)g(s) ds = b a ρ(s)k(s)f (s) ds = b a k(s) df ρ (s) = k(b)f ρ (b) -k(a)f ρ (a) - b a f ρ (s) dk(s);
analogously we have

β a φ(s)g(s) ds = k(β)f φ (β) -k(a)f φ (a) - β a f φ (s) dk(s).
Taking into account that f φ (a) = f ρ (a) = 0 and that by (2.12)

f ρ (b) = f φ (β), we are thus led to show that b a f ρ (s) dk(s) - β a f φ (s) dk(s) ≤ (k(b) -k(β))f ρ (b).
(2.15)

By our assumptions we have

∀t ∈ [a, b] f φ (t) ≥ f ρ (t); (2.16) therefore b a f ρ (s) dk(s) - β a f φ (s) dk(s) ≤ b β f ρ (s) dk(s).
(2.17) Furthermore the functions f ρ and k being increasing we have

b β f ρ (s) dk(s) ≤ (k(b) -k(β))f ρ (b)
which, together with (2.17), gives (2.15).

To prove the final part of the lemma, it is enough to remark that if f > 0 and ρ > 0 then, by (2.12), β = a; if moreover 0 < ρ < φ a.e. then inequality (2.16) is strict for every t > a so that (2.17) is strict too (k being increasing). Similar arguments prove (2.13).

Proof of Proposition 2.2.

i) Existence. a) Assume first 0 < ρ < φ and f > 0 , g > 0 a.e. Let α 1 , α 2 , β 1 , β 2 ∈ [a, b] be such that b α 1 φ(s)f (s) ds = b a ρ(s)f (s) ds, (2.18) b α 2 φ(s)g(s) ds = b a ρ(s)g(s) ds, (2.19 
) 

β 1 a φ(s)f (s) ds = b a ρ(s)f (s) ds, (2.20) 
β 2 ≤ β 1 α 2 ≤ α 1 . ( 2 
∀α ∈ [a, α 1 ] ξ 1 (α) = v -1 (v(α) + m).
By definition, we have 

∀α ∈ [a, α 1 ] ξ 1 (α) α φ(s)f (s) ds = v(ξ 1 (α)) -v(α) = m = b a ρ(s)f (s)
ξ 2 • ξ 1 : [a, α 1 ] ξ 1 ----→ [β 2 , b] ξ 2 ----→ [a, α 1 ]
is defined and continuous from [a, α 1 ] into itself and therefore admits a fixed point ᾱ. Thus, if we set β = ξ 1 (ᾱ) we have ᾱ = ξ 2 ( β). Equalities (2.23) and (2.25) with α, β replaced by ᾱ, β yield the conclusion.

b) let

ρ n = ρ + 1 n , φ n = φ + 2 n , f n = f + 1
n so that 0 < ρ n < φ n and f n > 0 a.e. and set g n = kf n so that the monotonicity of k implies that g n > 0 a.e. and f n , g n satisfy H. By a) there exist α n ,

β n such that b a ρ n (s)f n (s) ds = β n α n φ n (s)f n (s) ds; (2.27) b a ρ n (s)g n (s) ds = β n α n φ n (s)g n (s) ds. (2.28) 
By compactness we may assume α n → α, β n → β. The conclusion follows by passing through the limit in (2.27) and (2.28).

ii) Uniqueness. Assume that 0 < ρ < φ, f > 0, g > 0 are continuous and that, for instance, k is decreasing. By i)a) the points α such that there exists β satisfying (2.11) and (2.12) are the fixed points of the composed map ξ 2 • ξ 1 . By definition the functions ξ 1 , ξ 2 are differentiable and we have

∀α ∈ [a, α 1 ] ξ 1 (α) = v (α) v (ξ 1 (α)) = φ(α)f (α) φ(ξ 1 (α))f (ξ 1 (α)) ; ∀β ∈ [β 2 , b] ξ 2 (β) = φ(β)g(β) φ(ξ 2 (β))g(ξ 2 (β))
.

In order to prove the claim we notice that if α satisfies

ξ 2 • ξ 1 (α) = α then (ξ 2 • ξ 1 ) (α) = ξ 2 (ξ 1 (α))ξ 1 (α) = k(ξ 1 (α)) k(α) .
(2.29) By (2.23) we have ξ 1 (α) > α so that the strict monotonicity of k implies k(ξ 1 (α)) < k(α) and thus (ξ

2 • ξ 1 ) (α) < 1 whenever ξ 2 • ξ 1 (α) = α. Let S = {α ∈ [a, b] : ξ 2 • ξ 1 (α) = α}.
Clearly, S is compact and non-empty by i); moreover, taking (2.29) into account, for each α ∈ S there exists η such that

∀t ∈]α -η, α[ ξ 2 • ξ 1 (t) > t ∀t ∈]α, α + η[ ξ 2 • ξ 1 (t) < t.
(2.30)

As a consequence, the set S has no accumulation points and is therefore finite. Let α 1 = min S and assume S = {α 1 }; let α 2 = min S \ {α 1 }. Then by (2.30) there exist

t 1 < t 2 ∈ [α 1 , α 2 ] such that ξ 2 • ξ 1 (t 1 ) < t 1 and ξ 2 • ξ 1 (t 2 ) > t 2 . Therefore there exists t ∈ [t 1 , t 2 ] such that ξ 2 • ξ 1 ( t ) = t, a contradiction.

Main Result

Theorem 3.1. Let x ∈ W 2,1 ([0, T ]) be a solution to (P). Then there exists a bang-bang solution y to (P) satisfying ∀t ∈ [0, T ] y(t) ≤ x(t).

Moreover there exists a set E which is a finite union of intervals such that

y + a 1 (t)y + a 0 (t)y = φ 1 (t)χ E (t) + φ 2 (t)χ [0,T ]\E (t) a.e.
Corollary 1. Under the above assumption, there exists a bang-bang solution y satisfying

∀t ∈ [0, T ] y(t) ≥ x(t).
Proof of Corollary 1. Let -Φ be defined by the equality (-Φ)(t) = -Φ(t). Clearly, x = -x solves x + a 1 (t)x + a 0 (t)x ∈ -Φ(t) a.e.

By Theorem 3.1 there exists a bang-bang solution ỹ satisfying the same boundary conditions as x and satisfying ∀t ∈ [0, T ] ỹ(t) ≤ x(t).

Then the function y defined by

∀t ∈ [0, T ] y(t) = -ỹ(t)
is a solution to our problem.

Proof of Theorem 3.1. Let h be the function defined in Proposition 2.1.

i) We show that it is not restrictive to assume

Φ(t) = [0, φ(t)] (φ ∈ L 1 ([0, T ]), φ > 0 a.e.
) and x 0 = v 0 = 0.

In fact, let Φ(t) = [φ 1 (t), φ 2 (t)] and x satisfy

x + a 1 (t)x + a 0 (t)x ∈ Φ(t) a.e.

Then the function x defined by

x(t) = x(t) -x (0)t -x(0) satisfies x(0) = x (0) = 0 and x + a 1 (t)x + a 0 (t)x ∈ [ψ 1 (t), ψ 2 (t)] a.e.
where

ψ 1 (t) = φ 1 (t) -a 0 (t)x (0)t -a 1 (t)x (0) -a 0 (t)x(0), ψ 2 (t) = φ 2 (t) -a 0 (t)x (0)t -a 1 (t)x (0) -a 0 (t)x(0).
Moreover, by Proposition 2.1, the function x defined by

x(t) = x(t) - t 0 h(t, s)ψ 1 (s) ds satisfies x(0) = 0, x (0) = 0 and x + a 1 (t)x + a 0 (t)x ∈ [0, ψ 2 (t) -ψ 1 (t)] a.e.
If we assume that Theorem 3.1 holds for such an interval and initial boundary conditions, there exists a function ȳ satisfying

ȳ(0) = x(0), ȳ (0) = x (0), ȳ(T ) = x(T ), ȳ (T ) = x (T ), ȳ + a 1 (t)ȳ + a 0 (t)ȳ ∈ {0, ψ 2 (t) -ψ 1 (t)} a.e., ∀t ∈ [0, T ] ȳ(t) ≤ x(t).
It is now easy to check that the function y defined by

y(t) = ȳ(t) + t 0 h(t, s)ψ 1 (s) ds + x (0)t + x(0)
is a solution to our problem.

ii) Assume first that δ of property (S) can be chosen in such a way that I δ = [0, T ]. In this case, if we set ρ = x + a 1 x + a 0 x then by Proposition 2.1 we can write

x(t) = t 0 h(t, s)ρ(s) ds, (3.1) 
where h satisfies property S 1) and in addition:

∀s, t ∈ [0, T ] h(t, s) > 0 if s < t, h(t, s) < 0 if t < s (3.2) ∀s, t ∈ [0, T ] ∂h ∂t (t, s) > 0, (3.3 
) ∀t ∈ [0, T ] s → h(t, s)/ ∂h ∂t (t, s) is decreasing on [0, t]. (3.4) 
In particular the functions f and g defined on [0, T ] by

g(s) = h(T, s) f (s) = ∂h ∂t (T, s)
verify hypothesis H with k(.) = h(T, .)/ ∂h ∂t (T, .). By Proposition 2.1, each bang-bang solution y such that x(0) = x (0) = 0 is given by the formula y(t) = t 0 h(t, s)ν(s) ds for some measurable function ν with values in {0, φ(t)}. We are thus led to show that there exists such a ν satisfying For this purpose, we use property S 1). Equalities (3.8) and (3.9) become

         w 1 (T ) T 0 z 1 (s)(ρ(s) -ν(s)) ds + w 2 (T ) T 0 z 2 (s)(ρ(s) -ν(s)) ds = 0 w 1 (T ) T 0 z 1 (s)(ρ(s) -ν(s)) ds + w 2 (T ) T 0 z 2 (s)(ρ(s) -ν(s)) ds = 0
The condition on the wronskian of w 1 , w 2 at T implies iii) In the general case, using property S and the compactness of [a, b], there exists a subdivision a 0 = 0 < a 1 < • • • < a l < T = a l+1 of [0, T ] such that, if we put I j = [a j , a j+1 ], we have • ∀s, t ∈ I j h(t, s) > 0 if s < t, h(t, s) < 0 if t < s ; • ∀s, t ∈ I j ∂h ∂t (t, s) > 0 ;

T 0 z 1 (s)(ρ(s) -ν(s)) ds = 0, (3.18) T 0 z 2 (s)(ρ(s) -ν(s)) ds = 0. ( 3 
→ ρ, φ n → φ in L 1 ([0, T ]) (for instance ρ n = ρ + 1 n , φ n = φ + 2 n ). Corresponding to each n, there exist α n , β n ∈ [0, T ] such that, if we set ν n = φ n χ [α n ,β n ] then we have T 0 h(T, s)ρ n (s) ds = T 0 h(T, s)ν n (s) ds, (3.23) 
• ∀t ∈ I j s → h(t, s)/ ∂h ∂t (t, s) is decreasing on I j . By ii), on each interval I j there exist α j , β j such that the solution y j to the problem y + a 1 (t)y + a 0 (t)y = φ 1 (t)χ [a j ,α j ]∪[β j ,b j ] (t) + φ 2 (t)χ [α j ,β j ] (t) a.e. on I j with the initial conditions y j (a j ) = x(a j ), y j (a j ) = x (a j ) satisfies the equalities y j (a j+1 ) = x(a j+1 ), y j (a j+1 ) = x (a j+1 ) and moreover y j (t) ≤ x(t) for each t ∈ I j . Clearly the function y ∈ W 2,1 ([0, T ]) obtained by glueing together the functions y j is a solution to our problem. The number δ depending only on the function h, it can happen that δ = +∞. This is the case when a 1 and a 0 are constant and the equation λ 2 + a 1 λ + a 0 = 0 admits two real roots λ 1 , λ 2 . In fact, under this assumption we have either h(t, s) = 1 λ 2 -λ 1 (e λ 2 (t-s) -e λ 1 (t-s) ) if λ 1 = λ 2 , or h(t, s) = (t -s)e λ(t-s) if λ 1 = λ 2 = λ.

Lemma 2 . 1 .

 21 Assume that f, g satisfy hypothesis H and let α, β ∈ [a, b] be such that b α φ(s)f (s) ds = If k is decreasing on [a, b], inequalities (2.13) and (2.14) are reversed. Moreover, inequalities (2.13)-(2.14) are strict if 0 < ρ < φ and f > 0, g > 0 a.e.

  for instance that k is decreasing on [a, b]. In this situation Lemma 2.1 yields

  f (s) ds is continuous and increasing with values in [0, v(b)]: let v -1 denote its inverse function. Set m to be m = b a ρ(s)f (s) ds. Since, by (2.18), v(b) = v(α 1 ) + m then v(α) + m ∈ [0, v(b)] if and only if a ≤ α ≤ α 1 ; this allows us to introduce the continuous function ξ 1 defined by the formula

4 )

 4 , s)ρ(s) ds = T 0 h(T, s)ν(s) ds, s)ρ(s) ds = T 0 ∂h ∂t (T, s)ν(s) ds (3.6) and for each t in [0, T ], 0 < ρ < φ a.e. By Proposition 2.2 there exist α, β ∈ [0, T ] such that s)φ(s). ds (3.9) It is clear that if we set ν(s) = φ(s)χ [α,β] (s) (3.10) then (3.5) and (3.6) are satisfied. In order to prove (3.7) we first show that under our assumptions on ρ and φ we have 0 < α < β < T. (3.11) 14Notice first that the equalities (α, β) = (0, T ) or α = β cannot hold otherwise by (3.8) ρ = φ or ρ = 0 a.e., a contradiction. Assume, for instance, α = 0 and β < T , the case α > 0 and β = T being similar. Under this assumption, equalities (3.8) and (3.9) become and the assumption 0 < ρ < φ a.

  s)ρ n (s) ds = T 0 ∂h ∂t (T, s)ν n (s) ds (3.24)and, for each t in [0, T ],t 0 h(t, s)ρ n (s) ds ≥ t 0 h(t, s)ν n (s) ds.(3.25)The interval [0, T ] being compact, we may assumeα n → α, β n → β for some α ≤ β ∈ [0, T ]. Clearly ν n = φ n χ [α n ,β n ] converges to φχ [α,β] in L 1 ([0, T ]),therefore if we pass through the limit in (3.23), (3.24), (3.25) and we set ν = φχ [α,β] we obtain (3.5), (3.6) and (3.7).

Remark 3 . 1 .Remark 3 . 2 .

 3132 The proof of Theorem 3.1, part ii)a) shows in fact that when 0 < ρ < φ, we have y(t) < x(t) on ]0, T [. With the notations introduced in Proposition 2.1, the proof of Theorem 3.1 (part ii)) shows that if T = δ then, given a solution x to (P), there exists a bang-bang solution y ≤ x satisfying y + a 1 (t)y + a 0 (t)y = min Φ(t) on [0, α] ∪ [β, T ], y + a 1 (t)y + a 0 (t)y = max Φ(t) on [α, β].

  ) and y (T ) = x (T ).Purpose of what follows is to show (3.7), i.e. that y(t) ≤ x(t) for each t. We consider the cases t ∈ [0, α], t ∈ [β, T ], t ∈ [α, β] separately. Inequality (3.7) is trivial if t ≤ α; in fact we have

					e. allow us to apply Lemma 2.1 from
	which we deduce	T	β	
			h(T, s)ρ(s) ds <	h(T, s)φ(s) ds,
		0		0	
	contradicting (3.12).			
	Set y(t) =	t 0 h(t, s)ν(s) ds so that (3.8) and (3.9) become y(T ) = x(T y(t) = 0 ≤ t h(t, s)ρ(s) ds = x(t),
				0	
	the inequality being strict for t ∈]0, α]. In particular
				y(α) < x(α).	(3.14)
	Assume t ∈ [β, T ].			
	Since, taking (3.2) into account, h(t, s) ≤ 0 whenever s ≥ t, we have
			T		T
		∀t ≥ β	h(t, s)ρ(s) ds ≤ 0 =	h(t, s)ν(s) ds	(3.15)
			t		t
	or equivalently			
		T	t	T	t
	∀t ≥ β	h(t, s)ρ(s) ds-	h(t, s)ρ(s) ds ≤	h(t, s)ν(s) ds-	h(t, s)ν(s) ds. (3.16)
	0		0	0		0
	Therefore, in order to prove that y(t) ≤ x(t) for t ∈ [β, T ] it is enough to show that
			T		T
		∀t ∈ [β, T ]	h(t, s)ρ(s) ds =	h(t, s)ν(s) ds.	(3.17)
			0		0

  For each s ∈ [0, t[ let f (s) = h( t, s), g(s) = ∂h ∂t ( t, s) and k = f /g so that by (3.2)-(3.4) the function k is increasing and f > 0, g > 0. If we replace (a, b) by (0, t), Lemma 2.1 together with (3.21) imply that ≤ ρ ≤ φ a.e. and let φ n , ρ n ∈ L 1 ([0, T ]) be such that 0 < ρ n < φ n a.e. and ρ n

	t α	∂h ∂t	( t, s)φ(s) ds >	0	t	∂h ∂t	( t, s)ρ(s) ds
	thus contradicting (3.22).							
	b) Assume, in general, 0							
				t→ t+	y(t) -x(t) t -t	≤ 0.
	It follows that							
		t			t		
		h( t, s)φ(s) ds =		h( t, s)ρ(s) ds,	(3.21)
	α			0			
	t α	∂h ∂t	( t, s)φ(s) ds ≤	0	t	∂h ∂t	( t, s)ρ(s) ds.	(3.22)

.19) Multiplying

(3.18

) by w 1 (t),

(3.19

) by w 2 (t) and adding the two equations we obtain

T 0 (w 1 (t)z 1 (s) + w 2 (t)z 2 (s))ρ(s) ds = T 0 (w 1 (t)z 1 (s) + w 2 (t)z 2 (s))ν(s)

ds which, together with property S 1), gives (3.17). Moreover remark that since inequality (3.15) is strict for t = T , then y(β) < x(β). (3.20) At this stage, we only need to prove that (3.7) holds for t ∈ [α, β]. Assume by contradiction that there exists t ∈ [α, β] such that x(t) = y(t). Let t = sup{t ∈ [α, β] : x(t) = y(t)}. Then α < t < β and by the very definition of t, x( t ) = y( t ) so that y ( t ) -x ( t ) = lim

Applications

Our first application concerns the reachable set of bang-bang constrained solutions. Let c be an arbitrary function defined on [0, T ] and consider the reachable sets X c T and Y c T associated to (P ) defined by X c T = {(y(T ), y (T )) : y ≤ c, y + a 1 (t)y + a 0 (t)y ∈ Φ(t) a.e., (y(0), y (0

T is convex. Finally, we give an application to the calculus of variations.

x 0 , v 0 , x 1 , v 1 be 4 fixed real numbers. Then there exists a dense subset D of C(R) for the uniform convergence such that for g in D the problem minimize

admits at least one solution for every lower semicontinuous function h satisfying the growth condition h(u) ≥ cψ(|u|), ψ being l.s.c. and convex, lim r→+∞ ψ(r)/r = +∞.

Proof. With our theorem 3.1 and the preceding application, the proof is a direct adaptation of the proof given in [START_REF] Cellina | The existence question in the calculus of variations: a density result[END_REF].