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ORIENTED MEASURES WITH CONTINUOUS DENSITIES
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Abstract. We introduce the notion of an oriented measure.

For such a measure µ, given ν in L1([a, b]), 0 < ν < 1, there exist two sets E ⊂ [a, b] whose
characteristic functions have less than n discontinuity points and such that

R
ν dµ = µ(E).

Given a solution x to the control problem

L(x) = x(n) + an−1(t)x(n−1) + · · ·+ a1(t)x′ + a0(t) ∈ [φ1, φ2]

there exist two bang–bang solutions y, z having a contact of order n with x at a and b such

that y ≤ x ≤ z.
Reachable sets of bang–bang constrained solutions are convex; an application to the calculus

of variations yields a density result.
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Introduction

A classical theorem of Liapunov [8] states that given a finite dimensional vector measure
µ on an interval [a, b] which admits a density function f = (f1, · · · , fn) and given a
measurable function ν defined on [a, b] with values in [0, 1], there exists a measurable
subset E of [a, b] such that

(∗) ∀i ∈ {1, · · · , n}
∫ b

a

fiχE =
∫ b

a

fiν.

However the proofs of this theorem are not constructive and thus do not give any infor-
mation about the set E.
Halkin [9] showed that if for each vector p ∈ Rn the set{

t ∈ [a, b] : p · f(t) > 0
}

(where · is the usual scalar product) is a finite (respectively countable) union of intervals
then there exists a set E satisfying (∗) which is a finite (resp. countable) union of intervals.
As far as we know this condition has not been applied apart the case of piecewise analytical
functions [9,10,12].
The results we present here are based on the following new

Orientation condition ∆. We say that n real functions f1, · · · , fn verify condition ∆
on an interval [a, b] if for each k in {1, · · · , n}, the determinant∣∣∣∣∣∣∣∣

f1(x1) f1(x2) · · · f1(xk)
f2(x1) f2(x2) · · · f2(xk)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xk)

∣∣∣∣∣∣∣∣
is not equal to zero whenever the xi ∈ [a, b] are distinct and its sign is constant on the
k–uples (x1, · · · , xk) such that a ≤ x1 < x2 < · · · < xk ≤ b.

A measure µ whose components µ1, · · · , µn admit continuous density functions f1, · · · , fn
which satisfy the orientation condition ∆ is said to be oriented.
Although this condition implies Halkin’s one, it possesses various advantages:
• it allows to build a set E satisfying (∗) whose characteristic function has at most n
points of discontinuity;
• in the case where 0 < ν < 1 there exist exactly two such sets E1 and E2 and in addition
the associated characteristic functions χE1 and χE2 have exactly n discontinuity points;
moreover, one set is a neighbourhood of a whereas the other is not.
We give two proofs of this result, neither of which uses the traditional convexity–extremal
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points arguments. Both use algebraic tricks directly related to condition ∆; the first one
is based on the Implicit Function Theorem and the second one on Caccioppoli Global
Inversion Theorem.
Consequence of our theorem is that if the interval [a, b] can be partitioned as a finite
(respectively countable) union of intervals on which the orientation condition ∆ holds then
we can build a set E satisfying (∗) which is a finite (resp. countable) union of intervals.
We also point out an operational criterion which ensures the validity of the orientation
condition ∆: if f1, · · · , fn are of class Cn−1 on [a, b] it is enough that the Wronskians
W (f1), · · · ,W (f1, · · · , fn) do not vanish on [a, b] for ∆ to hold.
This allows us to formulate a new result concerning bang–bang solutions to linear control
systems described by a generic linear differential equation

L(x) = x(n) + an−1(t)x(n−1) + · · ·+ a1(t)x′ + a0(t) ∈ [φ1, φ2]

where φ1 and φ2 belong to L1. More precisely we show that given a solution x to the
above problem there exist two bang–bang solutions y and z (i.e. L(y), L(z) ∈ {φ1, φ2 })
such that

∀t ∈ [a, b] y(t) ≤ x(t) ≤ z(t)
∀k ∈ {0, · · · , n− 1} y(k)(a) = x(k)(a) = z(k)(a), y(k)(b) = x(k)(b) = z(k)(b)

and L(D)y and L(D)z are of the form χEφ1 + (1 − χE)φ2 where the set E is a finite
union of intervals, i.e. y and z are solutions associated to relay controls. The relay
principle was studied by Andreini and Bacciotti in [4] under the strong assumption that
φ1, φ2, a0, · · · , an−1 be analytical. In order to apply our Liapunov’s type theorem we
explicit the solutions to

L(x) = ν ∈ [0, 1], x(a) = · · · = x(n−1)(a) = 0

through the integral representation formulas

∀k ∈ {0, · · · , n− 1} x(k)(t) =
∫ t

a

∂kR

∂tk
(t, s)ν(s) ds

where R(t, s) is the resolvent of the operator L. Our Wronskian criterion then applies
directly to the functions

R(b, ·), ∂R
∂t

(b, ·), · · · , ∂
n−1R

∂tn−1
(b, ·)

and thus our main theorem yields a bang–bang solution

y(t) =
∫ t

a

R(t, s)χE(s) ds
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satisfying the required tangency conditions; moreover the set E is a finite union of intervals
which does not contain the point a.
Surprisingly the same Wronskian conditions allow us to apply an extended version of
Pólya’s generalized Rolle theorem for linear differential operators of order n and functions
whose n–th derivative are only piecewise continuous. We obtain that if 0 < ν < 1 then
the graphs of x and y do not intersect. Since y(n)(a) < x(n)(a) then y < x on the whole
interval ]a, b[.
We give two applications of this result.
• The reachable set of solutions which are constrained by a given obstacle and subject
to prescribed initial conditions coincides with the reachable set of bang–bang solutions
submit to the same conditions, so that this last one is convex.
• We consider the problem of minimizing the integral functionals

I(x, u) =
∫ b

a

f(t, x(t), u(t)) dt

where x : [a, b]→ Rn is such that x(k)(a), x(k)(b) (0 ≤ k ≤ n−1) are fixed and u is a control
belonging to U(t, x) ⊂ Rn. The classical approach to obtain existence of a minimum is
to impose conditions in order to have the lower semicontinuity of I with respect to u (for
instance convexity of u 7→ f(t, x, u)).

Recently in an effort to provide existence criteria other than convexity in u some suf-
ficient conditions have been given: for problems of the calculus of variations (x′ = u in
the above setting) and for maps of the form f(t, x, x′) = g(t, x) + h(t, x′), existence of
solutions has been obtained by requiring that the real map x 7→ g(t, x) be monotonic [11]
or, for x in Rn, that the same function be concave [5]. Optimal control problems escaping
to convexity conditions have been handled in [14].
It has been proved further in [6] that there exists a dense subset D of C(R) such that, for
g in it, the problem

minimize
∫ b

a

g(x(t)) dt+
∫ b

a

h(x′(t)) dt : x(a) = x0, x(b) = x1

admits a solution for every lower semicontinuous h satisfying growth conditions.
Our theorem gives a straightforward generalization of the above result.
Let us remark that the elementary case n = 1 of our n–dimensional Liapunov’s type
theorem appeared as a technical tool in [1, Lemma 3.4]; the case n = 2 was handled in
our previous paper [7] with very different techniques which are not applicable to higher
dimensions.
This work deals only with measures having continuous densities; the general case will be
treated in a forthcoming paper.
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Preliminary results

One of the two proofs of theorem 1 relies on the following powerful but not enough
appreciated

Caccioppoli Global Inversion Theorem. Let E be an arcwise connected metric space,
F be a simply connected metric space, f be a proper map from E with values in F . If f is
a local homeomorphism at each point of E then f is a global homeomorphism between E
and F .

Proof. The proof and several applications of this theorem can be found in [2,3]. �

Let us introduce some notations.
Let A be an n×n matrix with real coefficients. By detA or |A| we denote its determinant.
For each i, j ∈ {1, · · · , n}, by Aij we mean the (n − 1) × (n − 1) matrix obtained by
removing the i–th row and the j–th column from A. Surprisingly, the following simple
algebraic trick will play an essential role in the existence part of the proof of theorem 1
which does not involve Caccioppoli Theorem.

Lemma S. Let A = (aij)1≤i,j≤n be an n× n matrix with real coefficients. Let x1, · · · , xn
be such that 

a1,1x1 + · · ·+ a1,n−1xn−1 + a1,nxn = 0
a2,1x1 + · · ·+ a2,n−1xn−1 + a2,nxn = 0

...
. . .

...
...

an−1,1x1+ · · ·+an−1,n−1xn−1+an−1,nxn= 0

If detAnn 6= 0 then

an1x1 + · · ·+ annxn =
|A|
|Ann|

xn.

Proof. Cramer rule applied to the above system yields

∀i ∈ {1, · · · , n− 1} xi =
(−1)n+i|Ani|
|Ann|

xn

so that

an1x1 + · · ·+ annxn =
∑n
i=1(−1)n+iani|Ani|

|Ann|
xn =

|A|
|Ann|

xn

since |A| =
∑n
i=1(−1)n+iani|Ani| is the development of the determinant of |A| along the

first row. �

The main tool in the inductive proof of theorem 1 is the existence and uniqueness of
maximal implicit functions passing through a prescribed point.
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Lemma M. Let Ω be an open subset of Rn−1 × [a, b] and F a continuously differentiable
map from Ω into Rn−1 such that ∂F

∂(x1,··· ,xn−1) is invertible everywhere. Let (x̄1, · · · , x̄n)
verify F (x̄1, · · · , x̄n) = 0. Then there exists a unique couple (I,Ψ) verifying Property P
below such that I is maximal for the set inclusion with respect to this property.

Property P. I is an interval containing x̄n, Ψ is a continuous map from I into Rn−1,
Ψ(x̄n) = (x̄1, · · · , x̄n−1), F (Ψ(xn), xn) = 0 for every xn in I.

Proof of Lemma. Suppose first (I,ΨI) and (J,ΨJ) both satisfy property P. Put

Z = {xn ∈ I ∩ J : ΨI(xn) = ΨJ(xn) }.

This set is not empty (since x̄n ∈ Z) and is closed because ΨI and ΨJ are continuous. Let
x∗n ∈ Z and

(x∗1, · · · , x∗n−1) = ΨI(x∗n) = ΨJ(x∗n)

so that F (x∗1, · · · , x∗n) = 0. We have∣∣∣∣ ∂F

∂(x1, · · · , xn−1)
(x∗1, · · · , x∗n)

∣∣∣∣ 6= 0

and we can thus apply the implicit function theorem at the point (x∗1, · · · , x∗n). There exist
an open interval ]x∗n − ε, x∗n + ε[, a neighbourhood O of (x∗1, · · · , x∗n−1) and a function φ
from ]x∗n − ε, x∗n + ε[ into O such that φ(x∗n) = (x∗1, · · · , x∗n−1) and

∀xn ∈ ]x∗n − ε, x∗n + ε[ ∀(x1, · · · , xn−1) ∈O
F (x1, · · · , xn) = 0 ⇐⇒ (x1, · · · , xn−1) = φ(xn).

Thus for every xn in I ∩ J∩ ]x∗n − ε, x∗n + ε[

φ(xn) = ΨI(xn) = ΨJ(xn)

whence Z is also open. Since I ∩ J is connected then Z = I ∩ J . Put

T = {(I,ΨI) satisfying property P}

and let
IM =

⋃
(I,ΨI)∈T

I.

The previous uniqueness property allows us to define a function ΨM on IM such that
ΨM = ΨI on I. The couple (IM ,ΨM ) solves our problem. �
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The orientation condition ∆ and some related facts

Orientation condition ∆. We say that n real functions f1, · · · , fn verify condition ∆
on an interval [a, b] if for each k in {1, · · · , n}, the determinant∣∣∣∣∣∣∣∣

f1(x1) f1(x2) · · · f1(xk)
f2(x1) f2(x2) · · · f2(xk)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xk)

∣∣∣∣∣∣∣∣
is not equal to zero whenever the xi ∈ [a, b] are distinct and its sign is constant on the
k–uples (x1, · · · , xk) such that a ≤ x1 < x2 < · · · < xk ≤ b.

Example 1. For n = 1, condition ∆ states that the function f1 is positive. For n = 2, the
functions f1, f2 satisfy ∆ if and only if f1 > 0 and f2/f1 is increasing.

Example 2. The functions fi(t) = ti−1 (i ≥ 1) satisfy condition ∆ on R (the corresponding
determinants are Vandermonde determinants).

Our interest in condition ∆ relies on the following nice facts.

Lemma 1. Let f1, · · · , fn be n measurable bounded functions satisfying ∆ on [a, b]. Let
ν1, · · · , νn be n positive functions in L1([a, b]). Then for each (n− 1)–uple (γ1, · · · , γn−1)
such that a < γ1 < · · · < γn−1 < b the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ γ1

a

f1ν1

∫ γ2

γ1

f1ν2 · · ·
∫ b

γn−1

f1νn∫ γ1

a

f2ν1

∫ γ2

γ1

f2ν2 · · ·
∫ b

γn−1

f2νn

...
...

. . .
...∫ γ1

a

fnν1

∫ γ2

γ1

fnν2 · · ·
∫ b

γn−1

fnνn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is not equal to zero.

Proof. Since the determinant is a multilinear continuous form, we can write∣∣∣∣∣∣∣∣∣∣∣

∫ γ1

a

f1ν1 · · ·
∫ b

γn−1

f1νn

...
. . .

...∫ γ1

a

fnν1 · · ·
∫ b

γn−1

fnνn

∣∣∣∣∣∣∣∣∣∣∣
=
∫ γ1

a

ds1 · · ·
∫ b

γn−1

dsn

∣∣∣∣∣∣∣∣∣∣∣
f1(s1)ν1(s1) · · · f1(sn)νn(sn)

...
. . .

...

fn(s1)ν1(s1) · · · fn(sn)νn(sn)

∣∣∣∣∣∣∣∣∣∣∣
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=
∫ ∫

· · ·
∫

[a,γ1]×[γ1,γ2]×···×[γn−1,b]

ν1(s1)ν2(s2) · · · νn(sn)ω(s1, s2, · · · , sn) ds1 ds2 · · · dsn

where

ω(s1, · · · , sn) =

∣∣∣∣∣∣∣
f1(x1) · · · f1(xn)

...
. . .

...
fn(x1) · · · fn(xn)

∣∣∣∣∣∣∣ .
However the function

(s1, · · · , sn) 7−→ ν1(s1) · · · νn(sn)ω(s1, · · · , sn)

is either positive a.e. or negative a.e. on the open non-empty domain

]a, γ1[×]γ1, γ2[× · · ·×]γn−1, b[

so that its integral over [a, γ1]× [γ1, γ2]× · · · × [γn−1, b] cannot vanish. �

Lemma 2. Let f1, · · · , fm be m measurable bounded functions satisfying condition ∆ on
[a, b]. Let ν1, · · · , νm be m positive functions in L1([a, b]).
Let (γ1, · · · , γm−1) be an (m− 1)–uple such that (γ0 =) a < γ1 < · · · < γm−1 < b (= γm).
If x1, · · · , xm are m real numbers not all equal to zero then there exists k in {1, · · · ,m}
such that

m∑
i=1

xi

∫ γi

γi−1

fk(s)νi(s) ds 6= 0.

Proof. Assume

∀k ∈ {1, · · · ,m}
m∑
i=1

xi

∫ γi

γi−1

fk(s)νi(s) ds = 0.

Then the determinant whose elements are the coefficients of x1, · · · , xm in the above system∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ γ1

a

f1ν1

∫ γ2

γ1

f1ν2 · · ·
∫ b

γm−1

f1νm∫ γ1

a

f2ν1

∫ γ2

γ1

f2ν2 · · ·
∫ b

γm−1

f2νm

...
...

. . .
...∫ γ1

a

fmν1

∫ γ2

γ1

fmν2 · · ·
∫ b

γm−1

fmνm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is necessarily equal to zero, thus contradicting Lemma 1. �
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Lemma 3. Let f1, · · · , fn be n measurable bounded functions satisfying condition ∆ on
the interval [a, b]. Let α1, · · · , αn be such that (α0 =) a < α1 < · · · < αn < b (= αn+1).
Then, given a positive ε, there exist n+ 1 positive real numbers λ0, · · · , λn such that

∀l ∈ {0, · · · , n} 0 < λl < ε and

∀k ∈ {1, · · · , n}
n∑
l=0

(−1)lλl
∫ αl+1

αl

fk = 0.

Proof. Consider the n× n linear system

λ0

∫ α1

a

f1−λ1

∫ α2

α1

f1+ · · ·+(−1)n−1λn−1

∫ αn

αn−1

f1 = (−1)n−1λn

∫ b

αn

f1

λ0

∫ α1

a

f2−λ1

∫ α2

α1

f2+ · · ·+(−1)n−1λn−1

∫ αn

αn−1

f2 = (−1)n−1λn

∫ b

αn

f2

...
. . .

...
...

...

λ0

∫ α1

a

fn−λ1

∫ α2

α1

fn+ · · ·+(−1)n−1λn−1

∫ αn

αn−1

fn= (−1)n−1λn

∫ b

αn

fn

where λn is a parameter. The determinant of the system is

ωn = (−1)
n(n−1)

2

∣∣∣∣∣∣∣∣∣∣∣

∫ α1

a

f1 · · ·
∫ αn

αn−1

f1

...
. . .

...∫ α1

a

fn · · ·
∫ αn

αn−1

fn

∣∣∣∣∣∣∣∣∣∣∣
.

By condition ∆, its sign is (−1)
n(n−1)

2 . Moreover, for each i in {0, · · · , n− 1},

ωi=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ α1

a

f1 · · · (−1)i−2

∫ αi−1

αi−2

f1 (−1)n−1

∫ b

αn

f1 (−1)i
∫ αi+1

αi

f1 · · · (−1)n−1

∫ αn

αn−1

f1∫ α1

a

f2 · · · (−1)i−2

∫ αi−1

αi−2

f2 (−1)n−1

∫ b

αn

f2 (−1)i
∫ αi+1

αi

f2 · · · (−1)n−1

∫ αn

αn−1

f2

...
. . .

...
...

...
. . .

...∫ α1

a

fn · · · (−1)i−2

∫ αi−1

αi−2

fn (−1)n−1

∫ b

αn

fn (−1)i
∫ αi+1

αi

fn · · · (−1)n−1

∫ αn

αn−1

fn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
9



i.e. ωi = (−1)
n(n−1)

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ α1

a

f1 · · ·
∫ αi−1

αi−2

f1

∫ αi+1

αi

f1 · · ·
∫ b

αn

f1∫ α1

a

f2 · · ·
∫ αi−1

αi−2

f2

∫ αi+1

αi

f2 · · ·
∫ b

αn

f2

...
. . .

...
...

. . .
...∫ α1

a

fn · · ·
∫ αi−1

αi−2

fn

∫ αi+1

αi

fn · · ·
∫ b

αn

fn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus λi which by Cramer formula equals λnωi/ωn has, by condition ∆ and lemma 1, the
sign of λn; choosing λn such that

0 < λn < min(
ωn
ω0
ε, · · · , ωn

ωn−1
ε, ε)

we obtain an (n+ 1)–uple which solves the problem. �

We give now a criterion for the fulfilment of the orientation condition ∆.
If f1, · · · , fk+1 are of class Ck on [a, b] we will denote their Wronskian by

W (f1, · · · , fk+1)(t) =

∣∣∣∣∣∣∣
f1(t) · · · fk+1(t)

...
. . .

...
f

(k)
1 (t) · · · f (k)

k+1(t)

∣∣∣∣∣∣∣ .
Proposition 1. Let h1, · · · , hn ∈ Cn−1([a, b]) be such that

∀t ∈ [a, b] W (h1)(t) 6= 0, · · · ,W (h1, · · · , hn)(t) 6= 0.

Then h1, · · · , hn satisfy the orientation condition ∆.

Proof. By [13, Theorem V], for each k–uple (t1, · · · , tk) such that a ≤ t1 < · · · < tk ≤ b,
there exists ξ ∈]t1, tk[ such that W (h1(ξ), · · · , hk(ξ)) has the same sign as the determinant∣∣∣∣∣∣∣∣

h1(t1) h1(t2) · · · h1(tk)
h2(t1) h2(t2) · · · h2(tk)

...
...

. . .
...

hk(t1) hk(t2) · · · hk(tk)

∣∣∣∣∣∣∣∣ .
It follows that the above determinant does not vanish and by continuity, it keeps a constant
sign on the connected set of the k–uples (t1, · · · , tk) such that a ≤ t1 < · · · < tk ≤ b. �

Remark 1. It is easy to prove that if h1, · · · , hn satisfy the orientation condition ∆ on
[a, b] and are of class Cn−1 then W (h1), · · · ,W (h1, · · · , hn) are either non–negative or
non–positive on the whole interval [a, b].

Remark 2. For n = 2, the Wronskian conditions on f1, f2 state exactly that f1 > 0 and
f1f
′
2 − f ′1f2 > 0 whence f2/f1 is strictly monotonic. However these conditions are not

necessary for property ∆ to hold (a function may be strictly monotonic without having a
positive derivative).
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The range of a finite dimensional oriented measure

In this section we study the range of a finite dimensional measure µ whose components
µ1, · · · , µn admit continuous density functions f1, · · · , fn which satisfy the orientation
condition ∆: such a measure is said to be oriented.

Theorem 1. Let ν ∈ L1([a, b]) be such that 0 ≤ ν ≤ 1. Let f1, · · · , fn be n real valued
continuous functions on [a, b] satisfying condition ∆ on [a, b].
Then there exist a n–uple α = (α1, · · · , αn) and a n–uple β = (β1, · · · , βn) such that

a ≤ α1 ≤ · · · ≤ αn ≤ b, a ≤ β1 ≤ · · · ≤ βn ≤ b

and if we define
E−α =

⋃
0≤i≤n
i odd

[αi, αi+1], E+
β =

⋃
0≤i≤n
i even

[βi, βi+1]

(where β0 = a, αn+1 = βn+1 = b)
then we have

(∗) ∀k ∈ {1, · · · , n}
∫ b

a

fk(s)χE−α (s) ds =
∫ b

a

fk(s)ν(s) ds =
∫ b

a

fk(s)χE+
β

(s) ds.

If in addition 0 < ν < 1 then (α1, · · · , αn) and (β1, · · · , βn) are unique and verify

a < α1 < · · · < αn < b, a < β1 < · · · < βn < b.

Remark. This theorem has already been proved for n = 2 in [7], but the orientation
condition ∆ was not formulated in such a precise way (see remark 1 after proposition 1).

Example. There exist a non–oriented measure µ on an interval, a measurable subset A
which is not a finite union of intervals such that for every measurable subset E

µ(A) = µ(E) ⇒ A = E a.e.

Consider for instance the measure µ = (µ1, µ2) whose density functions are

f1(t) = 1, f2(t) = 1 + t sin(1/t)

and the set A = { t ∈ [0, 1] : t sin(1/t) > 0 } (in this case the measure µ is positive but
condition ∆ is not fulfilled).

We will deal only with the situation where 0 < ν < 1: the fact that the number of
intervals corresponding to ν does not depend on ν together with a classical approximation
argument yields the general case (this is done explicitly in the proof of theorem 5).
We will give two proofs of the theorem. The first one relies on an induction whereas the
second one is based on Caccioppoli Global Inversion Theorem. The following lemma will
be used in both proofs.
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Lemma. Assume 0 < ν < 1 and let l be an integer smaller than n. Then if the l–uple
α = (α1, · · · , αl) (respectively β = (β1, · · · , βl)) and its corresponding set E−α (respectively
E+
β ) satisfy (∗) with a ≤ α1 ≤ · · · ≤ αl ≤ b (respectively a ≤ β1 ≤ · · · ≤ βl ≤ b) then l = n

and a < α1 < · · · < αl < b (resp. a < β1 < · · · < βl < b).

Proof of the lemma. We first show that under the above assumption there exists a m–uple
γ = (γ1, · · · , γm), m ≤ l, such that a < γ1 < · · · < γm < b and either E−γ or E+

γ satisfy (∗).
Assume for instance there exists i ∈ {0, · · · , l} such that αi = αi+1 (where possibly α0 = a
and αl+1 = b). We have the following cases:
• i = 0 so that a = α1. Put m = l − 1, γ = (α2, · · · , αl); then E+

γ satisfies (∗).
• 0 < i < l. Put m = l − 2, γ = (α1, · · · , αi−1, αi+2, · · · , αn); then E−γ satisfies (∗).
• i = l. Put m = l − 1, γ = (α1, · · · , αl−1); then E−γ satisfies (∗).
If two components of the m–uple γ are equal we iterate the above operation on γ until
after a finite number of steps we obtain an uple having distinct components and whose
one of the associated sets satisfies (∗).
We are thus led to prove the result for a l–uple α such that a < α1 < · · · < αl < b, similar
arguments hold for a l–uple of type β. Suppose l < n. Then by (∗) we have

∀k ∈ {1, · · · , n}
∑

0≤i≤l
i even

∫ αi+1

αi

fk(s)ν(s) ds−
∑

0≤i≤l
i odd

∫ αi+1

αi

fk(s)(1− ν(s)) ds = 0

(where α0 = a, αl+1 = b).
We restrict our attention on the first l+ 1 equations of the above system i.e. k belongs to
{1, · · · , l + 1}. Application of Lemma 2 with m = l + 1 and γ1 = α1, · · · , γl = αl

xi = (−1)i+1, νi =
{

ν i odd
1− ν i even , 1 ≤ i ≤ l + 1

shows that these equations cannot hold simultaneously, thus yielding a contradiction. �
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First proof of the theorem. Consider the case n = 1. Let f1 ∈ C([a, b]) satisfy ∆ i.e. f1

does not vanish on [a, b]. Since f1 has a constant sign on [a, b] there exist unique real
numbers α, β in [a, b] such that∫ b

α

f1(s) ds =
∫ b

a

f1(s)ν(s) ds =
∫ β

a

f1(s) ds.

Clearly E−α = [α, b] and E+
β = [a, β] satisfy (∗).

Assume the theorem is true at rank n− 1.
Let f1, · · · , fn, ν be functions satisfying the hypothesis of the theorem. By the induction
assumption there exist (n − 1)–uples (ᾱ1, · · · , ᾱn−1) and (β̄1, · · · , β̄n−1) satisfying (∗).
Define for each k in {1, · · · , n} and n–uple (α1, · · · , αn) such that a ≤ α1 ≤ · · · ≤ αn ≤ b

Fk(α1, · · · , αn) =
∑

0≤i≤n
i odd

∫ αi+1

αi

fk(s) ds−
∫ b

a

fk(s)ν(s) ds

and put

S = { (α1, · · · , αn) ∈ Rn : a ≤ α1 < α2 < · · · < αn ≤ b,
∀k ∈ {1, · · · , n− 1} Fk(α1, · · · , αn) = 0 }.

The set S is not empty: (ᾱ1, · · · , ᾱn−1, b) and (a, β̄1, · · · , β̄n−1) belong to S.

i) Existence of (α1, · · · , αn).
Let D be the open subset of Rn−1 × [a, b] defined by

D = { (α1, · · · , αn) ∈ Rn : a < α1 < · · · < αn ≤ b }

and define F : D → Rn−1 by

F (α1, · · · , αn) = (F1(α1, · · · , αn), · · · , Fn−1(α1, · · · , αn)) .

The map F is C1 on D and its jacobian matrix is

Jac F (α1, · · · , αn) =


−f1(α1) +f1(α2) · · · (−1)nf1(αn)
−f2(α1) +f2(α2) · · · (−1)nf2(αn)

...
...

. . .
...

−fn−1(α1) +fn−1(α2) · · · (−1)nfn−1(αn)


We see that∣∣∣∣ ∂F

∂(α1, · · · , αn−1)
(α1, · · · , αn)

∣∣∣∣ = (−1)
n(n−1)

2

∣∣∣∣∣∣∣
f1(α1) · · · f1(αn−1)

...
. . .

...
fn−1(α1) · · · fn−1(αn−1)

∣∣∣∣∣∣∣
13



which by the orientation condition ∆ does not vanish and keeps a constant sign when
α1 < α2 < · · · < αn−1. Consider the equation

(†) F ((α1, · · · , αn−1), αn) = 0.

Let (ξ1, · · · , ξn) ∈ D verify (†) i.e.

(ξ1, · · · , ξn) ∈ S \
{

(a, β̄1, · · · , β̄n−1)
}
.

Such a point exists: for instance (ᾱ1, · · · , ᾱn−1, b). We apply the implicit function theorem
at (ξ1, · · · , ξn). There exists an open interval I containing ξn, an open neighbourhood U
of (ξ1, · · · , ξn−1), a continuous function

ψ : I −→ U
αn 7−→ (α1(αn), · · · , αn−1(αn))

such that

∀ ((η1, · · · , ηn−1), ηn) ∈D ∩ (U × I)

F ((η1, · · · , ηn)) = (c1, · · · , cn−1) ⇐⇒ (η1, · · · , ηn−1) = ψ(ηn).

Moreover, ψ is C1 and we have

α′j(αn) =

∣∣∣∣∣∣∣
f1(α1) · · · f1(αj−1) f1(αj+1) · · · f1(αn)

...
. . .

...
...

. . .
...

fn−1(α1) · · · fn−1(αj−1) fn−1(αj+1) · · · fn−1(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f1(α1) · · · f1(αn−1)

...
. . .

...
fn−1(α1) · · · fn−1(αn−1)

∣∣∣∣∣∣∣
so that α′j(αn) > 0 on I and the functions αj are increasing. Lemma M yields a maximal
interval IM on which ψ can be extended. Let ξ∗n = inf IM . The functions α1, · · · , αn−1

being increasing on IM , they admit limits

ξ∗j = lim
ηn→ξ∗n
ηn>ξ

∗
n

αj(ηn).

Remark that ξ∗n < b since ξn ≤ b.
By continuity

F (ξ∗1 , · · · , ξ∗n) = (0, · · · , 0).
14



We claim that ξ∗1 = a.
Suppose ξ∗1 > a. By the maximality of IM , (ξ∗1 , · · · , ξ∗n) belongs to D̄ \ D so that there
exists i ∈ {1, · · · , n− 2} such that ξ∗i = ξ∗i+1.
The (n− 1)–uple (ξ∗1 , · · · , ξ∗i−1, ξ

∗
i+2, · · · , ξ∗n, b) and its associated set E−ξ∗ satisfy

∀k ∈ {1, · · · , n− 1}
∫ b

a

fk(s)χE−
ξ∗

(s) ds =
∫ b

a

fk(s)ν(s) ds

so that the induction hypothesis implies

a < ξ∗1 < · · · < ξ∗i−1 < ξ∗i+2 < · · · < ξ∗n < b < b

which is absurd.
Since ξ∗1 = a, the (n−1)–uple (ξ∗1 , · · · , ξ∗n−1) is the one given by the theorem at rank n−1
so that ξ∗i = β̄i−1 for each i in {2, · · · , n}.
Thus for each point (ξ1, · · · , ξn) of S \ {(a, β̄1, · · · , β̄n−1)} there exists a continuous arc in
S joining (ξ1, · · · , ξn) to (a, β̄1, · · · , β̄n−1). This proves that S is arcwise connected.
At this stage we prove that Fn(a, β̄1, · · · , β̄n−1) and Fn(ᾱ1, · · · , ᾱn−1, b) have opposite
signs. Since F (ᾱ1, · · · , ᾱn−1, b) = 0 then for each k in {1, · · · , n− 1}

−
∑

0≤i≤n−1
i even

∫ ᾱi+1

ᾱi

fk(s)ν(s) ds +
∑

0≤i≤n−1
i odd

∫ ᾱi+1

ᾱi

fk(s)(1− ν(s)) ds = 0

(where ᾱ0 = a, ᾱn = b).
Put for k, j in {1, · · · , n}

xαj = (−1)j , aαkj =
∫ ᾱj

ᾱj−1

fkν
α
j , Aα =

(
aαkj
)

1≤k,j≤n

where

ναj =
{

ν if j is odd
1− ν if j is even

so that the above equations become

∀k ∈ {1, · · · , n− 1}
n∑
j=1

aαkjx
α
j = 0.

Since Fn(ᾱ1, · · · , ᾱn−1, b) =
∑n
j=1 a

α
njx

α
j , application of Lemma S gives

Fn(ᾱ1, · · · , ᾱn−1, b) =
|Aα|
|Aαnn|

(−1)n.
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Similarly if we define for k, j in {1, · · · , n} (β̄0 = a, β̄n = b)

xβj = (−1)j+1, aβkj =
∫ β̄j

β̄j−1

fkν
β
j , Aβ =

(
aβkj

)
1≤k,j≤n

where

νβj =
{

ν if j is even
1− ν if j is odd

then we have

Fn(a, β̄1, · · · , β̄n−1) =
n∑
j=1

aβnjx
β
j =

|Aβ |
|Aβnn|

(−1)n+1.

By condition ∆ on f1, · · · , fn and Lemma 1, |Aα| and |Aβ | have the same sign, as do |Aαnn|
and |Aβnn|. It follows that Fn(a, β̄1, · · · , β̄n−1) and Fn(ᾱ1, · · · , ᾱn−1, b) have opposite signs.
Moreover the set S is connected, the map Fn is continuous on S and thus must vanish at
a point (α1, · · · , αn) of S. By the very definition of S we have also

∀k ∈ {1, · · · , n− 1} Fk(α1, · · · , αn) = 0

so that (α1, · · · , αn) solves the problem.
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ii) Uniqueness of (α1, · · · , αn)
Let (α1, · · · , αn) be in S with a < α1 < · · · < αn < b and build (IM , ψ) as in the
existence part. The maximal interval IM is in fact [β̄n−1, b] so that (α1, · · · , αn) belongs
to a continuous path in S joining (a, β̄1, · · · , β̄n−1) and (ᾱ1, · · · , ᾱn−1, b). By local unicity
of ψ near (ᾱ1, · · · , ᾱn−1, b), the arc does not depend on (α1, · · · , αn) (recall that we apply
the Implicit Function Theorem on the space Rn−1 × [a, b] and that b is an interior point
of the topological space [a, b]). For each αn ∈ ]β̄n−1, b[, we have

d

dαn
Fn(ψ(αn), αn) =

n∑
i=1

∂Fn
∂αi

α′i(αn)

=
n∑
i=1

(−1)ifn(αi)

∣∣∣∣∣∣∣
f1(α1) · · · f1(αi−1) f1(αi+1) · · · f1(αn)

...
. . .

...
...

. . .
...

fn−1(α1) · · · fn−1(αi−1) fn−1(αi+1) · · · fn−1(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f1(α1) · · · f1(αn−1)

...
. . .

...
fn−1(α1) · · · fn−1(αn−1)

∣∣∣∣∣∣∣

= (−1)n

∣∣∣∣∣∣∣
f1(α1) · · · f1(αn)

...
. . .

...
fn(α1) · · · fn(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f1(α1) · · · f1(αn−1)

...
. . .

...
fn−1(α1) · · · fn−1(αn−1)

∣∣∣∣∣∣∣
Thus Fn is strictly monotonic along the arc joining (a, β̄1, · · · , β̄n−1) and (ᾱ1, · · · , ᾱn−1, b)
so that Fn vanishes only for one value αn. Since this path is unique then the n–uple
(α1, · · · , αn) is unique.

Existence and uniqueness of a n–uple β corresponding to ν at rank n follows from the fact
that it coincides with the n–uple α corresponding to 1− ν. �
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Second proof of the theorem.
We only deal with n–uples α, similar arguments hold for n–uples β.
Let

Ω =
{

(α1, · · · , αn) ∈ Rn : a < α1 < · · · < αn < b
}

and

F =
{(∫ b

a

f1ν, · · · ,
∫ b

a

fnν

)
: ν ∈ L1([a, b]), 0 < ν < 1

}
.

Put for each (α1, · · · , αn) ∈ Ω

θ(α1, · · · , αn) =
(∫ b

a

f1χE−α , · · · ,
∫ b

a

fnχE−α

)
where E−α =

⋃
0≤i≤n
i odd

[αi, αi+1] (αn+1 = b).

We first show that θ takes its values in F .
Let (α1, · · · , αn) in Ω; applying lemma 3 to (f1, · · · , fn), (α1, · · · , αn) and ε = 1/4, we
obtain an (n+ 1)–uple (λ0, · · · , λn) such that:

∀l ∈ {0, · · · , n} 0 < λl < ε and

∀k ∈ {1, · · · , n}
n∑
l=0

(−1)lλl
∫ αl+1

αl

fk = 0.

Put
ν =

∑
0≤i≤n
i even

λiχ[αi,αi+1] +
∑

0≤i≤n
i odd

(1− λi)χ[αi,αi+1].

By construction we have 0 < ν < 1 and

∀k ∈ {1, · · · , n}
∫ b

a

fkν =
∫ b

a

fkχE−α

so that θ(α1, · · · , αn) belongs to F .
The purpose of what follows is to show that the map θ : Ω → F satisfies the hypotheses
of Caccioppoli Theorem.
1) Obviously Ω is arcwise connected.
2) The set F , being convex, is simply connected.
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3) The map θ is a local homeomorphism at each point of Ω. In fact, θ is differentiable at
each point (α1, · · · , αn) of Ω and its jacobian is

det Jac θ(α1, · · · , αn) = (−1)
n(n+1)

2

∣∣∣∣∣∣∣
f1(α1) · · · f1(αn)

...
. . .

...
fn(α1) · · · fn(αn)

∣∣∣∣∣∣∣
does not vanish on Ω by condition ∆.
4) Finally θ is proper. Let K be a compact subset of F and let αk = (αk1 , · · · , αkn) be a
sequence of points in θ−1(K). Since the sequence (θ(αk))k∈N is contained in K ⊂ F then
by compactness we may assume that there exists ν∗ ∈ L1([a, b]), 0 < ν∗ < 1 such that

(◦) lim
k→∞

θ(αk) =
(∫ b

a

f1ν
∗, · · · ,

∫ b

a

fnν
∗
)
.

The closure Ω̄ = { (α1, · · · , αn) ∈ Rn : a ≤ α1 ≤ · · · ≤ αn ≤ b } of Ω is compact
and therefore (αk)k∈N admits a subsequence which converges to α∗ = (α∗1, · · · , α∗n) ∈ Ω̄.
By (◦) we have

∀k ∈ {1, · · · , n}
∫ b

a

fkχE−
α∗

=
∫ b

a

fkν
∗

and the initial lemma implies a < α∗1 < · · · < α∗n < b. Thus α∗ belongs to Ω and θ−1(K)
is compact.
By Caccioppoli Theorem, θ is a global homeomorphism. �
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As a consequence of theorem 1, we deduce the following

Theorem 2. Let ν be a measurable function on [a, b] such that 0 ≤ ν ≤ 1. Let f1, · · · , fn
be n continuous functions on [a, b]. Assume that the interval [a, b] is a finite (respectively
countable) union of intervals on which the orientation condition ∆ for f1, · · · , fn holds.
Then there exists a set E which is finite (resp. countable) union of intervals such that

∀k ∈ {1, · · · , n}
∫ b

a

fkχE =
∫ b

a

fkν.

Proof. Under the hypothesis of the theorem, there exists a finite (respectively countable)
family of disjoint open intervals (Ij)j∈J included in [a, b] such that [a, b] \

⋃
j∈J Ij is a

negligeable set (with respect to Lebesgue measure) and the functions f1, · · · , fn satisfy
condition ∆ on each interval Ij , j ∈ J . We apply theorem 1 to f1, · · · , fn and ν on the
interval Ij : there exists a set Ej included in Ij whose characteristic function has less than
n discontinuity points such that

∀k ∈ {1, · · · , n}
∫
Ij

fkχEj =
∫
Ij

fkν.

The set E =
⋃
j∈J Ej solves the problem. �

Proposition 1 shows that the hypotheses of the theorem are fulfilled as soon as
• f1, · · · , fn are of class Cn−1 on [a, b],
• the set Z = { t ∈ [a, b] : ∃k ∈ {1, · · · , n} W (f1, · · · , fk)(t) = 0 } is finite (respectively is
negligeable).
This result weakens Halkin’s condition [9] that the interval is a countable union of intervals
on which the functions f1, · · · , fn are analytical.
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Some results on linear differential equations

We consider a linear differential operator

L(D) = Dn + an−1(t)Dn−1 + · · ·+ a1(t)D + a0(t)

where D is the derivative operator D = d/dt and a0, · · · , an−1 are n real–valued continuous
functions on an interval [a, b].

A generalized Rolle Theorem.
If f1, · · · , fk+1 are of class Ck on [a, b] we will denote their Wronskian by

W (f1, · · · , fk+1)(t) =

∣∣∣∣∣∣∣
f1(t) · · · fk+1(t)

...
. . .

...
f

(k)
1 (t) · · · f (k)

k+1(t)

∣∣∣∣∣∣∣ .
Definition (see [13]). The operator L possesses property W on [a, b] if there exist n− 1
functions h1, · · · , hn−1 satisfying

∀i ∈ {1, · · · , n− 1} L(D)(hi) = 0 on [a, b]
∀t ∈ [a, b] W (h1)(t) > 0, · · · ,W (h1, · · · , hn−1)(t) > 0.

We will use the fact that property W always holds locally: for each fixed t0 in [a, b], the
n− 1 solutions h1, · · · , hn−1 to the n− 1 Cauchy problems (1 ≤ i ≤ n− 1)

L(D)(hi) = 0, h
(k)
i (t0) = δ(i− 1, k) 0 ≤ k ≤ n− 1

(where δ(j, k) = 0 if j 6= k and δ(j, k) = 1 if j = k)
are such that

∀i ∈ {1, · · · , n− 1} W (h1, · · · , hi)(t0) = 1.

Therefore the inequalities

W (h1)(t) > 0, · · · ,W (h1, · · · , hn−1)(t) > 0

hold in a neighbourhood of t0.
The interest of property W is that it allows us to decompose the linear differential operator
L into a ”product” of differential expressions of the first order.
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Theorem 3(see [13]). Let the linear differential operator L(D) possess property W on
[a, b]. Then there exist n+ 1 functions u0, · · · , un such that for each i in {0, · · · , n}, ui is
of class Cn−i on [a, b] and

∀y ∈ Cn([a, b]) L

(
d

dt

)
y = un

d

dt
un−1

d

dt
un−2 · · ·u2

d

dt
u1

d

dt
u0y.

As a consequence of this decomposition, we derive a generalized Rolle theorem.
We say that the function f has N zeroes on [a, b] if there exist l distinct points t1, · · · , tl
and l positive integers m1, · · · ,ml such that m1 + · · ·+ml = N , f is at least mk− 1 times
differentiable at tk (1 ≤ k ≤ l) and

∀k ∈ {1, · · · , l} ∀i ∈ {0, · · · ,mk − 1} f (i)(tk) = 0.

Theorem 4. Let the differential operator L(D) possess property W on [a, b]. Let f be a
piecewise Cn function of class Cn−1 defined on [a, b] and k be the number of discontinuity
points of f (n) in ]a, b[. If f vanishes at (n + 1) + k points in the interval [a, b] then there
exists ξ in ]a, b[ such that L(D)f(ξ) = 0.

Proof. Let t1 < · · · < tk be the distinct zeroes of f in [a, b] with multiplicities m1, · · · ,mk.
By applying Rolle Theorem successively on the intervals [t1, t2], · · · , [tk−1, tk], we obtain
k − 1 points t11, · · · , t1k−1 such that t1 < t11 < t2 < · · · < tk−1 < t1k−1 < tk and

∀i ∈ {1, · · · , k − 1} d

dt
(u0f)(t1i ) = 0.

Taking into account the multiple zeroes of f we see that D(u0f) admits n + k zeroes on
[a, b]. At step n− 1, this process yields the existence of k + 2 zeroes for the function

g = un−1
d

dt
un−2 · · ·u2

d

dt
u1

d

dt
u0f.

Either one of these zeroes is double or g possesses k + 2 distinct roots: in this situation,
at least two of them must lie in one of the k + 1 intervals on which g is C1 and Rolle
Theorem yields a zero of Dg. In both cases, we obtain the existence of a zero of the
function unD(g) = L(D)(f). �

We will use the following straightforward corollary of this theorem.

Corollary. Let the differential operator L(D) possess property W on [a, b]. Let f be a
piecewise Cn function of class Cn−1 defined on [a, b], f (n) having at most n discontinuity
points. Moreover, assume that

∀i ∈ {0, · · · , n− 1} f (i)(a) = f (i)(b) = 0.

If L(D)(f) does not vanish then f has no roots in ]a, b[.
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Let us remark that property W is essential for theorem 4 to hold.

Example. Let f(t) = sin t − αt where α is chosen so that f admits three zeroes on the
interval [π/2, 3π]. If we set L(D) = D2 + 1 we have L(D)(f)(t) = −αt which does not
vanish on [π/2, 3π]. However, it is easy to check that the operator L possesses property
W on the interval [a, b] if and only if b− a < π.

The resolvent and property ∆.

Definition. We say that R : [a, b] × [a, b] 7→ R is the resolvent of the operator L if for
each fixed s in [a, b] the function t 7→ R(t, s) solves the Cauchy problem

L(D)y = 0 y(s) = · · · = y(n−2)(s) = 0, y(n−1)(s) = 1.

As it is well known, R is of class Cn+k on [a, b]× [a, b] whenever the functions a0, · · · , an−1

are of class Ck.

Proposition 2. Let R(t, s) be a function in C2n−2([a, b]× [a, b]) satisfying

∀s ∈ [a, b] R(s, s) =
∂R

∂t
(s, s) = · · · = ∂n−2R

∂tn−2
(s, s) = 0,

∂n−1R

∂tn−1
(s, s) = 1.

Then, for each t0 in [a, b], there exists δ > 0 such that for every t in [t0 − δ, t0 + δ]∩ [a, b],
the functions

hti(s) =
∂n−iR

∂tn−i
(t, s) 1 ≤ i ≤ n

satisfy condition ∆ on the interval [t0 − δ, t0 + δ] ∩ [a, b].

Proof. For each t0 ∈ [a, b] and for each k ∈ {1, · · · , n}, we haveW (ht01 (t0), · · · , ht0k (t0)) = 1;
in fact

W (ht01 (t0), · · · , ht0k (t0)) =

∣∣∣∣∣∣∣∣∣∣
∂n−1R

∂tn−1
(t0, t0) · · · ∂

n−kR

∂tn−k
(t0, t0)

...
. . .

...
∂n+k−2R

∂tn+k−2
(t0, t0) · · · ∂

n−1R

∂tn−1
(t0, t0)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0
∗ 1 0 · · · 0
...
. . . . . . . . .

...
∗· · · ∗ 1 0
∗· · · · · · ∗ 1

∣∣∣∣∣∣∣∣∣∣
= 1.

By continuity, there exists δ > 0 such that

∀t, s ∈ [t0 − δ, t0 + δ] ∩ [a, b] ∀k ∈ {1, · · · , n} W (ht1(s), · · · , htk(s)) > 0.

Proposition 1 yields the conclusion. �
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Bang–bang constrained solutions

We consider the n–dimensional linear control system

(P) L(D)x = x(n) + an−1(t)x(n−1) + · · ·+ a1(t)x′ + a0(t)x ∈ [φ1, φ2] a.e. on [a, b]

where the n functions a0, · · · , an−1 belong to Cn−2([a, b]) and φ1, φ2 in L1([a, b]) verify
φ1 ≤ φ2. The function y is said to be a bang–bang solution to (P) if it solves (P) and
moreover

L(D)y ∈ {φ1, φ2}.

Given a solution x to (P), existence of a bang–bang solution y satisfying

∀k ∈ {0, · · · , n− 1} y(k)(a) = x(k)(a), y(k)(b) = x(k)(b)

has been proven for instance by Cesari [8] and Olech [12].

Theorem 5. Let x in Wn,1([a, b]) be a solution to the control problem (P ). Then there
exist two bang–bang solutions y and z satisfying the tangency conditions

∀k ∈ {0, · · · , n− 1} y(k)(a) = x(k)(a) = z(k)(a), y(k)(b) = x(k)(b) = z(k)(b)

and the inequalities
∀t ∈ [a, b] y(t) ≤ x(t) ≤ z(t).

Moreover L(D)y and L(D)z are of the form χEφ1 + (1−χE)φ2 where the set E is a finite
union of intervals i.e. y, z are solutions associated to relay controls (see [4]).

Proof. We will only prove the existence of the function y; similar arguments hold for z.
Let R(t, s) ∈ C2n−2([a, b] × [a, b]) be the resolvent of the operator L. By proposition 1,
there exists δ > 0 such that the functions

hti(s) =
∂n−iR

∂tn−i
(t, s) 1 ≤ i ≤ n

satisfy condition ∆ on [a, a+ δ] for each t in [a, a+ δ]. Choosing δ small enough, we may
assume that the operator L possesses property W on [a, a+ δ].

Suppose first that conditions W and ∆ hold in the whole interval [a, b].
It is not restrictive to assume φ1 = 0, φ2 = φ ≥ 0, x(a) = x′(a) = · · · = x(n−1)(a) = 0. In
fact, let x satisfy L(D)x ∈ [φ1, φ2]. Then, if we set

xa(t) = x(a) +
x′(a)

1!
(t− a) + · · ·+ x(n−1)(a)

(n− 1)!
(t− a)n−1

24



the function x̃ defined by x̃ = x− xa verifies

L(D)x̃ ∈ [ψ1, ψ2], ∀k ∈ {0, · · · , n− 1} x̃(k)(a) = 0

where ψi = φi − L(D)xa, i = 1, 2. Clearly the function x̄ defined by

x̄(t) = x̃(t)−
∫ t

a

R(t, s)ψ1(s) ds

satisfies

 L(D)x̄ = L(D)x̃− ψ1 ∈ [0, ψ2 − ψ1], ∀k ∈ {0, · · · , n− 1} x̄(k)(a) = 0.

If we assume that the theorem holds in this situation, there exists a function ȳ such that
ȳ(n) has at most n first–kind discontinuity points and

 L(D)ȳ ∈ {0, ψ2 − ψ1}, ∀k ∈ {0, · · · , n− 1} ȳ(k)(a) = 0, ȳ(k)(b) = x̄(k)(b),

∀t ∈ [a, b] ȳ(t) ≤ x̄(t).

It is now easy to check that the function y defined by

y(t) = ȳ(t) +
∫ t

a

R(t, s)ψ1(s) ds+ xa(t)

solves our problem.
We assume now

0 ≤ ρ ≤ φ, L(D)x = ρ, ∀k ∈ {0, · · · , n− 1} x(k)(a) = 0

so that, with the notations of proposition 2, we have

∀k ∈ {0, · · · , n− 1} x(k)(t) =
∫ t

a

∂kR

∂tk
(t, s)ρ(s) ds =

∫ t

a

htn−k(s)ρ(s) ds.

Let (ρm)m∈N and (φm)m∈N be two sequences of continuous functions such that

∀t ∈ [a, b] 0 < ρm(t) < φm(t), ρm
L1

−→ρ, φm
L1

−→φ

and set

xm(t) =
∫ t

a

R(t, s)ρm(s) ds.

25



Clearly,

∀k ∈ {0, · · · , n− 1} x(k)
m (t) =

∫ t

a

∂kR

∂tk
(t, s)ρm(s) ds =

∫ t

a

htn−k(s)ρm(s) ds.

Since each φm is positive then the functions

fi(s) = hbi (s)φm(s) =
∂n−iR

∂tn−i
(b, s)φm(s) 1 ≤ i ≤ n

satisfy condition ∆ on [a, b]. Then by theorem 1 applied to f1, · · · , fn and ν = ρm/φm,
corresponding to each m there exists a unique n–uple (αm1 , · · · , αmn ) such that

(αm0 =) a < αm1 < · · · < αmn < b (= αmn+1)

and if we set

E−m =
⋃
i odd

0≤i≤n

[αmi , α
m
i+1], ym(t) =

∫ t

a

R(t, s)φm(s)χE−m(s) ds

then we have

∀i ∈ {1, · · · , n}
∫ b

a

fi(s)χE−m(s) ds =
∫ b

a

fi(s)ν(s) ds

i.e.

(∗) ∀k ∈ {0, · · · , n− 1}
∫ b

a

∂kR

∂tk
(b, s)φm(s)χE−m(s) ds =

∫ b

a

∂kR

∂tk
(b, s)ρm(s) ds

so that
∀k ∈ {0, · · · , n− 1} Dk(ym − xm)(a) = Dk(ym − xm)(b) = 0

and L(D)(ym − xm) = φmχE−m − ρm does not vanish on [a, b]; since L possesses property
W on [a, b], the corollary to theorem 4 then implies that

(∗∗) ∀t ∈]a, b[ ym(t) 6= xm(t).

Since by construction

y(n)
m (a) = L(D)ym(a)−

(
an−1(a)Dn−1ym(a) + · · ·+ a1(a)Dym(a) + a0(a)ym(a)

)
= 0
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and analogously x
(n)
m (a) = ρ(a) > 0 then by continuity ym < xm in a neighbourhood

]a, a+ ε[ of a, which together with (∗∗), yields the global inequality

(∗ ∗ ∗) ∀t ∈]a, b[ ym(t) < xm(t).

By compactness we may assume

∀i ∈ {1, · · · , n} lim
m→∞

αmi = αi.

Clearly
(α0 =) a ≤ α1 ≤ · · · ≤ αn ≤ b (= αn+1).

Put

E− =
⋃
i odd

0≤i≤n

[αi, αi+1], y(t) =
∫ t

a

R(t, s)φ(s)χE−(s) ds.

Obviously, for all k in {0, · · · , n− 1}, y(k)(a) = 0. Moreover, by passing through the limit
in (∗) and (∗ ∗ ∗), we obtain

x(k)(b) =
∫ b

a

∂kR

∂tk
(b, s)ρ(s) ds =

∫ b

a

∂kR

∂tk
(b, s)φ(s)χE−(s) ds = y(k)(b)

for all k in {0, · · · , n− 1} and

∀t ∈ [a, b] y(t) ≤ x(t).

The function y solves our problem.

The general case. Since the functions

hti(s) =
∂n−iR

∂tn−i
(t, s) 1 ≤ i ≤ n

satisfy locally condition ∆ and the operator L(D) possesses property W then by compact-
ness there exists a subdivision

c0 = a < c1 < · · · < cl < b = cl+1

of [a, b] such that properties W and ∆ hold on each interval Ij = [cj , cj+1], 0 ≤ j ≤ l.
Let x solve L(D)x = ρ, φ1 ≤ ρ ≤ φ2; by the first case, for each j in {0, · · · , l} there exists a
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function yj in Wn,1(Ij) such that y(n)
j has only a finite number of first–kind discontinuities

satisfying

L(D)yj ∈ {φ1, φ2} on Ij

∀k ∈ {0, · · · , n− 1} y
(k)
j (cj) = x(k)(cj), y

(k)
j (cj+1) = x(k)(cj+1)

and
∀t ∈ Ij yj(t) ≤ xj(t).

The function y ∈ Wn,1([a, b]) obtained by glueing together the functions y0, · · · , yl is a
solution to our problem. �

Remark. The proof of the theorem shows that if there exist n solutions h1, · · · , hn to
L(D)y = 0 on [a, b] satisfying

W (h1) > 0, · · · ,W (h1, · · · , hn) > 0 on [a, b]

then the resolvent of the operator L satisfies condition ∆ on [a, b] and therefore the bang–
bang solutions y and z can be built in such a way that L(D)y and L(D)z are of the
form χEφ1 + (1 − χE)φ2 where the characteristic function of the set E has less than n
discontinuity points on [a, b].
For instance, this is the case when L(D) = Dn (see example 2 following the definition of
condition ∆) or when

L(D) = Dn + an−1D
n−1 + · · ·+ a1D + a0

and the algebraic equation

Xn + an−1X
n−1 + · · ·+ a1X + a0 = 0

has n distinct real roots.
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The reachable set of bang–bang constrained solutions

Let a0, · · · , an−1 ∈ Cn−2([a, b]) and φ1, φ2 in L1([a, b]) verify φ1 ≤ φ2. Consider the
control problem (Pa)

L(D)x = x(n) + an−1(t)x(n−1) + · · ·+ a1(t)x′ + a0(t)x ∈ [φ1, φ2] a.e. on [a, b]

with the initial conditions

∀k ∈ {0, · · · , n− 1} x(k)(a) = xk

where x0, · · · , xn−1 are n fixed real numbers. Let c be an arbitrary function defined on
I = [a, b] and consider the reachable sets X cI and YcI associated to (Pa) defined by

X cI = {(x(b), x′(b), · · · , x(n−1)(b)) : ∀t ∈ I x(t) ≤ c(t), x solution to (Pa)},

YcI = {(y(b), y′(b), · · · , y(n−1)(b)) : ∀t ∈ I y(t) ≤ c(t), y bang–bang solution to (Pa)}.

Then theorem 5 yields the following result.

Theorem 6. The sets X cI and YcI coincide; in particular, the reachable set associated to
bang–bang constrained solutions YcI is convex.

An Application to the Calculus of Variations

Theorem 7. Let a0, · · · , an−1 ∈ Cn−2([a, b]), φ1, φ2 ∈ L1([a, b]) verify φ1 ≤ φ2 and let L
be the linear differential operator of order n defined by

L(D) = Dn + an−1(t)Dn−1 + · · ·+ a1(t)D + a0(t).

Let x1
0, · · · , x1

n−1 and x2
0, · · · , x2

n−1 be 2n fixed real numbers.
Then there exists a dense subset D of C(R) for the uniform convergence such that for g
in D the problem

min
{ ∫ b

a

g(x(t)) dt+
∫ b

a

h(L(D)x(t)) dt : x ∈Wn,1([a, b]),

∀k ∈ {0, · · · , n− 1} x(k)(a) = x1
k, x(k)(b) = x2

k

}
admits at least one solution for every lower semicontinuous function h satisfying the growth
condition h(u) ≥ cψ(|u|), ψ being l.s.c. and convex, limr→+∞ ψ(r)/r = +∞.

Proof. With our theorem 5 and the preceding application, the proof is a direct adaptation
of the proof given in [6] for the case L(D) = D. �
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