
HAL Id: hal-03662193
https://hal.science/hal-03662193

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An Area and Power Efficient Stochastic Number
Generator for Bayesian Sensor Fusion Circuits

Jérémy Belot, Abdelkarim Cherkaoui, Raphael Laurent, Laurent Fesquet

To cite this version:
Jérémy Belot, Abdelkarim Cherkaoui, Raphael Laurent, Laurent Fesquet. An Area and Power Efficient
Stochastic Number Generator for Bayesian Sensor Fusion Circuits. IEEE Design & Test, 2021, 38 (6),
pp.69-77. �10.1109/mdat.2021.3050694�. �hal-03662193�

https://hal.science/hal-03662193
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

An Area and Power Efficient Stochastic Number
Generator for Bayesian Sensor Fusion Circuits

Jérémy BELOT∗†, Abdelkarim CHERKAOUI†, Raphaël LAURENT† and Laurent FESQUET∗
∗Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, F-38000 Grenoble, France

†HawAI.tech, F-38000 Grenoble, France

Abstract—In recent years, stochastic computing became pop-
ular in Bayesian circuits implementation because it enables
compact and low power architectures. These architectures use
Stochastic Number Generators (SNGs) that encode data in
random bit-streams. SNGs are composed of Random Number
Generators (RNGs) which contribute significantly to the circuit
area and power consumption: according to our measurements,
up to 29% of the area and 85% of the circuit power consumption,
excluding memories. In this paper, we compare SNG imple-
mentations in terms of accuracy, area and power consumption.
Furthermore, we propose a new SNG architecture that uses a
single RNG for the whole design in order to generate the required
stochastic bit-streams. The proposed architecture allows to save
up to 11% of area and 58% of power consumption compared to
the state of the art, with no significant accuracy loss.

I. INTRODUCTION

In the last few years, the advent of the IoT (Internet
of Things) and the need for low-power integrated circuits
sparked the interest in new computing paradigms. In many
applications, such as autonomous systems powered by a bat-
tery, computing speed is a secondary requirement compared
to energy efficiency. One of the approaches for designing
such low-power circuits, called Stochastic Computing, is a
non-standard computing method that encodes data using the
probability of the bits at ’1’ occurring in a random bit-
stream. This approach was proposed more than 50 years
ago [1]. Although it was quickly abandoned in favor of a
faster classical binary representation, this approach regained
interest due to the increase of power and surface constraints
for applications where speed is not of primary importance.

Its principle is to encode data in a stochastic bit-stream
where the encoded value is related to the ratio r between
the number of zeros and ones in the bit-stream. For the
unipolar stochastic representation, the encoded value corre-
sponds directly to this ratio r. This approach is particularly
interesting in that it only requires a small amount of logic
resources to process computations which are demanding in
standard representation, such as multiplication. Indeed, if we
consider two independent unipolar stochastic bit-streams, the
multiplication of their encoded values is done by a simple 2-
input AND gate. For example, let s0 = 0101100100100011
and s1 = 0110110010111001 be two unipolar stochastic bit-
streams, respectively having the values P (s0) = 7/16 and
P (s1) = 9/16. Their AND gated bit-stream is s0 ∧ s1 =
0100100000100001 and P (s0 ∧ s1) = 4/16 ' 63/256.

Apart from area reduction, other advantages of the stochas-
tic representation are an increased robustness (bit flips have a
lower impact on the encoded value than in base-2 represen-
tation) and progressive precision (the longer is the bit-stream,
the higher is the precision). On the one hand, the increased
robustness allows to reduce the circuit voltage, which reduces
its power consumption. On the other hand, precision can be
adapted dynamically without major hardware modification.
This can be exploited for reducing the power consumption by
doing a fast evaluation with low energy when the application
allows it.

In recent years, architectures based on stochastic computing
have been successfully used to implement Bayesian inference
in sensor fusion models and temporal filters [2]. Such cir-
cuits use Stochastic Number Generators (SNGs) to encode
probability values in stochastic bit-streams. These SNGs are
critical in the implementation of stochastic circuits: their bit-
streams must be pairwise independent as well as non biased
in order to maximize the computation precision for a given
bit-stream length. Moreover, their contribution to the circuit
power consumption and area is significant and a number of
previous works have focused on reducing their impact on the
circuit with methods sharing common resources [3]–[7].

In this paper, we consider a Bayesian sensor fusion prob-
lem implemented in a dedicated stochastic circuit [8], for
which we compare, in terms of area, power consumption, and
computation accuracy different SNG implementations sharing
hardware resources. We introduce a new solution of Random
Number Generator (RNG) sharing over a large amount of
stochastic bit-streams, which significantly enhances the circuit
area and power efficiency.

II. RELATED WORKS

A. Stochastic circuits for Bayesian sensor fusion

Sensor fusion circuits combine data from several sensors
to synthesize information on a state variable or to reduce
sensor noise and enhance measurements accuracy. For many
AI systems where most of the computation power is in
the cloud, they provide computing capability at the edge to
transmit only essential data to remote servers and save precious
communication bandwidth.

In this context, Bayesian inference provides a theoretical
framework that allows building models for sensor fusion (see
for instance [8], [9]). In addition to fusing sensor data, such
explainable models allow sensor diagnosis by inferring values

for one sensor knowing the output states and the other sensors
data.

In a Bayesian sensor fusion model, a state variable S is
usually inferred from n independent sensor readings Ki using
sensor models P (Ki|S) thanks to Bayes’ theorem:

P (S| ∧ni=1 Ki) ∝ P (S)
n∏
i=1

P (Ki|S) (1)

The probability distribution P (S), usually called prior,
encodes a priori knowledge about the state S. The condi-
tional probability distribution P (Ki|S) on sensor reading Ki

knowing the state S, called a likelihood, encodes knowledge
related to a physical model of the sensor.

When S is a discrete variable with cardinal m, and given
a set {k1, . . . , kn} of acquired sensor samples, for each 1 ≤
j ≤ m, Eq. 1 becomes:

P (S = sj |∧ni=1Ki = ki) ∝ P (S = sj)
n∏
i=1

P (Ki = ki|S = sj)

(2)
As the inference of Eq. 2 only involves computing products,

it may be efficiently implemented as a multiplication matrix of
1+n columns (for the prior and the likelihoods) computing in
parallel on m rows the posterior distribution for all values of S
[8]. Consequently, the stochastic circuit dedicated to Bayesian
sensor fusion, shown in Fig. 1, is comprised of the following
blocks:
• Memories that store sensor models P (Ki|S = sj),
• Stochastic Number Generators, which are comprised of

RNGs and Probability Converter Circuits (PCC), usually
a comparator, that convert likelihood values into stochas-
tic bit-streams,

• AND gates that perform the multiplication of likelihoods
and priors,

• and finally, counters that convert the resulting stochastic
bit-steams into standard binary representations.

When a new sample ki is acquired, the likelihood P (Ki =
ki|S = sj) is read from memory. Then, this value is compared
to a random number in the PCC to generate a bit at ’1’ or
at ’0’ with probability P (Ki = ki|S = sj) according to
a Bernoulli trial. Since rows are independent, it is possible
to share one RNG per column. Thus, only n + 1 RNGs are
needed to generate m ∗ (n + 1) stochastic bit-streams. These
RNGs are usually implemented using Linear-Feedback Shift
Registers (LFSR). Although LFSRs are pseudo-deterministic
RNGs, they are popular in these implementations due to their
small area and power consumption while having good bias
properties.

B. Methods to reduce SNG area and power consumption

Previous works proposed solutions to make the SNGs more
power and area efficient, mainly by sharing logical resources.

First, in [3], Chen and Hayes developed the concept of
stochastic bit-stream isolation, aiming at reducing correlation

RNG RNG RNG

counters

+1

+1

+1

BC BC BC

BC BC BC

BC BC BC

PCC

random
number

likelihood
register

BCin

BCout

Bayesian Cell (BC)

Figure 1: A stochastic circuit architecture for Bayesian sensor
fusion: a matrix of Bayesian cells (BC).

between bit-streams while sharing a SNG over several of them.
To do so, a so called isolator is implemented, which actually
corresponds to a register, to shift the bit-streams in time
and, thus, reduce their cross-correlation. However, this single
shared RNG needs to have low auto-correlation to prevent a
decrease in computation accuracy. LFSRs do not satisfy this
requirement, and more sophisticated RNGs have higher area
and power consumption.

In [4], Neugebauer et. al. propose to use an RNG based on a
substitution box (S-Box), the SBoNG. These RNGs are larger
than LFSRs, but they provide bit-streams with lower auto-
correlation. They can therefore be shared over several SNGs
using the isolators mentioned above. This method allows to
save up to 20% of area compared to the LFSR implementation
when sharing one RNG over 100 SNGs.

Other works focus on the PCC part of the SNG. [5]
describes an efficient PCC, based on the Weighted Binary Gen-
erator (WBG). The WBG in itself is larger than a comparator-
based PCC. However, a part of the WBG, the Weight Gen-
erator (WG), can be shared over one whole column since it
does not depend on the likelihood to be encoded, as shown
in Fig. 2a. Consequently, area and power consumption can be
saved this way. On the contrary, a comparator cannot be split
with a common part sharing resources, making mandatory the
whole PCC implementation for each cell.

Finally, recent works proposed to share the same random
numbers, even with a simple LFSR, to generate several

stochastic bit-streams by using bit permutations between the
RNG and the PCC. While [6] proposes to use circular shifts
on the same random numbers, in [7], Salehi defines an
algorithm to determine the set of k permutations over a n-bit
random number that minimize pairwise correlations between
the stochastic bit-streams. This method achieves less correlated
stochastic bit-streams than in [6], and saves up to 50% area and
power consumption of the SNGs, while maintaining equivalent
computation accuracy.

In conclusion, wire permutations of [7] allow to share one
RNG over several SNGs. However, if the RNG is shared over
more than two SNGs, accuracy starts dropping. When using
isolators as in [3], one RNG can be shared over more than two
SNGs without accuracy loss, but the hardware overhead can be
significant. In the next section, we propose a new method for
sharing one RNG over several SNGs, with minimal accuracy
loss, and minimal hardware overhead.

III. A SNG BASED ON SHIFT REGISTER ISOLATOR

In this proposition, we introduce two improvements to the
method proposed in [3]:
• Firstly, we insert isolators at the output of one RNG

instead of at the SNGs outputs. We therefore shift random
numbers instead of bit-streams. This RNG is shared over
all the SNGs. This way, we limit the hardware overhead
when adding new rows and columns to the design.

• Secondly, as in [5], we reduce the hardware cost of
the PCCs by mutualizing a part of the WBG, the WG,
and attaching it to the RNG, before the isolators. This
amounts to factorising a part of the hardware resources
which is used in every Bayesian cell.

Fig. 2a shows the architecture of the WBG. It can be
separated into two parts. Firstly, the WG associates a weight
to each output bit. Then, the Probability Encoder generates the
stochastic bit-stream according to the associated likelihood or
prior.

The architecture proposed in this paper, called Shift Register
Isolator (SRI), is depicted in Fig. 2b. Only one RNG is used
in this design. The WG is connected to the output of the RNG.
Its output is then shifted using a register pipeline. Finally, the
pipelined random numbers are connected to the encoders for
each Bayesian cell.

Contrarily to [7], the SRI can share one RNG over all SNGs
if its output has sufficiently low auto-correlation. Moreover,
one WG is shared over all the columns, which is not possible
when permutations are used. Indeed, permutations have to be
applied before the WG.

Compared to the method proposed in [3], AND gates are no
longer separated with registers. Therefore, they are optimized
during synthesis into one larger AND gate per row. Moreover,
when adding new columns to the design, the number of
additional registers is no longer dependent on the number of
lines, but only on the RNG output data width which is fixed (it
is associated to the data coding precision). Consequently, this
method saves area and power consumption in designs with a
large number of rows and columns. For example, in a design

r3

r2

r1

r0 l0

l1

l2

l3

PCCout

Probability Encoder (PE)Weight Generator (WG)

(a)

RNG
counters

shift register

+1

+1

+1

BC

BC

BC

BC

BC

BC

BC

BC

BC

PElikelihood
register

BCin

BCout

Bayesian Cell (BC)

WG

number
random

weighted

(b)

Figure 2: Proposed Shift Register Isolator implementation.
(a) WBG decomposition adapted from [5] for 4-bits random
number (ri,i∈[0;3]) and 4-bits likelihood (li,i∈[0;3]). (b) Global
architecture.

with 128 rows, if data is encoded with 8 bits, each added
column involves adding 8 registers instead of 128 registers
for the method of [3].

As in [3], using isolators introduces a latency corresponding
to the number of columns. However, this latency is negligible
compared to the computing time associated with the bit-stream
length.

IV. ACCURACY, AREA AND POWER COMPARISONS OF SNG
ARCHITECTURES

This section compares different SNG implementations, in-
cluding the proposition of Sec. III, in terms of accuracy, area
and power consumption.

A. SNG quality metrics

In this paper, we use two complementary metrics for
computation accuracy: the Stochastic Computing Correlation

quantifies at the component level the RNG capacity to generate
uncorrelated bit-streams, and the Kullback-Leibler Divergence
measures at the application level the quality of the output
probability distribution.

1) Stochastic Computing Correlation: [10] introduces a
metric to measure the correlation between two stochastic bit-
streams X and Y, the Stochastic Computing Correlation (SCC),
defined by Eq. 3:

SCC(X,Y) =


0 if δ(X,Y) = 0

δ(X,Y)
min(pX ,pY)−pX .pY if δ(X,Y) > 0

δ(X,Y)
pX .pY −max(pX+pY −1,0) if δ(X,Y) < 0

(3)
where pX and pY are respectively the encoded values of the
bit-streams X and Y , pX∧Y is the encoded value of the bit-
stream at the output of the AND gate with X and Y as inputs,
and δ(X,Y) = pX∧Y −pX .pY . The SCC measure varies in the
[−1; 1] segment. SCC = 0 means that the two bit-streams are
uncorrelated, SCC = 1 means that the bit-streams are equal,
and SCC = −1 means that they are opposite, that is, each bit
of X at ‘0‘ corresponds to a ‘1‘ for Y and vice versa.

To compute the correlation between two SNGs S and S′ as
defined in [6], we perform the SCC average on all possible
values of X and Y :

SCCavg(S, S
′) =

2s−1∑
i=0

2s−1∑
j=0

|SCC(Si, S′j)|
(2s × 2s)

(4)

where s is the data precision, and Si and S′j are the gen-
erated bit-streams with the SNG S (respectively S′) and with
the encoded value i/2s (respectively j/2s). Then, SCCavg is
always positive, and the lower it is, the less correlated are the
SNGs.

To measure the stochastic quality of a set of n SNGs, we

therefore perform the average over the
(
n

2

)
pairwise SCC

averages.
2) Kullback-Leibler Divergence: Another way to measure

the quality of SNGs in this application is to compare the result-
ing distribution of the stochastic circuit Pstoc with a reference
distribution Pfloat computed with floating point multiplications.
For this purpose, we use the Kullback-Leibler Divergence
(KLD), which provides a measure of distance between prob-
ability distributions which is grounded in information theory:

DKL(Pstoc‖Pfloat) =

m∑
j=1

Pstoc(j) log
Pstoc(j)

Pfloat(j)
(5)

where Pstoc(j) (respectively Pfloat(j)) corresponds to the
result of inference P (S = sj |∧ni=1Ki) computed in stochastic
(respectively floating point) representation.

The KLD is always positive. The lower it is, the closer are
the output and reference distributions, so the better is the set
of SNGs.

B. Protocol

This study is divided into two parts. Firstly, a comparison
in terms of correlation and accuracy is realized at software
level, by simulating RNGs and architecture behaviors in C
language. Secondly, a comparison in terms of area and power
is done at hardware level by implementing these architectures
in a STMicroelectronics 65 nm CMOS technology and using
retro annotated simulations.

The studied RNGs architectures are the following:
• 8-bit, 16-bit and 32-bit LFSR,
• 8-bit, 16-bit and 32-bit SBoNG of [4],
• 16-bit and 32-bit Xoroshiro,
• STRNG, a True Random Number Generator (TRNG)

based on a Self-Timed Ring, introduced in [11], and
simulated in software via a set of recorded output data.

Note that simple RNGs such as LFSRs have highly auto-
correlated outputs, while the STRNG has low to nonexistant
auto-correlation at its output.

These RNG implementations are combined with different
PCCs (comparator or WBG), and with or without RNG sharing
using the permutation method of [7], or our proposed SRI.

We set the problem dimensions as follows:
• likelihoods are encoded on 8 bits and so are the random

numbers (which correspond to the 8 least significant bits
of the RNG outputs),

• the counters have a size of 8 bits,
• the number of columns (number of sensors + 1) is fixed

to 8 for the software simulation and ranges from 8 to 16
for the hardware comparison,

• the discretization of the state variable S (number of
rows) varies in the set {8, 16, 32, 64} for the hardware
comparison, and is chosen as large as possible for the
software comparison in order to get stable results in a
reasonable computation time,

• the bit-stream lengths vary exponentially from 23 to 223

cycles.
To put these numbers into perspective, let us note that

the sound source localisation application presented in [9]
implements Bayesian sensor fusion with 4096 lines and 104
columns (grouped in slices of 10 columns) and considers
typical bit-stream lengths varying between 212 and 223.

For a fair comparison, we perform beforehand a study on
RNG seeds, similar to the one developed in [12], looking for
those minimizing the pairwise SCCavg. This study is carried
out in an exhaustive manner for the 8-bit LFSR, but the
problem quickly becomes intractable with the growing size
of RNGs. Therefore, we use Monte Carlo samples to compute
the pairwise SCCavg with a set of randomly generated seeds
Ntrials times (with Ntrials ≥ 1000), and register the ones with
the lowest pairwise SCCavg. Our study shows that optimized
seeding reduces KLD up to 30% compared to a fully random
seeding, which is significant and has to be properly studied.
Notice that it is not in the scope of this paper.

Likewise, computing SCCavg is intractable over the 8
columns, so it is also done with randomly generated likeli-

hoods values over a large number of rows (around 10000).
KLD measurements are done at the same time with this same
set of random data.

C. Computation accuracy results

LFSR8
LFSR16
LFSR32
SBoNG8
SBoNG16
SBoNG32
Xoroshiro16
Xoroshiro32
STRNG

Bit-stream
length

10

KLD

10

10

10

10

10

0

-1

-2

-3

-4

-5

2 2 2 2 2 2 2 2 2 24 6 8 10 12 14 16 18 20 22

(a)

10

10

10

10

10

10

0

-1

-2

-3

-4

-5

LFSR8
LFSR16
LFSR32
SBoNG8
SBoNG16
SBoNG32
Xoroshiro16
Xoroshiro32
STRNG

Bit-stream
length

KLD

2 2 2 2 2 2 2 2 2 24 6 8 10 12 14 16 18 20 22

(b)

Figure 3: KLD measurement for different RNGs as a function
of the bit-stream length. (a) Bare implementation. (b) With our
proposed SRI.

Fig. 3a shows the impact of RNGs on the KLD in a design
without the SNG optimizations of Sec. II-B and Sec. III.
Independently of the chosen RNG, if the bit-stream length
is shorter than the RNG period (2s − 1 for LFSR and 22s for
SBoNG and Xoroshiro, s being the RNG output precision), all
studied RNGs lead to similar KLD (even the TRNG). In other
words, in terms of SC multiplication accuracy, even RNGs
with high auto-correlation such as LFSRs tend to behave like
ideal RNGs as long as the stochastic bit-stream is shorter
than the period. Beyond this period, the KLD curve reaches a
plateau, and the SC precision can no longer be enhanced with
the bit-stream length.

Fig. 3b shows the impact of the proposed SRI on the
KLD. Simple, high auto-correlated RNGs such as LFSRs
are not compatible with our SRI proposition and lead to
significant accuracy loss due to the use of isolation. Accuracy
is also impacted when using SBoNGs but if the stochastic
bit-stream length does not exceed 213 cycles, the KLD loss
remains negligible. For RNGs with low auto-correlation, such
as Xoroshiro or STRNG, isolation does not affect the KLD.

Table I provides more detailed KLD and SCC measurements
for different SNG configurations, including SRI architecture

Sharing version RNG

Error measurement
after 213 cycles

(×10−2)
SCC KLD

Bare

LFSR-16 3.71 1.50
LFSR-32 3.83 1.47
SBoNG-8 3.52 1.35

Xoroshiro-16 3.44 1.30
STRNG 3.67 1.35

WBG

LFSR-16 3.08 1.28
LFSR-32 3.37 1.33
SBoNG-8 3.45 1.47

Xoroshiro-16 3.34 1.47
STRNG 3.47 1.41

Inverse
Permutation [7]

+ WBG

LFSR-16 4.26 1.42
LFSR-32 4.35 1.47
STRNG 4.30 1.46

Isolator
+ WBG

SBoNG-8 4.72 1.65
Xoroshiro-16 3.52 1.41

STRNG 3.31 1.40
Shift

Register
Isolators

SBoNG-8 4.67 1.64
Xoroshiro-16 3.20 1.35

STRNG 3.26 1.40

Table I: Comparison of the accuracy of SNGs, measured at
the component level by the SCC and at the application level
by the KLD.

proposed in this paper for a bit-stream length of 213. We
can see that the use of WBG does not decrease computation
accuracy. Furthermore, the inverse permutation of [7], which,
to the best of our knowledge, corresponds to the state of
the art, shows almost the same ideal KLD and SCC as the
bare implementation with the use of any studied RNG. Until
this breaking point of 213, the proposed SRI architecture
also achieves equivalent ideal accuracy for low auto-correlated
RNG such as SBoNG and Xoroshiro.

In conclusion, when using pseudo-deterministic RNGs,
computation accuracy increases with the bit-stream length as
long as it is shorter than the RNG period. This result tends
to support the exclusive use of simple RNGs such as LFSRs
for SC since larger RNGs such as Xoroshiro or the STRNG
do not significantly enhance accuracy. However, to allow the
use of our proposed SRI, the RNG output must have a low
auto-correlation. Thus, these more sophisticated RNGs can
paradoxically allow a more compact design (cf Sec. IV-D)
without accuracy loss. The proposed SRI architecture with
both Xoroshiro-16 and SBoNG-8 satisfies these requirements
and shows similar accuracy than state of the art implementa-
tions.

For a given application, the required bit-stream length L
depends on the number of sensors and on the target accuracy.
According to our analysis and to Fig. 3, for a given bit-
stream, some architectures are more accurate than others.
Consequently, L is set depending on the application, and the
choice of an adequate architecture is set depending on L. In
the following, we compare architectures with similar accuracy
for L ranging from 210 to 220 cycles.

D. Power and area results

Since area and power measurements are independent of
the computation time, the hardware results presented in this
section do not depend on the bit-stream length. For the
hardware simulations, this length is arbitrarily chosen at 10000
cycles, a number large enough to obtain representative results.
These results are therefore consistent with any value of L,
as long as the studied architecture achieves ideal accuracy,
according to Fig. 3.

A first hardware simulation of the bare architecture of Fig. 1
using LFSR32, with 8 rows and 16 columns, shows that the
the RNGs represent 29% of the circuit area (8135 out of 27775
µm2), and 85% of its power consumption (2.451 out of 2.883
mW). This first result strongly motivates the use of schemes
sharing RNGs to reduce their implementation cost.

In a second set of experiments, we compare the 4 more
compact SNG architectures reaching ideal accuracy within the
studied range of use (210 ≤ L ≤ 220), and using or not our
proposed SRI:
• Inverse permutation architectures of [7] sharing either

LFSR16 or LFSR32 with WBG as PCC. These archi-
tectures can be used until 216 and 232 cycles without
accuracy loss, and are respectively noted SOTA16 and
SOTA32 (for State Of The Art);

• SRI architectures with either a sharing of a SBoNG-8 or
a Xoroshiro-16, which can be used respectively until 213

and 232 cycles, and respectively noted SRI13 and SRI32.
We plot in Fig. 4a the power consumption comparison of

these architectures, for circuits of 8 to 64 rows and 8 to 16
columns.

Since these implementations are not usable in the same
range of use, we have to do 3 pairwise comparisons according
to the bit-stream length L required in the application:
• between SOTA16 and SRI13 when 210 < L < 213,
• between SOTA16 and SRI32 when 213 < L < 216,
• between SOTA32 and SRI32 when 216 < L < 220.
For the sake of brevity, we do not present the full compara-

tive study made on circuit areas for the different implementa-
tions (which show little variations) but only describe the main
results.

Circuits using the SRI13 always have a smaller area and
power consumption than their SOTA16 counterparts, as well
as SRI32 compared to SOTA32.

Indeed, when comparing SOTA16 and SRI13 (for L < 213),
for the worst case, (64 rows and 8 columns), the SRI13
architecture achieves a slight reduction of 0.2% in terms of
area (from 70223 to 70075 µm2) but is significantly better
in power consumption compared to SOTA16 with more than
20% of reduction (from 1.175 to 0.931 mW). These results
become, as expected, much better with the growing number
of columns, with up to 4.5% of area (from 18227 to 17398
µm2) and 41% of power consumption reduction (from 0.833
to 0.488 mW) for the best case (16 columns and 8 rows).

Besides, when comparing SOTA32 and SRI32, (for L >
216), the hardware comparison is also in favor of our propo-

64 rows

8 rows

8 cols 16 cols

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Power (mW)

SOTA16 SOTA32 SRI13 SRI32

(a)

nbcol
8 16

L
210 - 213 SRI13 SRI13
213 - 216 SOTA16 SRI32
216 - 220 SRI32 SRI32

(b)

Figure 4: Comparison between state of the art and proposed
SRI architectures. (a) Power consumption of the Bayesian
computing core on different architectures and circuit dimen-
sions. (b) Best architecture according to the required bit-stream
length and number of columns.

sition, with an area reduction of 11% in the best case (from
20155 to 17845 µm2), and a power reduction ranging from
18% (from 1.611 to 1.307 mW) to almost 58% (from 1.48 to
0.623 mW) by using the SRI.

However, when 213 < L < 216, we can see that the
SRI32 implementation consumes from 6% (from 0.423 to
0.449 mW) to 11% (from 1.175 to 1.307 mW) more power
than the SOTA16 implementation with 8 columns. But the
trend is reversing with a 16 columns architecture, where
our proposition becomes more power-efficient again, with 15
(from 2.278 to 1.924 mW) to 25% (from 0.833 to 0.623 mW)
saved power.

In other words, and as shown in Fig. 4b, the proposed SRI
architecture achieves better results for almost every scenario
except when using a bit-stream of length between 213 and 216

with a circuit of 8 columns or less.

Finally, even though this SRI was introduced for a Bayesian
circuit, it could be interest for other applications: it could
typically provide gains when a) the number of parallel compu-
tations (analogous to our circuit rows) gets higher ; and b) the
number of operands involved in these parallel computations
(analogous to our circuit columns) gets higher too.

Note that for future works on different applications, other
metrics than those used in this paper may be required, and the
Root Mean Square Error could be used to replace the KLD
for applications which do not compute an output probability
distribution.

V. CONCLUSION

In this article, we introduced a new method for sharing
a single RNG over a large number of stochastic bit-streams
by shifting random numbers at its output. For this purpose,
the RNG output needs to have lower auto-correlation than a
standard LFSR and so has to be larger. However, the smaller is
not always the better, since this method saves area and power
by allowing to use one single RNG for the whole design. We
also performed comparisons of different RNGs combined with
different resource sharing methods, including the one proposed
in this paper, on a Bayesian circuit for sensor fusion, in terms
of area and power consumption in a 65 nm CMOS technology.
The proposed architecture allows to save up to 11% of area
and 58% of power consumption compared to the state of the
art. Finally, we believe that our proposition can benefit to the
stochastic computing community as it should generalize to
other applications than the Bayesian sensor fusion circuits.

ACKNOWLEDGMENT

This work has been supported by the grant number
2019/0311 from ANRT.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proceedings of the April
18-20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring),
p. 149–156, Association for Computing Machinery, 1967.

[2] M. Faix, E. Mazer, R. Laurent, M. O. Abdallah, R. Le Hy, and J. Lobo,
“Cognitive computation: a bayesian machine case study,” in 2015 IEEE
14th International Conference on Cognitive Informatics & Cognitive
Computing (ICCI* CC), pp. 67–75, IEEE, 2015.

[3] T. Chen and J. P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” in 2014 IEEE 32nd International Conference on
Computer Design (ICCD), pp. 367–373, 2014.

[4] F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random
number generator for stochastic computing,” in 2017 Euromicro Con-
ference on Digital System Design (DSD), pp. 1–8, 2017.

[5] M. Yang, B. Li, D. J. Lilja, B. Yuan, and W. Qian, “Towards theoretical
cost limit of stochastic number generators for stochastic computing,”
in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 154–159, IEEE, 2018.

[6] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact
and accurate stochastic circuits with shared random number sources,” in
2014 IEEE 32nd International Conference on Computer Design (ICCD),
pp. 361–366, 2014.

[7] S. A. Salehi, “Low-cost stochastic number generators for stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 4, pp. 992–1001, 2020.

[8] A. Coninx, P. Bessière, E. Mazer, J. Droulez, R. Laurent, M. A. Aslam,
and J. Lobo, “Bayesian sensor fusion with fast and low power stochastic
circuits,” in 2016 IEEE International Conference on Rebooting Comput-
ing (ICRC), pp. 1–8, IEEE, 2016.

[9] R. Frisch, R. Laurent, M. Faix, L. Girin, L. Fesquet, A. Lux, J. Droulez,
P. Bessière, and E. Mazer, “A Bayesian stochastic machine for sound
source localization,” in 2017 IEEE International Conference on Reboot-
ing Computing (ICRC), pp. 1–8, IEEE, 2017.

[10] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in 2013 IEEE 31st International Conference on Computer
Design (ICCD), pp. 39–46, 2013.

[11] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “A self-timed ring
based true random number generator,” in 2013 IEEE 19th International
Symposium on Asynchronous Circuits and Systems, pp. 99–106, 2013.

[12] J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of lfsr
seeding, scrambling and feedback polynomial on stochastic computing
accuracy,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1550–1555, 2016.

